Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/32598
Characterization of the attractor for nonautonomous reaction-di¤usion equations with discontinuous nonlinearity
Ver/Abrir: JDE2021.pdf
513,03 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Characterization of the attractor for nonautonomous reaction-di¤usion equations with discontinuous nonlinearity |
Autor : Valero, Jose  |
Editor : Elsevier |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2021-02-25 |
URI : https://hdl.handle.net/11000/32598 |
Resumen :
In this paper, we study the asymptotic behavior of the solutions of a nonautonomous differential
inclusion modeling a reaction-di¤usion equation with a discontinuous nonlinearity.
We obtain rst several properties concerning the uniqueness and regularity of non-negative so-
lutions. Then we study the structure of the pullback attractor in the positive cone, showing that
it consists of the zero solution, the unique positive nonautonomous equilibrium and the heteroclinic
connections between them, which can be expressed in terms of the solutions of an associated linear
problem.
Finally, we analyze the relationship of the pullback attractor with the uniform, the cocycle and
the skew product semi ow attractors.
|
Palabras clave/Materias: Differential inclusions Reaction-diffusion equations Pullback attractors Nonautonomous dynamical systems Multivalued dynamical systems Structure of the attractor |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1016/j.jde.2020.11.036 |
Publicado en: Journal of Differential Equations, Volume 275, 25 February 2021, Pages 270-308 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.