Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34240
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorXu, Jiaohui-
dc.contributor.authorCaraballo, Tomás-
dc.contributor.authorValero, José-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-09T11:45:35Z-
dc.date.available2025-01-09T11:45:35Z-
dc.date.created2024-07-02-
dc.identifier.citationQualitative Theory of Dynamical Systems, Volume 23, article number 228, (2024)es_ES
dc.identifier.issn1662-3592-
dc.identifier.issn1575-5460-
dc.identifier.urihttps://hdl.handle.net/11000/34240-
dc.description.abstractIn this paper, a combination of Galerkin’s method and Dafermos’ transformation is first used to prove the existence and uniqueness of solutions for a class of stochastic nonlocal PDEs with long time memory driven by additive noise. Next, the existence of tempered random attractors for such equations is established in an appropriate space for the analysis of problems with delay and memory. Eventually, the convergence of solutions of Wong-Zakai approximations and upper semicontinuity of random attractors of the approximate random system, as the step sizes of approximations approach zero, are analyzed in a detailed way.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent69es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLong time memoryes_ES
dc.subjectWong-Zakai approximationes_ES
dc.subjectDafermos transformationes_ES
dc.subjectRandom attractorses_ES
dc.subjectUpper semicontinuityes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::50 - Generalidades sobre las ciencias purases_ES
dc.titleDynamics and Wong-Zakai Approximations of Stochastic Nonlocal PDEs with Long Time Memoryes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s12346-024-01080-2es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 QTDS2024.pdf



866 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.