Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/30588
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ferrando, Juan Carlos | - |
dc.contributor.author | Saxon, Stephen | - |
dc.contributor.other | Departamentos de la UMH::Estadística, Matemáticas e Informática | es_ES |
dc.date.accessioned | 2024-01-23T15:47:36Z | - |
dc.date.available | 2024-01-23T15:47:36Z | - |
dc.date.created | 2021-03 | - |
dc.identifier.citation | Proceedings of the American Mathematical Society (PROC) Volume 149, Number 6, June 2021, Pages 2583–2596 | es_ES |
dc.identifier.issn | 1088-6826 | - |
dc.identifier.issn | 0002-9939 | - |
dc.identifier.uri | https://hdl.handle.net/11000/30588 | - |
dc.description.abstract | Cp (X) is distinguished ⇔ the strong dual Lβ (X) is barrelled ⇔ the strong bidual M (X) = RX. So one may judge how nearly distinguished Cp (X) is by how nearly barrelled Lβ (X) is, and also by how near the dense subspace M (X) is to the Baire space RX. Being Baire-like, M (X) is always fairly close to RX in that sense. But if Cp (X) is not distinguished, we show the codimension of M (X) is uncountable, i.e., M (X) is algebraically far from RX, andmoreover, Lβ (X) is very far from barrelled, not even primitive. Thus we profile weak barrelledness for Lβ (X) and M (X) spaces. At the same time, we characterize those Tychonoff spaces X for which Cp (X) is distinguished, solving the original problem from our series of papers. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 14 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Mathematical Society | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | the strong dual Lβ (X) | es_ES |
dc.subject | barrelled Lβ (X) | es_ES |
dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas | es_ES |
dc.title | If not distinguished, is Cp(X) even close? | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.contributor.institute | Institutos de la UMH::Instituto Centro de Investigación Operativa | es_ES |
dc.relation.publisherversion | https://doi.org/10.1090/proc/15439 | es_ES |
View/Open:
Proc Amer Math Soc (2021) (1).pdf
272,85 kB
Adobe PDF
Share: