Title: An imperative for soil spectroscopic modelling is to think global but fit local with transfer learning |
Authors: VISCARRA ROSSEL, Raphael  Shen, Zefang  Ramirez-Lopez, Leonardo  Behrens, Thorsten  Shi, Zhou Wetterlind, Johanna  Sudduth, Kenneth A. Stenberg, Bo  Gholizadeh, Asa  Ben Dor, Eyal  St. Luce, Mervin  Orellano, Claudio  Guerrero, César |
Editor: Elsevier |
Department: Departamentos de la UMH::Agroquímica y Medio Ambiente |
Issue Date: 2024-05-24 |
URI: https://hdl.handle.net/11000/32249 |
Abstract:
Soil spectroscopy with machine learning (ML) can estimate soil properties. Extensive soil spectral libraries (SSLs)
have been developed for this purpose. However, general models built with those SSLs do not generalize well on
new ‘unseen’ local data. The main reason is the different characteristics... Ver más
|
Keywords/Subjects: Soil spectral library vis–NIR spectra Localization Transfer learning Soil organic carbon |
Knowledge area: CDU: Ciencias puras y naturales |
Type of document: info:eu-repo/semantics/article |
Access rights: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI: https://doi.org/10.1016/j.earscirev.2024.104797 |
Published in: Earth-Science Reviews, Volume 254, July 2024, 104797 |
Appears in Collections: Artículos Agroquímica y Medio Ambiente
|