Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34137
Bayesian hierarchical models for analysing the spatial distribution of bioclimatic indices
Título : Bayesian hierarchical models for analysing the spatial distribution of bioclimatic indices |
Autor : Barber, Xavier Conesa, David López Quiles, Antonio Mayoral, Asunción Morales, Javier Barber, Antoni |
Editor : Institut d'Estadística de Catalunya (Idescat) |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2017 |
URI : https://hdl.handle.net/11000/34137 |
Resumen :
A methodological approach for modelling the spatial distribution of bioclimatic indices is proposed
in this paper. The value of the bioclimatic index is modelled with a hierarchical Bayesian model
that incorporates both structured and unstructured random effects. Selection of prior distributions
is also discussed in order to better incorporate any possible prior knowledge about the parameters that could refer to the particular characteristics of bioclimatic indices. MCMC methods and
distributed programming are used to obtain an approximation of the posterior distribution of the
parameters and also the posterior predictive distribution of the indices. One main outcome of
the proposal is the spatial bioclimatic probability distribution of each bioclimatic index, which allows researchers to obtain the probability of each location belonging to different bioclimates. The
methodology is evaluated on two indices in the Island of Cyprus.
|
Palabras clave/Materias: Bioclimatology geostatistics parallel computation spatial prediction |
Área de conocimiento : CDU: Generalidades. |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.2436/20.8080.02.60 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.