Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/29211

Incremental algorithm for Decision Rule generation in data stream contexts


Vista previa

Ver/Abrir:
 Molla Campello, Nuria.pdf

4,07 MB
Adobe PDF
Compartir:
Título :
Incremental algorithm for Decision Rule generation in data stream contexts
Autor :
Mollá, Nuria  
Tutor:
Rabasa, Alejandro  
Sánchez Soriano, Joaquín
Ferrandiz-Colmeiro, Antonio  
Editor :
Universidad Miguel Hernández de Elche
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2023-01-30
URI :
https://hdl.handle.net/11000/29211
Resumen :
Actualmente, la ciencia de datos está ganando mucha atención en diferentes sectores. Concretamente en la industria, muchas aplicaciones pueden ser consideradas. Utilizar técnicas de ciencia de datos en el proceso de toma de decisiones es una de esas aplicaciones que pueden aportar valor a la indust...  Ver más
Nowadays, data science is earning a lot of attention in many different sectors. Specifically in the industry, many applications might be considered. Using data science techniques in the decision-making process is a valuable approach among the mentioned applications. Along with this, the growth of data availability and the appearance of continuous data flows in the form of data stream arise other challenges when dealing with changing data. This work presents a novel proposal of an algorithm, Incremental Decision Rules Algorithm (IDRA), that incrementally generates and modify decision rules for data stream contexts to incorporate the changes that could appear over time. This method aims to propose new rule structures that improve the decision-making process by providing a descriptive and transparent base of knowledge that could be integrated in a decision tool. This work describes the logic underneath IDRA, in all its versions, and proposes a variety of experiments to compare them with a classical method (CREA) and an adaptive method (VFDR). Some real datasets, together with some simulated scenarios with different error types and rates are used to compare these algorithms. The study proved that IDRA, specifically the reactive version of IDRA (RIDRA), improves the accuracies of VFDR and CREA in all the studied scenarios, both real and simulated, in exchange of more time.
Palabras clave/Materias:
Ciencia de datos
data stream
Área de conocimiento :
CDU: Ciencias puras y naturales: Matemáticas
Tipo de documento :
info:eu-repo/semantics/doctoralThesis
Derechos de acceso:
info:eu-repo/semantics/openAccess
Aparece en las colecciones:
Tesis doctorales - Ciencias e Ingenierías



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.