Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/34437
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | López García, Miguel | - |
dc.contributor.author | VALERO, SERGIO | - |
dc.contributor.author | Senabre, Carolina | - |
dc.contributor.author | Gabaldon, Antonio | - |
dc.contributor.other | Departamentos de la UMH::Ingeniería Mecánica y Energía | es_ES |
dc.date.accessioned | 2025-01-12T18:10:45Z | - |
dc.date.available | 2025-01-12T18:10:45Z | - |
dc.date.created | 2012 | - |
dc.identifier.citation | 2012 IEEE Power and Energy Society General Meeting | es_ES |
dc.identifier.uri | https://hdl.handle.net/11000/34437 | - |
dc.description.abstract | This paper proposes the use of an indicator of the predictability of the load series along with an accuracy value such as Mean Average Percentage Error as standard measures of load forecasting performance. Over the last 10 years, there has been a significant increase in load forecasting models proposed in engineering journals. Most of these models provide a description of the inner design of the model, the results from applying this model to a specific data base and the conclusions drawn from this application. However, a single accuracy value may not be sufficient to describe the performance of the model when applied to other data bases. The aim of this paper is to provide researchers with a tool that is able to assess the predictability of a load series and, therefore, contextualize the forecasting accuracy reported. Thirteen different data bases were used to determine its validity. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 6 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | IEEE | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Forecasting | es_ES |
dc.subject | power demand | es_ES |
dc.subject | performance evaluation | es_ES |
dc.subject | frequency domain analysis | es_ES |
dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria | es_ES |
dc.title | Short-Term Load Forecasting: Revising How Good We Actually Are | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1109/PESGM.2012.6345392 | es_ES |
View/Open:
Short-term_load_forecasting_Revising_how_good_we_actually_are.pdf
725,98 kB
Adobe PDF
Share: