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Introduction
Currently, the advances in omics technologies have opened new opportunities in a large range
of biological applications. Such advances may include single-cell, RNA-SEQ or microarray ap-
proaches that facilitate expression profiling according to a phenotype or a cell type of interest.
As an illustration, these gene profiles are crucial to address the complexity of immune signatures
[1]. As these approaches generate a large amount of information, they require bioinformatics
pipelines to be understandable by biologists.

In practice, the detection of gene signatures is carried out by applying statistical approaches or
clustering. Such methods aim at grouping genes according to their expression levels [2]. Then,
deciphering the biological roles of these gene sets becomes a major research challenge to better
understand and investigate the biological processes that are involved.

A relevant example is given by the human immunome where each cell has to play a specific
role in the immune response. Then, an extensive cell type analysis can be carried out by gene
sets that are specifically expressed in each cell type, making use of their gene profiles. For
example, a group of genes associated with natural killer cells may be related to the innate im-
mune response, antigen processing, presentation, and cytotoxicity. Thus, annotating gene sets
is crucial to: (i) elucidate the biological role of these specific cells and (ii) highlight their speci-
ficity. Moreover, making use of these results as a whole can lead to pertinent applications for
inferring the role of new type of cells. Furthermore the gene signature of each cell type has to
be contextualized with the other types.

The annotation stage consists in associating a gene to a term described in a controlled vo-
cabulary (inferred from experimental or automatic methods) describing functions, pathways,
diseases, interactions, etc. This information is stored in various knowledge sources that are
continuously evolving.
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Managing the large number of annotation terms associated with a gene set level is usually
very di�cult. To address this issue, statistical methods, called enrichment methods, have been
proposed [2,3]. These tools show an important pitfall related to redundancy in the results [4],
resulting from the lack or under-exploitation of semantic relations between terms. In order to
solve that, structure knowledge like the ontologies are proposed. The most widely used bio-
logical ontology is the Gene Ontology (GO) that provides almost 45 000 terms describing gene
roles according to three sub-ontologies: biological processes, molecular functions and cellular
components.

Few bioinformatics tools use multiple knowledge sources and aim at decreasing the redundancy
and/or quantity of annotation terms by making use of semantic relations between terms [3,4].
However, to the best of our knowledge, no tool addresses these two features combined with a visu-
alization system to analyze together related gene sets. In this context, visualization techniques
provide real added-value for the expert when dealing with the additional level of complexity
resulting from the multiple sets. So far, such aspects have been partially used to present enrich-
ment results. For example, g:Profiler [5] uses a simple heatmap showing the presence or absence
of a term for a given gene in the set. ClueGO [6] provides a node-link visualization between
terms sharing the same genes. REVIGO [4] displays results according to three types of visual-
ization: treemap, node-link and space diagram. However, the options avaible are very limited
for dealing with multiple gene sets, . Moreover, these tools provide interaction options in the
visualization to allow a deep exploration of results. In such context, we recently proposed a pro-
totype of visualization tackling these issues [7], called MOTVIS (MOdular Terms Visualizations).

In this summary, we presents improvements of the MOTVIS pipeline and apply it, to the anal-
ysis of signatures of di↵erent types of cells. This type of analysis is becoming more interesting
and requires new solutions to explore the functional signature of compared expression results
since the emergence of single cell sequencing.

Methods

The workflow consists of three main steps to compute gene set annotations plus the dedicated
visualization system to examine the results .

First, gene sets are annotated using an enrichment approach. g:Profiler has been chosen for
this task because its uses several annotation databases. This permits to combine complemen-
tary knowledge for enriching functional information about gene sets (as gene annotations may
have been done at di↵erent cell organization levels).

The second step involves a lexical analysis to infer relations between terms coming from dif-
ferent sources in order to eliminate redundant terms (same information about the functional
roles). To do so, the OntoEnrich framework [8] has been integrated in for associating annota-
tion terms with GO terms by following the strategy:(i) decomposing annotations into words, (ii)
searching groups of consecutive words that correspond to a GO term or any of its synonyms,
and (iii) removing words included in other ones.

Because of the large size of GO, the third step selects only the most relevant terms that syn-
thesize the functional information of the input gene sets. Then, the most informative parent
terms of each GO term found at the previous step are recursively processed until the root term
is reached. The selection of the most informative parent term is computed using the information
content score proposed in [9]. Once the subgraph of GO is created, the structure is explored to
identify the GO terms associated with the gene sets. When a term is associated to the same
gene sets as its ancestors, the ancestors are removed.
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The last step is to explore these multi-set annotation results, for which a visualization tool
has been designed (see Figure 1). The chosen visual structure combines an indented tree (to
interactively move across the hierarchy of the ontology) and a circular treemap. The colored
visualization of circular treemap represents the di↵erent hierarchy between terms and take into
account the various scales of biological information that go from general to specific information.
The proximity of some circles (representing annotation terms) require to use a visualization tech-
nique based on colours. We chose and adapted the three-colors algorithm [10] for automatically
assigning gradients of colors to nodes according to their neighborhood distance while preserving
a comprehensive cognitive understanding of their relative inclusion. The algorithm uses a color
space that is recursively divided into intervals of colors associated with a node and its children.
Then, increasing/reducing the luminance/sharpness improves the perception of depth in the
tree. This visualization allows to explore the annotation results thanks to interactions as zoom
and pan in the circular treemap, or click to expand the branch in the indented tree. Actions
performed on the circular treemap impact on the indented tree (and vice-versa). In the circular
treemap, the leaf node (white color) represents a gene set, in which a barplot summarizes all
the annotations of this gene set (represented as colored circles).

Case study

To demonstrate the e�ciency and reproducibility of the pipeline, the signature profiling of
di↵erent types of cells has been analyzed using the data from The immunome compendium of
immune cell subpopulations [1].The authors isolated 28 subpopulations of innate and adaptive
immune cells, including normal mucosa and colon cancer cell lines. Each cell type presents dif-
ferent transcriptional profiles that can be considered as gene sets.

By applying the g:Profiler tool, we obtained 323 annotations for 24 gene sets using a hier-
archical filter proposed in the tool. 98 annotation would have been obtained for 16 gene sets
if only GO enrichment would have been done This demonstrates the great advantage of using
several sources to characterize a larger number of gene sets. After using the lexical mapping,
264 out of the 323 annotations were kept (the 59 remaining annotations were discarded because
they could not be mapped to GO). Five out of the 24 gene sets were ignored by our pipeline.
Then, the hierarchy simplification stage (third stage) making use of the GO structure has de-
creased the number of annotations from 264 to 119. This 2.2-fold decrease demonstrates that
the enrichment produces a significant quantity of redundant information.

Figure 1. Global view of the visualization tool. At this level, the global information that is
displayed allows to define the three ontologies of GO (orange circle for biological process, purple
for molecular function and blue for cellular component). The inclusive colored circles correspond
to annotation terms that are included in the previous ones. At last, gene sets are represented
as white circles.

To illustrate an application of MOTVIS (see a global view of MOTVIS in Figure 1), focusing
on the cellular activation and migration, the indented tree can be interactively used to localize

375



these annotation terms (Figure 2). They fall within ”cellular process” and appear there as direct
children of this general term (due to the simplification stage). Going into details within the ”cell
activation” circle, more specific annotations can be depicted. Moreover, if the ”activation to
lymphocyte” is the focus, zoom facilities are provided to identify the specific type of involved
cells, in this case, T cells. At the leaf level (white circle related to T cells), the other annotations
related to the type of focused cells can be observed. The pertinence of all the annotations is
provided in the white circle thanks to the barplot (Figure 3).

Figure 2. Zoom in on ”cell activation” and ”cell migration” annotation terms. It shows the
gene sets concerned by these annotations. The gradient of colors is correlated to the depth of
terms within GO.

Figure 3. Zoom in to represent the leafs or white circles that are related to a type of cells.
In this example, the information for the T cells is displayed. For this type of cell, all the anno-
tation terms (corresponding to the gene profile) are represented within a barplot.

Conclusion

In this work, we present and apply the pipeline MOTVIS, dedicated to the annotation of multi-
ple gene sets. Taking advantage of enrichment analysis and the use of several source knowledge,
MOTVIS provides computation stages to: (i) perform an original lexical mapping that enables
to make use of di↵erent knowledge sources, (ii) reduce the annotation redundancy and (iii) filter
out the most relevant annotation to synthesize the functional information summarizing multiple
gene sets. This new original pipeline has been applied to analyze, compare and visualize the
results of a reference compendium of immune cells. According to the transcriptomic profiles
of each cell type, MOTVIS o↵ers an interactive way for both identifying the main roles where
a type of cell may be involved, and deciphering common features between di↵erent cell types.
According to the hierarchical relations between GO terms, biology experts can also choose the
appropriate level of information (details on demand by interacting with the visualization system)
to analyze the results.
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