Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30976

Automatic classification of special days for short-term load forecasting

Título :
Automatic classification of special days for short-term load forecasting
Autor :
López, Miguel
Sanz, Carlos
VALERO, SERGIO  
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Ingeniería Mecánica y Energía
Fecha de publicación:
2021-09-09
URI :
https://hdl.handle.net/11000/30976
Resumen :
Electricity demand presents a repetitive pattern following daily, weekly and seasonal patterns. However, factors like temperature or social events tend to disrupt these patterns introducing outlying data that is difficult to forecast. This paper introduces a new methodology to classify special days without any prior knowledge of the database. Simple classification of special days into two or three categories is insufficient as the consumers’ behavior has many shades on these days. However, classifying special days in a wide range of categories required a deep understanding of the consumers’ behavior on different days and periods of the year. The methodology proposed describes an algorithm to automate this classification starting from a simple day-of-the-week classification and branching into as many categories as needed to fit a real database. Categories with similar profiles are merged to avoid overfitting and actual outliers are detected to ensure that no false categories are created. The methodology is developed using data from 2010 to 2017 and tested in three different systems. The benchmark used is the classification used by the Transmission System Operator in Spain and the test show that the proposed methodology provides more accurate results without the need of an expert to develop the classification.
Palabras clave/Materias:
Load forecasting
Power demand
Holidays
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo documento :
application/pdf
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.epsr.2021.107533
Aparece en las colecciones:
Artículos Ingeniería Mecánica y Energía



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.