Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/31037
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGalarza, Marcelo-
dc.contributor.authorGiménez, Ángel-
dc.contributor.authorAMIGO, JOSE M.-
dc.contributor.authorSchuhmann, Martin-
dc.contributor.authorGazzeri, Roberto-
dc.contributor.authorThomale, Ulrich-Wilhelm-
dc.contributor.authorMcAllister, James P.-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2024-02-05T11:21:35Z-
dc.date.available2024-02-05T11:21:35Z-
dc.date.created2017-
dc.identifier.citationChild's Nervous System (2018) 34es_ES
dc.identifier.issn1433-0350-
dc.identifier.issn0256-7040-
dc.identifier.urihttps://hdl.handle.net/11000/31037-
dc.description.abstractBackground The flow pattern of the cerebrospinal fluid is probably the most important factor related to obstruction of ventricular catheters during the normal treatment of hydro cephalus. To better comprehend the flow pattern, we have carried out a parametric study via numerical models of ven tricular catheters. In previous studies, the flow was studied under steady and, recently, in pulsatile boundary conditions by means of computational fluid dynamics (CFD) in three dimensional catheter models. Objective This study aimed to bring in prototype models of catheter CFD flow solutions as well to introduce the theory behind parametric development of ventricular catheters. Methods A preceding study allowed deriving basic principles which lead to designs with improved flow patterns of ventric ular catheters. The parameters chosen were the number of drainage segments, the distances between them, the number and diameter of the holes on each segment, as well as their relative angular position. Results CFD results of previously unreleased models of ven tricular catheter flow solutions are presented in this study. Parametric development guided new designs with better flow distribution while lowering the shear stress of the catheters holes. High-resolution 3D printed catheter solutions of three models and basic benchmark testing are introduced as well. Conclusions The next generation of catheter with homoge neous flow patterns based on parametric designs may repre sent a step forward for the treatment of hydrocephalus, by possibly broadening their lifespan.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent10es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCatheter obstructiones_ES
dc.subjectShunt revisiones_ES
dc.subjectFlowes_ES
dc.subjectCerebrospinal fluides_ES
dc.subjectCerebral ventriclees_ES
dc.subjectCatheter prototypeses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturaleses_ES
dc.titleNext generation of ventricular catheters for hydrocephalus based on parametric designes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s00381-017-3565-0es_ES
Appears in Collections:
Artículos Estadística, Matemáticas e Informática


no-thumbnailView/Open:

 7-2018-NextGenerationVentricularCathetersHydrocephalusBasedParametricDesigns.pdf



6,61 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???