Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30981
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLópez, Miguel-
dc.contributor.authorVALERO, SERGIO-
dc.contributor.authorSenabre, Carolina-
dc.contributor.authorGabaldón, Antonio-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2024-02-02T16:35:55Z-
dc.date.available2024-02-02T16:35:55Z-
dc.date.created2018-06-27-
dc.identifier.issn2165-4093-
dc.identifier.urihttps://hdl.handle.net/11000/30981-
dc.description.abstractIn the past decade, many techniques ranging from statistical methods to complex artificial intelligence systems have been proposed by implementing their application to an electric system and highlighting its performance; usually providing a measure of accuracy like RMSE over a definite period. However, there is little research in which a fair comparison among methods is demonstrated, and it is difficult to determine which method would be better suited to a particular electric system or data set. This paper analysis one of the forecasting models running at the National Transport Operator of the Spanish system (REE), which is based on both autoregressive and neural network techniques. The results of this paper help to determine under which circumstances each of the models shows a better performance, which periods are more accurately forecasted by each model and provide valid criteria to choose one or the other depending on the characteristics of the application.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent5es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineerses_ES
dc.relation.ispartof2018 15th International Conference on the European Energy Market (EEM)es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectautoregressive processeses_ES
dc.subjectdemand forecastinges_ES
dc.subjectneural networkses_ES
dc.subjectpower demandes_ES
dc.subject.classificationIngeniería eléctricaes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleComparison of Short-Term Load Forecasting Performance by Neural Network and Autoregressive Based Modelses_ES
dc.typeinfo:eu-repo/semantics/otheres_ES
dc.relation.publisherversionhttps://doi.org/10.1109/EEM.2018.8469797es_ES
Appears in Collections:
Ponencias y Comunicaciones Ingeniería Mecánica y Energía


Thumbnail

View/Open:
 Paper 1 congreso -- Comparison_of_Short-Term_Load_Forecasting_Performance_by_Neural_Network_and_Autoregressive_Based_Models.pdf

1,54 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???