Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/32226

Environmental factors influencing DDT–DDE spatial distribution in an agricultural drainage system determined by using machine learning techniques


no-thumbnailVer/Abrir:

 Environmental factors influencing DDT–DDE spatial distribution in an agricultural drainage system determined by using machine learning techniques.pdf



1,6 MB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Environmental factors influencing DDT–DDE spatial distribution in an agricultural drainage system determined by using machine learning techniques
Autor :
Melendez-Pastor, Ignacio  
Lopez‑Granado, Otoniel M.
Navarro-Pedreño, Jose  
Hernández, Encarni I.
Jordán-Vidal, Manuel Miguel
Gómez Lucas, Ignacio
Editor :
Springer
Departamento:
Departamentos de la UMH::Agroquímica y Medio Ambiente
Fecha de publicación:
2023
URI :
https://hdl.handle.net/11000/32226
Resumen :
The presence and persistence of pesti-cides in the environment are environmental problems of great concern due to the health implications for humans and wildlife. The persistence of DDT–DDE in a Mediterranean coastal plain where pesticides were widely used and were banned decades ago is the aim of this study. Different sources of analytical information from water and soil analysis and topogra-phy and geographical variables were combined with the purpose of analyzing which environmental factors are more likely to condition the spatial distribution of DDT–DDE in the drainage watercourses of the area. An approach combining machine learning techniques, such as Random Forest and Mutual Information (MI), for classifying DDT–DDE concentration lev-els based on other environmental predictive variables was applied. In addition, classification procedure was iteratively performed with different training/valida-tion partitions in order to extract the most informa-tive parameters denoted by the highest MI scores and larger accuracy assessment metrics. Distance to drain canals, soil electrical conductivity, and soil sand tex-ture fraction were the most informative environmen-tal variables for predicting DDT–DDE water concen-tration clusters.
Palabras clave/Materias:
DDT · DDE 
Spatial distribution 
Soil texture 
Hydrology 
Random forest 
Mutual information
Área de conocimiento :
CDU: Ciencias puras y naturales
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/s10653-023-01486-y
Aparece en las colecciones:
Artículos Agroquímica y Medio Ambiente



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.