Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/32595
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Cássia D S Broche, Rita-
dc.contributor.authorCarvalho, Alexandre-
dc.contributor.authorValero, José-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2024-07-22T10:19:01Z-
dc.date.available2024-07-22T10:19:01Z-
dc.date.created2019-10-30-
dc.identifier.citationNonlinearity, Volume 32, Number 12, 2019es_ES
dc.identifier.issn1361-6544-
dc.identifier.issn0951-7715-
dc.identifier.urihttps://hdl.handle.net/11000/32595-
dc.description.abstractThe purpose of this paper is to give a characterization of the structure of nonautonomous attractors of the problem ut = uxx + u 􀀀 (t)u3 when the parameter > 0 varies. Also, we answer a question proposed in [11], concerning the complete description of the structure of the pullback attractor of the problem when 1 < < 4 and, more generally, for ̸= N2, 2 N 2 N. We construct global bounded solutions , “non-autonomous equilibria”, connections between the trivial solution and these “non-autonomous equilibria” and characterize the -limit and !-limit set of global bounded solutions. As a consequence, we show that the global attractor of the associated skew-product flow has a gradient structure. The structure of the related pullback an uniform attractors are derived from that.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent32es_ES
dc.language.isoenges_ES
dc.publisherIOP Publishinges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleA non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamicses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1088/1361-6544/ab3f55es_ES
Appears in Collections:
Artículos Estadística, Matemáticas e Informática


Thumbnail

View/Open:
 paper_revised UMH v1.pdf

286,91 kB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???