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Abstract

The management of animal endangered species requires detailed information

on their distribution and abundance, which is often hard to obtain. When ani-

mals communicate using sounds, one option is to use automatic sound recor-

ders to gather information on the species for long periods of time with low

effort. One drawback of this method is that processing all the information man-

ually requires large amounts of time and effort. Our objective was to create a

relatively “user-friendly” (i.e., that does not require big programming skills)

automatic detection algorithm to improve our ability to get basic data from

sound-emitting animal species. We illustrate our algorithm by showing two

possible applications with the Hawai’i ‘Amakihi, Hemignathus virens virens, a

forest bird from the island of Hawai’i. We first characterized the ‘Amakihi song

using recordings from areas where the species is present in high densities. We

used this information to train a classification algorithm, the support vector

machine (SVM), in order to identify ‘Amakihi songs from a series of potential

songs. We then used our algorithm to detect the species in areas where its pres-

ence had not been previously confirmed. We also used the algorithm to com-

pare the relative abundance of the species in different areas where management

actions may be applied. The SVM had an accuracy of 86.5% in identifying

‘Amakihi. We confirmed the presence of the ‘Amakihi at the study area using

the algorithm. We also found that the relative abundance of ‘Amakihi changes

among study areas, and this information can be used to assess where manage-

ment strategies for the species should be better implemented. Our automatic

song detection algorithm is effective, “user-friendly” and can be very useful for

optimizing the management and conservation of those endangered animal spe-

cies that communicate acoustically.

Introduction

Populations of many animal species have been and con-

tinue to be largely reduced as a consequence of human

impact (Dirzo et al. 2014). As a response, large amounts

of economic and human resources have been directed to

conservation and management programs for threatened

and endangered species. However, supporting resources

are limited and effective methods that operate in reduced

budgets are minimal (Wilson et al. 2006; Sebasti�an-

Gonz�alez et al. 2011). For example, gathering basic yet

valuable information, such as the presence or absence of

a species in a specific area, can be time-consuming, labor

intensive, and difficult to implement in remote areas.

If the density of the species is low, detecting remaining

individuals may require extensive search hours and man-

power (e.g., Kovalak et al. 1986; Green and Young 1993),

therefore increasing work effort and economic costs.

Information regarding the relative abundance of a species

in different areas is also valuable for conservation and

management programs. This information may be used to

assess which areas should be prioritized in conservation

plans or to evaluate the temporal trends in the population

of a species (Pearce and Ferrier 2001). To acquire this

information, managers generally implement traditional

point-count survey methods that require numerous sur-

vey hours. Developing alternative, novel techniques to

gather information on species presence, distribution, and
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abundance may reduce input toward costly traditional

methods, while increasing the economic resources avail-

able for further management strategies.

Many animal species, such as crickets, frogs, whales,

and birds, use sounds to communicate, and the presence

of these species in a specific place may be confirmed by

their acoustic detection (Aide et al. 2013; Marques et al.

2013; Stowell and Plumbley 2014; Heinicke et al. 2015;

Merchant et al. 2015). Indeed, bird surveys often rely

both in visual and in auditory identification of the target

species (Bibby et al. 2000). Moreover, there is not a need

for the surveyor to stay for long periods of time in the

field, because animal songs and calls can be documented

using automatic recorders (Blumstein et al. 2011). These

recorders can be left in the field for long periods of time,

reducing survey bias related to human presence (Tegeler

et al. 2012). However, manually analyzing numerous

hours of recordings is also time-consuming. In recent

years, several studies have reported on attempts to auto-

matically identify individual species from many hours of

recordings (Bardeli et al. 2010; Briggs et al. 2012; Wellock

and Reeke 2012; Keen et al. 2014; Kershembaum et al.

2014). The success of these automatic detectors varies

with the method and the targeted species, but most of

them are complex algorithms that are difficult to use for

managers because they require advanced programming

skills (Briggs et al. 2012; Wellock and Reeke 2012; Keen

et al. 2014; Kershembaum et al. 2014).

Here, we present a simple algorithm to detect vocaliza-

tions of a target species that can be used by ecologists,

conservation biologists, and managers without a large

background in programming. Recordings from automatic

sound recorders may have substantial sound variability

depending on community composition, animal behavior,

and other environmental factors. This variability needs to

be analyzed using statistical approaches that take into

account the high-dimensionality of the data. To account

for that, we used a support vector machine, which is a

classification method that is able to deal with highly vari-

able data (Camps-Valls et al. 2004; Mountrakis et al.

2011). We illustrate our detector with two case studies

using the Hawai’i ‘Amakihi (Hemignathus virens virens).

The population of this species, as well as most other

native Hawaiian birds, was thought to be restricted to

high-elevation areas where the presence and transmission

of introduced avian malaria (Plasmodium relictum) is low

(Eggert et al. 2008; Hart et al. 2011; LaPointe et al. 2012).

However, in recent years, small populations of this species

that are apparently resistant to malaria have been detected

in low altitude areas, possibly facilitated by an increase in

the tolerance of the birds to this disease (Woodworth

et al. 2005). One of these areas is a forest adjacent to the

Panaewa Zoo on the island of Hawai’i, where some

people have heard it, but the presence has not been

confirmed. Thus, we recorded environmental sounds at

this location and followed our algorithm to confirm the

presence of the species in this lowland area. We also used

the algorithm to estimate differences in the relative abun-

dance of the ‘Amakihi in two different areas where man-

agement strategies for the species may be applied. Finally,

we examined the amount of training data required to

obtain optimal accuracy in detection. The applicability

and cost effectiveness of this method, in a time where

resources for conservation and management are limited,

renders a broad significance to our study.

Methods

Study sites and data gathering

Our study uses information from three areas located in

the island of Hawai’i (Appendix S1, Fig. S1). We first col-

lected data from the Pu’u Wa’awa’a Forest Bird Sanctuary

(PWW, 05N 0197629E, 2183629N), located at 1200–
2000 m of altitude, and the forest near the Panaewa Zoo,

Hilo (05N 2175214E, 282474N), located at 20-50 m of

altitude. The Hawai’i ‘Amakihi is abundant in PWW (J.

Pang-Ching, pers. obs.), but its presence is not confirmed

in Panaewa. We used the recordings from PWW to train

the detection algorithm, and we looked for the ‘Amakihi

in Panaewa. The third area is the Hakalau Forest National

Wildlife Refuge (05N 0256838E, 2194189N), where

‘Amakihi is present, but at different densities across the

refuge. We therefore used data from this site to estimate

differences in the relative abundance of the ‘Amakihi in

two different areas within the refuge.

In each of these study sites, we collected acoustic infor-

mation using automatic recorders (Songmeter SM2; Wild-

life Acoustics Inc., Concord, MA, Fig. 2E). The recorders

were located between 1.5 and 2 m from the ground and

separated by at least 150 m. In Panaewa, the Songmeter

recorded for 4 min and paused for 2 min (6 min cycles)

60 times from 5:00 AM till 11:00 AM between the 15 and

31 July 2013, totaling 1680 recording minutes. In PWW,

the Songmeters recorded for 5 min and paused for 5

from 6:00 AM to 11:00 AM between the 10 April and the 9

May 2013. From these recordings, we randomly selected

60 five-minute files to train the detection algorithm, total-

ing 300 min of recording. In Hakalau, we recorded at

four areas where we expect relative abundances to be dif-

ferent. Within each area, we sampled three different

points. We programmed the Songmeter in Hakalau to

record from 5:00 AM till 8:00 PM recording for 4 min and

pausing for 2 min between the 20 June and the 14 July

2013, totaling 37,008 min of recording. Recordings were

made in .wav file format at a sampling rate of 44.1 kHz
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using a single omnidirectional microphone (SMX-II:

Wildlife Acoustics) with a sensitivity of �35 dBV/pa and

frequency response of 20 Hz–20,000 Hz.

Automatic detection algorithm

We divided our detection algorithm in two separate

phases: Training and Testing. In the Training phase, we

used known ‘Amakihi songs to train a data classification

tool that is used in the testing phase to detect or count

the target species (see Fig. 1). Each of the phases is

formed by different steps. The testing phase I starts with

the identification of candidate songs that are within the

time length and frequency of those of the target species.

The second step is the manual identification of those

songs that are actually the target. In the third step of the

training phase, the manually classified songs are used to

train a classification tool (i.e., the support vector

machine) that will separate target songs from those from

other species or from noise. In the testing phase, we used

the detector created in the training phase to detect those

songs that are actually from the target species. Each step

is described below.

Training phase, Step I: Interactive detector

As the Songmeters record any sound while they are active,

they may record sounds from many natural- and human-

originated sources. Thus, we started selecting small candi-

date sounds that were within the frequency and time

ranges of ‘Amakihi songs. To do so, we used the band-

limited energy detector (Mills 2000) from the Raven 1.5

software (Bioacoustics Research Program 2014). This

detector estimates the background noise of a sound file

and uses this to find sections of signal that exceed a sig-

nal-to-noise ratio threshold during a specific time and

within a specific frequency band. To find the parameters

that better described the ‘Amakihi songs, we first manu-

ally measured the temporal duration (in seconds) and the

maximum and minimum frequencies (in Hz) of 20

‘Amakihi songs from the PWW recordings and we looked

for the configuration of noise parameters that maximized

the selection of ‘Amakihi songs from the recordings.

‘Amakihi songs had a duration of between 0.5 and 5 sec,

a maximum frequency of 1000 Hz and a minimum fre-

quency of 6100 Hz. Then, we used this configuration to

look for candidate ‘Amakihi songs in the 60 PWW train-

ing files. For each detected candidate song, we used Raven

software to calculate the set of parameters (see Appendix

S1, Table S1 for the list of the parameters used) aimed to

describe the song.

Training phase, Step II: Manual song
classification

For each of the candidate selections from step I, Raven

created a table that can be opened and visualized over the

sound spectrogram. We manually opened and classified

each of these selections in four classes: 0 (no ‘Amakihi

song), 1 (bad selection, ‘Amakihi song poorly selected/

very overlapped with other sounds), 2 (medium selection,

‘Amakihi song not too precisely selected/some overlap),

Figure 1. Methodological steps to detect sound-emitting animal species using Raven software and support vector machines (SVM). It consists in

two phases: In the Training phase, we first use recordings from an area where the target species is present. We divide the recordings into small

candidate songs using the band-limited energy detector from the Raven software (step I), we manually identify which of those songs are from our

target species (step II), and we use this information to train the SVM, which is a classification algorithm (step III). In the testing phase, we repeat

step I with the recordings from the area of interest, and finally, we use the created detector to identify songs from the target species.
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and 3 (good selection, ‘Amakihi song well selected/no

overlap). See Figure 2A–C for samples of songs 1–3. The
songs belonging to class 0 were considered as ‘Amakihi

absence, while the songs from classes 1 to 3 belong to

‘Amakihi presence. All the candidate songs from all the

classes were used in the analyses. Amakihi songs are very

characteristic and it was easy to differentiate them from

other species’ songs, so the error in the manual identifica-

tion of the songs was very low.

Training phase, Step III: Classification using
SVM

The support vector machine (SVM, Cortes and Vapnik

1995) is a nonparametric classification tool that uses a

multidimensional space to separate elements into binary

classes. SVM have already been identified as more accu-

rate than other methods such as Gaussian mixture models

for the classification of sound files (Heinicke et al. 2015).

In our case, we classified all the candidate songs obtained

from step I into presence/absence of ‘Amakihi using a

binary SVM model. We first found the best parameters

(gamma and cost) in an optimization process using the

radial basis kernel function for a large range of values

(10�10 to 1010). We used all the data available for the cal-

culation of these parameters. This procedure ensured the

selection of the best parameters, considering trade-offs

between model complexity, overfitting, or underfitting,

and number of training data (Ben-Hur and Weston

2010).

We also calculated the accuracy of our detector in clas-

sifying the songs. To do so, we used a cross-validation

approach. We randomly separated 70% of the data as a

training set and 30% as validation set. Training files were

not used for the validation and validation files were also

never used in the training analysis. The training set was

used to predict binary classes, and the validation set was

used to evaluate the model performance. This perfor-

mance was calculated using the balanced accuracy metric

(F�eret and Asner 2012):

Figure 2. Song classification types and pictures: (A) Bad selection, type 1: song poorly selected/very overlapped with other sounds; (B) medium

selection, type 2: ‘Amakihi song not too precisely selected/some overlap; (C) good selection, type 3: song well selected/no overlap, class 3; (D)

picture of the Hawai’i ‘Amakihi; (E) picture of a songmeter tied to a tree.
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BAC ¼ P(A)þ P(B)

2
� 100

where BAC is the balanced accuracy of the SVM predic-

tions to separate two classes, P(A) is the proportion of

songs correctly classified as ‘Amakihi presence, and P(B)

is the proportion of songs correctly classified as ‘Amak-

ihi absence. We repeated this procedure 1000 times by

random selection of the training and validation of data-

set, and subsequently, we calculated the mean and stan-

dard deviation (SD) of BAC. We also included the area

under the ROC curve as a measure of accuracy. This

curve represents the relationship between the true-posi-

tive rate and the true negative rate at different thresh-

olds and ranges from 0.5 (low accuracy) to 1 (high

accuracy). All the analyses were performed using R

2.15.1 (R Development Core Team 2012) with the

ROCR (Sing et al. 2005) package.

We include the R code to run the SVM and calculate

the BAC in Appendix S3 and the details on how to get

the dataset in the format required for the SVM in Appen-

dix S2.

Finally, we also wanted to test the effect of the amount

of data used to train the SVM. To do so, we recalculated

the BAC using random subsets of the data (90, 80, 70, 60,

50, 40, 30, 20, and 10%). We repeated the process 100

times and calculated the mean and the SD of the BAC for

each proportion of the data.

Testing phase: detection

The testing phase starts with the same step I as the train-

ing phase, using the limited energy detector to identify

candidate songs from the target species. We looked for

songs from all the recordings at the study areas (in this

case, from Panaewa and Hakalau), which are where we

aim to detect presence and measure the relative abun-

dance of ‘Amakihi. Then, we used the best SVM model

(higher BAC) to automatically identify (1) whether any of

the candidate songs from Panaewa was classified by the

SVM as ‘Amakihi and (2) the number of candidate selec-

tions from Hakalau that were classified as ‘Amakihi.

Relative abundance analyses

We calculated the relative abundance of the ‘Amakihi by

counting the number of detections from the SVM per

minute (i.e., total number of detections in a recording

file/number of minutes recorded in that file). As the

recordings were taken at the same time, the number of

vocalizations detected may be a function of the number

of individuals at each area and can be used to compare

relative abundance among areas. Then, we tested the

performance of our relative abundance estimation

comparing our results with an ‘Amakihi density estima-

tion calculated at the same area in April–May 2012 using

point counts by Camp et al. (in press). In their article,

Camp et al. (in press) estimated ‘Amakihi density (num-

ber of birds per hectare) for 265 locations distributed in

the same area. We created a 500-m buffer around each of

our study points and averaged the ‘Amakihi density esti-

mated by Camp et al. (in press) for all the locations that

were inside the buffer.

We used linear mixed models (LMMs) in R to compare

the calls per minute and the density estimation from

Camp et al. (in press) among the two study sites. As the

data were taken from two different points within each

study site, we used point as a random variable in our

models. We used the lmer function from the lme4 pack-

age (Bates et al. 2014). We constructed two models, one

model including only the random variable (point) and a

second one including also a variable for the study site as

a categorical variable. We compared the models using the

Akaike information criterion, which selects the models

that show the best trade-off between likelihood and num-

ber of parameters (i.e., the models with the highest

explanatory power but the lowest number of parameters).

We considered two models that differed in AIC by less

that 2 to be equally probable.

Results

Detection algorithm accuracy

The interactive detector (band-limited energy detector)

identified 4070 candidate ‘Amakihi songs in the PWW

recordings. From those, 1285 were manually identified as

‘Amakihi songs. The detector failed to identify 98 extra

‘Amakihi songs from the recordings (7.0% of the ‘Amak-

ihi songs), but most of them were songs from long dis-

tances and were not well captured by the recorder. From

this manual selection, 49.6% were from class 1 (very bad

selections), 33.6% from class 2 (not good selections) and

16.8% from class 3 (good selections).

The SVM produced a BAC of 86.5% (SD = 1.01) and

an AUC of 0.942. Thus, it was highly successful in identi-

fying ‘Amakihi songs among the candidate selections. It

detected most of the songs from class 3, while the highest

error was in class 1, where the songs were mixed with

other noises and the selections often included several

other species (Fig. 3A). The number of selections used to

train the algorithm slightly changed the BAC, indicating

that the algorithm is sensitive to the availability of data

(Fig. 3B). However, with only 50% of the original data

(2035 selections, including 642 actual ‘Amakihi songs),

the BAC was reduced by less than 1%.
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Case studies

We first wanted to confirm the presence of the ‘Amakihi

in the lowland habitat near Panaewa Zoo. Our algorithm

identified 68 selections as ‘Amakihi songs from 12,617

candidate selections. From those 68 selections, only six

were confirmed as ‘Amakihi by a manual inspection of

the spectrograms and the songs. Moreover, a manual

inspection of 10% of the recordings found 22 additional

‘Amakihi songs that were not detected by the algorithm.

The error was higher than in the tests because in the

Panaewa recordings, there is a constant cricket sound at a

frequency that overlaps with the level at which ‘Amakihi

sings, making identification more challenging (see a

spectrogram in Appendix S1, Fig. S2). However, the

automatic detector allowed us to confirm the presence of

the species in the area of interest.

Then, we investigated possible differences in the relative

abundance of ‘Amakihi at the two different study areas at

Hakalau. The detector found a total of 9252 ‘Amakihi

songs from 207,800 candidate selections. The number of

calls per minute differed among areas (GLMM, DAIC
with null model = 437, P < 0.001, Fig. 4A), being higher

at site 2 than at site 1. These results were in agreement

with the density estimation at the same sites by Camp

et al. (in press) that also identified a higher ‘Amakihi

density at site 2 than at site 1 using the point-count

method (GLMM, DAIC with null model = 24.3,

P < 0.001, Fig. 4B).

Discussion

In recent decades, researchers and land managers have

gone to considerable effort trying to maximize efficiency

in the use of the limited resources available for conserva-

tion and management. Most efforts are focused on deter-

mining optimal locations to establish natural reserves

(Arponen et al. 2012; Meller et al. 2014) or assessing

which management strategies are most efficient (Wilson

et al. 2006; Wintle et al. 2010). However, optimizing sur-

vey and monitoring methods has received less attention,

while managers continue to implement traditional, cost

inefficient methods. In this study, we show how the com-

bination of the band-limited energy detector (Raven soft-

ware) with the SVM facilitates the use of song automatic

recorders to obtain information on species presence, dis-

tribution, and relative abundance, which are central to

the effective preparation and implementation of conserva-

tion and management plans.

Our algorithm satisfactorily accomplished the objectives

of this study, despite not acquiring 100% detection accu-

racy. First of all, we were able to confirm the presence of

the ‘Amakihi in the lowland wet forests of Panaewa. This

provides further evidence that the ‘Amakihi may be recol-

onizing lowland habitats on Hawaii Island as they gain

resistance to avian malaria (Spiegel et al. 2006). Our

results hold value for conservation strategies as a baseline

driving force for management, simply understanding the

presence or absence of species in a given area (G�omez de

Silva and Medellin 2001). As discussed, simple informa-

tion on species distribution and abundance may be costly

to acquire. However, using automatic sound recorders,

coupled with proper computer algorithms, is a cost-effec-

tive alternative to detect the presence/absence of acoustic

species. Furthermore, species detection algorithms created

using our approach may also be used to accurately iden-

tify the distribution of many animal species, by strategi-

cally recording near the apparent limits of the

Figure 3. Performance of the support vector machine (SVM) to

classify candidate ‘Amakii songs. (A) Proportion of selections that

were correctly/incorrectly classified by the SVM according to their

classification class. Classification classes as in Figure 2. (B) Average

balanced accuracy (BAC) of the SVM using different proportions of

the training data. The bars represent the SD of the average BAC.

The data were obtained by randomly selecting a proportion of the

training data (4070 song selections) and recalculating the BAC 100

times.
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distribution of the species. Detailed knowledge on species

distribution within a given area may be very useful to

assess possible effects of human impacts (e.g., construc-

tion of infrastructure), management strategies (e.g., elimi-

nation of an invasive species), or climate change on the

viability of a species (Davies et al. 2006; Porfirio et al.

2014).

In our second study case, we were able to compare the

relative abundance of the ‘Amakihi in two different areas

and to validate our results with independent data on spe-

cies density. Even if reliable estimates of the abundance of

the species cannot be easily obtained using bioacoustics

(but see Marques et al. 2013), many studies have under-

lined the importance of including at least some qualitative

measures of abundance or density in ecology and conser-

vation (Balmer 2002). The estimates of relative abundance

obtained using our algorithm can be used to study spatial

patterns, such as the effect of habitat fragmentation (dos

Anjos et al. 2011), or temporal patterns (i.e., effects of

management actions over time, McShea and Rappole

2000).

The automatic identification of species from sound files

presents several benefits compared to more classical sur-

vey methods such as point counts or transects. First, it

reduces the resources required to sample an area for long

periods of time because recorders can be left in the field

and programmed to record a desired amount of time per

day automatically. Also, it does not require bringing expe-

rienced surveyors to the field, which may be very impor-

tant for the identification of some species (Jiguet 2009).

These surveyors may be difficult to find and often not

available for long periods of time. Second, the invasive-

ness of the method is very low. Human presence during

the surveys may change the behavior of the surveyed ani-

mals (Bye et al. 2001), resulting in a detection bias. The

recorders are inconspicuous and do not alter the behavior

of the animals in the field because no human presence is

required during data acquisition. Moreover, the program-

ming skills required to follow the algorithm are not too

demanding in comparison with previous described algo-

rithms (Briggs et al. 2012; Wellock and Reeke 2012; Keen

et al. 2014; Kershembaum et al. 2014). This facilitates the

use of this tool for managers and conservation techni-

cians.

Besides the clear benefits of our algorithm, it also pre-

sents several limitations. First of all, it needs recordings

from the target species to be able to train the SVM classi-

fier. This can especially be a problem when the target spe-

cies is very rare in all locations where it exists, and

recording enough songs to train the SVM may be more

difficult and resource consuming than the common sur-

veying techniques. An additional limitation for those spe-

cies with complex songs (i.e., formed by several notes

which are very different from each other) is to be able to

include all the possible song types in the training data so

that the SVM can successfully classify any of them.

Besides, there may be varying levels of error associated

with each step of the algorithm. The band-limited energy

detector in the Raven software may fail to select a song of

the target species, especially if the source of the sound is
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Figure 4. Comparison of ‘Amakihi density and relative abundance among the two study sites. Columns with different colors represent different

data collection points within each study site. Both number of birds per hectare and number of songs per minute where significantly higher in site

2 in relation to site 1 (see text for details). (A) Average number of ‘Amakihi per hectare estimated using point counts by Camp et al. (in press).

(B) Average number of ‘Amakihi songs per minute at each of the recording sites. The differences in the two replicates in the data for Site 2 from

the automatic detector may be caused by differences in habitat within this area. The data from Camp et al. (in press) does not reflect these

differences because the points are not located exactly in the same point.
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far away from the recorder, or if several sounds are

recorded at the same time (e.g., two or more bird species

are singing at the same time or a helicopter is flying close

to the recorder). However, we detected that this error is

very small (<8%), and even if the detector does not cap-

ture one of the vocalizations of an individual, birds often

vocalize more than one time, increasing the probability

that at least some of the vocalizations are captured. The

second source of error is the SVM, which presented a

BAC lower than 100%. However, the SVM in general

overdetected the presence of ‘Amakihi (it sometimes clas-

sified as an ‘Amakihi songs that were not actually from

this species). Thus, the probability of a species to be pre-

sent in the area and not detected by the algorithm is low.

At the same time, false-positive detections of target spe-

cies can be visually identified using the sound spectro-

gram. It is also important to be aware that the algorithm

error can be higher than the reported here in recordings

with some types of noises, such as the presence of cricket

sounds in the Panaewa recordings.

Relative abundance estimations have other additional

limitations. When comparing the relative abundance of

the species among different areas, detection errors should

be the same in all the areas, so the relative abundances

can be compared among them (but not with abundances

from other survey methods). For example, it would not

be possible to compare the relative abundance between a

site where crickets produce an important noise and a sec-

ond site without them. It is also important to compare

recordings done in the same season, because the song rate

of the species may vary seasonally (e.g., Leitner et al.

2001). Song propagation is also dependent on the physi-

cal constrains that the environment posses to the songs,

and song is propagated further in more open areas than

in closed environments (Forrest 1994; Mathevon et al.

1996). Thus, relative abundances estimated in areas where

the vegetation is very different may be biased and assign

higher abundances at open areas than at those with more

close vegetation. Finally, the song recorder may not be

sensitive enough or the song classifier can fail to distin-

guish among species that present very similar songs. In

this last case, one possible option is to set the classifica-

tion in two levels. First, train the SVM and classify songs

from both species together from the rest of the songs and

then train again the SVM to differentiate among the

songs that are similar to each other, because this proce-

dure may reduce the data dimensionality facilitating the

creation of a decision boundary between classes.

In this study, we have designed the algorithm to detect

only one species. However, multispecies detection may

also be possible using a similar approach. Two possible

options are either using a SVM that classifies more than

one class or training two separate detectors using the

same data. While we have demonstrated the use of this

algorithm with a bird species, it can potentially also be

also used for monitoring of frogs, crickets, whales, or any

animal that uses sounds to communicate. More research

is needed to identify which alternative for multispecies

detection is more efficient, of if any adaptation is

required for the use of the algorithm with other animals,

but our algorithm is a promising first step for a more

automated, low-resource demanding, and less invasive

survey method for species that communicate acoustically.
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