Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/32226
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMelendez-Pastor, Ignacio-
dc.contributor.authorLopez‑Granado, Otoniel M.-
dc.contributor.authorNavarro-Pedreño, Jose-
dc.contributor.authorHernández, Encarni I.-
dc.contributor.authorJordán-Vidal, Manuel Miguel-
dc.contributor.authorGómez Lucas, Ignacio-
dc.contributor.otherDepartamentos de la UMH::Agroquímica y Medio Ambientees_ES
dc.date.accessioned2024-05-28T11:42:27Z-
dc.date.available2024-05-28T11:42:27Z-
dc.date.created2023-
dc.identifier.citationEnviron Geochem Health (2023) 45es_ES
dc.identifier.issn9067–9085-
dc.identifier.urihttps://hdl.handle.net/11000/32226-
dc.description.abstractThe presence and persistence of pesti-cides in the environment are environmental problems of great concern due to the health implications for humans and wildlife. The persistence of DDT–DDE in a Mediterranean coastal plain where pesticides were widely used and were banned decades ago is the aim of this study. Different sources of analytical information from water and soil analysis and topogra-phy and geographical variables were combined with the purpose of analyzing which environmental factors are more likely to condition the spatial distribution of DDT–DDE in the drainage watercourses of the area. An approach combining machine learning techniques, such as Random Forest and Mutual Information (MI), for classifying DDT–DDE concentration lev-els based on other environmental predictive variables was applied. In addition, classification procedure was iteratively performed with different training/valida-tion partitions in order to extract the most informa-tive parameters denoted by the highest MI scores and larger accuracy assessment metrics. Distance to drain canals, soil electrical conductivity, and soil sand tex-ture fraction were the most informative environmen-tal variables for predicting DDT–DDE water concen-tration clusters.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent19es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDDT · DDE es_ES
dc.subjectSpatial distribution es_ES
dc.subjectSoil texture es_ES
dc.subjectHydrology es_ES
dc.subjectRandom forest es_ES
dc.subjectMutual informationes_ES
dc.subject.otherCDU::5 - Ciencias puras y naturaleses_ES
dc.titleEnvironmental factors influencing DDT–DDE spatial distribution in an agricultural drainage system determined by using machine learning techniqueses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s10653-023-01486-yes_ES
Appears in Collections:
Artículos Agroquímica y Medio Ambiente


no-thumbnailView/Open:

 Environmental factors influencing DDT–DDE spatial distribution in an agricultural drainage system determined by using machine learning techniques.pdf



1,6 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???