Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/29211
Incremental algorithm for
Decision Rule generation
in data stream contexts
Título : Incremental algorithm for
Decision Rule generation
in data stream contexts |
Autor : Mollá, Nuria  |
Tutor: Rabasa, Alejandro  Sánchez Soriano, Joaquín Ferrandiz-Colmeiro, Antonio  |
Editor : Universidad Miguel Hernández de Elche |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2023-01-30 |
URI : https://hdl.handle.net/11000/29211 |
Resumen :
Actualmente, la ciencia de datos está ganando mucha atención en diferentes sectores.
Concretamente en la industria, muchas aplicaciones pueden ser consideradas. Utilizar
técnicas de ciencia de datos en el proceso de toma de decisiones es una de esas
aplicaciones que pueden aportar valor a la indust... Ver más
Nowadays, data science is earning a lot of attention in many different sectors.
Specifically in the industry, many applications might be considered. Using data
science techniques in the decision-making process is a valuable approach among the
mentioned applications. Along with this, the growth of data availability and the
appearance of continuous data flows in the form of data stream arise other challenges
when dealing with changing data. This work presents a novel proposal of an algorithm,
Incremental Decision Rules Algorithm (IDRA), that incrementally generates and
modify decision rules for data stream contexts to incorporate the changes that could
appear over time. This method aims to propose new rule structures that improve the
decision-making process by providing a descriptive and transparent base of knowledge
that could be integrated in a decision tool. This work describes the logic underneath
IDRA, in all its versions, and proposes a variety of experiments to compare them with
a classical method (CREA) and an adaptive method (VFDR). Some real datasets,
together with some simulated scenarios with different error types and rates are used to
compare these algorithms. The study proved that IDRA, specifically the reactive
version of IDRA (RIDRA), improves the accuracies of VFDR and CREA in all the
studied scenarios, both real and simulated, in exchange of more time.
|
Palabras clave/Materias: Ciencia de datos data stream |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/doctoralThesis |
Derechos de acceso: info:eu-repo/semantics/openAccess |
Aparece en las colecciones: Tesis doctorales - Ciencias e Ingenierías
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.