Título : Distinguished Cp (X) spaces and the strongest locally convex topology |
Autor : Ferrando, Juan Carlos  Saxon, Stephen  |
Editor : Springer |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2023-08 |
URI : https://hdl.handle.net/11000/30590 |
Resumen :
Since Tychonoff spaces X serve as continuous Hamel bases for the strong dual Lβ (X)
of Cp (X), an old splitting theorem proves: Cp (X) is distinguished ⇔ Lβ (X) has the
strongest locally convex topology (slctop) [Ferrando/Ka˛kol]. Our new splitting theorem:
The span LX (Y ) of Y ⊆ X complements LX (X\Y ) in Lβ (X). Thereby we prove If
X = Y1 ∪· · ·∪Yn and each Cp Yj is distinguished, then so is Cp (X), provided either (i)
all Yj are Gδ sets, or (ii) all are Fσ sets. Hence, provided (iii) all Yj are open, or (iv) all
are closed. Parts (ii)/(iv) extend to countable unions (known). Part (i) does not, via Michael’s
line. Countable case (iii) remains open. A dozen recent related results are proved/improved
in our slctop analysis of Lβ (X).
|
Palabras clave/Materias: Distinguished Barrelled ϕ-complemental Stationary sets Bidual ∑(X) |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess |
DOI : https://doi.org/10.1007/s13398-023-01498-4 |
Publicado en: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Volume 117, article number 166, (2023) |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|