Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34439
Short-term load forecasting of multiregion systems using mixed effects models
Ver/Abrir: Short-term_load_forecasting_of_multiregion_systems_using_mixed_effects_models.pdf
310,91 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Short-term load forecasting of multiregion systems using mixed effects models |
Autor : López García, Miguel VALERO, SERGIO Senabre, Carolina |
Editor : IEEE |
Departamento: Departamentos de la UMH::Ingeniería Mecánica y Energía |
Fecha de publicación: 2017 |
URI : https://hdl.handle.net/11000/34439 |
Resumen :
This paper presents an application of linear mixed
models to short-term load forecasting. The starting point of the
design is a currently working model at the Spanish Transport
System Operator, which is based on linear autoregressive
techniques and neural networks. The forecasting system
currently forecasts each of the regions within the Spanish grid
separately, even though the behavior of the load in each region is
affected by the same factors in a similar way. The integration of
several regions into a linear mixed model allows using the
information from other regions to learn general behaviors
present in all regions while also identifying individual deviation
in each regions. This technique is especially useful when
modeling the effect of special days for which information from
the past is scarce. The model described has been applied to the
three most relevant regions of the system, focusing on special
day and improving the performance of both currently working
models used as benchmark.
|
Palabras clave/Materias: mixed effects models short-term load forecasting neural networks |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria |
Tipo de documento : info:eu-repo/semantics/conferenceObject |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1109/EEM.2017.7981957 |
Aparece en las colecciones: Congresos, ponencias y comunicaciones
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.