Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/31590

Modelado y simulación de conectividad V2X en la plataforma de conducción autónoma Carla


Vista previa

Ver/Abrir:
 TFG- Servin, Ruben Andres.pdf

5,48 MB
Adobe PDF
Compartir:
Título :
Modelado y simulación de conectividad V2X en la plataforma de conducción autónoma Carla
Autor :
Servin, Rubén Andrés
Tutor:
Sepulcre, Miguel  
Editor :
Universidad Miguel Hernández de Elche
Departamento:
Departamentos de la UMH::Ingeniería de Comunicaciones
Fecha de publicación:
2023-12
URI :
https://hdl.handle.net/11000/31590
Resumen :
La conducción autónoma se prevé clave para el futuro del transporte gracias a mejoras en la seguridad y eficiencia del tráfico. Para conseguir circular de forma autónoma sin intervención humana, los vehículos autónomos emplean sensores para percibir su entorno local de conducción y maniobrar consec...  Ver más
Autonomous driving is expected to be key to the future of transportation thanks to improvements in traffic safety and efficiency. To achieve autonomous driving without human intervention, autonomous vehicles use sensors to perceive their local driving environment and maneuver accordingly. Sensor technology has improved significantly in recent years in terms of sensing range and accuracy. However, sensing capabilities can still be impaired due to the presence of obstacles, adverse weather conditions or lighting conditions, among other factors. These limitations can negatively influence the safety and efficiency of autonomous vehicles. In this context, V2X (Vehicle-to-Everything) communications can reduce this negative impact and improve the perception or sensing capabilities of connected and autonomous vehicles by facilitating the exchange of sensor data between vehicles. This process is generally referred to as cooperative perception, collective perception or cooperative sensing. Cooperative sensing allows vehicles to exchange data captured by their sensors. This provides vehicles with additional information about the driving environment. For example, receiving vehicles will be able to detect objects that would otherwise not be detectable locally. Cooperative sensing also helps mitigate the negative impact of adverse weather or lighting conditions. Cooperative perception is therefore essential for autonomous vehicles to have an accurate perception of the environment . For the study of V2X communication systems in general, and cooperative perception in particular, simulators that allow realistic emulation are required to produce adequate results. Despite advances in traffic and network simulators, these often do not consider perception and communications as interrelated aspects, which may limit their usefulness for the study and development of connected autonomous vehicles. In addition, these simulations can require a considerable amount of time, effort and computational power, depending on communication parameters and traffic density. This Final Degree Work addresses these challenges by implementing a V2X communications module in a realistic simulator that allows simulating autonomous driving scenarios. This approach unifies the simulation of the environment and communications, allowing a more complete and efficient study of connected autonomous vehicles. With this module, vehicular communications can be analyzed and studied in a realistic environment, leveraging simulations to improve perception based on analytical communications models configured to account for a wide variety of communications errors that can arise in communications.
Palabras clave/Materias:
conducción autónoma
seguridad
comunicaciones V2X
percepción cooperativa
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/bachelorThesis
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Aparece en las colecciones:
TFG- Ingeniería de Tecnologías de Telecomunicación



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.