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Introduction

Abstract

The management of animal endangered species requires detailed information
on their distribution and abundance, which is often hard to obtain. When ani-
mals communicate using sounds, one option is to use automatic sound recor-
ders to gather information on the species for long periods of time with low
effort. One drawback of this method is that processing all the information man-
ually requires large amounts of time and effort. Our objective was to create a
relatively “user-friendly” (i.e., that does not require big programming skills)
automatic detection algorithm to improve our ability to get basic data from
sound-emitting animal species. We illustrate our algorithm by showing two
possible applications with the Hawai’i ‘Amakihi, Hemignathus virens virens, a
forest bird from the island of Hawai’i. We first characterized the ‘Amakihi song
using recordings from areas where the species is present in high densities. We
used this information to train a classification algorithm, the support vector
machine (SVM), in order to identify ‘Amakihi songs from a series of potential
songs. We then used our algorithm to detect the species in areas where its pres-
ence had not been previously confirmed. We also used the algorithm to com-
pare the relative abundance of the species in different areas where management
actions may be applied. The SVM had an accuracy of 86.5% in identifying
‘Amakihi. We confirmed the presence of the ‘Amakihi at the study area using
the algorithm. We also found that the relative abundance of ‘Amakihi changes
among study areas, and this information can be used to assess where manage-
ment strategies for the species should be better implemented. Our automatic
song detection algorithm is effective, “user-friendly” and can be very useful for
optimizing the management and conservation of those endangered animal spe-
cies that communicate acoustically.

If the density of the species is low, detecting remaining
individuals may require extensive search hours and man-

Populations of many animal species have been and con-
tinue to be largely reduced as a consequence of human
impact (Dirzo et al. 2014). As a response, large amounts
of economic and human resources have been directed to
conservation and management programs for threatened
and endangered species. However, supporting resources
are limited and effective methods that operate in reduced
budgets are minimal (Wilson et al. 2006; Sebastidn-
Gonzalez et al. 2011). For example, gathering basic yet
valuable information, such as the presence or absence of
a species in a specific area, can be time-consuming, labor
intensive, and difficult to implement in remote areas.
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power (e.g., Kovalak et al. 1986; Green and Young 1993),
therefore increasing work effort and economic costs.
Information regarding the relative abundance of a species
in different areas is also valuable for conservation and
management programs. This information may be used to
assess which areas should be prioritized in conservation
plans or to evaluate the temporal trends in the population
of a species (Pearce and Ferrier 2001). To acquire this
information, managers generally implement traditional
point-count survey methods that require numerous sur-
vey hours. Developing alternative, novel techniques to
gather information on species presence, distribution, and
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abundance may reduce input toward costly traditional
methods, while increasing the economic resources avail-
able for further management strategies.

Many animal species, such as crickets, frogs, whales,
and birds, use sounds to communicate, and the presence
of these species in a specific place may be confirmed by
their acoustic detection (Aide et al. 2013; Marques et al.
2013; Stowell and Plumbley 2014; Heinicke et al. 2015;
Merchant et al. 2015). Indeed, bird surveys often rely
both in visual and in auditory identification of the target
species (Bibby et al. 2000). Moreover, there is not a need
for the surveyor to stay for long periods of time in the
field, because animal songs and calls can be documented
using automatic recorders (Blumstein et al. 2011). These
recorders can be left in the field for long periods of time,
reducing survey bias related to human presence (Tegeler
et al. 2012). However, manually analyzing numerous
hours of recordings is also time-consuming. In recent
years, several studies have reported on attempts to auto-
matically identify individual species from many hours of
recordings (Bardeli et al. 2010; Briggs et al. 2012; Wellock
and Reeke 2012; Keen et al. 2014; Kershembaum et al.
2014). The success of these automatic detectors varies
with the method and the targeted species, but most of
them are complex algorithms that are difficult to use for
managers because they require advanced programming
skills (Briggs et al. 2012; Wellock and Reeke 2012; Keen
et al. 2014; Kershembaum et al. 2014).

Here, we present a simple algorithm to detect vocaliza-
tions of a target species that can be used by ecologists,
conservation biologists, and managers without a large
background in programming. Recordings from automatic
sound recorders may have substantial sound variability
depending on community composition, animal behavior,
and other environmental factors. This variability needs to
be analyzed using statistical approaches that take into
account the high-dimensionality of the data. To account
for that, we used a support vector machine, which is a
classification method that is able to deal with highly vari-
able data (Camps-Valls et al. 2004; Mountrakis et al.
2011). We illustrate our detector with two case studies
using the Hawai’i ‘Amakihi (Hemignathus virens virens).
The population of this species, as well as most other
native Hawaiian birds, was thought to be restricted to
high-elevation areas where the presence and transmission
of introduced avian malaria (Plasmodium relictum) is low
(Eggert et al. 2008; Hart et al. 2011; LaPointe et al. 2012).
However, in recent years, small populations of this species
that are apparently resistant to malaria have been detected
in low altitude areas, possibly facilitated by an increase in
the tolerance of the birds to this disease (Woodworth
et al. 2005). One of these areas is a forest adjacent to the
Panaewa Zoo on the island of Hawai’i, where some
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people have heard it, but the presence has not been
confirmed. Thus, we recorded environmental sounds at
this location and followed our algorithm to confirm the
presence of the species in this lowland area. We also used
the algorithm to estimate differences in the relative abun-
dance of the ‘Amakihi in two different areas where man-
agement strategies for the species may be applied. Finally,
we examined the amount of training data required to
obtain optimal accuracy in detection. The applicability
and cost effectiveness of this method, in a time where
resources for conservation and management are limited,
renders a broad significance to our study.

Methods

Study sites and data gathering

Our study uses information from three areas located in
the island of Hawai’i (Appendix S1, Fig. S1). We first col-
lected data from the Pu’u Wa’awa’a Forest Bird Sanctuary
(PWW, 05N 0197629E, 2183629N), located at 1200-
2000 m of altitude, and the forest near the Panaewa Zoo,
Hilo (05N 2175214E, 282474N), located at 20-50 m of
altitude. The Hawai’i ‘Amakihi is abundant in PWW (J.
Pang-Ching, pers. obs.), but its presence is not confirmed
in Panaewa. We used the recordings from PWW to train
the detection algorithm, and we looked for the ‘Amakihi
in Panaewa. The third area is the Hakalau Forest National
Wildlife Refuge (05N 0256838E, 2194189N), where
‘Amakihi is present, but at different densities across the
refuge. We therefore used data from this site to estimate
differences in the relative abundance of the ‘Amakihi in
two different areas within the refuge.

In each of these study sites, we collected acoustic infor-
mation using automatic recorders (Songmeter SM2; Wild-
life Acoustics Inc., Concord, MA, Fig. 2E). The recorders
were located between 1.5 and 2 m from the ground and
separated by at least 150 m. In Panaewa, the Songmeter
recorded for 4 min and paused for 2 min (6 min cycles)
60 times from 5:00 am till 11:00 am between the 15 and
31 July 2013, totaling 1680 recording minutes. In PWW,
the Songmeters recorded for 5 min and paused for 5
from 6:00 aM to 11:00 am between the 10 April and the 9
May 2013. From these recordings, we randomly selected
60 five-minute files to train the detection algorithm, total-
ing 300 min of recording. In Hakalau, we recorded at
four areas where we expect relative abundances to be dif-
ferent. Within each area, we sampled three different
points. We programmed the Songmeter in Hakalau to
record from 5:00 am till 8:00 pm recording for 4 min and
pausing for 2 min between the 20 June and the 14 July
2013, totaling 37,008 min of recording. Recordings were
made in .wav file format at a sampling rate of 44.1 kHz

4697

85U8017 SUOWILLOD BA[T81D 3|dedl|dde ayy Aq peusenob a1e ssppie O 8sh JO SNl 10} ArIq1T 8UIUQ A1 LD (SUONIPUOD-PUe-SLLBI WO A8 | 1M AeIq U1 |UO//SANL) SUORIPUOD PUe SWis | 38U 88S *[9202/T0/62] U0 A%eiqiauluo A8|iM ‘8Ud[3 8 zepueuseH enbiN pepseAIuN AG £7/T"€899/200T 0T/I0P/W00"A8 | 1M ARIq Ul |UO//SdnY WOy papeojumod ‘02 ‘STOZ ‘85LLSY02



Bioacoustics for Species Management

using a single omnidirectional microphone (SMX-II:
Wildlife Acoustics) with a sensitivity of —35 dBV/pa and
frequency response of 20 Hz—20,000 Hz.

Automatic detection algorithm

We divided our detection algorithm in two separate
phases: Training and Testing. In the Training phase, we
used known ‘Amakihi songs to train a data classification
tool that is used in the testing phase to detect or count
the target species (see Fig. 1). Each of the phases is
formed by different steps. The testing phase I starts with
the identification of candidate songs that are within the
time length and frequency of those of the target species.
The second step is the manual identification of those
songs that are actually the target. In the third step of the
training phase, the manually classified songs are used to
train a classification tool (i.e., the support vector
machine) that will separate target songs from those from
other species or from noise. In the testing phase, we used
the detector created in the training phase to detect those
songs that are actually from the target species. Each step
is described below.

Training phase, Step I: Interactive detector

As the Songmeters record any sound while they are active,
they may record sounds from many natural- and human-
originated sources. Thus, we started selecting small candi-
date sounds that were within the frequency and time
ranges of ‘Amakihi songs. To do so, we used the band-
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limited energy detector (Mills 2000) from the Raven 1.5
software (Bioacoustics Research Program 2014). This
detector estimates the background noise of a sound file
and uses this to find sections of signal that exceed a sig-
nal-to-noise ratio threshold during a specific time and
within a specific frequency band. To find the parameters
that better described the ‘Amakihi songs, we first manu-
ally measured the temporal duration (in seconds) and the
maximum and minimum frequencies (in Hz) of 20
‘Amakihi songs from the PWW recordings and we looked
for the configuration of noise parameters that maximized
the selection of ‘Amakihi songs from the recordings.
‘Amakihi songs had a duration of between 0.5 and 5 sec,
a maximum frequency of 1000 Hz and a minimum fre-
quency of 6100 Hz. Then, we used this configuration to
look for candidate ‘Amakihi songs in the 60 PWW train-
ing files. For each detected candidate song, we used Raven
software to calculate the set of parameters (see Appendix
S1, Table S1 for the list of the parameters used) aimed to
describe the song.

Training phase, Step II: Manual song
classification

For each of the candidate selections from step I, Raven
created a table that can be opened and visualized over the
sound spectrogram. We manually opened and classified
each of these selections in four classes: 0 (no ‘Amakihi
song), 1 (bad selection, ‘Amakihi song poorly selected/
very overlapped with other sounds), 2 (medium selection,
‘Amakihi song not too precisely selected/some overlap),

Phase I: Training

target species

Recordings Selection Traini
raining
with target > candidate o 7> Detector
species songs i I
Step Il Step Il 1
Step | Manual SVM 1
Raven detector identification training :
1

Phase II: Detecting |m—————— I
1
i Study site 1
Study site ¥ N Y N
i > DETECTION
recordings Candlglate CTIO
selections

Figure 1. Methodological steps to detect sound-emitting animal species using Raven software and support vector machines (SVM). It consists in
two phases: In the Training phase, we first use recordings from an area where the target species is present. We divide the recordings into small
candidate songs using the band-limited energy detector from the Raven software (step 1), we manually identify which of those songs are from our
target species (step Il), and we use this information to train the SVM, which is a classification algorithm (step Ill). In the testing phase, we repeat
step | with the recordings from the area of interest, and finally, we use the created detector to identify songs from the target species.
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and 3 (good selection, ‘Amakihi song well selected/no
overlap). See Figure 2A—C for samples of songs 1-3. The
songs belonging to class 0 were considered as ‘Amakihi
absence, while the songs from classes 1 to 3 belong to
‘Amakihi presence. All the candidate songs from all the
classes were used in the analyses. Amakihi songs are very
characteristic and it was easy to differentiate them from
other species” songs, so the error in the manual identifica-
tion of the songs was very low.

Training phase, Step llI: Classification using
SVM

The support vector machine (SVM, Cortes and Vapnik
1995) is a nonparametric classification tool that uses a
multidimensional space to separate elements into binary
classes. SVM have already been identified as more accu-
rate than other methods such as Gaussian mixture models
for the classification of sound files (Heinicke et al. 2015).
In our case, we classified all the candidate songs obtained

Bioacoustics for Species Management

from step I into presence/absence of ‘Amakihi using a
binary SVM model. We first found the best parameters
(gamma and cost) in an optimization process using the
radial basis kernel function for a large range of values
(1071 to 10'). We used all the data available for the cal-
culation of these parameters. This procedure ensured the
selection of the best parameters, considering trade-offs
between model complexity, overfitting, or underfitting,
and number of training data (Ben-Hur and Weston
2010).

We also calculated the accuracy of our detector in clas-
sifying the songs. To do so, we used a cross-validation
approach. We randomly separated 70% of the data as a
training set and 30% as validation set. Training files were
not used for the validation and validation files were also
never used in the training analysis. The training set was
used to predict binary classes, and the validation set was
used to evaluate the model performance. This perfor-
mance was calculated using the balanced accuracy metric
(Féret and Asner 2012):

Figure 2. Song classification types and pictures: (A) Bad selection, type 1: song poorly selected/very overlapped with other sounds; (B) medium
selection, type 2: ‘Amakihi song not too precisely selected/some overlap; (C) good selection, type 3: song well selected/no overlap, class 3; (D)

picture of the Hawai'i ‘Amakihi; (E) picture of a songmeter tied to a tree.

© 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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BAC = 100

P(A) + P(B) "

2
where BAC is the balanced accuracy of the SVM predic-
tions to separate two classes, P(A) is the proportion of
songs correctly classified as ‘Amakihi presence, and P(B)
is the proportion of songs correctly classified as ‘Amak-
ihi absence. We repeated this procedure 1000 times by
random selection of the training and validation of data-
set, and subsequently, we calculated the mean and stan-
dard deviation (SD) of BAC. We also included the area
under the ROC curve as a measure of accuracy. This
curve represents the relationship between the true-posi-
tive rate and the true negative rate at different thresh-
olds and ranges from 0.5 (low accuracy) to 1 (high
accuracy). All the analyses were performed using R
2.15.1 (R Development Core Team 2012) with the
ROCR (Sing et al. 2005) package.

We include the R code to run the SVM and calculate
the BAC in Appendix S3 and the details on how to get
the dataset in the format required for the SVM in Appen-
dix S2.

Finally, we also wanted to test the effect of the amount
of data used to train the SVM. To do so, we recalculated
the BAC using random subsets of the data (90, 80, 70, 60,
50, 40, 30, 20, and 10%). We repeated the process 100
times and calculated the mean and the SD of the BAC for
each proportion of the data.

Testing phase: detection

The testing phase starts with the same step I as the train-
ing phase, using the limited energy detector to identify
candidate songs from the target species. We looked for
songs from all the recordings at the study areas (in this
case, from Panaewa and Hakalau), which are where we
aim to detect presence and measure the relative abun-
dance of ‘Amakihi. Then, we used the best SVM model
(higher BAC) to automatically identify (1) whether any of
the candidate songs from Panaewa was classified by the
SVM as ‘Amakihi and (2) the number of candidate selec-
tions from Hakalau that were classified as ‘Amakihi.

Relative abundance analyses

We calculated the relative abundance of the ‘Amakihi by
counting the number of detections from the SVM per
minute (i.e., total number of detections in a recording
file/number of minutes recorded in that file). As the
recordings were taken at the same time, the number of
vocalizations detected may be a function of the number
of individuals at each area and can be used to compare
relative abundance among areas. Then, we tested the
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performance of our relative abundance estimation
comparing our results with an ‘Amakihi density estima-
tion calculated at the same area in April-May 2012 using
point counts by Camp et al. (in press). In their article,
Camp et al. (in press) estimated ‘Amakihi density (num-
ber of birds per hectare) for 265 locations distributed in
the same area. We created a 500-m buffer around each of
our study points and averaged the ‘Amakihi density esti-
mated by Camp et al. (in press) for all the locations that
were inside the buffer.

We used linear mixed models (LMMs) in R to compare
the calls per minute and the density estimation from
Camp et al. (in press) among the two study sites. As the
data were taken from two different points within each
study site, we used point as a random variable in our
models. We used the Imer function from the lme4 pack-
age (Bates et al. 2014). We constructed two models, one
model including only the random variable (point) and a
second one including also a variable for the study site as
a categorical variable. We compared the models using the
Akaike information criterion, which selects the models
that show the best trade-off between likelihood and num-
ber of parameters (i.e., the models with the highest
explanatory power but the lowest number of parameters).
We considered two models that differed in AIC by less
that 2 to be equally probable.

Results

Detection algorithm accuracy

The interactive detector (band-limited energy detector)
identified 4070 candidate ‘Amakihi songs in the PWW
recordings. From those, 1285 were manually identified as
‘Amakihi songs. The detector failed to identify 98 extra
‘Amakihi songs from the recordings (7.0% of the ‘Amak-
ihi songs), but most of them were songs from long dis-
tances and were not well captured by the recorder. From
this manual selection, 49.6% were from class 1 (very bad
selections), 33.6% from class 2 (not good selections) and
16.8% from class 3 (good selections).

The SVM produced a BAC of 86.5% (SD = 1.01) and
an AUC of 0.942. Thus, it was highly successful in identi-
fying ‘Amakihi songs among the candidate selections. It
detected most of the songs from class 3, while the highest
error was in class 1, where the songs were mixed with
other noises and the selections often included several
other species (Fig. 3A). The number of selections used to
train the algorithm slightly changed the BAC, indicating
that the algorithm is sensitive to the availability of data
(Fig. 3B). However, with only 50% of the original data
(2035 selections, including 642 actual ‘Amakihi songs),
the BAC was reduced by less than 1%.

© 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Figure 3. Performance of the support vector machine (SVM) to
classify candidate ‘Amakii songs. (A) Proportion of selections that
were correctly/incorrectly classified by the SVM according to their
classification class. Classification classes as in Figure 2. (B) Average
balanced accuracy (BAC) of the SVM using different proportions of
the training data. The bars represent the SD of the average BAC.
The data were obtained by randomly selecting a proportion of the
training data (4070 song selections) and recalculating the BAC 100
times.

Case studies

We first wanted to confirm the presence of the ‘Amakihi
in the lowland habitat near Panaewa Zoo. Our algorithm
identified 68 selections as ‘Amakihi songs from 12,617
candidate selections. From those 68 selections, only six
were confirmed as ‘Amakihi by a manual inspection of
the spectrograms and the songs. Moreover, a manual
inspection of 10% of the recordings found 22 additional
‘Amakihi songs that were not detected by the algorithm.
The error was higher than in the tests because in the
Panaewa recordings, there is a constant cricket sound at a
frequency that overlaps with the level at which ‘Amakihi
sings, making identification more challenging (see a
spectrogram in Appendix S1, Fig. S2). However, the

© 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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automatic detector allowed us to confirm the presence of
the species in the area of interest.

Then, we investigated possible differences in the relative
abundance of ‘Amakihi at the two different study areas at
Hakalau. The detector found a total of 9252 ‘Amakihi
songs from 207,800 candidate selections. The number of
calls per minute differed among areas (GLMM, AAIC
with null model = 437, P < 0.001, Fig. 4A), being higher
at site 2 than at site 1. These results were in agreement
with the density estimation at the same sites by Camp
et al. (in press) that also identified a higher ‘Amakihi
density at site 2 than at site 1 using the point-count
method (GLMM, AAIC with null model = 24.3,
P < 0.001, Fig. 4B).

Discussion

In recent decades, researchers and land managers have
gone to considerable effort trying to maximize efficiency
in the use of the limited resources available for conserva-
tion and management. Most efforts are focused on deter-
mining optimal locations to establish natural reserves
(Arponen et al. 2012; Meller et al. 2014) or assessing
which management strategies are most efficient (Wilson
et al. 2006; Wintle et al. 2010). However, optimizing sur-
vey and monitoring methods has received less attention,
while managers continue to implement traditional, cost
inefficient methods. In this study, we show how the com-
bination of the band-limited energy detector (Raven soft-
ware) with the SVM facilitates the use of song automatic
recorders to obtain information on species presence, dis-
tribution, and relative abundance, which are central to
the effective preparation and implementation of conserva-
tion and management plans.

Our algorithm satisfactorily accomplished the objectives
of this study, despite not acquiring 100% detection accu-
racy. First of all, we were able to confirm the presence of
the ‘Amakihi in the lowland wet forests of Panaewa. This
provides further evidence that the ‘Amakihi may be recol-
onizing lowland habitats on Hawaii Island as they gain
resistance to avian malaria (Spiegel et al. 2006). Our
results hold value for conservation strategies as a baseline
driving force for management, simply understanding the
presence or absence of species in a given area (Gémez de
Silva and Medellin 2001). As discussed, simple informa-
tion on species distribution and abundance may be costly
to acquire. However, using automatic sound recorders,
coupled with proper computer algorithms, is a cost-effec-
tive alternative to detect the presence/absence of acoustic
species. Furthermore, species detection algorithms created
using our approach may also be used to accurately iden-
tify the distribution of many animal species, by strategi-
cally recording near the apparent limits of the
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Figure 4. Comparison of ‘Amakihi density and relative abundance among the two study sites. Columns with different colors represent different
data collection points within each study site. Both number of birds per hectare and number of songs per minute where significantly higher in site
2 in relation to site 1 (see text for details). (A) Average number of ‘Amakihi per hectare estimated using point counts by Camp et al. (in press).
(B) Average number of ‘Amakihi songs per minute at each of the recording sites. The differences in the two replicates in the data for Site 2 from
the automatic detector may be caused by differences in habitat within this area. The data from Camp et al. (in press) does not reflect these

differences because the points are not located exactly in the same point.

distribution of the species. Detailed knowledge on species
distribution within a given area may be very useful to
assess possible effects of human impacts (e.g., construc-
tion of infrastructure), management strategies (e.g., elimi-
nation of an invasive species), or climate change on the
viability of a species (Davies et al. 2006; Porfirio et al.
2014).

In our second study case, we were able to compare the
relative abundance of the ‘Amakihi in two different areas
and to validate our results with independent data on spe-
cies density. Even if reliable estimates of the abundance of
the species cannot be easily obtained using bioacoustics
(but see Marques et al. 2013), many studies have under-
lined the importance of including at least some qualitative
measures of abundance or density in ecology and conser-
vation (Balmer 2002). The estimates of relative abundance
obtained using our algorithm can be used to study spatial
patterns, such as the effect of habitat fragmentation (dos
Anjos et al. 2011), or temporal patterns (i.e., effects of
management actions over time, McShea and Rappole
2000).

The automatic identification of species from sound files
presents several benefits compared to more classical sur-
vey methods such as point counts or transects. First, it
reduces the resources required to sample an area for long
periods of time because recorders can be left in the field
and programmed to record a desired amount of time per
day automatically. Also, it does not require bringing expe-
rienced surveyors to the field, which may be very impor-
tant for the identification of some species (Jiguet 2009).
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These surveyors may be difficult to find and often not
available for long periods of time. Second, the invasive-
ness of the method is very low. Human presence during
the surveys may change the behavior of the surveyed ani-
mals (Bye et al. 2001), resulting in a detection bias. The
recorders are inconspicuous and do not alter the behavior
of the animals in the field because no human presence is
required during data acquisition. Moreover, the program-
ming skills required to follow the algorithm are not too
demanding in comparison with previous described algo-
rithms (Briggs et al. 2012; Wellock and Reeke 2012; Keen
et al. 2014; Kershembaum et al. 2014). This facilitates the
use of this tool for managers and conservation techni-
cians.

Besides the clear benefits of our algorithm, it also pre-
sents several limitations. First of all, it needs recordings
from the target species to be able to train the SVM classi-
fier. This can especially be a problem when the target spe-
cies is very rare in all locations where it exists, and
recording enough songs to train the SVM may be more
difficult and resource consuming than the common sur-
veying techniques. An additional limitation for those spe-
cies with complex songs (i.e., formed by several notes
which are very different from each other) is to be able to
include all the possible song types in the training data so
that the SVM can successfully classify any of them.
Besides, there may be varying levels of error associated
with each step of the algorithm. The band-limited energy
detector in the Raven software may fail to select a song of
the target species, especially if the source of the sound is
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far away from the recorder, or if several sounds are
recorded at the same time (e.g., two or more bird species
are singing at the same time or a helicopter is flying close
to the recorder). However, we detected that this error is
very small (<8%), and even if the detector does not cap-
ture one of the vocalizations of an individual, birds often
vocalize more than one time, increasing the probability
that at least some of the vocalizations are captured. The
second source of error is the SVM, which presented a
BAC lower than 100%. However, the SVM in general
overdetected the presence of ‘Amakihi (it sometimes clas-
sified as an ‘Amakihi songs that were not actually from
this species). Thus, the probability of a species to be pre-
sent in the area and not detected by the algorithm is low.
At the same time, false-positive detections of target spe-
cies can be visually identified using the sound spectro-
gram. It is also important to be aware that the algorithm
error can be higher than the reported here in recordings
with some types of noises, such as the presence of cricket
sounds in the Panaewa recordings.

Relative abundance estimations have other additional
limitations. When comparing the relative abundance of
the species among different areas, detection errors should
be the same in all the areas, so the relative abundances
can be compared among them (but not with abundances
from other survey methods). For example, it would not
be possible to compare the relative abundance between a
site where crickets produce an important noise and a sec-
ond site without them. It is also important to compare
recordings done in the same season, because the song rate
of the species may vary seasonally (e.g., Leitner et al.
2001). Song propagation is also dependent on the physi-
cal constrains that the environment posses to the songs,
and song is propagated further in more open areas than
in closed environments (Forrest 1994; Mathevon et al.
1996). Thus, relative abundances estimated in areas where
the vegetation is very different may be biased and assign
higher abundances at open areas than at those with more
close vegetation. Finally, the song recorder may not be
sensitive enough or the song classifier can fail to distin-
guish among species that present very similar songs. In
this last case, one possible option is to set the classifica-
tion in two levels. First, train the SVM and classify songs
from both species together from the rest of the songs and
then train again the SVM to differentiate among the
songs that are similar to each other, because this proce-
dure may reduce the data dimensionality facilitating the
creation of a decision boundary between classes.

In this study, we have designed the algorithm to detect
only one species. However, multispecies detection may
also be possible using a similar approach. Two possible
options are either using a SVM that classifies more than
one class or training two separate detectors using the

© 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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same data. While we have demonstrated the use of this
algorithm with a bird species, it can potentially also be
also used for monitoring of frogs, crickets, whales, or any
animal that uses sounds to communicate. More research
is needed to identify which alternative for multispecies
detection is more efficient, of if any adaptation is
required for the use of the algorithm with other animals,
but our algorithm is a promising first step for a more
automated, low-resource demanding, and less invasive
survey method for species that communicate acoustically.
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