Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/32249

An imperative for soil spectroscopic modelling is to think global but fit local with transfer learning


Thumbnail

View/Open:
 1-s2.0-S0012825224001247-main.pdf

14,84 MB
Adobe PDF
Share:
Title:
An imperative for soil spectroscopic modelling is to think global but fit local with transfer learning
Authors:
VISCARRA ROSSEL, Raphael  
Shen, Zefang  
Ramirez-Lopez, Leonardo  
Behrens, Thorsten  
Shi, Zhou
Wetterlind, Johanna  
Sudduth, Kenneth A.
Stenberg, Bo  
Gholizadeh, Asa  
Ben Dor, Eyal  
St. Luce, Mervin  
Orellano, Claudio  
Guerrero, César
Editor:
Elsevier
Department:
Departamentos de la UMH::Agroquímica y Medio Ambiente
Issue Date:
2024-05-24
URI:
https://hdl.handle.net/11000/32249
Abstract:
Soil spectroscopy with machine learning (ML) can estimate soil properties. Extensive soil spectral libraries (SSLs) have been developed for this purpose. However, general models built with those SSLs do not generalize well on new ‘unseen’ local data. The main reason is the different characteristics...  Ver más
Keywords/Subjects:
Soil spectral library
vis–NIR spectra
Localization
Transfer learning
Soil organic carbon
Knowledge area:
CDU: Ciencias puras y naturales
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1016/j.earscirev.2024.104797
Published in:
Earth-Science Reviews, Volume 254, July 2024, 104797
Appears in Collections:
Artículos Agroquímica y Medio Ambiente



Creative Commons ???jsp.display-item.text9???