Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34262
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCaballero, Carla-
dc.contributor.authorMistry, Sejal-
dc.contributor.authorVero, Joe-
dc.contributor.authorTorres, Elizabeth-
dc.contributor.otherDepartamentos de la UMH::Ciencias del Deportees_ES
dc.date.accessioned2025-01-10T09:06:51Z-
dc.date.available2025-01-10T09:06:51Z-
dc.date.created2018-
dc.identifier.citationFrontiers in Integrative Neurosciencees_ES
dc.identifier.issn1662-5145-
dc.identifier.urihttps://hdl.handle.net/11000/34262-
dc.description.abstractThe variability inherently present in biophysical data is partly contributed by disparate sampling resolutions across instrumentations. This poses a potential problem for statistical inference using pooled data in open access repositories. Such repositories combine data collected from multiple research sites using variable sampling resolutions. One example is the Autism Brain Imaging Data Exchange repository containing thousands of imaging and demographic records from participants in the spectrum of autism and age-matched neurotypical controls. Further, statistical analyses of groups from different diagnoses and demographics may be challenging, owing to the disparate number of participants across different clinical subgroups. In this paper, we examine the noise signatures of head motion data extracted from resting state fMRI data harnessed under different sampling resolutions. We characterize the quality of the noise in the variability of the raw linear and angular speeds for different clinical phenotypes in relation to age-matched controls. Further, we use bootstrapping methods to ensure compatible group sizes for statistical comparison and report the ranges of physical involuntary head excursions of these groups. We conclude that different sampling rates do affect the quality of noise in the variability of head motion data and, consequently, the type of random process appropriate to characterize the time series data. Further, given a qualitative range of noise, from pink to brown noise, it is possible to characterize different clinical subtypes and distinguish themin relation to ranges of neurotypical controls. These results may be of relevance to the pre-processing stages of the pipeline of analyses of resting state fMRI data, whereby head motion enters the criteria to clean imaging data from motion artifacts.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent13es_ES
dc.language.isoenges_ES
dc.publisherFrontierses_ES
dc.relation.ispartofseries12es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectautismes_ES
dc.subjectAsperger’ses_ES
dc.subjectnoisees_ES
dc.subjectstochastic processes_ES
dc.subjecthead motiones_ES
dc.subjectresting-state fMRIes_ES
dc.subject.otherCDU::7 - Bellas artes::79 - Diversiones. Espectáculos. Cine. Teatro. Danza. Juegos.Deporteses_ES
dc.titleCharacterization of Noise Signatures of Involuntary Head Motion in the Autism Brain Imaging Data Exchange Repositoryes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3389/fnint.2018.00007es_ES
Aparece en las colecciones:
Artículos Ciencias del Deporte


Vista previa

Ver/Abrir:
 2018_JCR_07_FIN_Characterization of Noise Signatures.pdf

2,45 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.