Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/31571

Multicast congestion control srmsh approach using communicating real-time state machines


no-thumbnailVer/Abrir:

 Multicast Congestion Control SRMSH approach using Communicating Real-Time State Machines.pdf



303,19 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Multicast congestion control srmsh approach using communicating real-time state machines
Autor :
Martinez Bonastre, Oscar  
Neville, S.
Editor :
World Scientific Publishing Company
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2010
URI :
https://hdl.handle.net/11000/31571
Resumen :
New real-time applications frequently involve timing constraints related to accurate services from communication protocols. Concretely, real-time communication protocols utilize timers to implement these constraints between system event occurrences. In this context, the study of congestion control for Internet reliable multicast is at present an active research field related to real-time protocols. In this paper, the authors present an innovative real-time transport protocol named Scalable Reliable Multicast Stair Hybrid (SRMSH) as new hybrid multiple layer mechanism for multicast congestion control providing detection and recovery loss. This work is focused on formal specification of SRMSH approach using Communicating Real-Time State Machines as a formal method. Besides, SRMSH validation is presented within a formal proof framework in order to check the functional safety and liveness properties. As a result, authors outline a dynamical system framework in order to model behavior of their presented solution.
Palabras clave/Materias:
Formal methods
real-time transport protocols
multicast congestion control
reliable multicast
layered multicast
dynamical systems
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1142/S0218127410027519
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.