Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/30686
A generalized permutation entropy for noisy dynamics and random processes
Ver/Abrir: Chaos21_2021.pdf
836,89 kB
Adobe PDF
Compartir:
Este recurso está restringido
Título : A generalized permutation entropy for noisy dynamics and random processes |
Autor : AMIGO, JOSE M. Dale, Roberto Tempesta, Piergiulio |
Editor : American Institute of Physics |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2021-01-06 |
URI : https://hdl.handle.net/11000/30686 |
Resumen :
Permutation entropy measures the complexity of a deterministic time series via a data symbolic quantization consisting of rank vectors called ordinal patterns or simply permutations. Reasons for the increasing popularity of this entropy in time series analysis include that (i) it converges to the Kolmogorov–Sinai entropy of the underlying dynamics in the limit of ever longer permutations and (ii) its computation dispenses with generating and ad hoc partitions. However, permutation entropy diverges when the number of allowed permutations grows super-exponentially with their length, as happens when time series are output by dynamical systems with observational or dynamical noise or purely random processes. In this paper, we propose a generalized permutation entropy, belonging to the class of group entropies, that is
finite in that situation, which is actually the one found in practice. The theoretical results are illustrated numerically by random processes with short- and long-term dependencies, as well as by noisy deterministic signals.
|
Palabras clave/Materias: Logistic map Entropy Signal processing Statistical mechanics Stochastic processes Time series analysis Brownian motion |
Área de conocimiento : CDU: Generalidades.: Ciencia y tecnología de los ordenadores. Informática. |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1063/5.0023419 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.