Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/33439
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimon Portillo, Francisco J.-
dc.contributor.authorAbellan-López, D.-
dc.contributor.authorFabra-Rodriguez, M.-
dc.contributor.authorPeral-Orts, R.-
dc.contributor.authorSánchez-Lozano, Miguel-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2024-10-07T09:12:22Z-
dc.date.available2024-10-07T09:12:22Z-
dc.date.created2023-09-
dc.identifier.citationJournal of Agriculture and Food Research, Volume 14, December 2023es_ES
dc.identifier.issn2666-1543-
dc.identifier.urihttps://hdl.handle.net/11000/33439-
dc.description.abstractThe presence of internal voids in watermelons has an impact on the costs of producers and on consumer confidence. Various studies have shown that the vibrational parameters of the fruit are related to maturity, quality and the existence of internal defects. A method for the detection of internal voids in seedless watermelons based on vibrational parameters obtained in impact hammer tests and machine learning is presented. After a statistical study of the test results, the frequency of the first peak of the vibrational response and the density of the watermelon are selected as predictors to be used in the classification algorithms. The accuracy of detecting hollow watermelons increases if firmness estimator is introduced as a predictor. Probabilities of success above 89% in the detection of internal voids have been achieved using different classification algorithm.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent10es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectWatermelones_ES
dc.subjectNon-destructive testinges_ES
dc.subjectVibrational methodes_ES
dc.subjectHollow detectiones_ES
dc.subjectClassifier algorithmses_ES
dc.subjectMachine learninges_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleDetection of hollow heart disorder in watermelons using vibrational test and machine learninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.jafr.2023.100779es_ES
Appears in Collections:
Artículos Ingeniería Mecánica y Energía


Thumbnail

View/Open:
 1-s2.0-S2666154323002867-main.pdf

6,59 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???