Sistema de Automatizaciéon y Procesamiento
Inteligente para la Traduccién y Maquetacion de
Documentos Bilingues: Un Enfoque basado en

Inteligencia Artificial.

UNIVERSITAS
Miguel Herndndez

TRABAJO DE FIN DE GRADO
GRADO EN ESTADISTICA EMPRESARIAL
FACULTAD DE CIENCIAS SOCIALES Y JURIDICAS DE ELCHE

UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE

Curso académico 2024 - 2025
Autor: Raul Fuster Martinez

Tutor: Fernando Borras Rocher

{22 YT 1 1 1= o 2

11 e LT o1 o o 3
ODbBjJetiVOso —————————————————————— 4
Objetivos ESPECIfiCOS.....ccoiiiiiiiiie e 4
Informacion disponible.......... e 5
1. Documentacion técnica sobre Apertium y Selenium: ... 6
2. APl de OpenAl (ChatGPT): 6
3. Especificaciones de los documentos oficiales de la UMH......................... 6
4. Recursos de formacidon y investigacion:...........cccoeveiiiiiiiiiiciiie e, 6
5. Herramientas y entornos de desarrollo:ccoooeeieieiiiieeeeeeeeeeeeeeeeen 7
6. Metodologiaccoiriiiiiinii i —————————— 7
6.1 Revision de requisitos y especificaciones...........ccceeeeeeeeveeiiiiciiiee e, 8
6.2 Disefo y desarrollo del sistemacooeiiiiiiiiiiiiiii e, 10
6.3 Implementacion de los métodos de traduccion.............cccceeeeeviieeeeee. 13
6.4 Automatizacién de la maquetacion de documentos................ceeeee. 14
6.5 Pruebas, evaluacion y validacioncoooovuiiiiiiiec e 15
6.6 Software y hardwarecoooviiiiiiiie e 17
RESUItAAOSeeei s 18
Calidad de 1a TraduCCIONccooeeieeeeeeeeeeee e 19
Diferencias Clave entre 105 MEtodosoooiuuiiiiiiiiiiiiiiiiieeeeee e 20
Resultados para el BOUMH.............ooooiiiiiiiieee e 21
CONCIUSION ... 21
7. Conclusiones y Propuestas ... 22
CONCIUSIONES ...ttt e e e e e e e e e e 22
Propuestas de MeEJOra..........uo i 24
ConClUSION FIN@I ... 25
Bibliografia.........ccooo s 26
Y 1o 26

Resumen

En este Trabajo de Fin de Grado se presenta el desarrollo de un sistema que
automatiza la traduccién y maquetacion de documentos, concretamente las
Resoluciones Rectorales de la Universidad Miguel Hernandez (UMH). Se ha
logrado garantizar su formato bilingle en valenciano y castellano mediante dos
enfoques diferentes. Ademas de optimizar el proceso de traduccion, el sistema

mantiene la coherencia visual y estructural de los documentos oficiales.

El primer método emplea inteligencia artificial a través de la APl de ChatGPT,
mientras que el segundo utiliza el traductor Apertium mediante Selenium para

realizar la traduccion de forma automatizada.

Finalmente, se comparan ambas soluciones para evaluar su precision, eficiencia

y viabilidad dentro del contexto académico y administrativo de la UMH.
Palabras clave

Automatizacion, traduccion automatica, inteligencia artificial, apertium

Introduccion

La idea de este trabajo inicid luego de cursar la asignatura de Mejora de
Procesos, impartida por Maria Asuncion Martinez Mayoral, profesora en el Grado
de Estadistica Empresarial. Nos comentd en repetidas ocasiones las
posibilidades que las inteligencias artificiales y la programacion tienen en nuestro
ambito, y me picé la curiosidad. Le propuse un tema para el trabajo sobre una
automatizacion, y ella me derivé al que, finalmente, es mi tutor para abordar este
proyecto, Fernando Borras Rocher. Nos reunimos y él me propuso el tema que

termind siendo el seleccionado.

Como todos sabemos, vivimos en un mundo cada vez mas digitalizado, y la
automatizacién de procesos es ya una herramienta clave para la optimizacion

del tiempo, de recursos y de tareas en muchas areas diferentes.

En el sector administrativo, la traduccidon de documentos oficiales es una tarea

fundamental. Ademas, en un territorio como es la Comunidad Valenciana, la cual

tiene dos idiomas oficiales como son el castellano y el valenciano, lo es aun mas

si cabe.

El Boletin Oficial de la Universidad Miguel Hernandez (BOUMH) publica
resoluciones rectorales diariamente, a veces incluso mas de una al dia, y son
presentadas en formato bilinglie, con el texto en castellano y valenciano
distribuido de forma simétrica en cada pagina. Al haber tal cantidad de
resoluciones diarias, desarrollar un sistema de automatizacion que es capaz de
traducir y maquetar todas estas resoluciones de forma rapida, eficiente y sencilla,
es una manera de agilizar el trabajo y poder centrarse en otras cuestiones con

mas dificultad o carga de trabajo.

Con este trabajo no se pretende unicamente optimizar un proceso administrativo
de la universidad, si no también se quiere demostrar que las nuevas tecnologias
pueden integrarse perfectamente en el ambito publico, aumentando la eficiencia
y calidad del trabajo.

El sistema desarrollado tiene el potencial de ser escalable y adaptable a otros
contextos y entidades que necesiten manejar documentos bilinglies de manera

eficiente.

Objetivos

El objetivo general de este Trabajo de Fin de Grado es desarrollar e implementar
un sistema automatizado que permita traducir y maquetar documentos oficiales
de la Universidad Miguel Hernandez (UMH) de forma rapida y eficiente,
garantizando un formato bilingle en castellano y valenciano. Para lograrlo, se
han explorado dos enfoques distintos: uno basado en la integracioén de la APl de

ChatGPT vy otro utilizando el traductor Apertium a través de Selenium.
Objetivos Especificos

e Automatizaciéon de la traduccion y maquetacion:
Desarrollar un sistema que automatice el proceso de traduccion de

documentos oficiales y la maquetacién de dichos textos en formato

bilingue, asegurando que la estructura y el disefio institucional se

mantengan inalterados.

e Implementacion de dos métodos de traduccion:
Integrar y poner en funcionamiento dos soluciones de traduccién

automatica:

o Método Apertium via Selenium: Configurar el entorno vy
desarrollar el codigo que permita traducir el contenido mediante
Apertium, automatizando la interaccion con la web mediante

Selenium.

o Método basado en la APl de ChatGPT: Desarrollar e implementar
el cédigo necesario para traducir textos a través de la API de
ChatGPT, aprovechando las capacidades de la inteligencia artificial

para generar traducciones naturales y precisas.

o Evaluacion comparativa:
Comparar ambos métodos en términos de rendimiento, precision vy
eficiencia, analizando las ventajas y limitaciones de cada enfoque para
determinar su viabilidad en el contexto administrativo y académico de la
UMH.

e Propuesta de mejoras y futuras lineas de trabajo:
Identificar posibles mejoras en el sistema desarrollado y proponer futuras
lineas de investigacion o implementacion que permitan optimizar ain mas

el proceso de traduccion y maquetacion de documentos oficiales.

Informacion disponible

Para llevar a cabo el desarrollo de este Trabajo de Fin de Grado, se ha recopilado
y utilizado informacion tanto técnica como académica, con el fin de comprender
los procesos involucrados en la automatizacion de la traduccion y maquetacion
de documentos oficiales en la Universidad Miguel Hernandez (UMH). A

continuacién, se detallan las fuentes y tipos de informacion disponibles:

1. Documentacion técnica sobre Apertium y Selenium:

o

Apertium: Apertium es un sistema de traduccion automatica de
cddigo abierto que soporta multiples combinaciones linguisticas,
incluido el par de idiomas castellano-valenciano. La informacion
técnica sobre Apertium, como su funcionamiento y su
implementacion en diferentes lenguajes de programacion, ha sido

esencial para integrar el traductor en el sistema automatizado.

Selenium: Selenium es una herramienta que permite automatizar
la interaccidn con aplicaciones web, siendo util para interactuar con
el traductor Apertium a través de su interfaz web. Se ha consultado
la documentacion de Selenium para configurar y automatizar el
navegador, garantizando que el sistema funcione de manera

eficiente.

2. API de OpenAl (ChatGPT):

o

La APl de OpenAl, utilizada para implementar el sistema de
traduccion automatica basado en inteligencia artificial, proporciona
una interfaz para acceder a modelos de lenguaje avanzados, como
GPT-4. La informacion sobre cdmo realizar las solicitudes a la AP,
manejar las respuestas y adaptar los resultados para que sean
adecuados al contexto de traduccion, se obtuvo a partir de la

documentacion oficial de OpenAl.

3. Especificaciones de los documentos oficiales de la UMH:

O

Plantillas y ejemplos: Se ha tenido acceso a ejemplos de
documentos oficiales previamente publicados, que sirven como
referencia para la maquetacién y disposicion de los textos en
castellano y valenciano, asegurando la correcta distribucion del

contenido.

4. Recursos de formacion y investigacion:

o Mucha de la informacién utilizada para realizar este proyecto ha
sido extraida del curso que imparte el tutor Fernando Borras
Rocher, llamado “AutomatizandolA”, dentro del programa
“IAdLegos”.

o Se ha consultado libros y articulos académicos relacionados con la
traduccién automatica, la automatizacion de procesos
administrativos y el uso de herramientas como Apertium vy

Selenium en la industria.
5. Herramientas y entornos de desarrollo:

o Se ha utilizado un entorno de desarrollo basado en Python, con
bibliotecas como Selenium y python-docx, que facilitan la
interaccién con aplicaciones web y la manipulacion de documentos
Word, respectivamente. La documentacion oficial de estas
herramientas ha sido clave para asegurar una correcta integracion

y funcionamiento del sistema.

o También se ha hecho uso de Google Colab para ejecutar el codigo
en un entorno controlado y disponer de recursos de computacion
adecuados para las pruebas y validaciones del sistema

desarrollado.

6. Metodologia

En este apartado se describe la metodologia seguida para el desarrollo del
sistema automatizado de traduccién y maquetacion de documentos bilingles en
el contexto de las resoluciones rectorales del Boletin Oficial de la Universidad
Miguel Hernandez (BOUMH). La metodologia abarca todo el proceso desde el
analisis de los requisitos y especificaciones hasta la implementacion, pruebas y
evaluacion del sistema. El enfoque adoptado en este proyecto ha sido el de crear
una solucion integral que permita traducir y presentar de manera coherente y
eficiente los documentos de las resoluciones rectorales en dos lenguas oficiales:

castellano y valenciano. Para ello, se desarrollaron y evaluaron diferentes

enfoques y tecnologias, y se adopté una metodologia iterativa y centrada en la

calidad.

El desarrollo de este sistema sigue una serie de pasos detallados que aseguran
que los documentos sean traducidos y maquetados adecuadamente, respetando
tanto la precision linguistica como la correcta disposicion del contenido en el
formato deseado. A continuacion, se describen los pasos clave en la metodologia
de desarrollo del sistema.

6.1 Revisidn de requisitos y especificaciones

El primer paso del proyecto consistié en realizar un analisis detallado de los
requisitos y las especificaciones del Boletin Oficial de la Universidad Miguel
Hernandez (BOUMH), que se caracteriza por publicar resoluciones rectorales en
formato bilingue (castellano y valenciano). Este analisis inicial fue crucial para
sentar las bases del proyecto, ya que permitid identificar las necesidades
especificas tanto en el ambito de la traduccion automatica como en el de la

maquetacion adecuada de los documentos.
Analisis del formato y estructura de los documentos

Una de las principales tareas fue estudiar como se presentaban las resoluciones
rectorales en el BOUMH. El formato de estos documentos, que se caracteriza
por una presentacion bilingle y una distribucion simétrica de los textos, era
fundamental para asegurar que el sistema automatizado cumpliera con las
expectativas de presentacion y precision. Durante este analisis, se identificaron

los siguientes aspectos clave:

1. Distribucion simétrica de los textos: Los textos debian ser presentados
en dos columnas, con el castellano en una columna y el valenciano en la
otra, de forma que ambas lenguas se mantuvieran perfectamente
alineadas. Esto era esencial para garantizar la legibilidad y comprension

del contenido en ambas lenguas.

2. Incorporaciéon de elementos graficos: El| BOUMH suele incluir ciertos
elementos graficos, como el logotipo de la universidad y los encabezados
institucionales, que también debian ser preservados y ubicados

adecuadamente en el documento final.

3. Formato especifico de los titulos y subtitulos: Los documentos

seguian un formato especifico para los titulos y subtitulos, con diferentes

tamanos y estilos de fuente. Era necesario asegurar que la maquetacion

automatizada respetara estas convenciones de estilo.

Investigacién de herramientas tecnolégicas

Una vez comprendida la estructura de los documentos, el siguiente paso fue la

investigacion de las herramientas tecnolégicas mas adecuadas para

implementar la traduccion automatica y la maquetacion del documento. Para

esto, se realizaron las siguientes acciones:

1. Seleccion de soluciones de traduccién automatica:

O

Apertium: Se optd por Apertium para realizar la traduccion entre
castellano y valenciano, dado que esta herramienta es
ampliamente utilizada para lenguas cercanas y ofrece traduccion
automatica en el par linguistico castellano-valenciano. Apertium es
una solucion basada en reglas, lo que garantiza una alta precision
para los textos administrativos y legales, como las resoluciones

rectorales.

APl de ChatGPT: Como una alternativa complementaria, se
investigo el uso de la APl de ChatGPT para ofrecer traducciones
mas fluidas y contextuales. Esta solucién basada en inteligencia
artificial fue utilizada para garantizar que el texto final no solo fuera

preciso, sino también coherente y natural en cuanto a la redaccion.

2. Seleccion de herramientas para la maquetacion:

O

python-docx: Esta biblioteca fue elegida para manipular los
documentos en formato Word. Permite crear, modificar y dar
formato a documentos de manera eficiente, lo que facilité la tarea
de crear documentos bilingles con la disposicion adecuada de los
textos.

Selenium: Esta herramienta fue utilizada para automatizar la

interaccion con la interfaz web de Apertium, facilitando el proceso

de traduccion directa desde el navegador y permitiendo la gestion

del flujo de trabajo de manera completamente automatizada.
Definicién de los requisitos funcionales

A partir de los analisis anteriores, se definieron los requisitos funcionales clave

del sistema, que debian ser cumplidos en todas las etapas del desarrollo:

1. Automatizacion del proceso de traduccién: El sistema debia ser capaz
de automatizar todo el proceso de traduccion de documentos, de forma
que no fuera necesario realizar traducciones manuales para cada
documento del BOUMH. La integracion de Apertium y la APl de ChatGPT

permitié automatizar este proceso de manera eficiente.

2. Integracion de la traduccion en un formato bilinglie simétrico: Una
vez realizada la traduccion, el sistema debia presentar los documentos en
un formato donde el texto en castellano y el texto en valenciano estuvieran
dispuestos de manera simétrica y alineada. Esta tarea de maquetacion
debia ser también automatizada para que, al final del proceso, el
documento estuviera listo para ser publicado en el BOUMH sin

intervencién manual.

3. Validacion de la calidad y coherencia del contenido traducido:
Asegurar la calidad de las traducciones era crucial. Esto implicaba que el
sistema debia incorporar algun tipo de validacién para comprobar que las
traducciones generadas fueran precisas, coherentes y adecuadas al
contexto administrativo y legal de las resoluciones rectorales. Ademas,
debia poder verificar que la maquetacién estuviera correctamente
realizada, respetando las convenciones establecidas por la universidad

para la publicacion de documentos oficiales.

6.2 Disefo y desarrollo del sistema

El disefio y desarrollo del sistema para la automatizacion de la traduccion y
maquetacion de los documentos bilingues del Boletin Oficial de la Universidad
Miguel Hernandez (BOUMH) se llevo a cabo en varias fases clave, cada una
orientada a resolver un aspecto especifico del proceso. Estas fases se

organizaron de manera secuencial para garantizar la optimizacion y eficiencia
del sistema final. La planificacion detallada de la arquitectura del sistema, el
desarrollo de los médulos de traduccion y la automatizacion del proceso de

maquetacion fueron los pilares sobre los cuales se construyoé la solucion final.
1. Arquitectura del sistema

La arquitectura del sistema fue disefiada con un enfoque modular, lo que permitio
garantizar tanto su flexibilidad como su escalabilidad. Este enfoque modular
facilita la actualizacién y mejora continua del sistema a medida que surgen
nuevas tecnologias o requerimientos. Para lograr una implementacion eficaz, se
establecio un flujo de trabajo claro que facilitara la integracion de los diferentes

modulos del sistema, que son:

e Mobdulo de traduccidon: El componente encargado de traducir el
contenido de los documentos del BOUMH de castellano a valenciano y
viceversa. Este mddulo utiliza tanto soluciones de traduccion automatica
basadas en reglas como modelos de inteligencia artificial para mejorar la

calidad de las traducciones.

e Moédulo de maquetacion: Encargado de estructurar los documentos
traducidos en un formato adecuado y coherente con los requisitos
institucionales del BOUMH. Este mddulo asegura que los textos en

castellano y valenciano estén distribuidos de manera simétrica y alineada.

Ambos moddulos fueron disefiados para trabajar de forma auténoma, pero
también para integrarse facilmente dentro del flujo de trabajo global del sistema.
De esta forma, se consiguio una solucion que no solo cumpliera con los objetivos
técnicos, sino que también fuera capaz de adaptarse a posibles cambios o

ampliaciones en el futuro.
2. Médulo de traduccién

El desarrollo del mdédulo de traduccion fue uno de los aspectos mas cruciales del
sistema, ya que la calidad de la traduccion era fundamental para la precision y
coherencia de los documentos oficiales. Para este mddulo, se adoptaron dos

enfoques diferentes:

e Apertium via Selenium: Para integrar Apertium en el sistema, se utilizo
Selenium, una herramienta que permite automatizar la interaccién con
interfaces web. Selenium facilitd la automatizacién del proceso de
traduccion al interactuar con la interfaz web de Apertium, enviando los
textos a traducir y obteniendo las traducciones de manera eficiente y sin
intervencién manual. Esta solucién fue especialmente util para asegurar
la consistencia y precision de las traducciones, dada la naturaleza

predefinida de las reglas linguisticas en Apertium.

e APl de ChatGPT: Para complementar Apertium y mejorar la fluidez de las
traducciones, se integré la APl de ChatGPT, que utiliza modelos
avanzados de inteligencia artificial para generar traducciones
contextuales y naturales. Este enfoque permitié manejar mejor los matices
del lenguaje y las expresiones idiomaticas que podrian no ser bien

tratadas por sistemas basados en reglas.

Ambos enfoques fueron disefiados para trabajar de manera independiente, lo
que permiti6 compararlos en términos de eficiencia y precision. Ademas, la
combinacién de estos métodos ofrecié un balance adecuado entre la velocidad
de traduccidn y la calidad contextual, asegurando una cobertura amplia de las
necesidades del sistema.

4. Integracion de los médulos

Los modulos de traduccion y maquetacion fueron integrados en un unico flujo de
trabajo automatizado. El sistema fue disefiado para permitir que un documento
original en castellano fuera procesado de manera completamente automatica,
desde la traduccién de su contenido hasta la maquetacion final del documento
bilingUe. La integracion de ambos modulos permitié que, tras la traduccion de los
textos, el documento fuera automaticamente maquetado y preparado para su

publicacion en el BOUMH sin intervencion manual.

Para garantizar que los resultados fueran satisfactorios, se realizaron varias
pruebas con documentos de prueba para validar la efectividad del sistema. Estas
pruebas incluyeron la evaluacion de la precision de las traducciones y la
comprobacion de que la maquetacion de los textos en ambas lenguas cumpliera

con los estandares de presentaciéon requeridos por la universidad.

En resumen, el disefio y desarrollo del sistema se centré en la modularidad, la
eficiencia y la facilidad de integracion, asegurando que el proceso de traduccion
y maquetaciéon de documentos fuera completamente automatizado y adecuado

a los requerimientos institucionales del BOUMH.
6.3 Implementacion de los métodos de traduccion

La implementacion de los métodos de traduccién fue una parte esencial del
sistema automatizado de traducciéon y maquetacion. El desarrollo de los médulos
de traduccién con Apertium via Selenium y con la APl de ChatGPT se llevé a
cabo con el objetivo de maximizar tanto la precision como la fluidez de las
traducciones, adaptandose a las particularidades de los documentos oficiales del
BOUMH.

Desarrollo del médulo de traduccién con Apertium via Selenium

El primer médulo de traduccion fue desarrollado utilizando Apertium como motor
de traduccion automatica. Apertium es una plataforma basada en reglas que se
especializa en las lenguas cercanas y tiene una excelente compatibilidad con la
combinacion de castellano y valenciano. Para interactuar con Apertium, se utilizé
Selenium, una herramienta de automatizacion que permite controlar

navegadores web de manera programatica.

El proceso de implementacibn comenzé con la creacidon de un script que
automatizara la carga del texto original en castellano en la interfaz web de
Apertium y la obtencién de la traduccion al valenciano. Este enfoque fue elegido
por su eficacia en la traduccion de textos administrativos y legales, que son el
tipo de contenido principal en el BOUMH. La automatizaciéon mediante Selenium
permitié traducir documentos de manera eficiente sin necesidad de intervencion

manual, optimizando el proceso.
Desarrollo del médulo de traduccion utilizando la APl de ChatGPT

El segundo modulo de traduccion fue desarrollado utilizando la APl de ChatGPT,
un modelo avanzado de inteligencia artificial que se especializa en el
procesamiento de lenguaje natural. Este enfoque permitié obtener traducciones
mas contextuales, adaptadas a los matices y estilo del valenciano. A diferencia

de Apertium, que se basa en un enfoque de traduccion por reglas, la APl de

ChatGPT genera traducciones mas flexibles y naturales, lo que la convierte en
una opcién ideal para aquellos casos en los que se requiere una mayor

adaptabilidad en el estilo del lenguaje.

El médulo de ChatGPT fue integrado con el sistema de manera que se pudiera
elegir entre ambos métodos de traduccion (Apertium o ChatGPT) dependiendo
de las necesidades del documento y los resultados esperados. De esta forma,
se aseguro que cada texto fuera traducido de la manera mas adecuada segun

su contenido y contexto.
Integracién de los dos métodos en el sistema para realizar comparativas

Una vez desarrollados ambos modulos, se procedid a integrarlos en un unico
sistema de traduccion. Esto permitié realizar comparativas de rendimiento y
calidad entre Apertium y ChatGPT, analizando cual de los dos métodos producia
mejores resultados en términos de precision, fluidez y adaptabilidad. La
integracion también permitié automatizar la eleccion del método mas adecuado

segun el tipo de texto o la naturaleza del documento.

Ambos moddulos de traduccion fueron evaluados mediante pruebas con
documentos de prueba, para asegurar que el sistema produjera resultados de

alta calidad tanto en términos de traduccion como de maquetacion.

6.4 Automatizacion de la maquetacion de documentos

Una de las partes fundamentales de este proyecto fue la automatizacion de la
maquetacion de los documentos bilingles. El objetivo principal era garantizar
una correcta distribucién simétrica de los textos en castellano y valenciano, lo
que implicaba que los textos de ambas lenguas debian estar alineados de

manera precisa dentro del documento final.
Configuracion de la maquetaciéon del documento bilinglie

Para la correcta disposicion de los textos en ambas lenguas, se disefidé una
estructura de tabla que permitiera la colocacion de las traducciones lado a lado.
De este modo, se logré una distribucién simétrica en la que el texto original en

castellano ocupaba una columna, mientras que su traduccion al valenciano se

colocaba en la columna adyacente. Ademas, la maquetacion incluyé margenes
y un espaciado apropiado para asegurar que el texto fuera facilmente legible y
que ambas versiones del documento tuvieran una presentacién coherente y

uniforme.
Incorporacién de elementos graficos

Ademas de la disposicién de los textos, el sistema permitié la incorporacion de
elementos graficos, tales como los logotipos institucionales de la Universidad
Miguel Hernandez, que deben aparecer en todos los boletines oficiales. Para
ello, se integraron las herramientas adecuadas para insertar imagenes en el
documento de manera automatizada, respetando su tamafio y ubicacion en el
disefio del boletin. Estos elementos graficos fueron configurados para que se

mantuvieran consistentes a lo largo de todos los documentos generados.
Adaptacion de bibliotecas (por ejemplo, python-docx)

Para lograr la maquetacién automatica, se utilizé la biblioteca python-docx, que
permitié la manipulacién de documentos Word de manera sencilla. A través de
esta herramienta, fue posible crear tablas con un numero dinamico de filas y
columnas, dependiendo del contenido de los documentos. Ademas, se ajustaron
parametros como los bordes de las celdas y el espaciado entre parrafos para
garantizar que la presentacion final fuera coherente con los estandares
institucionales del BOUMH.

Para garantizar una correcta presentacion del documento final, también se
configuraron estilos especificos para los titulos, subtitulos y cuerpos de texto,
siguiendo las normas de formato que se suelen utilizar en los boletines oficiales.
Esta personalizacién de los estilos fue clave para asegurar que el documento

tuviera un aspecto profesional y uniforme.

6.5 Pruebas, evaluacién y validacion

La fase de pruebas fue esencial para garantizar que cada mddulo del sistema
funcionara correctamente y que el documento final cumpliera con los requisitos

de calidad establecidos.

Realizacion de pruebas de funcionamiento

Se realizaron pruebas exhaustivas de funcionamiento para cada uno de los
modulos de traduccidon y maquetacion. Para el modulo de traduccion, se verifico
la exactitud de las traducciones generadas por Apertium y la API de ChatGPT,
evaluando su capacidad para manejar el contexto de las resoluciones rectorales
y asegurando que los textos fueran coherentes vy fieles al original. Por otro lado,
en el modulo de maquetacion, se verificd que la distribucion simétrica de los
textos en ambas lenguas fuera precisa y que los elementos graficos se insertaran

correctamente.
Evaluacion comparativa de ambos métodos

Se realizd una evaluacion comparativa de los dos métodos de traduccion
empleados, es decir, la combinacion de Apertium con Selenium y la API de
ChatGPT. La comparacion se hizo en términos de:

e Precision: Evaluacion de la calidad linguistica de las traducciones,
comprobando la adecuacion de los textos en valenciano en cuanto a

gramatica y contexto.

e Eficiencia: Analisis de la rapidez con la que se generaban las
traducciones y la capacidad de manejar multiples documentos en un corto
periodo de tiempo.

e Viabilidad: Estudio de la accesibilidad y coste de cada opcion,

considerando el entorno institucional en el que se aplicara el sistema.
Validacion del formato final

Una vez que las traducciones y maquetaciones fueron realizadas, se valido el
formato final de los documentos generados en funcién de los requisitos
institucionales del BOUMH. Esto incluyé revisar la correcta distribucion de los
textos, la consistencia en la presentacion de las tablas, y la inclusion de los
elementos graficos en su lugar adecuado. Ademas, se verifico que el archivo
final estuviera correctamente estructurado, con los titulos y subtitulos bien

definidos y el texto facilmente legible tanto en castellano como en valenciano.

6.6 Software y hardware
Descripcion del entorno de desarrollo

El sistema fue desarrollado utilizando el entorno de Google Colab, lo que permitié
aprovechar los recursos en la nube y ejecutar el codigo de manera flexible y
escalable. El desarrollo se realiz6 en Python, utilizando diversas bibliotecas
especializadas que facilitaron tanto la manipulacion de documentos como la

traduccidon automatica. Algunas de las bibliotecas clave utilizadas fueron:

e Selenium: Para automatizar la interaccion con la interfaz web de Apertium

y generar traducciones.

e python-docx: Para la manipulacion de documentos Word, permitiendo

crear y modificar tablas y aplicar estilos personalizados.

e OpenAl API (GPT-4): Para la traduccion de los textos con un alto grado

de contextualizacion y calidad linguistica.

El uso de Google Colab también permitié realizar pruebas de manera remota y

compartir el entorno de trabajo de manera sencilla con otros colaboradores.
Detalles del hardware y recursos computacionales

El sistema se ejecutd en la infraestructura de hardware proporcionada por
Google Colab, que ofrece acceso a servidores con recursos computacionales
en la nube, incluyendo tanto CPUs como GPUs. Estos recursos fueron clave
para llevar a cabo las tareas de traduccion automatica y la maquetacion de los
documentos de manera eficiente. Los GPUs de Google Colab fueron
especialmente utiles para acelerar los procesos de traduccion, ya que los
modelos de |IA como el de GPT-4 se benefician de la paralelizacion y la

aceleracion proporcionadas por las unidades de procesamiento grafico.

Durante el desarrollo y las pruebas del sistema, se logré manejar un volumen
razonable de documentos, y los tiempos de ejecucion fueron aceptables. En
términos generales, los recursos computacionales disponibles fueron adecuados
para el procesamiento de documentos de tamafio medio y grande. Sin embargo,
dado que los documentos pueden variar en complejidad y tamafo, se evaluaron

los tiempos de ejecucion para garantizar que el sistema pudiera manejar

documentos mas grandes sin perder eficiencia.

En cuanto a los requisitos de almacenamiento, los archivos generados por el
sistema (tanto los documentos originales como las versiones traducidas y
maquetadas) se almacenaron de forma temporal en el entorno de Google Colab.
Una vez procesados, los documentos finales fueron descargados para su
posterior revision y distribucion. Google Colab permitié almacenar los archivos
de manera eficiente, sin necesidad de una infraestructura local compleja, y

facilité la descarga de los resultados para su posterior manejo.
Consideraciones

Uno de los aspectos mas importantes del sistema fue su escalabilidad, es decir,
la capacidad de manejar un aumento en el volumen de documentos y adaptarse
a futuros requerimientos. El sistema fue disefiado de manera modular y flexible,
lo que permitié que fuera facilmente ampliable para traducir y maquetar un mayor
numero de documentos. El uso de Google Colab y su infraestructura en la nube
proporciond la capacidad de escalar de manera sencilla, aprovechando los
recursos computacionales disponibles segun las necesidades del proyecto.

A medida que la demanda de traducciéon y maquetacién de documentos
aumente, el sistema puede ampliarse para gestionar un mayor volumen de
documentos sin necesidad de reestructurar todo el flujo de trabajo. Esto se debe
a la capacidad de Google Colab para proporcionar recursos computacionales
adicionales cuando sea necesario, y a la naturaleza modular del sistema, que

permite integrar nuevas funcionalidades sin afectar su rendimiento general.

Resultados

En cuanto a los resultados obtenidos a partir del desarrollo del sistema
automatizado de traduccion y maquetacion de documentos bilinglies para las
resoluciones rectorales del Boletin Oficial de la Universidad Miguel Hernandez
(BOUMH), ambos métodos de traduccion implementados han demostrado ser
altamente efectivos. Tanto la solucion basada en Selenium con Apertium como
la APl de ChatGPT han logrado proporcionar traducciones precisas y

coherentes, lo que ha permitido cumplir con los objetivos planteados para este

proyecto. A continuacion, se detallan los aspectos mas destacados de los

resultados obtenidos y las diferencias observadas entre ambos enfoques.

Calidad de la Traduccion

Ambos métodos han logrado traducir los textos con un alto grado de precision y

adecuacion al contexto, lo cual es fundamental dado que los documentos del

BOUMH incluyen resoluciones rectorales que deben mantener una redaccion

formal y clara en ambos idiomas, castellano y valenciano. Las traducciones

generadas han sido suficientemente precisas como para ser empleadas en un

entorno institucional, cumpliendo con los estandares de calidad linguistica

requeridos para estos documentos oficiales.

Método Selenium con Apertium: La solucién basada en Selenium
automatiza la interaccién con la interfaz de Apertium para traducir los
textos. Este enfoque ha mostrado buenos resultados, especialmente en
términos de rapidez y eficiencia para traducir grandes volumenes de texto.
La traduccion proporcionada por Apertium es bastante directa y
estructurada, lo que la hace util en contextos donde se requiere una
traduccion rapida y precisa. Sin embargo, el estilo de las traducciones
tiende a ser un poco mas rigido y menos fluido, lo que podria ser una
limitacion en documentos que requieren una mayor adaptacion contextual

o estilistica.

Método APl de ChatGPT: Por otro lado, la APl de ChatGPT ha
demostrado ser mas flexible y capaz de generar traducciones mas
naturales y contextualmente precisas. El modelo GPT-4 tiene una
capacidad superior para comprender matices linguisticos y adaptarse a
las particularidades del valenciano, lo que se traduce en traducciones mas
fluidas, adaptadas a los contextos especificos de los textos. Este enfoque
ha proporcionado traducciones de mayor calidad estilistica,
especialmente en los pasajes que requieren un nivel de sofisticacion en

el lenguaje o una interpretacion mas libre de las expresiones.

Diferencias Clave entre los Métodos

A pesar de que ambos métodos han producido resultados satisfactorios, se han

observado algunas diferencias significativas en términos de flexibilidad, costo

y requerimientos de recursos:

1. Flexibilidad y Estilo de Traduccioén:

o

El método de traduccion con Selenium es mas rigido y
estructurado. Al ser un sistema automatizado basado en reglas, la
traduccidbn es mas cuadriculada y se ajusta estrictamente al
contenido original sin demasiada adaptacion a las sutilezas
linguisticas del contexto. Esto puede ser beneficioso cuando se
necesita una traduccidn directa y coherente, pero limita la
capacidad del sistema para adaptar el texto a un tono mas fluido o

natural.

En contraste, el método de traduccion con la APl de ChatGPT
ofrece una mayor flexibilidad y contextualizacion en las
traducciones. Este método es mas dinamico, lo que le permite
generar traducciones que suenan mas naturales, con una mejor
adaptacién al contexto y al estilo requerido en documentos
oficiales. El sistema tiene la capacidad de modificar el tono y la
estructura segun las necesidades del contenido.

2. Costo:

o

Una ventaja significativa del método con Selenium es que es
completamente gratuito, lo que lo convierte en una opcion
econdmica para proyectos con un presupuesto limitado. A pesar de
que Apertium ofrece traducciones rapidas y efectivas, el hecho de
gue no se requiera ningun tipo de inversién adicional lo hace una
opcion atractiva para las instituciones que necesitan traducir un

numero elevado de documentos sin incurrir en gastos adicionales.

En cambio, la APl de ChatGPT requiere de una inversion
monetaria, ya que es un servicio de pago. Aunque el costo por

resolucidon rectoral es relativamente bajo, el hecho de que se

necesite un presupuesto para acceder al servicio puede ser una
limitacion para ciertos usuarios. Sin embargo, dado su costo
accesible y la calidad superior de las traducciones, muchos
usuarios pueden considerar que la inversién vale la pena si se

prioriza la calidad y la flexibilidad en la traduccion.
Resultados para el BOUMH

Ambos métodos, a pesar de sus diferencias, han cumplido con los requisitos
establecidos para el Boletin Oficial de la Universidad Miguel Hernandez
(BOUMH). Las resoluciones rectorales publicadas en formato bilingte han sido
traducidas con precisién, y los documentos generados han respetado la
estructura y el formato necesario para su publicacion oficial. El sistema de
maquetacion, que asegura que los textos se presenten de manera simétrica en
ambas lenguas, ha funcionado correctamente en ambos casos, garantizando
que los documentos cumplieran con los estandares visuales y estructurales

exigidos por la universidad.

e Método Selenium ha sido mas adecuado para un proceso de traduccién
simple y rapido, especialmente cuando se requiere manejar una gran
cantidad de documentos en poco tiempo. Al ser gratuito, también ofrece
la ventaja de reducir costos, lo cual puede ser relevante para un volumen

alto de traducciones.

e Método ChatGPT, al ser mas costoso pero mas flexible, ha permitido
generar traducciones mas adaptadas al contexto institucional, ofreciendo
una opcidn viable cuando se busca una mayor calidad en los textos
traducidos. Aunque implica un coste, su rendimiento ha valido la pena

cuando la calidad y la fluidez de la traduccién son prioritarias.
Conclusién

En conclusion, ambos métodos de traduccion han proporcionado resultados
satisfactorios para la automatizacion de las resoluciones rectorales del BOUMH.
La eleccion entre el método con Selenium y el método con ChatGPT
dependera de las necesidades especificas de la institucion, ya sea en términos

de presupuesto o de calidad estilistica en las traducciones. Ambos enfoques son

validos vy utiles, y el sistema desarrollado ofrece una solucion flexible y efectiva
para automatizar la traduccion y maquetacion de documentos bilingles en el

contexto institucional del BOUMH.

7. Conclusiones y Propuestas

El desarrollo de un sistema automatizado para la traduccién y maquetacion de
documentos bilinglies en el contexto de las resoluciones rectorales del
Boletin Oficial de la Universidad Miguel Hernandez (BOUMH) ha demostrado
ser una solucion eficaz para facilitar y agilizar la publicacién de documentos
oficiales en dos lenguas, castellano y valenciano. A lo largo del proyecto se ha
logrado cumplir con los objetivos establecidos, optimizando tanto el proceso de
traduccién como la presentacion visual de los documentos. No obstante, el
analisis de los resultados obtenidos ha permitido identificar areas clave para la
mejora y futuras optimizaciones. A continuacion, se presentan las principales

conclusiones extraidas del proyecto, asi como algunas propuestas para el futuro.
Conclusiones

1. Eficiencia del Sistema Automatizado: E| sistema desarrollado ha
demostrado una alta eficacia en la automatizacion de los procesos de
traduccidén y maquetacion. La traduccidén automatica ha sido precisa en la
mayoria de los casos, y la integracion de los dos métodos de traduccion
(Selenium con Apertium y APl de ChatGPT) ha permitido obtener
resultados consistentes y adecuados para las resoluciones rectorales.
Ambos enfoques, aunque diferentes en términos de flexibilidad y costos,
han permitido cumplir con el objetivo principal de facilitar la publicacién de

documentos bilingues.

2. Adecuacion a los Requisitos Institucionales: El sistema ha sido capaz
de adaptarse perfectamente a las necesidades del BOUMH,
proporcionando una solucion que respeta la estructura formal y la
distribucion simétrica de los textos en castellano y valenciano. La

maquetacion automatizada ha permitido mantener la coherencia visual de

los documentos, un aspecto crucial en su publicacion oficial, garantizando

que las traducciones se presenten de manera ordenada y profesional.

3. Diferencias en los Métodos de Traduccién: El analisis de los métodos
de traduccion utilizados ha revelado importantes diferencias. Mientras que
el método de Selenium con Apertium ha sido mas adecuado para
traducciones rapidas y de bajo costo, el método de la APl de ChatGPT
ha mostrado una mayor flexibilidad y calidad estilistica. Esto hace que la
eleccion del método dependa de las prioridades del usuario, ya sea
eficiencia econémica o calidad de la traduccion. En general, la
combinacién de ambos enfoques podria resultar en una solucién mas
completa, con Apertium utilizado para traducciones masivas y ChatGPT

para documentos que requieran un mayor grado de contextualizacion.

4. Escalabilidad del Sistema: El sistema esta disefiado para ser escalable,
lo que permite manejar un volumen creciente de documentos sin
comprometer el rendimiento. La posibilidad de integrar nuevos servicios
de traduccion o mejorar la interfaz de usuario, junto con la utilizaciéon de
recursos en la nube, facilita la expansion del sistema segun sea necesario.
Esta escalabilidad es especialmente relevante dado que la carga de
trabajo en el BOUMH puede aumentar con el tiempo, y el sistema debe

ser capaz de adaptarse a esa demanda.

5. Viabilidad del Proyecto en el Contexto Institucional: El proyecto ha
demostrado ser viable desde una perspectiva técnica, ya que se ha
logrado desarrollar un sistema funcional que cubre todas las necesidades
identificadas en la fase de analisis. Ademas, se ha confirmado que los
documentos traducidos cumplen con los estandares de calidad
necesarios para su publicacion en el BOUMH. La posibilidad de
automatizar todo el proceso de traduccion y maquetacion representa un
ahorro significativo de tiempo y recursos, lo cual es crucial para el

funcionamiento eficiente de la institucion.
Propuestas de Mejora

Aunque el sistema desarrollado ha cumplido con las expectativas, se han

identificado varias areas en las que se podrian realizar mejoras o actualizaciones

para optimizar aun mas el rendimiento y la calidad del proceso de traduccion y

maquetacion:

1.

Optimizacién del Rendimiento de Traduccién: A pesar de que tanto
Apertium como ChatGPT han proporcionado traducciones adecuadas,
existe la posibilidad de mejorar la eficiencia y la precision de las
traducciones mediante el uso de tecnologias adicionales. Una posible
mejora seria integrar modelos de traduccion automatica mas avanzados
y especificos para el valenciano, lo que podria resultar en una mayor
fidelidad a las particularidades del idioma. La implementacion de técnicas
de post-edicion automatica también podria mejorar la calidad de las

traducciones generadas.

Mejora en la Interfaz de Usuario (Ul): La interfaz de usuario del sistema
podria beneficiarse de una actualizacion para hacerla mas intuitiva y
accesible para los usuarios no técnicos. Actualmente, la interaccién con
el sistema puede requerir conocimientos basicos de programaciéon y
herramientas de desarrollo. En el futuro, se podria desarrollar una interfaz
grafica de usuario (GUI) que simplifique el proceso de carga de
documentos, la seleccion de métodos de traduccion y la visualizacion de
los resultados. Esto facilitaria la adopcion del sistema por parte de

personal administrativo sin conocimientos técnicos.

Integracion de Nuevas Funcionalidades: Se podrian integrar nuevas
funcionalidades al sistema para hacerlo aun mas robusto y versatil.

Algunas posibles mejoras incluyen:

o La creacion de una base de datos que permita almacenar y
gestionar documentos traducidos, lo que facilitaria el seguimiento

y la recuperacion de resoluciones anteriores.

o Laimplementacién de un sistema de validacién automatica de la
calidad de las traducciones, que ayude a detectar posibles errores
o incoherencias en las traducciones antes de la publicacion de los

documentos.

o La implementacién de wuna herramienta de revisidon
colaborativa que permita a los usuarios hacer ajustes en las
traducciones generadas por el sistema antes de que los

documentos sean finalizados y publicados.

4. Expansion de la Compatibilidad con Otros Formatos de Documento:
Actualmente, el sistema esta orientado a la manipulacién de documentos
en formato Word (con la biblioteca python-docx). Sin embargo, seria
beneficioso ampliar la compatibilidad a otros formatos de documentos
comunes en el ambito institucional, como PDF y HTML. Esto permitiria al
sistema manejar una mayor variedad de tipos de documentos, ampliando

su aplicabilidad en diferentes contextos y situaciones.

5. Evaluacion Continua de la Calidad de la Traduccién: Aunque las
traducciones automaticas han mostrado un buen desempefio, seria util
implementar un sistema de retroalimentacion continua que permita
evaluar de manera constante la calidad de las traducciones y realizar
ajustes en los modelos de traduccién utilizados. Esto podria implicar la
recopilacion de comentarios de los usuarios para mejorar el sistema y
garantizar que las traducciones se mantengan actualizadas y alineadas

con los requisitos de la universidad.
Conclusioén Final

El sistema desarrollado para la traducciéon y maquetacion de documentos
bilinglies en el contexto de las resoluciones rectorales del BOUMH ha sido un
éxito en términos de rendimiento y funcionalidad. La automatizacion de estos
procesos ha permitido optimizar tanto el tiempo como los recursos necesarios
para la publicacion de documentos oficiales, mejorando la eficiencia operativa

dentro de la institucion.

A pesar de que se han alcanzado los objetivos iniciales del proyecto, existen
areas que podrian beneficiarse de futuras mejoras, tanto a nivel técnico como en
términos de usabilidad. Las propuestas de mejora apuntan a aumentar la calidad
de la traduccidn, facilitar la interaccidn con el sistema y expandir su capacidad
para gestionar diferentes tipos de documentos. En resumen, el sistema tiene un

gran potencial para evolucionar y seguir aportando valor a la Universidad Miguel

Hernandez, convirtiéndose en una herramienta aun mas poderosa para la

gestion automatizada de documentos bilingles en el ambito institucional.

Bibliografia

Bibliografia

Borras, F. (s.f.)JA4LEGOS4. Aufomatizacion con Pythobdniversidad Miguel

Hernandez. https://iadlegos4.umh.es

Apertium. (s.f.). Apertium: An operrsource rule-based machine translation

platform. https://www.apertium.org

Google. (s.f.). Google Colaboratory. https://colab.research.google.com

Google. (s.f.). Google Drive . https://drive.google.com

OpenAl. (2024). OpenAl APl documentation

https://platform.openai.com/docs

Python Software Foundation. (s.f.). Python (version 3.x)

https://www.python.org

https://ia4legos4.umh.es/
https://ia4legos4.umh.es/
https://www.apertium.org/
https://www.apertium.org/
https://colab.research.google.com/
https://colab.research.google.com/
https://drive.google.com/
https://drive.google.com/
https://platform.openai.com/docs
https://platform.openai.com/docs
https://platform.openai.com/docs
https://platform.openai.com/docs
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

Selenium. (s.f). Selenium WebDriver . https://www.selenium.dev

The Apache Software Foundation. (s.f). Apache OpenNLP .

https://opennlp.apache.org

gdown. (s.f)). gdown: Download large files from Google Drive

https://github.com/wkentaro/gdown

python-docx contributors. (s.f.). python-docx 0.8.117 documentation

https://python-docx.readthedocs.io

tqdm developers. (s.f.). fgdm. A Fast, Extensible Progress Bar for Python

https://tgdm.github.io/

Python Software Foundation. (s.f.). Python (version 3.x)

https://www.python.org

Ubuntu. (s.f). Ubuntu Keyserver . http://keyserver.ubuntu.com

Microsoft. (s.f.). Office Open XML (docx) File Format Referenc e

https://learn.microsoft.com/en-us/openspecs/

https://www.selenium.dev/
https://www.selenium.dev/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://github.com/wkentaro/gdown
https://github.com/wkentaro/gdown
https://github.com/wkentaro/gdown
https://github.com/wkentaro/gdown
https://python-docx.readthedocs.io/
https://python-docx.readthedocs.io/
https://python-docx.readthedocs.io/
https://python-docx.readthedocs.io/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
http://keyserver.ubuntu.com/
http://keyserver.ubuntu.com/
https://learn.microsoft.com/en-us/openspecs/
https://learn.microsoft.com/en-us/openspecs/

Anexo

CODIGO FUENTE DEL PROYECTO

A continuacion se presenta el cédigo fuente completo del sistema de traduccion
y maquetacion de documentos bilingles, el cual utiliza la APl de OpenAl para la
traduccién del castellano al valenciano, y la biblioteca python-docx para

manipular documentos Word.

=================== AP| KEY Y CONFIGURACION INICIAL

Pega la api_key de OpenAl

clave_api = aqui va la api key' #@param {type: "string"}

Enlace a fichero Word en Drive compartido (accesible para cualquiera con el

enlace)

link_gdrive = aqui se encuentra el link del texto a traducir' #@param {type:

"string"}

Extraer el ID del documento de Google Drive
id_gdrive = link_gdrive[35:68]

print("ID del documento:", id_gdrive)

Descargar el documento Word
Igdown {id_gdrive} -O documento.docx

print("Word file uploaded")

=================== INSTALACION DE DEPENDENCIAS

Ipip install python-docx openai tqdm

from docx import Document
import openai

import os

from tgdm import tgdm

from time import sleep

Configuracion de la API key de OpenAl en el entorno
%env OPENAI_API_KEY= $clave_api

openai.api_key = os.getenv("OPENAI_API_KEY")

=================== FUNCION PRINCIPAL DE TRADUCCION

def translate_word_document():

Traduce un documento Word del castellano al valenciano usando la API de
OpenAl.

El proceso abarca:

- Cargar el documento original.

- Traducir parrafos y tablas manteniendo el formato original.
- Guardar y descargar el documento traducido.

Cargar el documento Word original

doc = Document("documento.docx")

new_doc = Document()

def translate_text(text, max_retries=3):

Traduce el texto usando la APl de OpenAl con manejo de errores y

reintentos.
if not text.strip():

return text

for attempt in range(max_retries):
try:
response = openai.chat.completions.create(
model="gpt-40-mini",
messages=|

{

"role": "system",
"content": (

"Ets un Traductor de Valencia, especialitzat en traduir

documents del castella al valencia. "

"Els teus principals objectius son garantir traduccions

gramaticalment correctes i oferir un text "
"que semble natural i orientat a humans.\n\n"
"Instruccions:\n"
"1. Traduix el text proporcionat del castella al valencia.\n"

"2. Assegura't que la traduccié mantinga el significat i el
context del text original.\n"

"3. Utilitza una gramatica, sintaxi i expressions idiomatiques

adequades per a fer que la traduccié semble natural.\n"

"4. Evita traduccions literals, excepte quan siga necessari

per a preservar el significat.\n"

"5. Si hi ha referéncies culturals o expressions idiomatiques,

adapta-les perqué siguen comprensibles i rellevants en valencia.\n"

"6. Mantin el format i I'estructura del text original, excepte si

s'indica el contrari.\n"

"7. Revisa la traduccio per a corregir errors o expressions

estranyes abans de finalitzar-la.\n\n"
"Caracteristiques addicionals:\n"

"- Capacitat per a traduir entre multiples idiomes, incloent-hi
perd no limitant-se a espanyol, francés, alemany, xinés, japonés, arab, rus i

portugués.\n"

"- Opcid per a traduir textos formals i informals de manera

adequada segons el context proporcionat.\n"

- Capacitat per a manejar documents especialitzats,
incloent-hi manuals técnics, textos legals i obres literaries, garantint precisi6 i

rellevancia en la terminologia especialitzada.\n\n"

"Exemple:\n"

"- Text original en castella: 'La reunion comenzara a las 10

en punto. Por favor, asegurate de llegar a tiempo.'\n"
"- Idioma de desti: Valencia\n"

"- Text traduit: 'La reunido comencara a les 10 en punt. Per

favor, assegura't d'arribar a temps."\n\n"

"Proporciona el text que vols traduir."

13
{

"role": "user",

"content": f"Tradueix aquest text al valencia: {text}"
}

1,

temperature=0

)

return response.choices[0].message.content

except openai.RateLimitError:
if attempt < max_retries - 1:
sleep(20) # Espera 20 segundos antes de reintentar
continue
else:
raise
except Exception as e:

if attempt < max_retries - 1:

sleep(5)
continue
else:
print(f"Error al traducir texto: {str(e)}")

return text

print("Iniciando traduccién del documento...")

Procesar cada parrafo del documento
for paragraph in tqdm(doc.paragraphs, desc="Traduciendo parrafos"):
Obtener la traduccion del parrafo

translated_text = translate_text(paragraph.text)

Crear un nuevo parrafo en el documento traducido
new_paragraph = new_doc.add_paragraph()

new_paragraph.style = paragraph.style

Insertar el texto traducido y copiar el formato del original
if translated_text.strip():
run = new_paragraph.add_run(translated_text)
for src_run in paragraph.runs:
run.bold = src_run.bold
run.italic = src_run.italic

run.underline = src_run.underline

Procesar cada tabla del documento original

for table in doc.tables:

new_table

cols=len(table.columns))

new_table.style = table.style

for i, row in enumerate(table.rows):
for j, cell in enumerate(row.cells):
translated_cell = translate_text(cell.text)

new_table.cell(i, j).text = translated_cell

Guardar el documento traducido y descargarlo
new_doc.save("documento_traducido.docx")

print("Traduccién completada. Documento guardado
documento_traducido.docx")

from google.colab import files

files.download("documento_traducido.docx")

translate_word_document()

new_doc.add_table(rows=len(table.rows),

como:

Seguidamente tenemos el codigo fuente del sistema de traduccion y

maquetacion de documentos bilinglies con apertium via selenium.
Anadimos el buscador Debian
cat > /etc/apt/sources.list.d/debian.list <<'EOF'

deb [arch=amd64 signed-by=/usr/share/keyrings/debian-buster.gpg]
http://deb.debian.org/debian buster main

deb [arch=amd64 signed-by=/usr/share/keyrings/debian-buster-updates.gpg]
http://deb.debian.org/debian buster-updates main

deb [arch=amd64 signed-by=/usr/share/keyrings/debian-security-buster.gpg]
http://deb.debian.org/debian-security buster/updates main

EOF

Ahadimos y almacenamos las claves necesarias

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
DCCOEFBF77E11517

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 648ACFD622F3D138

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 112695A0E562B32A

apt-key export 77E11517 | gpg --dearmour -0 /usr/share/keyrings/debian-
buster.gpg

apt-key export 22F3D138 | gpg --dearmour -0 /usr/share/keyrings/debian-buster-
updates.gpg

apt-key export E562B32A | gpg --dearmour -0 /usr/share/keyrings/debian-

security-buster.gpg

Fijamos la APT para conseguir el paquete chromium

cat > /etc/apt/preferences.d/chromium.pref << 'EOF'

Package: *
Pin: release a=eoan

Pin-Priority: 500

Package: *
Pin: origin "deb.debian.org"

Pin-Priority: 300

Package: chromium*
Pin: origin "deb.debian.org"
Pin-Priority: 700

EOF

Instalamos chromium y chromium-driver
apt-get update

apt-get install chromium chromium-driver

Instalamos selenium

pip install selenium # Instalar dependencias necesarias

Ipip install python-docx selenium gdown

import requests

import math as mat

import time

from selenium import webdriver

from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected conditions as EC
from selenium.common.exceptions import TimeoutException
from docx import Document

from docx.oxml.ns import gn

from docx.oxml import OxmlElement

from google.colab import files

import 0s

--- Descarga del documento Word desde Google Drive ---

link_gdrive =
'https://docs.google.com/document/d/1YqT8maOADyt268I1rpRSxDrE77CNclW
Y/edit?usp=sharing&ouid=100433459112157064985&rtpof=true&sd=true'

id_gdrive = link_gdrive.split('/d/")[1].split('/")[0]
print("ID del documento:", id_gdrive)
Igdown {id_gdrive} -O documento.docx

print("Documento Word descargado correctamente.")

--- Configuracion de Selenium con Chromium ---

chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
chrome_options.add_argument("--disable-gpu")

service = Service(executable_path=r'/usr/bin/chromedriver")

def translate_text_apertium(text):

if not text or text =="0": # Evitar traducir celdas vacias o con "0"
return text

print(f"Intentando traducir: {text[:50]}...")

start_time = time.time()

driver = None

try:
driver = webdriver.Chrome(options=chrome_options, service=service)
driver.set_page load_timeout(20)

driver.get("https://www.apertium.org/index.spa.html#?dir=spa-

cat_valencia&g=")
input_textarea = WebDriverWait(driver, 10).until(

EC.presence_of element_located((By.XPATH, 'II"[@id="react-
mount"]/div[1]/div[1]/form/div[2]/div[1]/textarea'))

)
input_textarea.clear()
input_textarea.send_keys(text)

translated_text = WebDriverWait(driver, 10).until(

lambda d: d.find_element(By.XPATH, 'II"[@id="react-

mount")/div[1]/div[1]/form/div[2]/div[2]/textarea').get_attribute("value").strip()

message="La traduccién no se generd a tiempo."

)
translated_text = driver.find_element(By.XPATH, "II*[@id="react-

mount")/div[1]/div[1]/form/div[2]/div[2]/textarea').get_attribute("value")
print(f"Traduccién completada en {time.time() - start_time:.2f} segundos.")
return translated_text
except TimeoutException as e:
print(f"Timeout al traducir el texto: {text[:50]}... Error: {e}")
return text
except Exception as e:
print(f"Error inesperado al traducir el texto: {text[:50]}... Error: {e}")
return text
finally:
if driver:
try:
driver.quit()
except:
pass

time.sleep(1)

def set_cell_borders(cell, top=False, bottom=False, left=False, right=False):

tc = cell._element

tcPr = tc.get_or_add_tcPr()

borders = OxmlElement(‘'w:tcBorders')

top_border = OxmlElement(‘w:top')
top_border.set(gn(‘w:val'), 'single' if top else 'nil')

borders.append(top_border)

bottom_border = OxmlIElement(‘'w:bottom")
bottom_border.set(gn(‘w:val'), 'single’ if bottom else 'nil')

borders.append(bottom_border)

left_border = OxmlElement('w:left')
left_border.set(qn(‘w:val'), 'single’ if left else 'nil")

borders.append(left_border)

right_border = OxmlElement(‘w:right’)
right_border.set(qn('w:val'), 'single’ if right else 'nil")

borders.append(right_border)

tcPr.append(borders)

def set_table_borders(table):

"""Configura bordes visibles para todas las celdas de una tabla anidada.""

for row in table.rows:

for cell in row.cells:
tc = cell._element
tcPr = tc.get_or_add_tcPr()

borders = OxmlElement('w:tcBorders')

top_border = OxmlElement(‘w:top')
top_border.set(gn(‘w:val'), 'single')

borders.append(top_border)

bottom_border = OxmlElement('w:bottom")
bottom_border.set(qn(‘'w:val'), 'single’)

borders.append(bottom_border)

left_border = OxmlElement('w:left')

left_border.set(gqn('w:val'), 'single’)

borders.append(left_border)

right_border = OxmlElement(‘w:right’)

right_border.set(qn('w:val'), 'single")

borders.append(right_border)

tcPr.append(borders)

def translate_table(original_table, target_doc):

print("Traduciendo tabla...")
rows = len(original_table.rows)
cols = len(original_table.columns)

translated_table = target_doc.add_table(rows=rows, cols=cols)

for i, row in enumerate(original_table.rows):
for j, cell in enumerate(row.cells):
original_text = cell.text.strip()
translated_text = translate_text_apertium(original_text)

translated_table.rows[i].cells[j].text = translated_text

set_table_borders(translated_table) # Anadir bordes visibles
print("Tabla traducida completada.")

return translated table

def copy_table_structure(original_table, target_doc):
rows = len(original_table.rows)
cols = len(original_table.columns)

copied_table = target_doc.add_table(rows=rows, cols=cols)

for i, row in enumerate(original_table.rows):
for j, cell in enumerate(row.cells):

copied_table.rowsli].cells[j].text = cell.text.strip()

set_table_borders(copied_table) # Afadir bordes visibles

return copied_table

def translate_word_document():
start_time = time.time()
doc = Document("documento.docx")

new_doc = Document()

paragraphs_list = [p.text.strip() for p in doc.paragraphs if p.text.strip()]
tables_list = doc.tables
total_rows = len(paragraphs_list) + 2 * len(tables_list)

print(f"Total de parrafos: {len(paragraphs_list)}, Total de tablas:

{len(tables_list)}, Filas totales: {total_rows}")

table = new_doc.add_table(rows=total_rows, cols=2)

row_index =0

Procesar parrafos

for i, original_text in enumerate(paragraphs_list):
print(f'Procesando parrafo {i+1}/{len(paragraphs_list)}")
translated_text = translate_text_apertium(original_text)
left_cell = table.rows[row_index].cells[0]
left_cell.text = translated_text
left_cell.add_paragraph(" ")

left_cell.add_paragraph(" ")

set_cell_borders(left_cell, top=False, bottom=False, left=False, right=True)

right_cell = table.rows[row_index].cells[1]
right_cell.text = original_text
right_cell.add_paragraph(" ")
right_cell.add_paragraph(" ")

set_cell_borders(right_cell, top=False, bottom=False, left=False,

right=False)

row_index += 1

Procesar tablas

for i, original_table in enumerate(tables_list):
print(f"Procesando tabla {i+1}/{len(tables_list)}")
translated _row = table.rows[row_index]
translated_row.cells[0].merge(translated_row.cells[1])
merged_cell_translated = translated_row.cells[0]
translate_table(original_table, merged_cell_translated)

set_cell_borders(merged_cell_translated, top=False, bottom=False,

left=False, right=False)

row_index += 1

original_row = table.rows[row_index]
original_row.cells[0].merge(original_row.cells[1])
merged_cell_original = original_row.cells[0]

copy_table_structure(original_table, merged_cell_original)

set_cell_borders(merged_cell_original, top=False, bottom=False,

left=False, right=False)

row_index += 1

output_filename = "documento_traducido.docx"
new_doc.save(output_filename)

print(f'Documento traducido guardado como: {output_filename} en {time.time()

- start_time:.2f} segundos")

files.download(output_filename)

Ejecutar la funcion de traduccién

translate_word_document()

	Resumen
	Introducción
	Objetivos
	Objetivos Específicos

	Información disponible
	1. Documentación técnica sobre Apertium y Selenium:
	2. API de OpenAI (ChatGPT):
	3. Especificaciones de los documentos oficiales de la UMH:
	4. Recursos de formación y investigación:
	5. Herramientas y entornos de desarrollo:

	6. Metodología
	6.1 Revisión de requisitos y especificaciones
	6.2 Diseño y desarrollo del sistema
	6.3 Implementación de los métodos de traducción
	6.4 Automatización de la maquetación de documentos
	6.5 Pruebas, evaluación y validación
	6.6 Software y hardware

	Resultados
	Calidad de la Traducción
	Diferencias Clave entre los Métodos
	Resultados para el BOUMH
	Conclusión

	7. Conclusiones y Propuestas
	Conclusiones
	Propuestas de Mejora
	Conclusión Final

	Bibliografía
	Anexo
	CÓDIGO FUENTE DEL PROYECTO

