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1. Introduction

Olfaction is a crucial sense for many living organisms. Many animals, especially insects, rely
heavily on the olfactory sense for encoding and processing different chemical cues in order
to perform several tasks such as foraging, predator avoidance, mate finding, communication
etc.(22). Yet, olfaction has not been as widely studied as vision or the auditory system in
insects. At the same time, robotic platforms capable of searching, locating and classifying odor
sources in wind turbulence and in the presence of complex odors have diverse applications
ranging from environmental monitoring (21), detection of explosives and other hazardous
substances (19), land mine detection (2) to human search and rescue operations. The main
challenge thereby is the stable and fast coding and decoding of odors and the localization of
the sources (17).
In our own recent work, we have proposed an insect-like mapless navigation mechanism
which integrates surge-and-cast chemo search, path integration, wind detection and visual
landmark navigation on an indoor mobile robot (28). Also, we have proposed a model based
on insect navigation that is capable of navigating in highly dynamic environments and our
model was compared directly to ant navigational data, with strikingly similar navigational
behaviors (26). The problem of ambiguous information, particularly in the navigational
context, is also addressed in our recent work (27). Beyond that, we have contributed
significantly to modeling insect navigation and designing robotic systems such as: a model
of the locust Lobula Giant Movement Detector (LGMD) tested on a high speed robot (29),
moth-like odor localization for robots (30), control of an unmanned aerial vehicle using a
neuronal model of a fly-locust brain (31; 32), moth-like optomotor anemotactic chemical
search for robots (33), and a blimp flight control using a biologically inspired flight control
system (34).
Despite these advances, several biological systems with relatively simple nervous systems
solve the odor localization and classification problem much more efficiently than their
artificial counterparts: bees use odor to localize nests, ants use pheromone trails to organize
foraging in swarms, lobsters use odor to locate food, the Escherichia bacteria use odors to
locate nutrients, male moths use olfaction to locate female mates etc. The odor localization
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task can be divided into three general steps (9): 1) search and identification of the chemical
compounds of interest in the given environment, 2) tracking the odor until its source guided
by chemical and all other available sensory modalities, 3) and finally identifying the source
(either by vision or e.g. by olfaction using the odor concentration pattern that is acquired
in a specific restricted area). However, in real world applications, locating the source of a
chemical plume and classifying the chemical are difficult tasks due to the fact that the plume
dispersion dynamics vary heavily depending on the medium. The chemical volatiles in the
atmosphere are mainly transported by airflow and the interaction of the airflow with other
surfaces and sources of thermal gradients produce turbulence. This chemical dispersion
is best described by the Reynolds number. At low Reynolds values, there is a monotonic
decrease of the chemical concentration, however at medium and high values turbulence
dominates. Thus different search and classification strategies should be employed in these
different environments (9).
The rich availability of insect odor coding and localization studies have inspired several
biologically inspired robots that perform odor localization and classification: underwater
robots (6), ground robots (14) and even flying robots (2). Nevertheless, stable odor source
localization and classification using fully autonomous robots have not yet been demonstrated.
We here propose a moth based model of odor localization and classification and its
implementation on an embedded autonomous robot in a controlled indoor wind tunnel setup.
For odor coding and localization at high Reynolds values where turbulence prevails, we
use a model of odor source localization and odor classification mechanism suggested to be
employed by the male moth. Our embedded robot is controlled using a neural network model
of the moth olfactory pathway implemented using the large scale neuronal simulator IQR (4),
that runs on board the embedded robot. Our results show the first steps towards stable odor
localization and classification using a completely autonomous robot that is controlled by a
neuronal model of the moth olfactory system.

Fig. 1. Illustration of the cast and surge male moth behaviour and the female pheromone
plume.

2. Methods

Insects in general and moths in particular are able to locate a source of odor and distinguish it
from different other sources. Our model of olfaction is based on the male moth behavior and
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physiology. In this section we explain our olfactory model proposed for solving the problem
of odor localization and classification, the robot platform and the experimental set-up used to
assess its performance.

2.1 Cast & Surge

The male moth has been widely studied because of its unique ability to find mates by detecting
low pheromone concentrations over large spatial scales. When the female moth releases a
pheromone blend, this blend flows downwind creating a specific plume shape. When the male
moth detects the pheromone plume, it starts flying upwind, tracing the pheromone molecules
in the plume, a stereotypical behavior called surge. However, as the structure of the plume is
quite complex and unpredictable, the male moth looses track of the pheromone plume often
during the surge behavior. For this reason, the male moths have developed a behavior that
allows them to re-discover the pheromone plume again. This behavior is called cast and is a
zigzag movement orthogonal to the wind direction (17) (see Figure 1). The casting frequency
increases and the speed decreases when close to the source (10).
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Fig. 2. Scheme of the system implemented for the cast and surge behaviour. It consists of two
processes: collision detection and surge and cast. Dashed arrows indicate inhibitory influences.

Our model of odor localization is based on this cast and surge behavior of the male moth.
The architecture of the system consists of two process that run in parallel: collision detection
and surge and cast (see figure 2). The collision detection process has higher priority and inhibits
dashed arrow in figure 2) the surge and cast process. The surge and cast process performs the
localization of the odor source. When the chemical sensors detect an odor the robot performs
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a surge behaviour, and otherwise a cast is executed. The processes are implemented using
leaky Integrate and Fire (IF) and leaky Linear Threshold (LT) neurons (16; 20).

2.2 Classification

While being able to locate an odor source, the male moths are also able to distinguish among
similar stimuli and to classify different concentrations of the same chemical into the same
stimulus category. The olfactory pathway is composed of Olfactory Receptor Neurons (ORNs)
in the antenna, the Antennal Lobe (AL) and the Mushroom Body (MB) (7) (see Figure 3). ORNs
are distributed over the antenna and respond to different chemical stimulus present in the air.
ORNs expressing similar receptors usually converge onto a single glomerulus in the AL. The
number of glomeruli is then closely related to the number of ORN classes. This convergence
of ORNs into the same glomeruli makes the AL capable of dealing with noisy conditions and
dynamic inputs (11).

Antenna

ORNs

AL

Mushroom Body

Glomeruli

Projection

Neurons

Local

Neurons

Fig. 3. Functional representation of a generic AL. ORNs belonging to the same class converge
onto the same glomerulus. LNs interconnect PNs which is connected to higher brain areas
such as the MB.

Two different types of neurons receive input from ORNs: Projection Neurons (PNs) and Local
Neurons (LNs). PNs integrate the activity from the glomeruli and forward it to the MB, which
is known to be involved in the learning and memory of odors (24). LNs laterally interconnect
PNs and modify their activity by means of inhibition.
We use a modified implementation of the model proposed by (15). The original model
uses a group of Integrate-and-Fire neurons as Projection Neurons, which receive constant
excitation, interconnected with two groups of Local Neurons. These LNs are connected in
such a way that when a specific pattern is presented to the network, concrete PNs will fire
synchronously. When the pattern disappears from the input, the neurons get desynchronized.
These synchronization and desynchronization processes can be explained with two concepts:
a combination of transient resetting and the probability of failure of synapses between
the Local Neurons and the Projection Neurons. Transient Resetting has been theoretically
described by (13) as a way to enhance the spike timing precision on a group of neurons, caused
by a loss of initial conditions. In the presented model the current pulse coming from the LNs
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to the PNs allow the latter to turn from their state to their resting potential, which makes
the next spike to happen simultaneously. The presence of noise in the connection between
LNs and PNs has an essential role in the network equilibrium. LNs interconnect PNs in two
different ways: via fast (GABAA type) and slow (GABAB type) inhibition. The failure of these
synapses has been set to 50%. The key concept is that when fast inhibition is not greatly
affected by the failure of a connection and is still able to produce the transient resetting, the
slow inhibition is much more sensitive and has the opposite effect, generating noise in the
inter-neuron spike timing.
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Fig. 4. Scheme of the system implemented for the odor classification. Red arrows indicate
excitatory connections and blue arrows indicate inhibitory connections.

This model proposed by(15) was designed to receive only binary input patterns. The model
needed to be adapted for real world conditions where the sensory input is analog. Based
on the modification proposed by (12), we use a group of neurons that process the input
from the sensors to extract a binary pattern that is later fed into the AL model. The
numeric parameters from the original model has been respected as much as possible in
order to obtain similar results. Fast GABAA inhibitions oscillate around 20Hz, while GABAB
frequency is around 8Hz. The interconnection topology between PNs and LNs also respect the
original setup: if the PN responds to the odor stimuli, it has GABAA and GABAB inhibitory
interconnections, whereas if it does not respond to the odor stimuli, it has only GABAB
inhibitory interconnections. Figure 4 shows a scheme of the system.

2.3 The robot

2.3.1 Robotic platform

The autonomous robot used for the experiments is composed of two parts, a mobile platform
developed in SPECS at UPF and an embedded computer assembled at UPC, both designed in
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the scope of the Bio-ICT European project NEUROChem (Figure 5). The basic requirements
applied to the robot include full autonomy, demonstration capabilities and full-functioning
interface with chemical and other navigation sensors.

Fig. 5. Image of the autonomous robotic platform.

The mobile platform is driven by motors acting on two caterpillar tracks on both sides, and
holds different sensory electronics for robot navigation such as ultra sonic distance sensors,
compass, GPS and accelerometer. The mobile base is interconnected with the embedded
platform either via Bluetooth or by the USB cable.
The embedded computer performs functions of a host platform targeted to high-performance
sensor data acquisition as presented on Figure 6. The use of the embedded technology for
the moth robot is motivated by several factors. The embedded computer runs a custom
GNU/Linux image to control the complete robotic system with the aid of the standard
desktop solutions. Moreover, the computational resources are needed for the real-time
acquisition, processing and visualization of the sensory data coming from the real world,
and especially for capturing the chemical stimuli. Moreover, the execution of the biomimetic
models of the antennal lobe and the mushroom body requires a solid software framework
hosted on the computer.
The success of the odor localization task highly depends on the instrumentation capabilities
of the robot for odor sensing, that is traditionally based on an array of broadly-selective gas
sensors (18). The robot design allows to host three types of the gas sensor arrays providing
specific hardware interfaces, scanning electronic boards and signal processing software.
The main large-scale array contains 64K polymeric sensors (16 modules of 64×64 sensing
elements each) and around 8 of sensor types (1). The critical parameter is the acquisition
speed of a sensor, which is determined by dynamics of the chemical reactions in sensor device
and limited by transient constants of the read-out electronic circuit (proportional to parasitic
capacitances). The preliminary experiments (1) showed the sampling rate of ≈ 293 µs for a
sensor. Due to the modular structure of both the sensor array and the acquisition boards, the
acquisition speed for the complete number of sensors (64 K) expected to be close to 1.8 s. That
seems reasonable to perform the real-time robot experiments.
The preliminary results presented in this work are obtained with the second sensor array, as
the main polymeric array is still in the development phase. The current array is composed of
16 MOX sensors of 4 Figaro (Figaro Engineering Inc) types (TGS 2442, TGS 2612, TGS 2610 and
TGS 2600). The third array supported by the platform, referred as to virtual sensor array (25),
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Fig. 6. Architecture of the robotic platform.

represents a software abstraction of sensor signals used during testing the insect olfactory
models.

2.3.2 PC104-based embedded computer

The architecture of the embedded computer is based on the well-established PC104 standard
that was originally proposed as an extension of the IEEE-P996 standard (Standard for
Compact Embedded - PC Modules). PC104 systems are typically industrial rugged embedded
applications where reliable data acquisition is needed in an extreme environment.
The key features of the PC104 bus in comparison with the regular PC bus (IEEE P996) include:
compact form-factor (reduced from from 3.8 to 3.6 inches), the unique self-stacking bus, the
pin-and-socket connectors and lower power consumption.
Figure 7 shows the structure of the embedded computer and its PC104 component boards:
CPU board PCM-3372F-S0A1E (Advantech), data acquisition board PC104-DAS16Jr/16
(Measurement Computing), Power Supply Unit HESC104 and Battery Pack BAT-NiMh45
(Tri-m Systems).
The main CPU board is a single-board computer (no division into the mother-board and other
daughter-boards, instead, the design is centered on a single board), of which the specification
characteristics make it close to a small laptop computer. The board has Intel Ultra-Low Voltage
fanless VIA Eden V4 1.0 GHz processor, 1GB RAM of DDR2 standard at 533 MHz, and the
system chipset VIA CX700 with 64MB VRAM.
The I/O periphery consists of two serial ports, six USB 2.0, keyboard/mouse slots, audio and
8-bit GPIO ports, 10/100 Mbps Ethernet interface, and a slot for flash type I card.
The data acquisition unit is a 16-channel board with ADC 16 channels with 16 bit resolution.
Such configuration of the card allows that the data acquisition from the sensor array from 16
channels in parallel, that in turn speeds up the processing by a factor of 16. The maximum
acquisition rate of 100KHz is more than enough to read the signals from the sensor array, as
the maximum read-out speed on the sensor scanning electronics is not greater than 4KHz. The
input range in the unipolar mode is set to [0; 5]V and [0; 10]V, for polymeric and MOX sensor
array respectively. The DMA mode support is implemented to reduce the CPU overhead
during the data read-out.
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Fig. 7. The PC104-based embedded computer.

The power supply unit is a DC-DC converter with a wide range of input voltage from 6V to
40V DC and the output power if 60W. The UPS mode is supported with board configuration
stored in the EEProm memory.
The power consumption of the embedded computer in the complete configuration is typically
9W (maximum of 15.5W). The polymeric sensor array with 64K elements requires from 4W to
10W. Given the maximum power consumption 25.5W, the selected battery pack with capacity
500 mA per hour will guaranty an autonomous operation around 1.1 hour.

2.3.3 Software layer

The models for odor localization and classification have been implemented using IQR (see
figure 8), a multilevel neuronal simulation environment that provides a tool for graphically
designing large-scale real-time neuronal models (3). It is designed to visualize and analyze
data on-line and interfacing to external devices like robots are possible thanks to its modular
structure. IQR applications thus acquire data from the robot sensors, process them using the
above described models of odor source localization and classification and finally sends motor
commands to the robot in real-time.

2.4 Experimental set-up

The experimental scenario is a controlled indoor environment. The robot is tested in two
main tasks: (1) odor localization; (2) odor classification. The scenario uses a wind tunnel
that creates an odor plume where the robot can freely move. To track the trajectory of the
robot and compute its heading direction inside the wind tunnel we use an overhead tracking
camera. The chemical compounds used to test the odor classification are ethanol and acetone
diluted in distilled water. An ultrasonic source is used to disperse the chemical compounds
and generate a rapidly evaporating mist.

2.4.1 The wind tunnel

The conducted experiments took place in a wind tunnel which was located at the SPECS lab
in Barcelona, Spain. The wind tunnel is made of a wooden skeleton and is covered with
a transparent polyethylene sheet of low density. It consists of two main modules: the first
one is the main tunnel - a controlled space where the robot is placed and can freely move.
The second part is where the air-flow is generated, using four exhaust ventilators to create
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Fig. 8. The iqr simulation environment running the olfactory system of the insect. Space plot
shows the neuronal activity of a prototypical neuronal group.

negative pressure. The plume that is created moves across the whole wind tunnel from the
point of the odor source to the ventilators where the air is extracted out of the experiment
room. Each ventilator is a 4.4KW centrifugal fan and the flow velocity within the wind tunnel
is up to 1.0 m s-1. The wind tunnel has to be large enough for the robot, and therefore is 3
meters wide, 4 meters long and 54 centimeters high. For the odor localization experiment, the
starting point of the robot was set in front of the fans which is the outlet of the wind tunnel
and the odor source was placed in the upwind end of the wind tunnel (see figure 9).
As for the classification experiment we needed to have more stable conditions we placed the
robot in the mid spatial position inside the wind tunnel. The odor was spread through the
tunnel during five minutes before running the experiment. Additionally, the robot remained
in the initial position during the whole the experiment. These two restrictions kept the sensory
input as stable as possible. This task was tested with two different odors composed of ethanol
(20%) or acetone (20%).

2.4.2 Vision based tracking system (AnTS)

To track the robot’s trajectory, a monochrome camera is placed 3 meters above the testing
arena. An IR filter is added to the camera to allow the system to track the robot independently
of the light conditions. AnTS, a vision based tracking system is used to identify the three
points created by the robot’s IR LEDs. It computes the robot’s orientation and absolute
position inside the wind tunnel.

3. Results

Two main experiments were conducted to test the odor classification and the casting behavior
of the robot. The latter was performed to assess the odor localization strategy implemented
on the robot and the former to assess the robot’s ability to classify chemical compounds. Both
experiments were conducted in the wind tunnel.
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Fig. 9. Layout of the wind tunnel including the position of the camera of tracking system.
Red arrows show the wind flow direction from the odor source towards the end where four
fans extract the flow out of the tunnel.

3.0.3 Chemical plume in the wind tunnel

First we performed a guided tour of the robot through the wind tunnel to log the sensory
data together with the robot position in order to assess the general pattern of chemosensor
readings. Figure 10 shows the summed response of the chemosensors for the different robot
positions inside the wind tunnel with two chemical sources (Ethanol 1% and Acetone 1%),
showing the plume pattern inside the tunnel.

Fig. 10. Chemo sensor readings sampled at different points (white dots) by the robot inside
the wind tunnel. The overall plume intensity is captured by the heat plot using the summed
input of all 16 chemical sensors.
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Fig. 11. Robot position plot while casting. The robot is placed in the downwind end of the
wind tunnel, in front of the ventilators facing upwind with the chemosensors. The initial
point of the robot is marked in the green spot and the end point in red.

3.0.4 Chemosearch

We first discuss the casting behavior of the robot. The robot was placed in the downwind end
of the wind tunnel facing upwind. As mentioned above, the moth olfactory model performs
a surge when a chemical plume is detected by the sensors and a cast when the plume is lost.
In the first experiment we tested the casting model to investigate the explorative behavior
with no chemical compounds present. To calculate the robot’s trajectory, we performed an
offline analysis of the collected robot position data. Figure 11 shows the trajectory of the robot
while casting. Our results show a correct crosswind casting movement as no chemicals are
detected. However, the casting does not cover the wind tunnel breadth, the main reason being
the restricted maneuverability of the current robotic platform. Nevertheless, this preliminary
result is promising since the casting model works as expected, reproducing a crosswind cast.

3.0.5 Classification

The results in classification show a successful synchronization of the foreground neurons
corresponding to the pattern in both experiments. The Projection Neuron (PN) output is
fed to a synchrony detector group implemented in iqr. The plume testing experiments were
conducted for a variety of concentration ranges from 1% to 20%.

4. Conclusions and discussion

We have demonstrated the implementation of an autonomous embedded robot that performs
moth-like chemosearch and classification strategies. Our models are implemented using the
IQR large-scale neuronal simulator and runs on-board the embedded computer. The robot
is capable of performing autonomous casts inside the wind tunnel and of classifying two
different odors. Nevertheless, we observe that the maneuverability of the robot is restricted:
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Fig. 12. Raster-plot of the two experiments for the 16 input neurons. The neurons have been
grouped into foreground and background neurons of the corresponding patter. The first
period corresponds to the time the integrator needs to recognize the pattern (5 and 3 seconds
respectively). Once the pattern was input to the network (green line), it would make the
corresponding neurons to spike synchronously in about 1 second. The synchrony detector
effectively shows the pattern at the output when the specific neurons were synchronized
with respect to the background neurons.

the motors are too fast to perform controlled surge and cast. We currently are building a new
robotic platform that achieves lesser speed and has a lesser turning radius. The classification
results can be considered as a proof of concept for the possibility to classify odors with
the antennal Lobe model proposed in (15) and adapted in (12). However, the capability
of this model to actually distinguish mixtures of components with real sensor signals and
with dynamic input (i.e. a moving robot), or to act in the presence of a distractor in the
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environment are not yet clear. Further work is intended as extensions of this model with
Temporal Population Coding (TPC) strategies, which has been suggested and is consistent
with both vertebrate and invertebrate physiology (5; 8; 23).
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[23] Wyss, R., KÃűnig, P. & Verschure, P. F. M. J. (2003). Invariant representations of visual
patterns in a temporal population code., Proc Natl Acad Sci U S A pp. 324–329.

[24] Zars, T., Fischer, M., Schulz, R. & Heisenberg, M. (2000). Localization of a short-term
memory in drosophila, Science 288(5466): 672–675.

[25] Ziyatdinov, A., Fernandez-Diaz, E., Chaudry, A., Marco, S., Persaud, K. & Perera, A.
(2011). A large scale virtual gas sensor array, International Symposium on Olfaction and
Electronic Nose (ISOEN 2011) .

[26] Z.Mathews and Sergi Bermúdez i Badia and Paul F.M.J. Verschure, An Insect-Based
Method for Learning Landmark Reliability Using Expectation Reinforcement in Dynamic
Environments IEEE International Conference on Robotics and Automation (ICRA2010)

[27] Zenon Mathews and Sergi Bermúdez i Badia and Paul F. M. J. Verschure, Action-Planning
and Execution from Multimodal Cues: An Integrated Model for Artificial Autonomous Systems
Springer-Verlag, Studies in Computational Intelligence 2010

[28] Zenon Mathews and Miguel Lechón and Jose Maria Blanco Calvo and Anant Dhir and
Armin Duff and Sergi BermÃždez i Badia and Paul F. M. J. Verschure, Insect-Like Mapless
Navigation Based on Head Direction Cells and Contextual Learning Using Chemo-Visual
Sensors The 2009 IEEE/RSJ International Conference on Intelligent RObots and Systems
(IROS2009), 2009

[29] Sergi Bermúdez i Badia and Ulysses Bernardet and Paul F.M.J. Verschure , Non-Linear
Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust
Lobula Giant Movement Detector. PLoS Computational Biology. 2010, 6(3)

[30] Sergi Bermúdez i Badia and Paul F. M. J. Verschure, Learning from the Moth: A Comparative
Study of Robot-Based Odor Source Localization Strategies, 13th International Symposium on
Olfaction and Electronic Nose 2009.

[31] Sergi Bermúdez i Badia and Paul F. M. J. Verschure, Humanitarian Demining Using an
Insect Based Chemical Unmanned Aerial Vehicle, Humanitarian Demining 2008

[32] Sergi Bermúdez i Badia and Pawel Pyk and Paul F. M. J. Verschure, A fly-locust based
neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal
principles for course stabilization,altitude control and collision avoidance, The International
Journal of Robotics Research. 2007, 26(7), 759-772.

[33] Pawel Pyk, Sergi Bermúdez i Badia, Ulysses Bernardet, Philipp Knüsel, Mikael Carlsson,
Jing Gu, Eric Chanie, Bill S. Hansson, Tim C. Pearce, Paul F. M. J. Verschure , An artificial
moth: Chemical source localization using a robot based neuronal model of moth optomotor
anemotactic search, Autonomous Robots 2006, 20(3), 197-213.

[34] Sergi Bermúdez i Badia, Pawel Pyk, Paul F. M. J. Verschure, A Biologically Inspired Flight
Control System for a Blimp-based UAV, ICRA 2005. 3053-3059.

466 On Biomimetics

www.intechopen.com



On Biomimetics
Edited by Dr. Lilyana Pramatarova

ISBN 978-953-307-271-5
Hard cover, 642 pages
Publisher InTech
Published online 29, August, 2011
Published in print edition August, 2011

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

Bio-mimicry is fundamental idea â€˜How to mimic the Natureâ€™ by various methodologies as well as new
ideas or suggestions on the creation of novel materials and functions. This book comprises seven sections on
various perspectives of bio-mimicry in our life; Section 1 gives an overview of modeling of biomimetic
materials; Section 2 presents a processing and design of biomaterials; Section 3 presents various aspects of
design and application of biomimetic polymers and composites are discussed; Section 4 presents a general
characterization of biomaterials; Section 5 proposes new examples for biomimetic systems; Section 6
summarizes chapters, concerning cells behavior through mimicry; Section 7 presents various applications of
biomimetic materials are presented. Aimed at physicists, chemists and biologists interested in
biomineralization, biochemistry, kinetics, solution chemistry. This book is also relevant to engineers and
doctors interested in research and construction of biomimetic systems.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Lucas L. Lo ́pez, Vasiliki Vouloutsi, Alex Escuredo Chimeno, Encarni Marcos, Sergi Bermu ́dez i Badia, Zenon
Mathews, Paul F.M.J. Verschure, Andrey Ziyatdinov and Alexandre Perera i Lluna (2011). Moth-Like Chemo-
Source Localization and Classification on an Indoor Autonomous Robot, On Biomimetics, Dr. Lilyana
Pramatarova (Ed.), ISBN: 978-953-307-271-5, InTech, Available from: http://www.intechopen.com/books/on-
biomimetics/moth-like-chemo-source-localization-and-classification-on-an-indoor-autonomous-robot



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

