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ABSTRACT

In regions with a long-standing history of grazing

pressure, vegetation has co-evolved with herbi-

vores by developing intrinsic functional dynamics.

Although this type of trophic interaction has been

recognised as being important for shaping how

vegetation responds to climate, better knowledge

about how this process occurs on the landscape

scale and over a long time range is necessary. Here,

we evaluated the potential roles of herbivores in

modulating the response of mountainous

Mediterranean vegetation to seasonal and long-

term climate oscillations. To understand the rela-

tions among climate, plants and animal population,

we fitted a Bayesian model to a combination of

long-term (1995–2014) climate datasets, satellite

greenness maps (NASA Landsat NDVI) and exotic

Barbary sheep census data (breeding success and

abundance of Ammotragus lervia). We also used the

intrinsic mode function and Hilbert spectrum

transformations to decompose NDVI time series

and to evaluate their periodic oscillations. We

found remarkable dissimilarities as to how climate

affects the temporal oscillation of vegetation

greenness between landscapes both with and

without ungulates, albeit their similarities under

environmental conditions. Vegetation responses to

climate are particularly attenuated in landscapes

with ungulates, an effect that depends on ungulate

population abundance. In a world where extreme

climate events are becoming frequent and intense,

our results indicate that ungulates can strongly

modulate how grasslands and scrublands respond

to climate change. Increasing our knowledge as to

how this type of trophic interaction affects vege-

tation responses to climate variability is of much

importance for managing ungulate rewilding

strategies.
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HIGHLIGHTS

� We evaluate vegetation–herbivores interactions

under variable climate conditions.

� Ungulates modulate how ecosystem-level pri-

mary production responds to climate.
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� Exotic ungulates may partially replace native

ecosystem functions.

INTRODUCTION

In a global climate change context, much emphasis

has been placed on the question about how vege-

tation functioning is subject to oscillations in cli-

mate-based limiting factors (Huxman and others

2004; Yi and others 2010; Li and others 2017).

Such studies highlight the importance of changes in

climate to ecosystem-level primary productivity

and vegetation biomass. However, biotic factors are

also crucial for shaping vegetation functioning. For

example, primary productivity in more diverse

plant communities can be more resilient to extreme

climatic events (Tilman and Downing 1994; Isbell

and others 2015). Moreover, herbivores determine

individual to community-level vegetation func-

tioning because herbivorism can affect water-use

efficiency, the photosynthetic rate of the remaining

biomass, competitive release and plant–plant facil-

itation (McNaughton 1985). Consequently, pri-

mary consumers might affect how vegetation

productivity responds to climate on local and

landscape scales. Although some studies have al-

ready highlighted the importance of trophic inter-

actions in modulating vegetation responses to

climate (Post and Pedersen 2008; Kaarlejärvi and

others 2015; Olofsson and Post 2018), better

knowledge on how this process occurs on the

landscape scale and over a long time period is

necessary.

In regions with a long-standing history of grazing

pressure, vegetation has co-evolved with large

herbivores by developing intrinsic functional

dynamics (Milchunas and Lauenroth 1993). How-

ever, these important trophic interactions and their

functional dynamics have been disrupted following

severe declines in animal populations due to a long

history of humans overexploiting large- and med-

ium-sized herbivores (Doughty and others 2010,

2016). Missing trophic interactions over large areas

may enhance uncertainties as to whether vegeta-

tion under climate change will persist in its original

regime (that is, the same plant community) or shift

to an alternative regime (that is, new community

composition and functioning) (Kaarlejärvi and

others 2015).

If we can measure and map the effects of her-

bivory on vegetation–climate feedbacks over time,

it may help land managers to implement trophic

rewilding, that is, reintroduction of primary con-

sumers and their missing trophic interactions, as a

mitigation tool to climate change (Cromsigt and

others 2018). The distribution of wild medium-

sized ungulates in particular largely depends on

human intervention on the landscape scale, from

animal exploitation and reintroduction to land use

(Navarro and Pereira 2012; Anadón and others

2018). Therefore, management decisions about

where to eliminate or reintroduce ungulates may

impact vegetation–animal interactions on the

landscape scale and might consequently affect

ecosystem functioning.

Trophic interactions between vertebrate herbi-

vores and plant community depend on the inter-

play between top-down and bottom-up controls

(for example, Hunter and Price 1992; Augustine

and others 2003; Letnic and Ripple 2017). The

relative importance of these controls may be af-

fected by climate conditions. In wetter regions with

less variable rainfall, biotic factors (for example,

carrying capacity, grazing pressure, density depen-

dence) are the most important drivers of vegeta-

tion–herbivores dynamics (Vetter 2005; Derry and

Boone 2010). Conversely in arid and semi-arid

regions where rainfall seasonality is high, stochastic

abiotic factors (that is, droughts) are important

drivers of primary productivity, while grazing

intensity may have a negligible impact (Sullivan

and Rohde 2002; Vetter 2005). Indeed, wet years in

arid and semi-arid regions also result in herbivores

having a stronger impact on vegetation productiv-

ity and biomass (top-down control), whereas re-

source-limited conditions diminish plant

productivity in dry years, which leads to stronger

bottom-up controls (Meserve and others 2003).

Therefore, top-down and bottom-up controls are

likely to occur simultaneously and their relative

importance would oscillate over time. The occur-

rence, absence or changes in the strength of these

interaction-based controls may mediate plant re-

sponses to temporal climate variability because

medium-sized herbivores (that is, ungulates) usu-

ally influence the plant biomass, soil nutrient

dynamics and species composition of plant com-

munities (Frank and Groffman 1998; Pascual-Rico

and others 2018).

Remote sensing data offer a unique opportunity

to understand relations among climate, vegetation

and herbivores in large regions (Pettorelli and

others 2011). Thousands of satellite images provide

long-term information on climate (for example,

precipitation and temperature) and vegetation

greenness (that is, Normalised Difference Vegeta-

tion Index (NDVI), which is a metric for photo-

synthetic activity and biomass). Overlapping such

information with ungulate census data facilitates
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the assessment of the direct and indirect interac-

tions among climate, animals and vegetation

(Nielsen and others 2012), for example, by fol-

lowing Bayesian approaches to evaluate feedback

on these relations and to bridge information gaps.

Here, we combine multi-temporal remote sens-

ing data and ungulate census data to evaluate the

potential roles of herbivores in modulating the re-

sponse of mountainous grasslands and scrublands

to climate variability in a Mediterranean region.

Our study focuses on the long-term dynamics of

climate, ungulates and vegetation greenness (pri-

mary productivity and biomass) to answer the fol-

lowing specific questions: do top-down and

bottom-up controls occur simultaneously in a long-

term plant–herbivore interaction; and do exotic

ungulates modulate the responses of vegetation to

seasonal and long-term climate variability in

Mediterranean mountain habitats? To answer

these questions, we fitted an explicit Bayesian

model to a combination of long-term (1995–2014)

climate datasets, satellite greenness maps (NASA

Landsat NDVI) and exotic Barbary sheep census

data (breeding success and abundance of Ammo-

tragus lervia), by specifying the relations among

environmental, plant and animal variables. We also

evaluated how seasonal fluctuations in NDVI are

affected by ungulates. We discuss our findings in

the trophic rewilding context with exotic species

and their potential to mitigate ecosystem responses

to climate change. We benefit from a natural

landscape-scale experiment, in which we compared

a region undergoing dynamic temporal changes in

grazing intensity with two other regions that have

been virtually ungrazed over time (the control

treatment), but all with very similar climate and

vegetation conditions.

STUDY AREA

The study was conducted in three mountainous

areas of southeast Spain, that is, Sierras de Espuña,

Pila and Ricote (17,804; 8836; and 4219 ha,

respectively, Figure 1). These three mountainous

areas are public lands, where environmental pro-

tection laws restrict animal and vegetation man-

agement. They are very close in geographical terms

(� 40 km) and present very a similar vegetation

structure and composition. These areas are covered

by Mediterranean vegetation, mainly pine forest

(Pinus halepensis, P. nigra and P. pinaster), shrubs

(Rosmarinus officinalis L., Lithodora fruticosa (L.)

Griseb, Thymus vulgaris L.), small patches of oak

forest (Quercus ilex and Q. faginea) and grassland

(mostly dominated by native species such as Mac-

rochloa tenacissima (L.) Kunth or Helictotrichon fili-

folium (Lag.) Henrard) (Rivas-Martı́nez 1986; Buhk

and others 2006; Fernández-Olalla and others

2016). Elevation ranges from 200 to 1583 m a.s.l.

Sierra Espuña, from 200 to 1150 m a.s.l. at Sierra

de Pila and from 200 to 1000 m a.s.l. at Sierra de

Ricote. Mean annual precipitation ranges from

277 mm in lower mountain areas to 510 mm in

upper Sierra Espuña parts. At Pila and Ricote, mean

annual precipitation ranges from 250 mm to

400 mm. Most of the annual precipitation in the

three above-mentioned study zones occurs in au-

tumn and spring, where summers are particularly

dry. Average annual temperatures range from 13 to

18�C in Sierra Espuña and from 14 to 16�C in

Sierras de Pila and Ricote (Figure 1).

We focused our study on the trophic interactions

between vegetation and the exotic ungulate Bar-

bary sheep (Ammotragus lervia Pallas; 40–132 kg) in

these three study zones. This species was intro-

duced into southeast Spain in the 1970s due to

hunting interests. Barbary sheep abundance in-

creased at Sierra Espuña in the 1980s followed by a

near extinction at the start of 1990s because of an

outbreak of sarcoptic mange (González-Candela

and others 2004). After this disease outbreak,

Barbary sheep populations have continuously

recovered at Sierra Espuña (1995–2010). This spe-

cies has been abundant at Sierra Espuña (reaching

up to 12 ind/km2), but is very scarce at Sierra de

Ricote (< 0.1 ind/km2) and absent at Sierra de La

Pila. The last native ungulate herbivore, the Span-

ish Ibex (Capra pyrenaica), was extinct in the study

area by the early twentieth century, but it has been

recolonising the study area in very recent years

(Anadón and others 2018). Domestic ungulates,

mainly sheep and goat, had also disappeared by the

late 1970s as a result of human rural abandonment.

METHODS

In our analysis, we intentionally merged data from

both Sierras Pila and Ricote given their close spatial

proximity and marked climate and vegetation

similarities, and the absence of ungulates. We

performed our analysis by separating the three

study zones into two groups (zones), that is, ‘‘Sierra

Espuña’’ and ‘‘Sierras Pila–Ricote’’. We opted for

this approach because we were interested in com-

paring areas where the overall vegetation and

environmental conditions are similar, but ungulate

occurrence varies. (Ungulates are quasi absent at

Sierras Pila–Ricote.) Therefore, we describe the

following methodology and results after consider-

ing two separate study zones (Sierra Espuña and
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Sierras Pila–Ricote). Both study zones sum together

approximately 30,000 ha, which cover a wide

variety of vegetation type, soil, topography and

microclimatic conditions.

In Figure 2, we provide an overview of the data-

sets and themethodological framework used herein.

We firstly performed Bayesian models to bridge any

data gaps about NDVI time series and to evaluate the

effects of temporal climate dynamics on the vege-

tation greenness of both study zones (‘‘Statistical

Analyses’’ section). We then used a second set of

Bayesian models to understand the relative impor-

tance of the top-down and bottom-up controls in the

climate–plant–herbivore interactions (‘‘Statistical

Analyses’’ section). We finally evaluated whether

exotic ungulates did or did not modulate the re-

sponses of vegetation to seasonal and long-term

climate variability by analysing the relation between

the amplitude in seasonal fluctuation of NDVI (s-

tandard deviation and amplitude) and ungulate

abundance (‘‘Statistical Analyses’’ section).

Datasets

Ungulate Abundance and Breeding Success

The Barbary sheep census consisted in performing

the same linear transects (n = 17; total distance

covered 144 km) each year (1995–2014) at Sierra

Espuña during the rutting season (September–Oc-

tober). All Barbary sheep individuals were counted,

and their sex and age were identified to provide a

relative abundance index. By estimating the num-

ber of females and offspring born the previous spring

(March to May), we established the population’s

breeding success (number of births per female).

Censuses started in the morning immediately after

sunrise and ended some 2–3 h later. During this

time, Barbary sheep individuals were easily detected

in the study area because of them performing more

foraging activity early in the morning (Pascual-Rico

and others 2018). The linear transectswere the same

each year and were surveyed simultaneously every

year to avoid double counting, which allowed us to

compare population change over time (González-

Candela and others 2004). The staffwhoparticipated

in the census were familiar with the study species

and the study area. They included public game-

keepers, rangers, environmental consultants and

scientific researchers.

Climate Data

We obtained precipitation data between 1995 and

2014 from the Climate Hazards Group InfraRed

Figure 1. (A) Mean annual precipitation map (mm year-1) for Spain, which highlights the location of the study zones

(black square). (B) The average NDVI between 1995 and 2014 showing the spatial delimitations of Sierra Espuña, Sierra de

Ricote and Sierra de Pila. (C) Temporal changes in precipitation (mm year-1, mean and standard deviation—SD) and

temperature (degree Celsius, mean and standard deviation—SD). The red lines in all the graphics represent the average

values for Sierras de Pila and Ricote. The black lines in all the graphs represent Sierra Espuña.
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Precipitation with Station data [CHIRPS; (Funk and

others 2015)], which is a gridded rainfall map with

0.05� 9 0.05� spatial resolution and 6 days of

temporal resolution. For the two study zones

(Sierra Espuña and Sierras Pila–Ricote), we then

calculated cumulative precipitation each month

(mm/month), and for the last 3, 6 and 12 months

(mm/year, for example, Figure 1), as well as total

precipitation (mm/season) in spring (March to

May), summer (June to August), autumn

(September to November) and winter (December

to February) from 1995 to 2014. We also calculated

the standard deviation (SD) of precipitation for all

these time intervals.

We used the NOAA Climate Data Record of Re-

flectance and Brightness Temperatures from

AVHRR Pathfinder Atmospheres-Extended (PAT-

MOS-x) (Heidinger and others 2014) to obtain the

means and standard deviations (SD) of temperature

(�C) between 1995 and 2014 with a spatial reso-

lution of 0.1� 9 0.1� and 6 h of temporal resolu-

tion. We then calculated the average and SD

temperature within each study zone per month,

year, and the previous 3, 6 and 12 months, as well

as seasonal periods (spring, summer, autumn and

winter from the current and past years according to

each ungulate census).

NDVI Data

Normalised Difference Vegetation Index (NDVI)

has been mostly used in studies about vegetation

functioning in grasslands and scrublands to evalu-

ate relations between ungulates and vegetation

(Pettorelli and others 2011). Here, we used the

NDVI to infer the vegetation function and the

greenness of grasslands and scrublands (that is,

temporal dynamics in both photosynthetic activity

and vegetation biomass). We obtained NDVI data

from the Landsat 5 ETM (L5) and Landsat 7

ETM + (L7) sensors of the NASA Land Processes

Distributed Active Archive Center (https://lpdaac.

usgs.gov/). We detected a good agreement in the

temporal NDVI pattern from sensors with a differ-

ent spatial resolution (Figure S1 in Supplementary

Material). In the following methodological steps,

we only used Landsat data given their smaller

spatial resolution, helping to minimise the fusion

among the different land cover types (that is,

grassland and forest) within a unique NDVI value.

The Landsat NDVI products are computed from the

atmospherically corrected bidirectional surface re-

flectance that have been masked for water, clouds,

heavy aerosols and cloud shadows. Per-pixel

Quality Assessment metadata were used to check

Figure 2. Study’s methodological framework. Our datasets include satellite images to obtain climate and plant

productivity/biomass information on the landscape scale, along with field data of ungulate abundance and breeding

success. We used a Bayesian model to bridge the NDVI data gaps in the time series and to evaluate the relative importance

of climate factors on plant productivity/biomass. We then used a second Bayesian modelling approach to understand the

relative importance of the top-down and bottom-up controls in the climate–plant–herbivore interactions. We finally

evaluated the influence of exotic ungulates on climate–vegetation temporal oscillation.
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the product performance for measuring the NDVI

among study sites and over the years (Foga and

others 2017). We obtained NDVI-L5 images for 41

dates and NDVI-L7 images for 179 dates between

1995 and 2014. We filtered the images for the

pixels of grassland and scrublands using the COR-

INE 2012 Land Cover map obtained from the

European Environment Agency (https://www.eea.

europa.eu/publications/COR0-landcover). Using

these pre-processed NDVI time series from both L5

and L7 independently, we then calculated the

average monthly NDVI for each study zone (Sierra

de Espuña and Sierras de Pila–Ricote) using only

the pixels from grassland and scrubland.

Statistical Analyses

Retrieving the Monthly NDVI and Effect Size of Envi-

ronmental Factors

To obtain a continuous time series of NDVI data, we

applied a gap-filling approach to the NDVI time

series of each study zone using Bayesian statistics.

We also evaluated the consistency between the L5

and L7 NDVI time series to integrate them into a

unique NDVI temporal dataset. With this method-

ological approach, we fitted a mechanistically ex-

plicit Multivariate Auto-Regressive State-Space

(MARSS) model between NDVI (from L5 and L7)

and the environmental covariates (monthly pre-

cipitation, cumulative precipitation in the previous

3, 6 and 12 months, monthly average temperature

and average temperature in the previous 3, 6 and

12 months) for each study zone separately. We

built MARSS models using the ‘‘MARSS’’ R-pack-

age (Holmes and others 2018) that provides sup-

port for fitting MARSS models to multivariate data

via maximum likelihood. MARSS models allow the

inclusion of observation errors from different data

sources in the model inferences, which is advan-

tageous because the NDVI data from L5 and L7 may

present different sources of errors. An MARSS

model includes a process model (equation 1) and

an observation model (equation 2):

xt ¼ Btxt�1 þ Cct�1 þ wt; wt � MVN 0;Qð Þ ð1Þ

yt ¼ Ztxt þ vt; vt � MVN 0;Rð Þ ð2Þ

Data were included in the model in y (with yt
being the monthly NDVI at time t and values

standardised to the same scale, that is, z-scored)

and in c (with c being the time lagged covariate data

at sampling site s, z-scored for continuous covari-

ates, particularly temperature and precipitation).

The yt data are a linear function of the ‘‘hidden’’ or

true NDVI in xt. Each element in yt is the observed

NDVI with ‘‘n’’ replicates, when monthly NDVI

coincides in both L5 and L7. Each element in xt is

the true NDVI. As the NDVI time series (L5 and L7)

in our study zones presented data values with very

proximate dates, it allowed the model to separate

the two sources of error variance (observation vs.

process error).

In the state process equation (1), B is the matrix

whose elements are parameters that estimate the

effect of the data sources on one another and on

themselves, C is the matrix whose elements de-

scribe the effect of each covariate on NDVI (climate

data), and w is a matrix of the process error, which

represents the effects of environmental stochastic-

ity, with process errors at time t being multivariate

normal with mean 0 and covariance matrix Q. Zt
are the additional regression parameters. In the

observation process equation (2), v is a vector of

non-process errors, with observation errors at time

t being multivariate normal with mean 0 and

covariance matrix R.

We evaluated the consistency in the greenness

temporal trends of L5 and L7 using Akaike infor-

mation criterion with correction for finite sample

sizes (AICc). We compared the AICc values from

the models that assumed both the L5 and L7 NDVI

temporal dynamics to be similar and different.

From the Bayesian models, we used the Q matrix

(equation 1) to compare the models that assumed

sensor-specific process errors and the models that

considered a single process error across sensors

(that is, L5 and L7). In the B matrix (equation 1),

we only selected the models with no sensor mea-

surement interactions. In the R matrix (equa-

tion 2), we compared models by considering

sensor-specific observation errors with models that

contemplated constant observation errors (that is,

equal across both sensor types). We searched for

the models with DAICc below 2 as the most plau-

sible models. Using the model with the lowest

AICc, we finally generated the state–state predic-

tions from 3000 permutations to generate estimates

and gap-fill missing NDVI data and to create cred-

ibility intervals (95% confidence intervals). We

produced the confidence intervals of the retrieved

NDVI outputs to evaluate precision in the estimates

and to access any potential changes in errors with

time. We also calculated the root-mean-square er-

ror (RMSE) in the NDVI estimates from the best

Bayesian model. To do so, we first randomly se-

lected 80% of the Landsat data to build the model

and 20% of the Landsat data to test the accuracy of

the MARSS model to estimate NDVI. We repeated
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these steps 100 times and finally obtained a mean

and SD of RMSE (%) from this loop procedure.

We based our parameter estimates for the pre-

dicted state–state process on 3000 permutations

using the best above-mentioned model structure.

Climatic effects on NDVI were assessed via the 95%

confidence intervals of the parameters (3000 per-

mutations). We assumed that if the 95% credibility

intervals did not overlap zero, they would indicate

statistically significant effects.

Annual Trends in the Vegetation–Ungulate Interaction

We built a second MARSS model to evaluate the

interactions among annual ungulate abundance,

annual ungulate breeding success and annual

average NDVI by including the relative importance

of environmental drivers as covariates (tempera-

ture and precipitation in spring, summer, autumn

and winter from the same and previous years). We

used the same model structure presented in equa-

tions 1 and 2.

In equation 1, yt refers to a data matrix with all

the response variables, and in this case z-scored

annual ungulate abundance, breeding success and

annual NDVI at time t. The NDVI data were ob-

tained from the retrieving methodological ap-

proach (see previous section). In addition, c refers

to the time lagged and z-scored environmental

covariates. B is an interaction matrix and models

the effect of the data source (NDVI, ungulate

abundance and breeding success) on one another

and on themselves, C is the matrix whose elements

describe the effect of each covariate in yt (temper-

ature and precipitation in spring, summer, autumn

and winter from the same and previous years), and

w is a matrix of the process error that represents the

effects of environmental stochasticity, with process

errors at time t being multivariate normal with

mean 0 and covariance matrix Q. In the observa-

tion process of equation (2), v is a vector of non-

process errors, with observation errors at time t

being multivariate normal with mean 0 and

covariance matrix R. As the climate data from the

present and previous years are important drivers of

vegetation productivity (Sala and others 2012;

Reichmann and others 2013) and animal fitness,

we created models that included covariates which

represent current and past climate conditions, that

is, cumulative and average precipitation and tem-

perature (see previous section).

We selected the best model structure using AICc.

The best model structure (that is, that which yiel-

ded the lowest AIC) was that which assumed that

each yt observed different hidden state trajectories,

with independent process errors and different

observation variances, and assumed an interaction

among all the yt (NDVI, ungulate abundance and

breeding success). To evaluate eventual back-

ground temporal autocorrelation, we checked for

temporal trends in the residuals between the esti-

mated state predictions and the original data. We

based our parameter estimates for the predicted

state process on 3000 permutations using the best

model structure (bootstrapping approach, for

example, Stoffer and Wall 1991; Holmes and others

2018). The covariate effects on ungulates and

ungulate–vegetation interactions were assessed via

the 95% confidence intervals (3000 permutations).

Herbivores Modulate NDVI Oscillation

Using these retrieved NDVI values, we evaluated

the temporal differences in NDVI between Sierra

Espuña and Sierras Pila–Ricote over the years. We

calculated the monthly and annual NDVI ratios as a

measure of similarity in vegetation greenness, that

is, the NDVI ratio is the ratio between NDVI from

Sierra Espuña and Pila/Ricote, as follows:

NDVI ratio tð Þ ¼ NDVI Espu na tð Þ
NDVI Pila=Ricote tð Þ ð3Þ

where (t) is the mean NDVI in 1 month or 1 year

when obtaining monthly or yearly NDVI ratios,

respectively. To calculate the 95% confidence

interval of the NDVI ratio, we applied equation 3 to

the lower and upper confidence intervals of the

NDVI estimates (previous section) of each study

zone. Using these data, we then evaluated the

potential relationship between the annual NDVI

ratio and ungulate abundance.

We also compared the mean and standard devi-

ation of annual NDVI from both study zones to

search for allometric relations. We then evaluated

the relative effects of total plant productivity/bio-

mass and ungulate abundance on the annual NDVI

temporal oscillation of Sierra Espuña with a gen-

eralised linear model. In this analysis, we first cal-

culated the variance inflation factor (VIF) for the

predictor variables using the car package (O’brien

2007) to assess collinearity. We then calculated the

relative importance of the mean NDVI and ungu-

late abundance on the standard deviation of NDVI.

We compared model performance using the Akaike

information criterion (AIC) and explained vari-

ance.

Finally, we used the intrinsic mode function

(IMF) to decompose the time series (monthly

NDVI, precipitation and temperature) and to eval-

uate its periodic oscillation by extracting their sea-
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sonal component (specifically frequency and

amplitude of NDVI at time t). We used this analysis

to compare the temporal changes in the ‘‘NDVI

instantaneous amplitude’’ between study zones

(Espuña and Pila/Ricote). The IMF is based on the

concept of empirical mode decomposition (EMD), a

self-adaptive signal-processing method applied to

non-stationary processing (Huang and others 1998;

Junsheng and others 2006). We explicitly main-

tained time ‘‘t’’ on the x-axis (monthly basis),

which allowed us to compare both study zones

(Espuña and Pila/Ricote) in NDVI temporal oscil-

lation terms. We calculated the IMF as follows.

Given an NDVI signal at time ‘‘t’’, y(t), we first

determined the location of all the NDVI maxima

and minima, that is, ymax(t) and minima ymin(t),

respectively. Usually NDVI ymax and ymin are lo-

cated in spring and summer in Mediterranean re-

gions. We fitted a cubic spline through ymax(t) and

another through ymin(t). Then, we calculated the

mean of the spline curves at each point m(t) = (

ymax(t) + ymin(t))/2. We then removed the trend,

m(t), by calculating d(t) = y(t) - m(t). This proce-

dure removes the trend, but maintains information

about frequency and amplitude on a monthly basis.

We repeated the above-mentioned IMF calcula-

tions until the trend had been completely removed

(Figures S2 and S3 in Supplementary Material). For

each IMF (Figures S2 and S3), we calculated a

Hilbert spectrum transformation to extract the

temporal change in amplitude (see a detailed

description of the Hilbert transformation of IMF in

(Huang and others 1998)). We employed the EMD

R-package (Kim and Oh 2009) to extract the IMF

from a given signal and to calculate amplitude. We

averaged all the amplitudes from each study zone

to obtain the final NDVI amplitude.

RESULTS

Temporal Changes in NDVI and Climatic
Drivers

The best model structure (that is, that delivering

the lowest AICc) used to retrieve the monthly

NDVI was that which assumed L5 and L7 have the

same hidden state trajectory, with independent

process errors, similar observation variance and no

interactions. NDVI was affected by climate covari-

ates. This result corroborates with other studies that

have shown a large consistency in the temporal

greenness dynamics between satellite sensors (for

example, Teillet and others 2001). Using the

Bayesian model with the lower AICc, we predicted

NDVI with a mean RMSE of 9.24% (SD = 1.9%)

for Sierra Espuña and an RMSE of 10.69% (SD =

2.01%) for Sierras Pila/Ricote. The NDVI at both

Sierra Espuña and Sierras Pila–Ricote increased

from 1995 to 2010, followed by a drop between

2010 and 2014 (Figure 3). The grey lines in Fig-

ure 3 denote the 95% confidence interval of the

estimated NDVI values from satellite sensors L5 and

L7 and indicate narrow and quasi-homogeneous

errors in the estimates with time.

As expected, both study zones (Sierra Espuña

and Sierras de Pila–Ricote) showed concomitant

seasonal oscillation in NDVI (Figure 3), which

suggests synchronic vegetation responses to a sim-

ilar climate seasonality (Figure 1). However,

marked dissimilarities in vegetation functioning

also occurred between these two study zones. For

example, the differences in NDVI (that is, the NDVI

ratio) between study zones decreased continuously

from 2000 to 2010 (Figures S4 and S5). The relative

effect size of the climate variables on the NDVI

Figure 3. Monthly NDVI between 1995 and 2014 for (A)

Sierra Espuña and (B) Sierras Pila–Ricote. The NDVI

values are standardised to the same scale and range (that

is, z-scored). Dots indicate the average NDVI of grasslands

and scrublands, obtained from Landsat 5 (black) and

Landsat 7 (red). The solid black lines indicate the

posterior estimates for the predicted states from a

Bayesian model that uses both satellites (Landsat 5 and

7) and climate data as covariates. The grey lines indicate

the 95% confidence interval of the estimate (Color

figure online).
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dynamics also diverged between study zones (Ta-

ble 1), despite similarity in the temporal oscillation

of both temperature and precipitation (Figures S6

and S7). Temperature was the most important

covariate to drive NDVI. However, temperature

was found to have a stronger negative influence on

the NDVI at Sierra Espuña than at Pila–Ricote.

Precipitation had positive effects on NDVI, but

precipitation at Sierra Espuña presented a very

weak effect size and wide credibility intervals.

Cumulative precipitation (the summed precipita-

tion from the previous 3 and 6 months) did not

affect the NDVI in both study zones over the study

period. An average temperature within the previ-

ous 6 months showed a positive effect on NDVI

(Table 1). These results suggest a potential influ-

ence of herbivores on the response differences of

vegetation to climate between both study zones.

Top-Down and Bottom-Up Controls
in the Plant–Herbivore Interaction

The best model to describe ungulate–vegetation

interactions and environmental covariate effects

(DAICc < 2) indicates bidirectional effects be-

tween ungulates and vegetation at Sierra Espuña

(Table 2 and Figure 4). This model presented very

small or no background temporal autocorrelation

(Figure S8, Supplementary Material). Ungulate

abundance and breeding success had a negative

relative effect on the NDVI at Sierra Espuña (Ta-

ble 2). NDVI had more positive effects on breeding

success than ungulate abundance, but the effect

size of NDVI on breeding success was bigger. The

ungulate population at Sierra Espuña presented

apparent density dependency (Table 2). Precipita-

tion had a positive effect on ungulate abundance

(particularly precipitation in autumn and precipi-

tation from the previous year) and a negative effect

on breeding success (precipitation in the previous

year) (Table 3). The average temperature in the

same year had a negative effect on the annual

NDVI (Table 3).

Herbivore Modulates NDVI Responses
to Climate

The temporal increase in similarity in the annual

NDVI between Espuña and Pila/Ricote was highly

correlated with an increased ungulate population

at Sierra Espuña (Figure 5; R2 = 0.5 and

p < 0.001). NDVI ratio values close to 1 indicate a

greater similarity between Espuña and Pila/Ricote

(Figure 5). Ungulates had a negative effect on

NDVI (Table 2), which lowered the rate at which

the NDVI at Sierra Espuña increased when climate

conditions were favourable (for example, Fig-

ures S4 and S5).

We found that the maximum and minimum

NDVI values in both study zones partially over-

lapped (for example, Figure 6) and the NDVI

oscillation in these areas was apparently driven by

similar ecosystem processes (Figures 1 and S4–S7).

Indeed, we found a reduction in the NDVI standard

deviation as the mean NDVI from both mountain-

ous systems increased (Figure 6), which demon-

strates that the annual oscillation in NDVI could be

partially explained by the mean annual NDVI.

However, and particularly at Sierra Espuña, both

the mean NDVI and ungulates affected the standard

deviation (SD) of NDVI, that is, the mean NDVI and

ungulate abundance had a negative and positive

influence on SD NDVI, respectively (Table 4). At

the Pila/Ricote Sierras, the instantaneous NDVI

amplitude showed a negative trend over time

(Figure 7), as expected from the data in Figure 6.

However, at Sierra Espuña, the NDVI amplitude

Table 1. Mean effect size and 95% credibility intervals (CI) of the different covariates on the monthly
Normalised Difference Vegetation Index (NDVI) for the 1995–2014 Period

Covariates NDVI Pila/Ricote NDVI Espuña

Mean Low CI Up CI Mean Low CI Up CI

Rainfall 0.17** 0.015 0.33 0.04 - 0.18 0.25

Temperature - 0.32* - 0.54 - 0.09 - 0.48* - 0.76 - 0.20

Cumulative precipitation (3 months) - 0.08 - 0.24 0.07 - 0.02 - 0.27 0.21

Cumulative precipitation (6 months) 0.049 - 0.03 0.12 0.05 - 0.06 0.17

Average temperature (3 months) 0.08 - 0.21 0.38 0.23 - 0.14 0.59

Average temperature (6 months) 0.22** 0.08 0.37 0.13** 0.05 0.30

*A statistically significant negative effect
**A statistically significant positive effect
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showed a continuous trend with time (Figure 7),

which suggests that increases in ungulate abun-

dance attenuated changes in the intra- and inter-

annual oscillations of vegetation productivity/bio-

mass, as also indicated in Table 4.

Table 2. Mean effect size (interaction strengths) and 95% credibility intervals (CI) of the different variables
(annual data set) for the 1995–2014 Study Period

Covariates Abundance Breeding NDVI

Mean Low CI up CI Mean Low CI up CI Mean Low CI up CI

Abundance - 0.35* - 0.36 - 0.34 - 0.28* - 0.30 - 0.26 - 0.13* - 0.16 - 0.10

Breeding - 0.08 - 0.09 - 0.07 - 0.16* - 0.19 - 0.13

NDVI 0.12** 0.11 0.13 0.29** 0.27 0.32

Abundance and breeding refer to ungulate abundance and breeding success, respectively. NDVI refers to the normalised difference vegetation index
*A statistically significant negative effect
**A statistically significant positive effect

Figure 4. Annual time series of the interactions among

Barbary sheep abundance, breeding success and NDVI

(vegetation productivity and biomass) between 1995 and

2014. The black line indicates Barbary sheep abundance.

(The grey line indicates the 95% confidence interval of

the estimate.) The red line represents Barbary sheep

breeding success. (The light red line indicates the 95%

confidence interval of the estimate.) The green line

indicates the NDVI values. (The light green line indicates

the 95% confidence interval of the estimate.) All the

values are standardised to the same scale and range (that

is, z-scored) (Color figure online).

Table 3. Mean effect size and 95% credibility intervals (CI) of the different environmental covariates on
annual ungulate abundance, breeding success and the Normalised Difference Vegetation Index (NDVI) for the
1995–2014 Period

Covariates Abundance Breeding NDVI

Mean Low.CI Up.CI Mean Low.CI Up.CI Mean Low.CI Up.CI

Precipitation autumn 0.37** 0.36 0.37

Precipitation last year 0.21** 0.20 0.21 - 0.41* - 0.43 - 0.39

Temperature same year - 0.07* - 0.08 - 0.07 0.06** 0.05 0.06

Temperature same year - 0.43* - 0.75 - 0.10

*A statistically significant negative effect
**A statistically significant positive effect

Figure 5. Relation between ungulate abundance at

Sierra Espuña and the annual NDVI ratio (R2 = 0.5 and

p < 0.001).
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DISCUSSION

Here, we evaluated a long-term vegetation–climate

dynamics against a background of changing herbi-

vore pressure in mountainous grasslands and

scrublands by applying Bayesian models to a large

spatial-scale dataset. By this methodological ap-

proach, we found that vegetation greenness fa-

voured ungulate abundance and further Barbary

sheep breeding success. Interestingly, ungulates

attenuate the influence of climate on both the in-

tra- and inter-annual temporal dynamics of NDVI

in mountainous Mediterranean grassland and

scrubland areas. Taken together, these results

highlight that both top-down and bottom-up con-

trols occur simultaneously in a long-term plant–

herbivore interaction by reiterating the bidirec-

tional feedback between them with equivalent

forces (Meserve and others 2003; Nielsen and

others 2012). Undoubtedly, large herbivores

influence worldwide plant populations and com-

munities by affecting species reproduction, survival

and standing biomass, as demonstrated in numer-

Figure 6. Relation between the mean annual NDVI and

standard deviation (R2 = 0.16 and p = 0.005). Each point

indicates the mean and standard deviation of NDVI in a

given year. The black points are from Sierra Espuña, and

the grey points are from Sierras de Pila/Ricote. Values are

in logarithms. The black line shows linear regression, and

the grey-shaded areas indicate the 95% confidence

intervals.

Table 4. Models showing the effect of the mean annual Normalised Difference Vegetation Index (NDVI) and
ungulate abundance on the annual standard deviation of NDVI (SD NDVI) at Sierra Espuña

SD NDVI Espuña Variables Coefficient p DAIC Explained variance

Model 1 Ungulate abundance (+) 0.12 0.042 0 30%

Mean NDVI (-) 0.14 0.020

Model 2 Mean NDVI – – 5 –

Null model � 1 – – 6 –

Signals indicate positive or negative relations. The variance inflation factor (VIF) between the mean NDVI and ungulate abundance is 3.09, which indicates no collinearity
between the explanatory variables in Model 1 (for example, ungulate abundance and mean NDVI).

Figure 7. NDVI amplitude indicating instantaneous temporal oscillation and variability. Values were obtained from the

Hilbert transformation of the intrinsic mode functions (IMF) for Sierra Espuña and Sierras de Pila–Ricote between 1995

and 2014. The black-dotted line shows a smoothed temporal trend for each study zone.
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ous studies (Milchunas and Lauenroth 1993; Wit-

temyer and others 2007; Moyes and others 2011;

Jia and others 2018). However, very few studies

have evaluated the importance of herbivores on

the adaptability of Mediterranean vegetation to

climate oscillation, neglecting increases in searing

heat and dryness expected in the future for this

region (Deutsche Akademie der Naturforscher

Leopoldina 2013). As far as we know, we herein

show for the first time that ungulates mediate both

the seasonal and long-term responses of vegetation

to climate on the landscape scale in Mediterranean

mountains. Our results suggest that herbivory is

important for shaping vegetation responses to cli-

mate in both conserved and disturbed environ-

ments.

Vegetation–Herbivore Interactions:
Buffering Climate Effects

In our study region, ungulates mitigated changes in

the long-term patterns of the seasonal variability of

plant productivity/biomass, even though environ-

mental conditions changed. These results suggest

that vegetation–herbivore trophic interactions can

minimise the climate dependence of vegetation at

the ecosystem level. Previous studies have reported

similar processes (for example, MacNaughton

1985), but on a plant-level scale. Such information

indicates that trophic interactions can help grass-

lands and scrublands to better support transient

extreme climatic events. For example, in arctic

plant communities, Post and Pedersen (2008)

showed that environmental warming increased

total community biomass by promoting the growth

of deciduous shrubs and, consequently, shifts in the

system’s function only when herbivory was absent

(also see Olofsson and Post 2018). Interestingly,

herbivores also contribute to the resilience of these

arctic systems by allowing them to return to the

original low-biomass regime after warming events

stop (Kaarlejärvi and others 2015). Our study

suggests that Mediterranean plant communities,

where the biota has undergone a longer history of

human intervention (Blondel 2006; Ellis and oth-

ers 2013) and vegetation is under regeneration

(MacDonald and others 2000; Bowen and others

2007; Plieninger and others 2014), might follow a

similar pattern, whereas herbivores may contribute

to the resilience of Mediterranean mountain

ecosystems.

We particularly found a long-term negative trend

in the NDVI amplitude (oscillation) with the ab-

sence of herbivores following an increase in the

annual NDVI. However, the long-term trend in

NDVI amplitude was quasi-constant in the pres-

ence of herbivores, which supports the contribu-

tion of ungulates to ecosystem stability (for

example, Tilman and others 2014). Overall, the

increase in the mean NDVI with better climate

conditions brought about reductions in intra-an-

nual NDVI variability. However, ungulates limited

the increase in NDVI and enhanced intra-annual

NDVI variability by compensating potential chan-

ges in long-term NDVI variability and by also

explaining why we did not find a negative long-

term reduction in NDVI amplitude as better cli-

matic conditions occurred. Therefore, together our

results suggest that ungulates play an important

rule in NDVI temporal dynamics in Mediterranean

mountains. Although the vegetation composition

and structure between the study zones seemed

similar, our results highlight major differences in

the NDVI temporal trends between them.

The effect size of climate variables on NDVI can

change from arid to wet regions; for example,

vegetation greenness in drier environments can be

affected more by rainfall than wetter environments

(Schultz and Halpert 1993; Zhao and Running

2010; Liu and others 2015). Biotic factors, such as

herbivory, can add complexity to these climate–

vegetation relations. Indeed, the relative impor-

tance of biotic feedbacks (for example, between

herbivores and their resources) and stochastic abi-

otic factors for determining vegetation productivity

can also change with precipitation patterns (Sulli-

van and Rohde 2002; Vetter 2005). Even in places

where abiotic factors are the main drivers of veg-

etation productivity, as in arid and semi-arid

environments, herbivores still determine composi-

tion, diversity (Manier and Thompson Hobbs 2006)

and long-term patterns of plant demography

(Sankaran and others 2013). Therefore, the effect

of climate change on vegetation dynamics should

also consider feedback with biotic factors.

Management Implications: Insights
of Trophic Rewilding

Native ungulates have been extirpated or have

sharply declined in population size terms in regions

where, historically, vegetation is well adapted to

the presence of these animals (Di Marco and others

2014). However, in some regions like the southeast

Iberian Peninsula, exotic and native ungulates

have recolonised mountainous areas, driven by

reintroduction programmes and natural recoloni-

sation (Anadón and others 2018). These processes

are the basis of trophic rewilding and may be an

important component of mitigating the ecosystem
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response to future climate changes (Bakker and

Svenning 2018; Cromsigt and others 2018).

Trophic rewilding has been presented as an eco-

logical restoration strategy that uses species intro-

ductions to restore top-down trophic interactions

and associated trophic cascades to promote self-

regulating biodiverse ecosystems (Svenning and

others 2016). Our results suggest that exotic Bar-

bary sheep help regulate vegetation and might

improve the resilience of semi-arid Mediterranean

habitats to climate change. Barbary sheep, whose

populations in their African native range are

threatened, was released for conservation and

hunting purposes in southeast Spain in the 1970s.

This could be considered a pioneering assisted

colonisation programme (Seddon 2010) and, con-

sequently, a controversial management tool be-

cause it is usually hard to predict the consequences

of such species introduction (Hoegh-Guldberg and

others 2008; Ricciardi and Simberloff 2009). Our

results show that the contribution of exotic inva-

sive Barbary sheep to vegetation regulation might

be considered an unintended positive goal of this

assisted colonisation.

Conversely, the potential competition of Barbary

sheep with the native Spanish ibex might be con-

sidered a detrimental side effect of this introduc-

tion. Both species show a marked similarity in their

trophic and environmental niches at Sierra Espuña

(Pascual-Rico and others unpublished data). The

d15N and d13C values of both species (performed on

hair samples) are similar (Pascual-Rico and others,

unpublished data), which means that both species

might play an equivalent functional role in

Mediterranean ecosystems by attenuating vegeta-

tion responses to climate oscillations. Similar d13C
values indicate that both ungulate species feed on

the same kind of vegetation, namely C3 plants in

our case, that is, they are mainly browsers.

In this context, land managers should identify

control strategies in reintroduction and game

hunting programmes that incorporate cascade ef-

fects of vertebrate herbivores on vegetation adapt-

ability to climate. Long-term monitoring of

populations of both ungulate species and more

detailed information about their interactions with

vegetation processes and community structure

might be very useful for decision-making within

the trophic rewilding framework in a climate

change scenario. Fortunately, the native Spanish

ibex is recolonising most of the original mountain

ranges in southeast Spain and might play a similar

ecological role to that described herein for Barbary

sheep.

Exotic ungulates (wild or domesticated) may

partially replace some missing trophic interactions

via the intake of excess plant tissue or by affecting

nutrient cycling in grazed areas (Milchunas and

others 1989; Veblen and others 2016). Even

though exotic species are welcome for maintaining

missing ecosystem processes, their use to replace

native species is not void of controversy. For

example, livestock activities may often decline

depending on economic cycles and political deci-

sions (Bernués and others 2011) and could leave

entire grassland regions ungrazed. These contro-

versies undermine the potential use exotic animals

to re-establish any missing trophic interactions in

ecosystems as a mitigation tool to climate change

(for example, Cromsigt and others 2018). These

scenarios also highlight the need for more studies

to be conducted on this topic, in which the rate of

climate change is expected to be high.

Caveats and Further Directions

We recognise some limitations in our method-

ological framework because vegetation greenness

measurements like those used herein may present

confounding aspects as to whether vegetation bio-

mass or productivity is being measured. NDVI has

been mostly used in the literature as a successful

proxy to assess general landscape-scale patterns in

wildlife–vegetation interactions using both pro-

ductivity and biomass (see a literature review in

Pettorelli and others 2011). Fortunately, produc-

tivity and biomass usually show congruent tem-

poral fluctuations in dryland environments (for

example, Boelman and others 2003). We also

understand that the spatial resolution of our cli-

mate dataset is coarse and may restrict comparisons

being made between small nearby areas. An

increasing number of ecological studies employ a

variety of satellite data to obtain vegetation and

climate data, each of which contains their own

sources of uncertainty and spatio-temporal resolu-

tion (Pettorelli and others 2007; Yi and others

2010; Nielsen and others 2012). Scale-dependent

biases can determine the accuracy and precision of

the inferences made with the results (Murthy and

Bagchi 2018). However, there is a usual trade-off

between spatial and temporal resolutions in remote

sensing analyses (Zhang and others 2016). We

suggest more studies to be conducted in order to

evaluate the effect of using datasets with different

spatio-temporal resolutions on knowledge about

the temporal dynamics of climate–vegetation–her-

bivores. Yet, we believe that the spatial resolution

of our climate data was appropriate for the biology
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of the species in question and the distance between

our study zones.

In short, our analytical approach enabled us to

estimate the relative effect size and credibility

intervals among ungulate population structure,

vegetation greenness and environmental variables.

We provide critical information for understanding

reciprocal influences between vegetation and ver-

tebrate herbivores under variable climate condi-

tions. Increasing our knowledge as to how different

trophic levels affect vegetation responses to climate

variability is of vital importance in today’s climate

change context. Although our study shows a bidi-

rectional influence between ungulates and vege-

tation, we still need to evaluate whether these

influences occur independently or their relative

importance is interchanged with time. Indeed, fu-

ture studies could extend the number of landscapes

used to evaluate the patterns found herein (for

example, Nielsen and others 2012) and to also

evaluate the importance of other herbivore taxa in

modulating the responses of vegetation to climate

variability on the landscape scale in a rewilding and

climate change context.
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