Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30587

Distinguished Cp(X) spaces


no-thumbnailVer/Abrir:

 RACSAM (2021, Paper 1) (1).pdf



341,18 kB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Distinguished Cp(X) spaces
Autor :
Ferrando, Juan Carlos  
Jerzy, Kakol  
Leiderman, A.
Saxon, S. A.
Editor :
Springer
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2020-11
URI :
https://hdl.handle.net/11000/30587
Resumen :
We continue our initial study of Cp(X) spaces that are distinguished, equiv., are large subspaces of RX , equiv., whose strong duals Lβ(X) carry the strongest locally convex topology. Many are distinguished, many are not. All Lβ(X) spaces are, as are all metrizable Cp(X) and Ck (X) spaces. To prove a space Cp(X) is not distinguished, we typically compare the character of Lβ(X) with |X|. A certain covering for X we call a scant cover is used to find distinguished Cp(X) spaces. Two of the main results are: (i) Cp(X) is distinguished if and only if its bidual E coincides with RX , and (ii) for a Corson compact space X, the space Cp(X) is distinguished if and only if X is scattered and Eberlein compact.
Palabras clave/Materias:
Distinguished space
Bidual space
Eberlein compact space
Fréchet space
strongly splittable space
Fundamental family of bounded sets
Point-finite family
Gδ-dense subspace
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo documento :
application/pdf
Derechos de acceso:
info:eu-repo/semantics/closedAccess
DOI :
https://doi.org/10.1007/s13398-020-00967-4
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.