
Trabajo de Fin de Grado

Análisis y agrupamiento óptimo de tarjetas gráficas

Autor: Maik Mende

Tutora: Marina Leal Palazón

Grado en Estadística Empresarial

Facultad de Ciencias Sociales y Jurídicas

Curso 2024-2025

1

Índice general

1 Resumen 2

2 Introducción 2

2.1 Contexto histórico y motivación . 2

2.2 Objetivos . 3

2.3 Herramientas . 3

2.4 Fundamentos académicos y aportación novedosa . 3

3 Base de datos: descripción, preparación y análisis. 4

3.1 Descripción de los datos . 4

3.2 Preparación y procesamiento de los datos . 6

3.2.1 Limpieza y transformación de variables . 6

3.2.2 Descripción de las variables transformadas . 9

3.3 Análisis exploratorio de datos . 10

3.3.1 Estadísticas descriptivas . 10

3.3.2 Tratamiento de valores perdidos . 13

3.3.3 Tratamiento de valores atípicos . 13

3.3.4 Conclusiones del análisis exploratorio . 27

3.4 Relaciones entre variables clave . 27

3.4.1 Correlación entre variables numéricas . 27

3.4.2 Visualización de relaciones clave . 28

3.4.3 Conclusiones del análisis de relaciones . 36

4 Clustering 36

4.1 Fundamentos teóricos del método . 36

4.2 Clustering con K-means . 38

4.2.1 Algoritmo K-means . 38

4.3 Aplicación del método K-means . 40

4.3.1 Clustering con variables numéricas . 40

4.3.1.1 Estandardización de los datos . 40

4.3.1.2 Determinación del número óptimo de clústeres (K) 41

2

4.3.1.3 Aplicación del método K-means . 43

4.3.1.4 Análisis de los grupos obtenidos en el clustering 48

4.3.2 Clustering con variables numéricas y categóricas . 56

4.3.2.1 Preparación de los datos . 57

4.3.2.2 Fundamento teórico del análisis de componentes principales (PCA) 58

4.3.2.3 Aplicación del PCA . 59

4.3.2.4 Agrupación de tipos de memoria y aplicación del PCA 60

4.3.2.5 Método del codo con PCA . 62

4.3.2.6 Aplicación del método K-means con PCA . 63

4.3.2.7 Análisis de los grupos obtenidos en el clustering 66

4.3.3 Comparación de los dos modelos . 69

4.4 Implementación manual del algoritmo K-means . 70

4.4.1 Repaso teórico del algoritmo K-means . 71

4.4.2 Creación del algoritmo K-means manual . 73

4.4.2.1 Uso de la función kmeans_manual con distancia euclidiana 75

4.4.2.2 Uso de la función kmeans_manual con distancia de Minkowski 81

5 Conclusiones 91

5.1 Valoración del cumplimiento de los objetivos . 91

5.2 Conclusiones finales . 92

5.3 Reflexión personal . 94

6 Líneas futuras 94

Referencias 95

1 Resumen

En este Trabajo de Fin de Grado se analiza y agrupa una base de datos de tarjetas gráficas de los últimos 20 años
utilizando técnicas de análisis de datos y aprendizaje no supervisado, principalmente el algoritmo K-means. El proceso
incluyó la limpieza y transformación de los datos, el análisis exploratorio de variables numéricas y categóricas, y
la implementación de diferentes modelos de agrupamiento: uno solo con variables numéricas, otro combinado con
variables categóricas y numéricas, y una versión manual de K-means que permitió comparar distintas métricas de
distancia (euclidiana y Minkowski).

Se trabaja sobre una base de datos que contiene información sobre tarjetas gráficas de diferentes fabricantes y genera-
ciones.

3

2 Introducción

2.1 Contexto histórico y motivación

Históricamente, las tarjetas gráficas han tenido un papel fundamental en la evolución de los videojuegos y la compu-
tación gráfica. Desde sus inicios, estas unidades de procesamiento gráfico (GPUs) han evolucionado de manera sig-
nificativa, permitiendo la creación de gráficos cada vez más complejos y realistas. En sus primeras etapas, las GPUs
estaban diseñadas exclusivamente para acelerar el renderizado de gráficos en 2D y 3D, pero con el tiempo, su arqui-
tectura se ha adaptado para soportar cálculos más generales.

Un ejemplo destacado de esta evolución es su aplicación en el análisis de imágenes de resonancia magnética funcional
(fMRI). Según el trabajo de (Eklund et al.), las GPUs han demostrado ser herramientas altamente eficientes para ace-
lerar el procesamiento de datos de fMRI, que requiere manejar grandes volúmenes de información y realizar cálculos
intensivos. Este enfoque ha permitido reducir significativamente los tiempos de procesamiento en comparación con
las CPUs tradicionales, haciendo posible realizar análisis más rápidos y detallados de la actividad cerebral. Sin em-
bargo, los autores también destacan los desafíos asociados, como la necesidad de adaptar algoritmos existentes para
aprovechar al máximo la arquitectura de las GPUs.

De manera complementaria, un estudio más reciente de (Kalaiselvi et al.) también explora el uso de GPUs en aplicacio-
nes biomédicas, destacando su capacidad para manejar tareas de procesamiento intensivo en áreas como la neurociencia
y la biomedicina. Ambos estudios coinciden en que las GPUs no solo ofrecen ventajas en términos de velocidad, sino
que también permiten realizar análisis más complejos que antes eran inviables debido a las limitaciones de las CPUs.
Además, el estudio de 2017 amplía el enfoque al considerar no solo el rendimiento, sino también los desafíos prácticos,
como la optimización de algoritmos y la gestión de recursos computacionales en entornos biomédicos.

Más recientemente, (Zhang et al.) ha desarrollado un marco computacional basado en GPUs que conecta la simulación
neuronal con la inteligencia artificial. Este trabajo destaca cómo las GPUs pueden ser utilizadas para integrar modelos
de simulación neuronal con algoritmos de aprendizaje profundo, permitiendo avances significativos en la comprensión
de la actividad cerebral y en el desarrollo de sistemas de inteligencia artificial inspirados en el cerebro. Este enfoque
no solo mejora la eficiencia computacional, sino que también abre nuevas posibilidades para explorar la interacción
entre la neurociencia y la inteligencia artificial, un campo emergente con un enorme potencial.

Estos hallazgos refuerzan la idea de que las GPUs han trascendido su propósito original, convirtiéndose en herramientas
clave en campos como la investigación médica, la neurociencia y la inteligencia artificial. Su capacidad para realizar
cálculos paralelos de manera eficiente las convierte en un recurso indispensable para tareas de computación intensiva,
como el análisis de datos de fMRI, la simulación neuronal y otras aplicaciones biomédicas. Además, con la evolución
de la inteligencia artificial y el aprendizaje profundo, las GPUs continúan ampliando su impacto en áreas como la
simulación científica, la minería de datos y el desarrollo de tecnologías innovadoras.

2.2 Objetivos

El objetivo principal de este trabajo es analizar y agrupar tarjetas gráficas en función de sus especificaciones técnicas y
características relevantes, utilizando técnicas de análisis de datos y aprendizaje no supervisado. Para ello, se plantean
los siguientes objetivos específicos:

4

1. Describir y preparar la base de datos: Realizar una limpieza y transformación exhaustiva de los datos, identifi-
cando y tratando valores atípicos, variables irrelevantes y datos faltantes, con el fin de obtener un conjunto de
datos adecuado para el análisis.

2. Explorar y analizar las variables clave: Llevar a cabo un análisis exploratorio de las variables numéricas y ca-
tegóricas, identificando patrones, tendencias y relaciones relevantes entre las diferentes características de las
tarjetas gráficas.

3. Implementar y comparar métodos de agrupamiento: Aplicar el algoritmoK-means, tanto con variables numéricas
como combinando variables numéricas y categóricas, y comparar los resultados obtenidos. Además, implementar
el algoritmo K-means de forma manual para explorar el impacto de diferentes métricas de distancia, como la
distancia euclidiana y la distancia de Minkowski.

4. Interpretar y validar los grupos obtenidos: Analizar las características de los clústeres resultantes, identificando
patrones comunes y diferencias entre los grupos, y evaluar la robustez y coherencia de los agrupamientos en
función de las especificaciones técnicas y la evolución tecnológica de las tarjetas gráficas.

5. Extraer conclusiones relevantes: Sintetizar los hallazgos obtenidos a lo largo del análisis, destacando las implica-
ciones prácticas y teóricas del agrupamiento de tarjetas gráficas y proponiendo posibles líneas de investigación
futura.

2.3 Herramientas

En este trabajo se utilizará el lenguaje de programación R como herramienta principal para el análisis de datos. A lo
largo del documento, se combinarán explicaciones teóricas con fragmentos de código en R, lo que permitirá ilustrar
de manera práctica los conceptos y métodos empleados. Este enfoque busca facilitar la comprensión de los análisis
realizados y fomentar la reproducibilidad de los resultados.

2.4 Fundamentos académicos y aportación novedosa

A lo largo de la carrera, he adquirido una sólida base en técnicas estadísticas y de análisis de datos, incluyendo el análisis
exploratorio de datos, el estudio de correlaciones entre variables, el análisis de componentes principales (PCA) y la
aplicación de métodos de agrupamiento como el algoritmo k-means utilizando el software R. Estas herramientas me
han permitido abordar problemas complejos de clasificación y segmentación de datos, así como interpretar y visualizar
patrones relevantes en conjuntos de datos multidimensionales.

Sin embargo, este trabajo incorpora también una vertiente novedosa respecto a lo aprendido en la carrera. En particular,
se ha desarrollado una implementación manual del algoritmo k-means, lo que ha permitido un mayor control sobre el
proceso de agrupamiento y la posibilidad de experimentar con diferentes métricas de distancia, como la distancia de
Minkowski. Esta extensión no solo enriquece el análisis, sino que también permite evaluar la robustez de los resultados
frente a la presencia de valores atípicos y explorar alternativas más flexibles a la distancia euclidiana tradicionalmente
utilizada. De este modo, el trabajo combina los conocimientos adquiridos durante la formación académica con una
aproximación más avanzada y personalizada al problema de agrupamiento de tarjetas gráficas.

5

3 Base de datos: descripción, preparación y análisis.

3.1 Descripción de los datos

Vamos a usar una base de datos que contiene información sobre tarjetas gráficas de diferentes fabricantes de los últimos
20 años. La base de datos incluye diferentes especificaciones técnicas que nos ayudarán a analizar y agrupar las tarjetas
gráficas.

A continuación se procederá a cargar la base de datos con ayuda de la librería readr.

set.seed(1234)
library(readr)
setwd("C:/Users/maikm/Desktop/Estadística/TFG_git")
datos <- read_csv("data/tpu_gpus.csv")

El conjunto de datos contiene tanto variables categóricas como numéricas, aunque la mayoría de las variables son
categóricas en su estado original. A continuación, se describen las principales variables y las transformaciones que se
realizarán para adaptarlas al análisis:

• Product_Name: Identificador único de cada tarjeta gráfica. Por lo tanto no la trataremos como una variable, ya
que su único propósito es identificar cada tarjeta gráfica.

• GPU_Chip: Es una variable categórica que nos indica el tipo de chip que utiliza la tarjeta gráfica. A continuación
mostraremos cuántos tipos de chips hay en la base de datos.

Tenemos 450 tipos de chips distintos. De los 450 tipos de chips diferentes, solamente tenemos 106 tarjetas gráficas
con al menos 10 tarjetas por tipo de chip y tenemos alrededor de 161 tipos de chip con solamente 2 o menos tarjetas
gráficas.

• Released: Fecha de lanzamiento de la tarjeta gráfica. Originalmente, esta variable incluye valores como “Unk-
nown” y “Never Released”, que serán tratados de la siguiente manera:

– “Unknown”: Se convertirá a NA.
– “Never Released”: Se eliminará la fila correspondiente.
– La fecha será transformada a un formato de fecha estándar y categorizada en cinco intervalos: “Antes de
2000”, “2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020”.

• Bus: Es una variable categórica que nos indica el tipo de bus que utiliza la tarjeta gráfica. A continuación mos-
traremos cuántos tipos de bus hay en la base de datos.

Tenemos 30 tipos de bus distintos.

• Memory: Variable categórica que combina información sobre el tamaño de memoria, el tipo de memoria y el
ancho del bus de memoria. Para facilitar el análisis, esta variable será descompuesta en tres nuevas variables:

6

– Memory_Size (GB): Tamaño de la memoria, que será transformado a un formato numérico y convertido
a gigabytes (GB), eliminando filas con valores como “System Shared”.

– Memory_Type: Tipo de memoria utilizada (por ejemplo, GDDR6, HBM2).
– Memory_Bus (bits): Ancho del bus de memoria, que será transformado a un formato numérico.

• GPU_clock: Es una variable categórica que nos indica la velocidad del reloj de la GPU. Convertiremos esta
variable a numérica y la llamaremos GPU_clock (MHz).

• Memory_clock: Es una variable categórica que nos indica la velocidad del reloj de la memoria. Al igual que
con GPU_clock, convertiremos esta variable a numérica y la llamaremos Memory_clock (MHz).

• Shaders_TMUs_ROPs: Variable categórica que combina información sobre el número de unidades de som-
breado (Shaders), unidades de mapeo de texturas (TMUs) y tuberías de operaciones de rasterización (ROPs).
Esta variable será descompuesta en tres nuevas variables:

– Shaders: Número de unidades de sombreado, que será transformado a un formato numérico.
– TMUs: Número de unidades de mapeo de texturas, que será transformado a un formato numérico.
– ROPs: Número de tuberías de operaciones de rasterización, que será transformado a un formato numérico.

• ..1: Es una variable numérica que sólo indica la fila en la que estamos. No aporta información relevante para el
análisis y por tanto la eliminamos.

Resumen de tratamiento de las variables

El tratamiento de las variables incluye:

• Limpieza de datos: Eliminación de valores irrelevantes como “Never Released” y conversión de “Unknown” a
NA.

• Transformación de formatos: Conversión de variables categóricas a numéricas donde sea necesario.
• Separación de variables compuestas: Descomposición de variables como “Memory” y “Shaders_TMUs_ROPs”
en variables individuales para facilitar el análisis.

• Eliminación de variables irrelevantes: Eliminación de la variable “..1”.

3.2 Preparación y procesamiento de los datos

En esta sección, se realizarán las transformaciones necesarias para limpiar y preparar el conjunto de datos. Esto incluye
la eliminación de valores irrelevantes, la transformación de variables categóricas y numéricas, y la creación de nuevas
variables derivadas para facilitar el análisis posterior.

Cabe destacar que algunas de las filas de la variable Shaders_TMUs_ROPs tienen 4 valores en lugar de 3. Esto se debe
a que las tarjetas gráficas más antiguas no tenían shaders unificados, sino que tenían shaders separados para píxeles
y vértices. Por este motivo, primero tendremos que separar la variable en 4 columnas: “Shaders_1”, “Shaders_2”,
“TMUs” y “ROPs”. Luego trataremos 2 casos:

• Si hay 4 valores, los mantendremos como están y elegiremos el valor más alto entre Shaders_1 y Shaders_2
como el número de shaders.

7

• Si hay 3 valores, nos llenará la columna ROPs con NAs y tendremos que mover el valor de TMUs a ROPs y el
valor de Shaders_2 a TMUs y rellenar Shaders_2 con NAs.

Una vez hayamos tratado ambos casos, crearemos una nueva variable llamada Shaders, que será el máximo entre
Shaders_1 y Shaders_2, y como en el caso de 3 valores, Shaders_2 será NA, entonces Shaders será igual a Shaders_1.

Elegimos el máximo entre Shaders_1 y Shaders_2 porque el máximo entre los shaders de píxeles y de vértices en las
tarjetas antiguas es más comparable con los shaders unificados que tenemos hoy en día.

3.2.1 Limpieza y transformación de variables

En esta sección, se realizarán las transformaciones de datos anteriormente descritas. Esto incluye:

• Eliminación de filas irrelevantes.
• Separación de variables compuestas.
• Conversión de variables categóricas a numéricas.
• Reorganización y eliminación de columnas innecesarias.

Para ello, utilizaremos las siguientes librerías:

• dplyr: Para la manipulación de datos.
• tidyr: Para la separación de columnas y transformación de datos.
• stringr: Para la manipulación de cadenas de texto.
• lubridate: Para el manejo de fechas.

A continuación se detallan las transformaciones y limpiezas realizadas en el conjunto de datos:

1. Eliminación de filas irrelevantes: Se eliminaron las filas donde la columna “Memory” contenía “System Sha-
red” y aquellas donde “Released” era “Never Released”.

2. Separación de variables compuestas:

• La columna “Memory” se separó en tres nuevas columnas:

– “Memory_Size (GB)”: Tamaño de la memoria, convertido a un formato numérico y expresado en gigaby-
tes (GB).

– “Memory_Type”: Tipo de memoria utilizada.
– “Memory_Bus (bits)”: Ancho del bus de memoria, convertido a un formato numérico.

3. Conversión de formatos:

• La columna “Released” se transformó a un formato de fecha estándar y se categorizó en cinco intervalos: “Antes
de 2000”, “2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020”.

• Las columnas “Memory_clock” y “GPU_clock” se convirtieron a un formato numérico y se renombraron como
“Memory_clock (MHz)” y “GPU_clock (MHz)”, respectivamente.

8

library(dplyr)
library(tidyr)
library(stringr)
library(lubridate)

datos <- datos %>%
Si la columna Memory tiene "System Shared" Y Released tiene "Never Released",
#eliminar esas filas
filter(

!str_detect(Memory, "System Shared"),
!str_detect(Released, "Never Released")) %>%

Separar la columna Memory
separate(Memory, into = c("Memory_Size (GB)", "Memory_Type",

"Memory_Bus (bits)"),
sep = ", ", remove = TRUE, fill = "right") %>%

Convertir Memory_Bus (bits) a numérico Y Released a date
mutate(
`Memory_Bus (bits)` = as.numeric(str_extract(`Memory_Bus (bits)`, "\\d+")),
Primero convertimos "Unknown" a NA
Released = ifelse(Released == "Unknown", NA, Released),
Released = as.Date(parse_date_time(Released, orders = c("b d, Y", "Y")))

) %>%

Convertir Memory_Size (GB) a numérico y convertir a GB
mutate(`Memory_Size (GB)` = case_when(
str_detect(`Memory_Size (GB)`, "GB") ~ as.numeric(str_extract(`Memory_Size (GB)`,
"\\d+")),
str_detect(`Memory_Size (GB)`, "MB") ~ as.numeric(str_extract(`Memory_Size (GB)`,
"\\d+")) / 1024,
str_detect(`Memory_Size (GB)`, "KB") ~ as.numeric(str_extract(`Memory_Size (GB)`,
"\\d+")) / (1024 * 1024),
TRUE ~ NA_real_ # En cualquier otro caso, NA

)) %>%

Separar Shaders_TMUs_ROPs en 4 columnas (Shaders_1, Shaders_2, TMUs, ROPs)
separate(Shaders_TMUs_ROPs, into = c("Shaders_1", "Shaders_2", "TMUs", "ROPs"),

sep = " / ", remove = TRUE, fill = "right") %>%

Manejar casos donde hay solo 3 valores (x1 / x2 / x3)
mutate(

Si ROPs es NA, significa que solo hay 3 valores (x1 / x2 / x3)

9

ROPs = ifelse(is.na(ROPs), TMUs, ROPs), # Mover TMUs a ROPs
TMUs = ifelse(TMUs == ROPs, Shaders_2, TMUs), # Mover Shaders_2 a TMUs
Shaders_2 = ifelse(Shaders_2 == TMUs, NA, Shaders_2) # Poner NA en Shaders_2

) %>%

Convertir a numérico Memory_clock y GPU_clock
mutate(
`Memory_clock (MHz)` = as.numeric(str_extract(`Memory_clock`, "\\d+")),
`GPU_clock (MHz)` = as.numeric(str_extract(`GPU_clock`, "\\d+"))

) %>%

Crear la nueva variable Shaders: máximo entre Shaders_1 y Shaders_2.
#Si Shaders_2 es NA, significa que estamos en el caso de 3 valores.
mutate(
Shaders = ifelse(!is.na(Shaders_2), pmax(Shaders_1, Shaders_2), Shaders_1)

) %>%

Mover la columna Shaders delante de TMUs y ROPs
relocate(Shaders, .before = TMUs) %>%

Eliminar columnas innecesarias
select(-Shaders_1, -Shaders_2, -Memory_clock, -GPU_clock, -`...1`) %>%

Convertir Shaders, TMUs y ROPs a numérico
mutate(across(c(`Shaders`, `TMUs`, `ROPs`), ~ suppressWarnings(as.numeric(.)))) %>%

Convertir Released a categórico y dividir en 5 categorías
mutate(
Released = case_when(
Released < as.Date("2000-01-01") ~ "Antes de 2000",
Released < as.Date("2010-01-01") ~ "2000-2009",
Released < as.Date("2016-01-01") ~ "2010-2015",
Released < as.Date("2021-01-01") ~ "2016-2020",
TRUE ~ "Después de 2020"

)
)

num_vars <- datos %>% select(where(is.numeric)) %>% names()
cat_vars <- datos %>% select(where(is.character)) %>% names()

3.2.2 Descripción de las variables transformadas

Tras el procesamiento, el conjunto de datos contiene las siguientes variables:

10

Variables categóricas:

cat_vars

[1] "Product_Name" "GPU_Chip" "Released" "Bus" "Memory_Type"

• GPU_Chip: Como hemos mencionado anteriormente, es el tipo de chip que utiliza la tarjeta gráfica.

• Released: Es una variable categórica nueva que hemos creado, y nos indica la fecha de lanzamiento de la tarjeta
gráfica en 4 categorías: “Antes de 2000”, “2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020”.

• Bus: Es el tipo de bus que utiliza la tarjeta gráfica.

• Memory_Type: Es una variable categórica nueva que hemos creado a partir de la variable “Memory”, y nos
indica el tipo de memoria que utiliza la tarjeta gráfica.

Variables numéricas:

num_vars

[1] "Memory_Size (GB)" "Memory_Bus (bits)" "Shaders"
[4] "TMUs" "ROPs" "Memory_clock (MHz)"
[7] "GPU_clock (MHz)"

• Memory_Size (GB): Es una variable numérica nueva que hemos creado a partir de “Memory”, y nos indica la
cantidad de memoria que tiene la tarjeta gráfica, medida en gigabytes (GB). Una mayor cantidad de memoria
permite manejar texturas y datos gráficos más grandes, lo que es crucial para juegos y aplicaciones con gráficos
de alta resolución o entornos complejos.

• Memory_Bus (bits): Es una variable numérica nueva que hemos creado a partir de “Memory”, y nos indica
el ancho del bus de memoria, medido en bits. Determina cuántos datos pueden transferirse entre la GPU y la
memoria en un ciclo de reloj. Un bus más ancho permite un mayor ancho de banda, lo que mejora el rendimiento
en tareas gráficas intensivas.

• Shaders: Es una variable numérica nueva que hemos extraído de la variable “Shaders_TMUs_ROPs”, y re-
presenta el número de unidades de sombreado (shaders) en la GPU. Los shaders son responsables de procesar
píxeles, vértices y otros elementos gráficos. Un mayor número de shaders generalmente indica un mayor poder
de procesamiento gráfico.

• TMUs: Es una variable numérica nueva que hemos extraído de la variable “Shaders_TMUs_ROPs”, y nos indica
las unidades de mapeo de texturas (TMUs), encargadas de aplicar texturas a los objetos 3D. Un mayor número
de TMUs permite manejar texturas más complejas y mejorar la calidad visual.

• ROPs: Es una variable numérica nueva que hemos extraído de la variable “Shaders_TMUs_ROPs”, y son las
tuberías de operaciones de rasterización (ROPs), responsables de escribir los píxeles finales en la memoria de
video. Un mayor número de ROPs mejora el rendimiento en tareas como el antialiasing y la renderización de
píxeles.

11

• Memory_clock (MHz): Es la velocidad del reloj de la memoria, medida en megahercios (MHz). Indica la fre-
cuencia a la que opera la memoria. Una mayor velocidad de reloj de la memoria permite un mayor ancho de
banda y un mejor rendimiento general.

• GPU_clock (MHz): Es la velocidad del reloj de la GPU, medida en megahercios (MHz). Indica la frecuencia
a la que opera el núcleo de la GPU. Una mayor velocidad de reloj de la GPU mejora el rendimiento en tareas
gráficas y de procesamiento.

Tras las transformaciones, el conjunto de datos contiene un total de 7 variables numéricas y 5 variables categóricas.

3.3 Análisis exploratorio de datos

3.3.1 Estadísticas descriptivas

En esta sección, se llevará a cabo un análisis descriptivo de las variables numéricas y categóricas del conjunto de
datos. Este análisis tiene como objetivo proporcionar una visión general de las principales características de los datos,
identificar patrones relevantes y detectar posibles irregularidades.

Además, se realizará la transformación de la variable Released a un formato de factor ordenado, lo que permitirá
organizar las fechas de lanzamiento de manera adecuada y facilitar su representación en los gráficos.

Convertir Released a factor
datos$Released <- factor(datos$Released, levels = c("Antes de 2000", "2000-2009",
"2010-2015", "2016-2020", "Después de 2020"))

Resumen de las variables
summary(datos)

Product_Name GPU_Chip Released
Length:3047 Length:3047 Antes de 2000 : 106
Class :character Class :character 2000-2009 : 972
Mode :character Mode :character 2010-2015 :1367
2016-2020 : 402
Después de 2020: 200
##
Bus Memory_Size (GB) Memory_Type Memory_Bus (bits)
Length:3047 Min. : 0.00003 Length:3047 Min. : 32.0
Class :character 1st Qu.: 0.50000 Class :character 1st Qu.: 128.0
Mode :character Median : 2.00000 Mode :character Median : 128.0
Mean : 3.46161 Mean : 289.6
3rd Qu.: 4.00000 3rd Qu.: 256.0
Max. :128.00000 Max. :8192.0
Shaders TMUs ROPs Memory_clock (MHz)
Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 5.0

12

1st Qu.: 40.0 1st Qu.: 8.00 1st Qu.: 8.00 1st Qu.: 600.0
Median : 384.0 Median : 32.00 Median : 16.00 Median : 902.0
Mean : 984.8 Mean : 60.25 Mean : 23.36 Mean : 957.9
3rd Qu.: 1152.0 3rd Qu.: 80.00 3rd Qu.: 32.00 3rd Qu.:1253.0
Max. :21760.0 Max. :880.00 Max. :192.00 Max. :3000.0
GPU_clock (MHz)
Min. : 10.0
1st Qu.: 520.0
Median : 750.0
Mean : 758.2
3rd Qu.: 954.0
Max. :2505.0

A continuación, se presentan los principales hallazgos:

• Released: Vemos que antes de los 2000 se lanzaron muy pocas tarjetas gráficas, entre 2000-2009 aumentó consi-
derablemente la frecuencia de lanzamiento y entre 2010-2015 hubo un “boom” de lanzamientos que disminuyó
entre 2016-2020 y volvió a aumentar después de 2020.

13

Este comportamiento se visualiza mejor en el siguiente histograma:

library(ggplot2)
Crear el histograma usando la variable Released como categórica
datos %>%
ggplot(aes(x = Released)) +
geom_bar(fill = "skyblue", color = "black") +
labs(title = "Distribución de Fechas de Lanzamiento",

x = "Fecha de Lanzamiento",
y = "Frecuencia") +

theme_minimal()

0

500

1000

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Fecha de Lanzamiento

F
re

cu
en

ci
a

Distribución de Fechas de Lanzamiento

Figura 1: Histograma de Fechas de Lanzamiento

• Memory_Size (GB): Vemos que la media es de 3.46 GB y el máximo es 128 GB, lo que puede indicar que podría
haber valores atípicos.

• Memory_Bus (bits): Vemos que la media es de 289.6 bits y el máximo es 8192 bits, lo que puede indicar que
podría haber valores atípicos.

14

En general, vemos que la mayoría de las variables numéricas tienen una media bastante baja y un máximo muy alto,
lo que puede indicar que hay valores atípicos.

3.3.2 Tratamiento de valores perdidos

Vamos a comprobar si hay valores perdidos en las variables. Para ello, vamos a contar los NAs por variable y mostrar
todas las variables.

Contar los NAs por variable y mostrar todas las variables
na_counts <- datos %>%
summarise_all(~ sum(is.na(.))) %>%
pivot_longer(everything(), names_to = "Variable", values_to = "NA_Count")

Mostrar la tabla completa de cuentas de NAs
print(na_counts)

A tibble: 12 x 2
Variable NA_Count
<chr> <int>
1 Product_Name 0
2 GPU_Chip 0
3 Released 0
4 Bus 0
5 Memory_Size (GB) 0
6 Memory_Type 0
7 Memory_Bus (bits) 0
8 Shaders 0
9 TMUs 0
10 ROPs 0
11 Memory_clock (MHz) 0
12 GPU_clock (MHz) 0

No tenemos valores perdidos.

3.3.3 Tratamiento de valores atípicos

En esta sección, se analizarán las variables numéricas para identificar posibles valores atípicos. Estos valores pueden
representar errores en los datos o, por el contrario, ser tarjetas gráficas modernas con especificaciones muy altas. Para
ello, se utilizará un gráfico de caja para visualizar la distribución de cada variable numérica y detectar valores atípicos.

Vemos si hay valores atípicos en las variables numéricas
datos %>%
select(where(is.numeric)) %>%

15

gather() %>%
ggplot(aes(value)) +
geom_boxplot() +
facet_wrap(~key, scales = "free")

TMUs

Memory_Size (GB) ROPs Shaders

GPU_clock (MHz) Memory_Bus (bits) Memory_clock (MHz)

0 250 500 750

0 50 100 0 50 100 150 200 0 5000 10000 15000 20000

0 500 1000 1500 2000 2500 0 2000 4000 6000 8000 0 1000 2000 3000
−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

value

Figura 2: Boxplot de las variables numéricas

Como sospechábamos, hay valores atípicos en todas las variables numéricas. Vamos a ver si esos valores atípicos son
errores o son tarjetas gráficas modernas con especificaciones muy altas. Para ello, vamos a comparar la media de los
valores atípicos con la media de la variable completa. Esto nos permitirá ver si de verdad son errores o son tarjetas
gráficas modernas con especificaciones muy altas.

Vamos a crear una función que nos permita identificar los valores atípicos de una variable numérica y ver su media, así
como la media de la variable completa para poder comparar resultados. Además, nos mostrará un gráfico de puntos de
la variable seleccionada con Released como categórica para ver su distribución en las diferentes categorías de fecha.

identificar_atipicos <- function(datos, variable) {
Calcular los cuartiles y el IQR
Q1 <- quantile(datos[[variable]], 0.25, na.rm = TRUE)
Q3 <- quantile(datos[[variable]], 0.75, na.rm = TRUE)

16

IQR <- Q3 - Q1

Definir los límites para valores atípicos
limite_inferior <- Q1 - 1.5 * IQR
limite_superior <- Q3 + 1.5 * IQR

Identificar los valores atípicos
valores_atipicos <- datos[[variable]][datos[[variable]] < limite_inferior
| datos[[variable]] > limite_superior]

Filtrar las filas con valores atípicos
tarjetas_atipicas <- datos %>%
filter(datos[[variable]] %in% valores_atipicos) %>%
select(Product_Name, `Released`, all_of(variable))

Contar el número de atípicos por fechas
num_atipicos <- tarjetas_atipicas %>%
count(Released, sort = TRUE) %>%
arrange(Released)

Mostrar la media de la variable seleccionada con el nombre de la variable
media_variable <- mean(datos[[variable]], na.rm = TRUE)

Crear un gráfico de puntos para la variable seleccionada con Released como categórica
grafico <- datos %>%
ggplot(aes(x = Released, y = .data[[variable]])) +
geom_jitter(width = 0.2, alpha = 0.6, color = "blue") +
labs(
title = paste("Distribución de", variable, "por Categorías de Fecha"),
x = "Categoría de Fecha de Lanzamiento",
y = variable

) +
theme_minimal()

Mostrar el gráfico
print(grafico)

Devolver un resumen de los valores atípicos y el número de atípicos por fechas para
#compararlos con el resto de la variable y poner títulos a la lista
return(list(
valores_atipicos = summary(valores_atipicos),
media_variable = media_variable,
num_atipicos = num_atipicos

17

))
}

A continuación se usará la función para las variables numéricas. Vamos a empezar por la variableMemory_Size (GB).

1. Memory_Size (GB):

identificar_atipicos(datos, "Memory_Size (GB)")

0

50

100

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Categoría de Fecha de Lanzamiento

M
em

or
y_

S
iz

e
(G

B
)

Distribución de Memory_Size (GB) por Categorías de Fecha

Figura 3: Valores atípicos de Memory_Size (GB)

$valores_atipicos
Min. 1st Qu. Median Mean 3rd Qu. Max.
10.00 12.00 16.00 24.13 24.00 128.00
##
$media_variable
[1] 3.461614
##
$num_atipicos

18

A tibble: 3 x 2
Released n
<fct> <int>
1 2010-2015 31
2 2016-2020 75
3 Después de 2020 95

Resultados:

• La media de los valores atípicos es de 24.13 GB, considerablemente mayor que la media general de 3.46 GB.
• Los valores atípicos corresponden a tarjetas gráficas lanzadas principalmente después de 2020, con algunas entre
2016 y 2020 y muy pocas entre 2010 y 2015.

19

Vamos a ver con las demás variables:

2. Memory_Bus (bits):

identificar_atipicos(datos, "Memory_Bus (bits)")

0

2000

4000

6000

8000

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Categoría de Fecha de Lanzamiento

M
em

or
y_

B
us

 (
bi

ts
)

Distribución de Memory_Bus (bits) por Categorías de Fecha

Figura 4: Valores atípicos de Memory_Bus (bits)

$valores_atipicos
Min. 1st Qu. Median Mean 3rd Qu. Max.
512 512 3072 2709 4096 8192
##
$media_variable
[1] 289.6278
##
$num_atipicos
A tibble: 4 x 2
Released n
<fct> <int>
1 2000-2009 30

20

2 2010-2015 36
3 2016-2020 50
4 Después de 2020 25

Resultados:

• La media de los valores atípicos es de 2319MHz, considerablemente mayor que la media general de 957.9 MHz.
• Los valores atípicos corresponden a tarjetas gráficas lanzadas principalmente después de 2020.

3. Memory_clock (MHz):

identificar_atipicos(datos, "Memory_clock (MHz)")

0

1000

2000

3000

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Categoría de Fecha de Lanzamiento

M
em

or
y_

cl
oc

k
(M

H
z)

Distribución de Memory_clock (MHz) por Categorías de Fecha

Figura 5: Valores atípicos de Memory_clock (MHz)

$valores_atipicos
Min. 1st Qu. Median Mean 3rd Qu. Max.
2248 2250 2250 2319 2250 3000
##

21

$media_variable
[1] 957.9084
##
$num_atipicos
A tibble: 1 x 2
Released n
<fct> <int>
1 Después de 2020 18

Para la velocidad del reloj podemos observar el mismo patrón donde la media de los valores atípicos es bastante mayor
que la media de la variable, y tenemos valores atípicos en tarjetas gráficas modernas, la mayoría después de 2020 y
algunas entre 2016-2020.

Resultados:

• Los valores atípicos representan un patrón similar, con unamedia significativamente mayor que la media general,
con la mayoría de estos valores correspondientes a tarjetas gráficas lanzadas después de 2020.

22

4. Shaders, TMUs y ROPs:

identificar_atipicos(datos, "Shaders")

0

5000

10000

15000

20000

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Categoría de Fecha de Lanzamiento

S
ha

de
rs

Distribución de Shaders por Categorías de Fecha

Figura 6: Valores atípicos de Shaders

$valores_atipicos
Min. 1st Qu. Median Mean 3rd Qu. Max.
2880 3584 4224 5594 6208 21760
##
$media_variable
[1] 984.7594
##
$num_atipicos
A tibble: 3 x 2
Released n
<fct> <int>
1 2010-2015 34
2 2016-2020 89
3 Después de 2020 113

23

identificar_atipicos(datos, "TMUs")

0

250

500

750

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Categoría de Fecha de Lanzamiento

T
M

U
s

Distribución de TMUs por Categorías de Fecha

Figura 7: Valores atípicos de TMUs

$valores_atipicos
Min. 1st Qu. Median Mean 3rd Qu. Max.
192.0 224.0 256.0 283.3 288.0 880.0
##
$media_variable
[1] 60.25205
##
$num_atipicos
A tibble: 3 x 2
Released n
<fct> <int>
1 2010-2015 48
2 2016-2020 86
3 Después de 2020 84

24

identificar_atipicos(datos, "ROPs")

0

50

100

150

200

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Categoría de Fecha de Lanzamiento

R
O

P
s

Distribución de ROPs por Categorías de Fecha

Figura 8: Valores atípicos de ROPs

$valores_atipicos
Min. 1st Qu. Median Mean 3rd Qu. Max.
80.0 96.0 96.0 110.6 128.0 192.0
##
$media_variable
[1] 23.3597
##
$num_atipicos
A tibble: 3 x 2
Released n
<fct> <int>
1 2010-2015 17
2 2016-2020 63
3 Después de 2020 88

Para Shaders, TMUs y ROPs vemos el mismo patrón, donde la media de los valores atípicos es bastante mayor que

25

la media de la variable, y tenemos valores atípicos en las tarjetas más modernas, aunque aquí sí que tenemos valores
atípicos en tarjetas gráficas más antiguas entre 2010 y 2015, aunque son muy pocos.

Resultados:

• Los valores atípicos en estas variables también corresponden principalmente a tarjetas gráficas modernas. Sin
embargo, se identificaron algunos valores atípicos en tarjetas lanzadas entre 2010 y 2015, aunque son pocos.

5. Memory_Bus (bits):

identificar_atipicos(datos, "Memory_Bus (bits)")

0

2000

4000

6000

8000

Antes de 2000 2000−2009 2010−2015 2016−2020 Después de 2020
Categoría de Fecha de Lanzamiento

M
em

or
y_

B
us

 (
bi

ts
)

Distribución de Memory_Bus (bits) por Categorías de Fecha

Figura 9: Valores atípicos de Memory_Bus (bits)

$valores_atipicos
Min. 1st Qu. Median Mean 3rd Qu. Max.
512 512 3072 2709 4096 8192
##
$media_variable
[1] 289.6278

26

##
$num_atipicos
A tibble: 4 x 2
Released n
<fct> <int>
1 2000-2009 30
2 2010-2015 36
3 2016-2020 50
4 Después de 2020 25

Para esta variable observamos un patrón un poco diferente, ya que tenemos valores atípicos en casi todas las categorías
de fechas. Habría que investigar más a fondo esta variable.

Para ello vamos a profundizar en lo que es el ancho de bus de memoria:

El ancho de bus de memoria se encarga de determinar cuántos bits de datos pueden ser transferidos entre la memoria
y la GPU en un ciclo de reloj. Un bus de memoria alto puede ser más útil en tareas que requieren un alto ancho de
banda, como la computación científica, la inteligencia artificial o el procesamiento de gráficos en tiempo real, donde
es importante transferir grandes cantidades de datos rápidamente.

Teniendo en cuenta que las GPUs, en su mayoría se utilizan para juegos, podría indicar que al haber valores muy
altos de ancho de bus de memoria para todas las categorías de fecha, hay ciertas tarjetas gráficas diseñadas para tareas
específicas que requieren un alto ancho de banda, lo que podría explicar la presencia de valores atípicos en todas las
categorías de fecha.

Vamos a visualizar un gráfico que muestre el reparto de Memory_Bus (bits) por tipo de memoria, para ver si hay algún
patrón en los valores atípicos:

27

Gráfico de dispersión de Memory_Bus (bits) por tipo de memoria
ggplot(datos, aes(x = Memory_Type, y = `Memory_Bus (bits)`)) +
geom_boxplot() +
labs(
title = "Distribución de Ancho de Bus de Memoria por Tipo de Memoria",
x = "Tipo de Memoria",
y = "Ancho de Bus de Memoria (bits)"

) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

0

2000

4000

6000

8000

DDR
DDR2

DDR3

DDR4

DRAM
EDO

eD
RAM

FPM

GDDR2

GDDR3

GDDR4

GDDR5

GDDR5X

GDDR6

GDDR6X

GDDR7
HBM

HBM
2

HBM
2e

HBM
3

LP
DDR4X

LP
DDR5

SDR
SGR

SGRAM

VRAM

Tipo de Memoria

A
nc

ho
 d

e
B

us
 d

e
M

em
or

ia
 (

bi
ts

)

Distribución de Ancho de Bus de Memoria por Tipo de Memoria

Figura 10: Distribución de Memory_Bus (bits) por Tipo de Memoria

Se ve claramente que las tecnologías HBM, HBM2 y HBM2e tienen un ancho de bus de memoria más alto que las
demás tecnologías. Esto es coherente con el propósito de la memoria HBM (High Bandwidth Memory), diseñada
específicamente para ofrecer un mayor ancho de banda. Como resultado, estas tarjetas son ideales para aplicaciones
que requieren una alta capacidad de transferencia de datos, como la computación científica, la inteligencia artificial y
el aprendizaje profundo.

Resultados:

28

• A diferencia de las demás variables, los valores atípicos en esta variable están presentes en casi todas las cate-
gorías de fechas. Esto sugiere que el ancho del bus de memoria puede variar significativamente según el diseño
de la tarjeta gráfica, independientemente de su antigüedad y por lo tanto no son errores.

3.3.4 Conclusiones del análisis exploratorio

1. Valores atípicos:

• La mayoría de los valores atípicos en las variables numéricas corresponden a tarjetas gráficas modernas, lanzadas
principalmente después de 2020. Esto es consistente con la evolución tecnológica y el aumento de especificacio-
nes en las tarjetas gráficas más recientes. Por tanto, estos valores no se considerarán como atípicos en el sentido
tradicional, ya que representan avances tecnológicos en lugar de errores o anomalías.

• En el caso de Memory_Bus (bits), se observaron valores atípicos en casi todas las categorías de fechas, pero esto
puede explicarse por el diseño específico de algunas tarjetas gráficas que requieren un alto ancho de banda para
aplicaciones especializadas. Por ejemplo, las tecnologías de memoria HBM, están diseñadas para maximizar el
ancho de banda. Estas tarjetas gráficas suelen priorizar el rendimiento en la transferencia de datos, lo que explica
los valores significativamente más altos en el ancho de bus de memoria.

2. Tendencias en el lanzamiento de tarjetas gráficas:

• En la Figura 1 se observaba un aumento significativo en el número de lanzamientos de tarjetas gráficas entre
2000 y 2015, seguido de una disminución entre 2016 y 2020, y un nuevo aumento después de 2020.

3. Calidad de datos:

• No se encontraron valores perdidos en el conjunto de datos, lo que sugiere una buena calidad de datos en general.
• Los valores atípicos parecen ser representativos de la evolución tecnológica y diferencias en el diseño y aplica-
ción de las diferentes tarjetas gráficas.

3.4 Relaciones entre variables clave

Parece interesante investigar si existen relaciones entre las diferentes variables para ver si podemos encontrar patrones
o tendencias en los datos.

3.4.1 Correlación entre variables numéricas

Para investigar las relaciones entre las variables numéricas, se generó una matriz de correlación. Este análisis permite
identificar las asociaciones más fuertes entre las variables clave:

Crear la matriz de correlación
correlation_matrix <- cor(datos %>% select(where(is.numeric)),

use = "pairwise.complete.obs")
correlation_matrix

29

Memory_Size (GB) Memory_Bus (bits) Shaders TMUs
Memory_Size (GB) 1.0000000 0.63647622 0.7360566 0.8155536
Memory_Bus (bits) 0.6364762 1.00000000 0.4721906 0.6242267
Shaders 0.7360566 0.47219056 1.0000000 0.9161432
TMUs 0.8155536 0.62422670 0.9161432 1.0000000
ROPs 0.6079784 0.45209917 0.8330208 0.8535990
Memory_clock (MHz) 0.3828492 0.04784241 0.5043913 0.5532427
GPU_clock (MHz) 0.4034626 0.15275376 0.5236997 0.5461143
ROPs Memory_clock (MHz) GPU_clock (MHz)
Memory_Size (GB) 0.6079784 0.38284920 0.4034626
Memory_Bus (bits) 0.4520992 0.04784241 0.1527538
Shaders 0.8330208 0.50439129 0.5236997
TMUs 0.8535990 0.55324266 0.5461143
ROPs 1.0000000 0.57651257 0.5919399
Memory_clock (MHz) 0.5765126 1.00000000 0.8211419
GPU_clock (MHz) 0.5919399 0.82114193 1.0000000

Las relaciones más fuertes las podemos encontrar obviamente entre Shaders, TMUs y ROPs, ya que son variables
que están relacionadas entre sí por naturaleza. Otras relaciones interesantes son entre el tamaño de la memoria y las
unidades de sombreado y las unidades de mapeo de texturas. También tenemos una relación fuerte de esta variable con
el ancho del bus de memoria, lo que tiene sentido, ya que a mayor tamaño de memoria, mayor ancho de bus.

Otra relación muy fuerte es entre la velocidad del reloj de la GPU y la velocidad del reloj de la memoria, lo que también
tiene sentido, ya que a mayor velocidad de reloj, mayor rendimiento.

Principales hallazgos:

• Shaders, TMUs y ROPs: Estas variables están fuertemente correlacionadas entre sí, lo que es esperado, ya que
estas variables están relacionadas por diseño y representan diferentes aspectos del procesamiento gráfico.

• Memory_Size (GB): Esta variable muestra una correlación positiva con Shaders, TMUs, ROPs y Memory_Bus
(bits). Esto tiene sentido, ya que con mayor capacidad de memoria, se pueden manejar más unidades de som-
breado y un mayor ancho de bus.

• Memory_Bus (bits): Tiene una correlación positiva con Memory_Size (GB) y Shaders, lo que indica que un
mayor ancho de bus está asociado con un mayor tamaño de memoria y un mayor número de unidades de som-
breado.

• GPU_clock (MHz) yMemory_clock (MHz): Estas variables están fuertemente correlacionadas entre sí, lo que
sugiere que a medida que aumenta la velocidad del reloj de la GPU, también aumenta la velocidad del reloj de
la memoria.

3.4.2 Visualización de relaciones clave

Relación entre el tamaño de memoria y el ancho de bus de memoria

30

Para explorar la relación entre el tamaño de memoria y el ancho de bus de memoria, se generó un gráfico de dispersión
agrupado por el tipo de memoria:

Relación entre Memory_Size (GB) y Memory_clock (MHz), coloreado por GPU_Chip
ggplot(datos, aes(x = `Memory_Size (GB)`, y = `Memory_Bus (bits)`,

color = Memory_Type)) +
geom_point(alpha = 0.7, size = 3) +
labs(
title = "Relación entre Tamaño de Memoria y Ancho de Bus",
subtitle = "Agrupado por tipo de Memoria",
x = "Memory_Size (GB)",
y = "Memory_Bus (bits)"

) +
theme_minimal() +
theme(legend.position = "bottom") # Para evitar que la leyenda oculte datos

0

2000

4000

6000

8000

0 50 100
Memory_Size (GB)

M
em

or
y_

B
us

 (
bi

ts
)

Memory_Type

DDR

DDR2

DDR3

DDR4

DRAM

EDO

eDRAM

FPM

GDDR2

GDDR3

GDDR4

GDDR5

GDDR5X

GDDR6

GDDR6X

GDDR7

HBM

HBM2

HBM2e

HBM3

LPDDR4X

LPDDR5

SDR

SGR

SGRAM

VRAM

Agrupado por tipo de Memoria

Relación entre Tamaño de Memoria y Ancho de Bus

Figura 11: Relación entre Tamaño de Memoria y Ancho de Bus de Memoria

Observaciones iniciales: La Figura 11 muestra una gran cantidad de puntos agrupados, lo que dificulta la interpre-
tación debido a la diversidad de tipos de memoria. Para mejorar la visualización, se procederá a filtrar los tipos de
memoria más comunes y se volverá a generar el gráfico:

31

Ver cuántos datos hay por tipo de memoria
datos %>%
count(Memory_Type, sort = TRUE) %>%
arrange(desc(n)) %>%
print(n=nrow(.))

A tibble: 26 x 2
Memory_Type n
<chr> <int>
1 GDDR5 1145
2 GDDR3 508
3 DDR3 424
4 DDR 314
5 GDDR6 211
6 DDR2 140
7 SDR 87
8 HBM2 36
9 GDDR5X 30
10 GDDR4 25
11 HBM 23
12 HBM2e 22
13 GDDR6X 20
14 DRAM 17
15 EDO 11
16 VRAM 7
17 eDRAM 6
18 DDR4 4
19 HBM3 4
20 GDDR2 3
21 GDDR7 3
22 LPDDR4X 2
23 SGR 2
24 FPM 1
25 LPDDR5 1
26 SGRAM 1

Viendo el reparto de los tipos de memoria, vamos a quedarnos con aquellos tipos de memoria que tengan más de 15
tarjetas gráficas.

Filtrar los tipos de memoria más comunes
tipos_memoria_comunes <- datos %>%
count(Memory_Type, sort = TRUE) %>%
filter(n > 15) %>%

32

pull(Memory_Type)

A continuación, vamos a filtrar los datos para quedarnos sólo con los tipos de memoria más comunes y eliminamos el
valor más alto de Memory_Size (GB) para evitar que el gráfico esté muy sesgado por un solo punto. Esto nos permitirá
ver mejor la relación entre el tamaño de memoria y el ancho de bus de memoria.

Filtrar los datos para quedarnos sólo con los tipos de memoria más comunes
datos_filtrados <- datos %>%
filter(Memory_Type %in% tipos_memoria_comunes) %>%
filter(`Memory_Size (GB)` != max(`Memory_Size (GB)`, na.rm = TRUE))

Hacemos el gráfico de nuevo
ggplot(datos_filtrados, aes(x = `Memory_Size (GB)`, y = `Memory_Bus (bits)`,
color = Memory_Type)) +
geom_point(alpha = 0.7, size = 3) +
labs(
title = "Relación entre Tamaño de Memoria y Ancho de Bus",
subtitle = "Agrupado por tipo de Memoria",
x = "Memory_Size (GB)",
y = "Memory_Bus (bits)"

) +
theme_minimal() +
theme(legend.position = "bottom") # Para evitar que la leyenda oculte datos

coord_cartesian(xlim = c(0, 32), ylim = c(0, 1024)) # Ajustar límites de los ejes

<ggproto object: Class CoordCartesian, Coord, gg>
aspect: function
backtransform_range: function
clip: on
default: FALSE
distance: function
expand: TRUE
is_free: function
is_linear: function
labels: function
limits: list
modify_scales: function
range: function
render_axis_h: function
render_axis_v: function
render_bg: function

33

0

2000

4000

6000

0 20 40 60 80
Memory_Size (GB)

M
em

or
y_

B
us

 (
bi

ts
)

Memory_Type

DDR

DDR2

DDR3

DRAM

GDDR3

GDDR4

GDDR5

GDDR5X

GDDR6

GDDR6X

HBM

HBM2

HBM2e

SDR

Agrupado por tipo de Memoria

Relación entre Tamaño de Memoria y Ancho de Bus

Figura 12: Relación entre Tamaño de Memoria y Ancho de Bus de Memoria (Filtrado)

34

render_fg: function
setup_data: function
setup_layout: function
setup_panel_guides: function
setup_panel_params: function
setup_params: function
train_panel_guides: function
transform: function
super: <ggproto object: Class CoordCartesian, Coord, gg>

Este gráfico nos permite visualizar con mayor claridad las diferencias entre los distintos tipos de memoria en las tarjetas
gráficas.

Interpretación:

• Las tecnologías más antiguas, como GDDR3 y DDR3, presentan un reloj de memoria y un reloj de GPU más
bajos en comparación con las tecnologías más recientes.

• Las tarjetas gráficas con memoria HBM, HBM2 y HBM2e destacan por su ancho de bus significativamente
más alto, aunque su tamaño de memoria es similar al de tecnologías como GDDR5X, GDDR6 y GDDR6X.
Como habíamos mencionado anteriormente, esto se debe al propósito de las memorias de tipo HBM, que están
diseñadas para ofrecer un mayor ancho de banda, lo que las hace ideales para aplicaciones que requieren una alta
capacidad de transferencia de datos.

• Por otro lado, las tarjetas gráficas con memoria GDDR5X, GDDR6 y GDDR6X parecen priorizar un mayor
tamaño de memoria, lo que resulta beneficioso para juegos y aplicaciones gráficas avanzadas que necesitan
almacenar y procesar texturas y datos gráficos complejos. Esto es consistente con el enfoque de NVIDIA, la
marca líder en el mercado de videojuegos, que utiliza estas tecnologías en sus tarjetas gráficas más modernas.

Relación entre el reloj de memoria y el reloj de GPU

Otra relación interesante es la existente entre el reloj de memoria y el reloj de GPU, agrupada por el tipo de chip. Dado
que hay muchos tipos de chips diferentes, vamos a filtrar los tipos de chip más comunes para facilitar la visualización.

Ver cuántos datos hay por tipo de chip
datos %>%
count(GPU_Chip, sort = TRUE) %>%
arrange(desc(n)) %>%
print(n = 25)

A tibble: 335 x 2
GPU_Chip n
<chr> <int>
1 GK104 151
2 GM107 81
3 GK107 79

35

4 Tahiti 64
5 G92 53
6 Oland 48
7 GM108 47
8 Pitcairn 47
9 Cape Verde 46
10 GK208 45
11 GK106 42
12 GM204 41
13 Amethyst 37
14 GP104 37
15 Tropo 35
16 Baffin 32
17 G71 32
18 G80 32
19 Meso 30
20 Venus 30
21 RV770 29
22 GT200B 28
23 Bonaire 27
24 Jet 27
25 RV670 27
i 310 more rows

Filtrar los tipos de chip más comunes
tipos_chip_comunes <- datos %>%
count(GPU_Chip, sort = TRUE) %>%
filter(n > 50) %>%
pull(GPU_Chip)

Usaremos los tipos de chip que tengan más de 50 tarjetas gráficas.

Filtrar los datos para quedarnos sólo con los tipos de chip más comunes
datos_filtrados_chip <- datos %>%
filter(GPU_Chip %in% tipos_chip_comunes)

Hacemos el gráfico de nuevo
ggplot(datos_filtrados_chip, aes(x = `Memory_clock (MHz)`,

y = `GPU_clock (MHz)`, color = GPU_Chip)) +
geom_point(alpha = 0.7, size = 3) +
labs(
title = "Relación entre Reloj de Memoria y Reloj de GPU",
subtitle = "Agrupado por tipo de Chip",
x = "Memory_clock (MHz)",

36

y = "GPU_clock (MHz)"
) +
theme_minimal() +
theme(legend.position = "bottom") # Para evitar que la leyenda oculte datos

600

800

1000

900 1200 1500 1800
Memory_clock (MHz)

G
P

U
_c

lo
ck

 (
M

H
z)

GPU_Chip G92 GK104 GK107 GM107 Tahiti

Agrupado por tipo de Chip

Relación entre Reloj de Memoria y Reloj de GPU

Figura 13: Relación entre Reloj de Memoria y Reloj de GPU (Filtrado)

Interpretación:

• Las tarjetas gráficas con chips GK104 y Tahiti parecen ofrecer un rendimiento superior, con relojes de memoria
y GPU más altos.

• Los chips GM107 y GK107 presentan un reloj de GPU más alto, pero un reloj de memoria más bajo, lo que
sugiere una arquitectura más antigua.

• Las tarjetas gráficas más modernas tienden a tener una mayor capacidad de memoria, lo que puede estar relacio-
nado con un aumento en la frecuencia de la memoria.

37

3.4.3 Conclusiones del análisis de relaciones

En esta sección, se han explorado las relaciones entre las variables clave del conjunto de datos, centrándose en las
variables numéricas más relevantes. A continuación, se presentan las principales conclusiones:

1. Correlaciones:

• Se identificaron correlaciones significativas entre las variables numéricas, especialmente entre Shaders,
TMUs y ROPs, así como entre Memory_Size (GB) y Memory_Bus (bits).

• La velocidad del reloj de la GPU y la velocidad del reloj de la memoria también mostraron una fuerte
correlación, lo que sugiere que a medida que aumenta la velocidad del reloj de la GPU, también lo hace la
velocidad del reloj de la memoria.

2. Visualización de relaciones clave:

• Relación entre el tamaño de memoria y el ancho de bus de memoria (agrupado por tipo de memoria):
(Figura 12)

– Se observó que las tecnologías de memoria HBM, HBM2 y HBM2e tienen un ancho de bus signifi-
cativamente más alto en comparación con otras tecnologías, lo que es coherente con su propósito de
ofrecer un mayor ancho de banda.

– Las tarjetas gráficas conmemoria GDDR5X,GDDR6 yGDDR6X tienden a priorizar unmayor tamaño
de memoria, lo que es beneficioso para juegos y aplicaciones gráficas avanzadas.

• Relación entre el reloj de memoria y el reloj de GPU (agrupado por tipo de chip): (Figura 13)
• Las tarjetas gráficas con chips GK104 y Tahiti destacaron por ofrecer un rendimiento superior, con relojes
de memoria y GPU más altos.

• Los chips GM107 y GK107 mostraron un reloj de GPU más alto, pero un reloj de memoria más bajo, lo
que sugiere una arquitectura más antigua.

4 Clustering

4.1 Fundamentos teóricos del método

Vamos a realizar un análisis clustering para ver si podemos agrupar las tarjetas gráficas según sus especificaciones
técnicas. Para ello, vamos a usar el método de k-means.

A continuación, una breve descripción de qué es clustering y cómo funciona el método de k-means, extraído del manual:
“An Introduction to Statistical Learning with aplications in R” (Manual).

El clustering (o agrupamiento) es una técnica de aprendizaje no supervisado que busca identificar subgrupos o “clúste-
res” dentro de un conjunto de datos. El objetivo es agrupar observaciones de manera que aquellas dentro de un mismo
clúster sean similares entre sí, mientras que las observaciones de diferentes clústeres sean distintas. Para lograr esto,
es necessario definir qué significa que dos observaciones sean similares o distintas, lo cual depende del contexto y del
conocimiento del dominio.

38

Por ejemplo, en un estudio de muestras de tejido de pacientes con cáncer de mama, donde cada muestra tiene varias
características (como medidas clínicas o expresiones génicas), el clustering podría ayudar a identificar subtipos des-
conocidos de la enfermedad. Este es un problema no supervisado, ya que no se cuenta con etiquetas predefinidas, a
diferencia de los problemas supervisados, donde el objetivo es predecir un resultado específico.

En el artículo “A Review of Clustering Techniques and Developments” (Saxena et al.), se menciona que no existe una
definición precisa de lo que constituye un “clúster”, lo que ha llevado al desarrollo de diferentes enfoques y técnicas de
clustering. Algunos sugieren que las técnicas de clustering pueden dividirse en dos grandes categorías: jerárquicas y
de partición. Otros proponen categorías adicionales, como métodos basados en densidad, métodos basados en modelos
y métodos basados en cuadrículas.

Cada enfoque utiliza un principio de inclusión diferente para definir los clústeres, y la elección del método adecuado
depende del tipo de datos y del objetivo del análisis. Además, el número de clústeres en los que se divide un conjunto
de datos suele ser decidido por el usuario, utilizando métodos heurísticos, de prueba y error, o enfoques evolutivos. La
precisión del clustering depende en gran medida de esta decisión, ya que un número adecuado de clústeres maximiza
la similitud intra-clúster y minimiza la similitud inter-clúster.

(Saxena et al.) menciona dos enfoques principales: jerárquico y particional.

1. Clustering jerárquico: Este enfoque puede ser aglomerativo (comenzando con cada punto como un clúster
individual y fusionándolos) o divisivo (comenzando con un único clúster y dividiéndolo). Dentro de estas ca-
tegorías, se utilizan métodos como el enlace simple, completo o promedio. Ejemplos de algoritmos incluyen
BIRCH, CURE, ROCK y CHAMELEON.

Como se menciona en el artículo “Hierarchical Clustering Algorithms for Document Datasets” (Zhao et al.), el clus-
tering jerárquico es especialmente útil en aplicaciones donde los datos tienen una estructura jerárquica natural, como
taxonomías biológicas o árboles filogenéticos. Este enfoque genera dendrogramas, que son representaciones visuales
que permiten explorar los datos en diferentes niveles de granularidad. Esto resulta ideal para tareas como la organiza-
ción de grandes colecciones de documentos, donde los dendrogramas facilitan la navegación y exploración interactiva.

Además, los métodos jerárquicos son útiles en casos donde los clústeres tienen subclústeres, proporcionando una re-
presentación consistente y predecible de los datos. Por ejemplo, en el análisis de textos, los dendrogramas pueden
organizar documentos en categorías generales y subcategorías más específicas, lo que mejora la comprensión y el
análisis de grandes volúmenes de información.

2. Clustering particional: Este enfoque divide los datos en un número predefinido de clústeres. Puede basarse
en distancias, modelos probabilísticos o densidad. Ejemplos de algoritmos incluyen K-means, PAM, CLARA,
CLARANS, DBSCAN y CLIQUE.

Entre los métodos de clustering particional, k-means es uno de los más utilizados, y es el que utilizaremos en este
análisis. Algunos ejemplos de su uso son por ejemplo en (Neshat et al.), donde se utiliza para identificar valores
atípicos dentro de cada clúster o en (Oyelade et al.), donde se ha usado para agrupar diferentes estudiantes en función
de sus resultados académicos.

Esta clasificación resalta la diversidad de técnicas disponibles, cada una adecuada para diferentes tipos de datos y
objetivos analíticos.

De entre los diferentes métodos de clustering, nosotros usaremos el método k-means.

39

4.2 Clustering con K-means

El método K-means es una técnica de agrupamiento que busca dividir un conjunto de datos en un número predefinido
de grupos o clústeres. Su objetivo principal es organizar las observaciones de manera que las que pertenecen a un
mismo clúster sean lo más similares posible entre sí, mientras que las observaciones de diferentes clústeres sean lo
más distintas posible. Para lograr esto, K-means utiliza un enfoque iterativo que ajusta continuamente los grupos hasta
encontrar una solución óptima.

4.2.1 Algoritmo K-means

Como bien se explica en (Manual), el algoritmo K-means sigue los siguientes pasos:

1. Inicialización: Se asigna aleatoriamente un número del 1 al𝐾 a cada observación, lo que sirve como asignación
inicial de clústeres.

𝐶1, 𝐶2, … , 𝐶𝑘 ∈ ℝ𝑝

donde 𝐶𝑖 es el i-ésimo centroide y 𝑝 es el número de variables.

2. Iteración: Se repiten los siguientes pasos hasta que las asignaciones de clústeres no cambien:

(a) Para cada uno de los (k) clústeres, se calcula el centroide como el vector de medias de las observaciones
asignadas:

𝐶𝑗 = 1
|𝑆𝑗|

∑
𝑥𝑖∈𝑆𝑗

𝑥𝑖

donde 𝑆𝑗 es el conjunto de observaciones asignadas al clúster (j) y |𝑆𝑗| su tamaño.

(b) Para cada observación 𝑥𝑖, se calcula la distancia a cada centroide y se asigna al clúster más cercano:

𝑥𝑖 ∈ 𝑆𝑐∗ donde 𝑐∗ = arg min
𝑗=1,…,𝑘

𝑑(𝑥𝑖, 𝐶𝑗)

donde 𝑑(𝑥𝑖, 𝐶𝑗) es la distancia entre 𝑥𝑖 y el centroide 𝐶𝑗.

El algoritmo K-means garantiza que el valor de la función objetivo, que mide la variación intra-clúster total, disminuya
en cada iteración. Esto se debe a que cada paso del algoritmo está diseñado para mejorar la asignación de clústeres o
los centroides:

1. Cálculo de los centroides (Paso 2(a)): En este paso, los centroides de los clústeres se calculan como las medias
de las observaciones asignadas a cada clúster. Este cálculo minimiza la suma de las desviaciones cuadradas
dentro de cada clúster, ya que las medias son los valores que minimizan esta suma.

2. Reasignación de observaciones (Paso 2(b)): Cada observación se reasigna al clúster cuyo centroide esté más
cerca. Este proceso asegura que cada observación esté asignada al clúster que minimiza su contribución a la
variación intra-clúster.

En cada iteración, estos dos pasos reducen la variación intra-clúster total, ya que:

40

• El cálculo de los centroides minimiza las desviaciones dentro de cada clúster.

• La reasignación de observaciones mejora la asignación de clústeres, reduciendo aún más la variación.

Por lo tanto, el algoritmoK-means siempre converge a un óptimo local, ya que la función objetivo no puede aumentar en
ninguna iteración. Sin embargo, debido a que el algoritmo encuentra un óptimo local, los resultados pueden depender de
la asignación inicial de los clústeres. Por esta razón, es recomendable ejecutar el algoritmo varias veces con diferentes
inicializaciones y seleccionar la solución con el valor más bajo de la función objetivo.

En (Singh et al.) se presentan diferentes métricas para calcular la distancia entre observaciones y centroides, entre las
que destacan la distancia euclidiana, la distancia de Manhattan, la distancia de Chebychev y la distancia de Minkowski.

• Distancia euclidiana: Se calcula como la raíz cuadrada de la suma de las diferencias al cuadrado entre las coor-
denadas de dos puntos. Es la métrica más comúnmente utilizada en el algoritmo K-means debido a su simplicidad
y a que funciona bien en datos donde las relaciones entre las variables son lineales.

• Distancia de Manhattan: Se calcula como la suma de las diferencias absolutas entre las coordenadas de dos
puntos. Es útil cuando los datos tienen una estructura en forma de cuadrícula o cuando las relaciones entre las
variables no son lineales. Por ejemplo, se utiliza en análisis de redes o en datos geográficos.

• Distancia de Chebychev: Se calcula como la máxima diferencia absoluta entre las coordenadas de dos puntos.
Es adecuada cuando se desea priorizar la dimensión con la mayor diferencia, como en problemas donde el peor
caso es más relevante que la suma total de diferencias.

• Distancia de Minkowski: Es una generalización de las distancias euclidiana y de Manhattan, y se calcula como
la raíz 𝑝-ésima de la suma de las diferencias absolutas elevadas a la 𝑝-ésima potencia. Es útil cuando se desea
ajustar el parámetro 𝑝 para controlar la sensibilidad a las diferencias en las dimensiones. Por ejemplo, con 𝑝 = 1
se obtiene la distancia de Manhattan, y con 𝑝 = 2 se obtiene la distancia euclidiana.

La elección de la métrica de distancia depende del contexto del problema y de las características de los datos. En este
análisis, como habíamos mencionado en los objetivos, vamos a utilizar por una parte la distancia euclidiana, que es la
más comúnmente utilizada en el algoritmo K-means, y por otra parte la distancia de Minkowski, que es útil cuando
hay muchos valores atípicos.

Matemáticamente, la variación intra-clúster para un clúster 𝐶𝑘 se calcula como:

𝑊(𝐶𝑘) = 1
|𝐶𝑘| ∑

𝑖,𝑖′∈𝐶𝑘

𝑝
∑
𝑗=1

(𝑥𝑖𝑗 − 𝑥2
𝑖′𝑗)

Donde:

• |𝐶𝑘| es el número de observaciones en el clúster 𝐶𝑘.

• 𝑥𝑖𝑗 es el valor de la 𝑗-ésima variable para la 𝑖-ésima observación.

El objetivo del algoritmo es minimizar la suma total de 𝑊(𝐶𝑘) para todos los clústeres 𝐾:

41

Minimizar
𝐾

∑
𝑘=1

𝑊(𝐶𝑘)

En el contexto de este análisis, usaremos K-means para agrupar tarjetas gráficas según sus especificaciones técnicas
(como memoria, velocidad de reloj, etc.) y así identificar patrones o categorías naturales.

4.3 Aplicación del método K-means

En este análisis, aplicaremos el método K-means para identificar patrones en las tarjetas gráficas basándonos en sus es-
pecificaciones técnicas. El objetivo es agrupar las tarjetas gráficas en clústeres que compartan características similares,
lo que nos permitirá identificar categorías naturales dentro de los datos.

Primero, aplicaremos el método K-means utilizando únicamente las variables numéricas. Este análisis nos permitirá
identificar patrones basados exclusivamente en las especificaciones técnicas cuantitativas de las tarjetas gráficas. A
continuación, aplicaremos el método K-means utilizando tanto las variables numéricas como las categóricas. Este
enfoque nos permitirá identificar si existen patrones adicionales al considerar las variables categóricas, como el tipo
de memoria o el fabricante, junto con las especificaciones técnicas.

Finalmente, compararemos los resultados obtenidos de ambos enfoques para evaluar si la inclusión de variables cate-
góricas mejora la identificación de patrones en las tarjetas gráficas.

4.3.1 Clustering con variables numéricas

En este apartado, aplicaremos el método K-means utilizando únicamente las variables numéricas seleccionadas. Este
análisis nos permitirá identificar patrones basados exclusivamente en las especificaciones técnicas cuantitativas de las
tarjetas gráficas.

4.3.1.1 Estandardización de los datos

Es importante estandarizar los datos antes de aplicar el método K-means, ya que este algoritmo es sensible a la escala
de las variables. La estandarización transforma los datos para que tengan una media de 0 y una desviación estándar de
1, lo que permite que todas las variables contribuyan de manera equitativa al cálculo.

Para ello, primero vamos a seleccionar las variables numéricas relevantes para el clustering. En este caso, vamos a usar
las siguientes variables:

• Memory_Size (GB)

• Memory_Bus (bits)

• Shaders, TMUs y ROPs

• Memory_clock (MHz)

• GPU_clock (MHz)

42

Seleccionar las variables numéricas relevantes para el clustering
variables_clustering <- datos %>%
select(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`)

Escalar los datos para normalizar las variables
variables_clustering_scaled <- scale(variables_clustering)

Verificar los datos escalados
summary(variables_clustering_scaled)

Memory_Size (GB) Memory_Bus (bits) Shaders TMUs
Min. :-0.43884 Min. :-0.37302 Min. :-0.56361 Min. :-0.7510
1st Qu.:-0.37546 1st Qu.:-0.23403 1st Qu.:-0.54072 1st Qu.:-0.6513
Median :-0.18529 Median :-0.23403 Median :-0.34384 Median :-0.3522
Mean : 0.00000 Mean : 0.00000 Mean : 0.00000 Mean : 0.0000
3rd Qu.: 0.06825 3rd Qu.:-0.04869 3rd Qu.: 0.09572 3rd Qu.: 0.2462
Max. :15.78824 Max. :11.44203 Max. :11.89044 Max. :10.2180
ROPs Memory_clock (MHz) GPU_clock (MHz)
Min. :-0.8659 Min. :-1.9464 Min. :-2.02622
1st Qu.:-0.5693 1st Qu.:-0.7311 1st Qu.:-0.64506
Median :-0.2728 Median :-0.1142 Median :-0.02218
Mean : 0.0000 Mean : 0.0000 Mean : 0.00000
3rd Qu.: 0.3203 3rd Qu.: 0.6028 3rd Qu.: 0.53028
Max. : 6.2508 Max. : 4.1712 Max. : 4.73063

4.3.1.2 Determinación del número óptimo de clústeres (K)

Para determinar el número óptimo de clústeres (𝐾) en el método K-means, utilizamos elmétodo del codo según (Cui
et al.), una técnica que evalúa la calidad del agrupamiento en función de la variación intra-clúster. Este método se basa
en la métrica WCSS (Within-Cluster Sum-of-Squares), que mide la suma de las distancias al cuadrado entre cada
punto y el centroide de su clúster. Cuanto menor sea el valor de WCSS, mejor será la compactación de los clústeres.

Funcionamiento del método del codo:

1. Cálculo de WCSS para diferentes valores de 𝐾: Se ejecuta el algoritmo K-means para diferentes valores de
𝐾 y se calcula el WCSS correspondiente. Inicialmente, con 𝐾 = 1, el valor de WCSS es alto, ya que todos los
puntos pertenecen a un único clúster. A medida que 𝐾 aumenta, WCSS disminuye porque los puntos están más
cerca de sus centroides.

2. Gráfica de WCSS vs. 𝐾: Se grafica el valor de WCSS en función de 𝐾. En el eje 𝑥 se representan los valores
de 𝐾, y en el eje 𝑦, los valores de WCSS.

43

3. Identificación del “codo”: El “codo” de la gráfica es el punto donde la disminución de WCSS comienza a
estabilizarse. Este punto indica el número óptimo de clústeres, ya que agregar más clústeres después de este
punto no mejora significativamente la compactación.

La métrica WCSS se calcula como:

𝑊𝐶𝑆𝑆 =
𝐾

∑
𝑘=1

∑
𝑖∈𝐶𝑘

distancia(𝑃𝑖, 𝐶𝑘)2

Donde:

• 𝐶𝑘 es el centroide del clúster 𝑘.

• 𝑃𝑖 es un punto de datos en el clúster 𝑘.

• La distancia se calcula típicamente utilizando la métrica euclidiana.

En nuestro análisis, utilizaremos el método del codo para determinar el número óptimo de clústeres antes de aplicar el
algoritmo K-means.

Para graficar los resultados del método del codo y visualizar los clústeres obtenidos, utilizaremos la librería
factoextra. Esta librería proporciona herramientas para visualizar e interpretar resultados de análisis multivariado,
incluyendo métodos de clustering como K-means.

La función fviz_nbclust de factoextra permite calcular y graficar la métrica WCSS (Within-Cluster Sum-of-
Squares) para diferentes valores de 𝐾, ayudándonos a identificar el número óptimo de clústeres.

44

library(factoextra)

Calcular la variación intra-clúster para diferentes valores de K
fviz_nbclust(variables_clustering_scaled, kmeans, method = "wss") +
labs(title = "Método del Codo para Determinar K",

x = "Número de Clústeres (K)",
y = "Suma de Distancias al Cuadrado (WCSS)")

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10
Número de Clústeres (K)

S
um

a
de

 D
is

ta
nc

ia
s

al
 C

ua
dr

ad
o

(W
C

S
S

)

Método del Codo para Determinar K

Figura 14: Método del Codo para Determinar K

Vemos que el codo está entre k=5 y k=6. Primero vamos a probar con k=5 y luego con k=6.

4.3.1.3 Aplicación del método K-means

Vamos a aplicar el método K-means para k=5 y k=6. Para ello, vamos a usar la función kmeans de R. La función
kmeans toma como argumentos los datos, el número de clústeres (K) y el número de inicios aleatorios (nstart). El
número de inicios aleatorios se usa para evitar que el algoritmo se quede atrapado en un mínimo local.

En el manual de (Manual) se recomienda usar un valor de nstart entre 20 y 50. En este caso, vamos a usar nstart=25.

45

Para graficar los clústeres obtenidos vamos a usar la función fviz_cluster de la librería factoextra, que permite
visualizar los resultados del clustering de manera intuitiva.

Esta representación gráfica muestra los clústeres obtenidos al aplicar el método K-means con (K = 5). Cada punto en
el gráfico representa una tarjeta gráfica, proyectada en un espacio bidimensional utilizando componentes principales
(PCA) para reducir la dimensionalidad de los datos. Los puntos están coloreados según el clúster al que pertenecen, y
los centroides de los clústeres están marcados con un símbolo distintivo.

El gráfico permite observar cómo se agrupan las tarjetas gráficas en función de sus especificaciones técnicas. La se-
paración entre los clústeres indica qué tan distintos son entre sí, mientras que la compactación dentro de cada clúster
refleja la similitud de las tarjetas gráficas agrupadas.

46

Aplicar K-means con K=5
kmeans_result_5 <- kmeans(variables_clustering_scaled, centers = 5, nstart = 25)

Calcular la variación intra-clúster
intra_cluster_variation_5 <- sum(kmeans_result_5$withinss)

Graficar los clústeres obtenidos con K=5
fviz_cluster(kmeans_result_5, data = variables_clustering_scaled) +
labs(title = "Clústeres de Tarjetas Gráficas (K=5)",

x = "Componente 1",
y = "Componente 2")

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136

137

138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174

175

176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
248249250251252253254255256257258259260261262
263264265266

267268269270271272273274275276277278279280281282
283284285286287288289290291292293294295296297298

299300301302303
304305306307308

309310311312313314315
316317318319

320

321

322323324

325
326

327328

329330

331
332

333
334

335336337338339340341342343 344345346347348
349

350

351352

353354355
356

357358
359

360361

362
363364

365366
367368

369

370371372373374
375376377378

379
380

381382
383384

385

386

387

388
389390391392393

394395396

397

398

399400

401

402403

404

405

406
407
408

409410411
412413 414415416417 418419

420

421
422

423

424

425426
427

428
429430431

432
433

434435436
437

438439
440

441
442

443
444445

446
447

448
449
450

451

452

453454455

456
457

458
459

460

461

462

463

464465

466

467468

469470471 472
473

474475476477
478

479

480481

482

483484

485
486487

488
489

490

491

492493
494

495496
497

498 499500501
502

503
504
505506

507508
509510

511
512513
514

515
516

517518519520

521

522

523524
525

526

527528

529

530531
532

533
534

535

536
537
538

539540541542
543544545546

547548549
550551

552
553

554
555556557

558
559

560
561

562 563564

565

566567

568
569

570

571

572

573

574575
576577

578579
580

581

582
583584

585
586587588

589590591

592
593

594595596
597598

599
600601

602 603604
605

606

607

608

609610 611612

613

614615
616

617

618
619620 621

622
623

624
625

626627
628

629
630

631

632633634
635636637

638
639 640

641
642

643
644

645

646
647

648

649

650

651 652653

654
655

656
657

658

659660
661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
706707708709710711712713714715716
717718719720721722723724725726727728729730731732733734735736737738739740741742743
744745746747748749750751752753754755756

757
758759
760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
791792793794795796797798799800801802803
804805806807808

809810811812813814815816817818819820821822823824825826827828829830
831832833834835836837838839840841842843

844845846847848849850851852853854855856857858859
860861862863864865866867868869870871872873874875876

877878879880881882883884885886887
888

889890
891892

893894895896897898899900901902903904905906907908909910911912913914915916
917918
919920921922923
924

925926
927928929930931932933934935936
937938939940941942
943944945946947
948949
950

951
952953

954955956957958959960961962963964
965966967968969

970971972973974975976977978979980981982983984985986987988989990991992993994
995996
9979989991000100110021003100410051006100710081009

1010

1011

1012101310141015101610171018101910201021102210231024
1025

102610271028102910301031103210331034103510361037
103810391040104110421043104410451046104710481049105010511052105310541055

1056
1057
1058

1059
10601061

106210631064
1065

1066
106710681069

1070
1071107210731074

1075
10761077

1078
1079108010811082108310841085

1086

10871088108910901091
1092

1093109410951096
10971098109911001101110211031104

11051106110711081109111011111112
1113111411151116

11171118111911201121112211231124112511261127
1128
112911301131113211331134
113511361137113811391140
114111421143114411451146114711481149
1150
11511152115311541155
1156
1157115811591160
1161

116211631164116511661167116811691170117111721173117411751176117711781179
1180

118111821183118411851186
11871188
11891190119111921193119411951196
119711981199120012011202120312041205120612071208

1209
1210
12111212121312141215121612171218

12191220
1221122212231224

1225
12261227

12281229
12301231123212331234123512361237

123812391240
1241

12421243124412451246
1247

12481249125012511252
1253125412551256125712581259126012611262

1263
126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305

130613071308
1309131013111312131313141315131613171318
13191320

13211322
132313241325

1326
13271328132913301331133213331334133513361337

1338
133913401341134213431344134513461347134813491350135113521353135413551356

135713581359136013611362136313641365136613671368
13691370137113721373137413751376137713781379
13801381138213831384

1385
138613871388138913901391139213931394139513961397139813991400140114021403
1404140514061407140814091410
1411141214131414141514161417

141814191420
1421 142214231424142514261427

14281429
14301431

1432
14331434

143514361437143814391440144114421443144414451446144714481449145014511452
1453

145414551456
1457

145814591460
1461

1462146314641465
1466

1467
1468146914701471
1472147314741475
147614771478147914801481148214831484

1485
1486

1487148814891490149114921493

1494149514961497
149814991500150115021503

1504
1505

15061507
15081509

15101511
1512

15131514
15151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537
1538153915401541154215431544
1545

1546
1547

154815491550
15511552

155315541555155615571558
15591560156115621563156415651566156715681569157015711572

1573
15741575

157615771578
15791580158115821583

1584158515861587

1588

1589
1590

1591
1592
15931594

15951596
1597

15981599160016011602160316041605160616071608160916101611161216131614161516161617
1618161916201621162216231624
1625

1626
1627

162816291630
16311632

163316341635163616371638
163916401641164216431644164516461647

1648
1649
16501651165216531654165516561657

1658165916601661

1662

1663
1664

1665
1666
16671668

16691670
1671

16721673167416751676
1677167816791680

1681168216831684
16851686168716881689

1690
16911692

1693169416951696

16971698

1699

1700
1701

17021703
17041705

1706

170717081709171017111712171317141715 17161717171817191720
1721

172217231724172517261727172817291730
1731173217331734

173517361737
17381739

1740174117421743
17441745 17461747174817491750

1751
17521753

175417551756
17571758

17591760
1761

17621763
17641765176617671768176917701771

177217731774
177517761777

17781779
1780

1781
1782178317841785178617871788

1789
1790

179117921793
1794179517961797179817991800180118021803
18041805

1806

1807180818091810
181118121813181418151816
18171818181918201821

1822
1823

182418251826
18271828
1829

183018311832183318341835183618371838
1839

1840
18411842184318441845

1846
184718481849185018511852

1853185418551856
185718581859

186018611862186318641865186618671868
1869

1870
187118721873187418751876
187718781879
1880
1881188218831884

1885
1886188718881889189018911892

18931894
1895

18961897189818991900
1901

19021903
1904
19051906

1907190819091910
1911

19121913
191419151916

19171918
1919

1920
1921192219231924

192519261927192819291930193119321933
19341935

1936
19371938193919401941

1942
19431944194519461947

1948
1949195019511952

195319541955
19561957195819591960196119621963

1964
19651966196719681969
197019711972
1973
1974197519761977

1978
1979198019811982198319841985

19861987
1988

19891990199119921993
19941995

19961997
1998
19992000

2001

20022003200420052006
2007

2008
2009

2010
201120122013

2014
201520162017

201820192020
20212022202320242025

20262027
2028

2029203020312032203320342035
2036

2037

20382039204020412042
2043
2044

2045
204620472048

204920502051205220532054
2055

2056
2057

2058205920602061206220632064
20652066
2067206820692070207120722073 2074207520762077

20782079
2080

2081208220832084
208520862087208820892090209120922093 2094

20952096209720982099210021012102
210321042105210621072108210921102111

21122113211421152116211721182119212021212122
21232124

2125
21262127

21282129
2130
21312132

2133213421352136213721382139214021412142
21432144

214521462147
21482149215021512152 2153215421552156

21572158
2159

216021612162216321642165
21662167216821692170

21712172
21732174217521762177

21782179218021812182 2183
218421852186218721882189219021912192
219321942195219621972198

219922002201220222032204220522062207
22082209

22102211
2212
22132214

221522162217
2218
2219222022212222222322242225

22262227
2228 222922302231223222332234 223522362237

22382239
2240

22412242224322442245
224622472248224922502251

2252
22532254225522562257225822592260226122622263 2264

226522662267226822692270227122722273
227422752276

227722782279228022812282
22832284

22852286
2287
22882289

229022912292
2293
2294229522962297229822992300

23012302
23032304230523062307

23082309
2310

2311
2312231323142315

2316
2317231823192320232123222323
23242325

232623272328
232923302331
2332233323342335233623372338

23392340
2341

2342
23432344234523462347

2348
23492350

2351
2352

2353
2354

2355
2356
2357235823592360

2361

2362
23632364236523662367

2368
2369

2370
23712372

2373
23742375237623772378237923802381238223832384
23852386

23872388
238923902391
23922393

23942395
239623972398239924002401

2402
240324042405240624072408

2409

2410241124122413241424152416
241724182419

24202421
2422
2423

2424

24252426
2427

24282429
243024312432
243324342435 243624372438
24392440

24412442 2443244424452446
2447

2448
2449

2450
2451

245224532454245524562457245824592460
24612462

24632464
246524662467
24682469

2470
2471

2472
247324742475247624772478

2479
248024812482248324842485

2486

2487248824892490249124922493
249424952496

24972498
2499
2500

2501

25022503
2504

2505
2506250725082509

2510
25112512251325142515
251625172518
25192520252125222523 252425252526
25272528

25292530 25312532

25332534

25352536253725382539
2540

2541
2542

2543
2544

254525462547254825492550255125522553
25542555

25562557
255825592560
25612562

2563
2564

2565
256625672568256925702571

2572
257325742575257625772578

2579

2580258125822583258425852586
258725882589

25902591
2592
2593

2594

25952596
2597

25982599260026012602260326042605
2606
2607
260826092610
261126122613261426152616 261726182619
26202621

26222623 262426252626
2627

2628
2629

2630263126322633
2634

26352636
2637

2638263926402641264226432644

2645

264626472648264926502651265226532654
265526562657

26582659
2660
2661

2662

2663
26642665

266626672668
266926702671

2672
267326742675267626772678 267926802681

268226832684
26852686 268726882689

2690

2691

2692

269326942695269626972698
2699

2700
2701

27022703

2704 27052706
2707270827092710
271127122713

2714271527162717

27182719

2720
27212722

27232724
272527262727

27282729

2730

2731
27322733
273427352736273727382739274027412742
2743274427452746274727482749275027512752

2753

27542755
2756
2757275827592760276127622763

2764
2765

27662767 27682769
2770277127722773

2774

2775

27762777
2778

2779
2780

2781
2782

27832784

27852786
278727882789

27902791

2792

2793
27942795
279627972798279928002801280228032804
2805280628072808280928102811281228132814

2815

28162817
2818
2819282028212822282328242825

28262827 28282829
2830283128322833

2834

2835

28362837
2838

2839
2840

2841

28422843

28442845
28462847

2848

2849
2850

2851
2852

2853
28542855

28562857
285828592860

28612862

2863

2864
28652866
286728682869287028712872287328742875
2876287728782879288028812882288328842885

2886

28872888
2889
2890289128922893289428952896

28972898 28992900
2901290229032904

2905

2906

29072908
2909

2910
2911

2912
2913

29142915

29162917
29182919

29202921

2922

2923
2924292529262927

2928

29292930
2931
2932

29332934 29352936
2937293829392940

2941

2942

2943

2944
2945

2946
29472948

294929502951
29522953295429552956295729582959296029612962

2963
29642965

2966
29672968296929702971297229732974

2975297629772978
29792980298129822983
29842985298629872988298929902991

299229932994
299529962997

2998

2999

30003001
3002
3003300430053006
3007
300830093010

3011
3012
3013301430153016301730183019

30203021
30223023302430253026302730283029303030313032303330343035
3036

303730383039304030413042
3043

3044

3045
3046

3047
0

5

10

0 5 10 15
Componente 1

C
om

po
ne

nt
e

2

cluster

a

a

a

a

a

1

2

3

4

5

Clústeres de Tarjetas Gráficas (K=5)

Figura 15: Clústeres de Tarjetas Gráficas (K=5)

Mostrar la variación intra-clúster
cat("Variación intra-clúster total:", intra_cluster_variation_5, "\n")

Variación intra-clúster total: 6157.303

Resultados:

47

• La variación intra-clúster total es de 6157.302724.

• El gráfico de laFigura 15muestra la distribución de los clústeres obtenidos conK=5. Se observa que los clústeres
están bien definidos, aunque en el grupo 3, las tarjetas gráficas están muy dispersas, lo que sugiere que este grupo
puede contener tarjetas gráficas de diferentes generaciones o arquitecturas.

A continuación, aplicaremos el método K-means con K=6 para ver si obtenemos una mejor definición de los clústeres
y si la variación intra-clúster disminuye.

Se seguirán los mismos pasos que antes, pero ahora con K=6. Esto nos permitirá comparar los resultados obtenidos
con K=5 y K=6, y ver si la inclusión de un clúster adicional mejora la definición de los grupos.

48

Aplicar K-means con K=6
kmeans_result_6 <- kmeans(variables_clustering_scaled, centers = 6, nstart = 25)

Calcular la variación intra-clúster
intra_cluster_variation_6 <- sum(kmeans_result_6$withinss)

Mostrar la variación intra-clúster
cat("Variación intra-clúster total:", intra_cluster_variation_6, "\n")

Variación intra-clúster total: 4842.295

Graficar los clústeres obtenidos con K=6
fviz_cluster(kmeans_result_6, data = variables_clustering_scaled) +
labs(title = "Clústeres de Tarjetas Gráficas (K=6)",

x = "Componente 1",
y = "Componente 2")

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136

137

138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174

175

176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
248249250251252253254255256257258259260261262
263264265266

267268269270271272273274275276277278279280281282
283284285286287288289290291292293294295296297298

299300301302303
304305306307308

309310311312313314315
316317318319

320

321

322323324

325
326

327328

329330

331
332

333
334

335336337338339340341342343 344345346347348
349

350

351352

353354355
356

357358
359

360361

362
363364

365366
367368

369

370371372373374
375376377378

379
380

381382
383384

385

386

387

388
389390391392393

394395396

397

398

399400

401

402403

404

405

406
407
408

409410411
412413 414415416417 418419

420

421
422

423

424

425426
427

428
429430431

432
433

434435436
437

438439
440

441
442

443
444445

446
447

448
449
450

451

452

453454455

456
457

458
459

460

461

462

463

464465

466

467468

469470471 472
473

474475476477
478

479

480481

482

483484

485
486487

488
489

490

491

492493
494

495496
497

498 499500501
502

503
504
505506

507508
509510

511
512513
514

515
516

517518519520

521

522

523524
525

526

527528

529

530531
532

533
534

535

536
537
538

539540541542
543544545546

547548549
550551

552
553

554
555556557

558
559

560
561

562 563564

565

566567

568
569

570

571

572

573

574575
576577

578579
580

581

582
583584

585
586587588

589590591

592
593

594595596
597598

599
600601

602 603604
605

606

607

608

609610 611612

613

614615
616

617

618
619620 621

622
623

624
625

626627
628

629
630

631

632633634
635636637

638
639 640

641
642

643
644

645

646
647

648

649

650

651 652653

654
655

656
657

658

659660
661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
706707708709710711712713714715716
717718719720721722723724725726727728729730731732733734735736737738739740741742743
744745746747748749750751752753754755756

757
758759
760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
791792793794795796797798799800801802803
804805806807808

809810811812813814815816817818819820821822823824825826827828829830
831832833834835836837838839840841842843

844845846847848849850851852853854855856857858859
860861862863864865866867868869870871872873874875876

877878879880881882883884885886887
888

889890
891892

893894895896897898899900901902903904905906907908909910911912913914915916
917918
919920921922923
924

925926
927928929930931932933934935936
937938939940941942
943944945946947
948949
950

951
952953

954955956957958959960961962963964
965966967968969

970971972973974975976977978979980981982983984985986987988989990991992993994
995996
9979989991000100110021003100410051006100710081009

1010

1011

1012101310141015101610171018101910201021102210231024
1025

102610271028102910301031103210331034103510361037
103810391040104110421043104410451046104710481049105010511052105310541055

1056
1057
1058

1059
10601061

106210631064
1065

1066
106710681069

1070
1071107210731074

1075
10761077

1078
1079108010811082108310841085

1086

10871088108910901091
1092

1093109410951096
10971098109911001101110211031104

11051106110711081109111011111112
1113111411151116

11171118111911201121112211231124112511261127
1128
112911301131113211331134
113511361137113811391140
114111421143114411451146114711481149
1150
11511152115311541155
1156
1157115811591160
1161

116211631164116511661167116811691170117111721173117411751176117711781179
1180

118111821183118411851186
11871188
11891190119111921193119411951196
119711981199120012011202120312041205120612071208

1209
1210
12111212121312141215121612171218

12191220
1221122212231224

1225
12261227

12281229
12301231123212331234123512361237

123812391240
1241

12421243124412451246
1247

12481249125012511252
1253125412551256125712581259126012611262

1263
126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305

130613071308
1309131013111312131313141315131613171318
13191320

13211322
132313241325

1326
13271328132913301331133213331334133513361337

1338
133913401341134213431344134513461347134813491350135113521353135413551356

135713581359136013611362136313641365136613671368
13691370137113721373137413751376137713781379
13801381138213831384

1385
138613871388138913901391139213931394139513961397139813991400140114021403
1404140514061407140814091410
1411141214131414141514161417

141814191420
1421 142214231424142514261427

14281429
14301431

1432
14331434

143514361437143814391440144114421443144414451446144714481449145014511452
1453

145414551456
1457

145814591460
1461

1462146314641465
1466

1467
1468146914701471
1472147314741475
147614771478147914801481148214831484

1485
1486

1487148814891490149114921493

1494149514961497
149814991500150115021503

1504
1505

15061507
15081509

15101511
1512

15131514
15151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537
1538153915401541154215431544
1545

1546
1547

154815491550
15511552

155315541555155615571558
15591560156115621563156415651566156715681569157015711572

1573
15741575

157615771578
15791580158115821583

1584158515861587

1588

1589
1590

1591
1592
15931594

15951596
1597

15981599160016011602160316041605160616071608160916101611161216131614161516161617
1618161916201621162216231624
1625

1626
1627

162816291630
16311632

163316341635163616371638
163916401641164216431644164516461647

1648
1649
16501651165216531654165516561657

1658165916601661

1662

1663
1664

1665
1666
16671668

16691670
1671

16721673167416751676
1677167816791680

1681168216831684
16851686168716881689

1690
16911692

1693169416951696

16971698

1699

1700
1701

17021703
17041705

1706

170717081709171017111712171317141715 17161717171817191720
1721

172217231724172517261727172817291730
1731173217331734

173517361737
17381739

1740174117421743
17441745 17461747174817491750

1751
17521753

175417551756
17571758

17591760
1761

17621763
17641765176617671768176917701771

177217731774
177517761777

17781779
1780

1781
1782178317841785178617871788

1789
1790

179117921793
1794179517961797179817991800180118021803
18041805

1806

1807180818091810
181118121813181418151816
18171818181918201821

1822
1823

182418251826
18271828
1829

183018311832183318341835183618371838
1839

1840
18411842184318441845

1846
184718481849185018511852

1853185418551856
185718581859

186018611862186318641865186618671868
1869

1870
187118721873187418751876
187718781879
1880
1881188218831884

1885
1886188718881889189018911892

18931894
1895

18961897189818991900
1901

19021903
1904
19051906

1907190819091910
1911

19121913
191419151916

19171918
1919

1920
1921192219231924

192519261927192819291930193119321933
19341935

1936
19371938193919401941

1942
19431944194519461947

1948
1949195019511952

195319541955
19561957195819591960196119621963

1964
19651966196719681969
197019711972
1973
1974197519761977

1978
1979198019811982198319841985

19861987
1988

19891990199119921993
19941995

19961997
1998
19992000

2001

20022003200420052006
2007

2008
2009

2010
201120122013

2014
201520162017

201820192020
20212022202320242025

20262027
2028

2029203020312032203320342035
2036

2037

20382039204020412042
2043
2044

2045
204620472048

204920502051205220532054
2055

2056
2057

2058205920602061206220632064
20652066
2067206820692070207120722073 2074207520762077

20782079
2080

2081208220832084
208520862087208820892090209120922093 2094

20952096209720982099210021012102
210321042105210621072108210921102111

21122113211421152116211721182119212021212122
21232124

2125
21262127

21282129
2130
21312132

2133213421352136213721382139214021412142
21432144

214521462147
21482149215021512152 2153215421552156

21572158
2159

216021612162216321642165
21662167216821692170

21712172
21732174217521762177

21782179218021812182 2183
218421852186218721882189219021912192
219321942195219621972198

219922002201220222032204220522062207
22082209

22102211
2212
22132214

221522162217
2218
2219222022212222222322242225

22262227
2228 222922302231223222332234 223522362237

22382239
2240

22412242224322442245
224622472248224922502251

2252
22532254225522562257225822592260226122622263 2264

226522662267226822692270227122722273
227422752276

227722782279228022812282
22832284

22852286
2287
22882289

229022912292
2293
2294229522962297229822992300

23012302
23032304230523062307

23082309
2310

2311
2312231323142315

2316
2317231823192320232123222323
23242325

232623272328
232923302331
2332233323342335233623372338

23392340
2341

2342
23432344234523462347

2348
23492350

2351
2352

2353
2354

2355
2356
2357235823592360

2361

2362
23632364236523662367

2368
2369

2370
23712372

2373
23742375237623772378237923802381238223832384
23852386

23872388
238923902391
23922393

23942395
239623972398239924002401

2402
240324042405240624072408

2409

2410241124122413241424152416
241724182419

24202421
2422
2423

2424

24252426
2427

24282429
243024312432
243324342435 243624372438
24392440

24412442 2443244424452446
2447

2448
2449

2450
2451

245224532454245524562457245824592460
24612462

24632464
246524662467
24682469

2470
2471

2472
247324742475247624772478

2479
248024812482248324842485

2486

2487248824892490249124922493
249424952496

24972498
2499
2500

2501

25022503
2504

2505
2506250725082509

2510
25112512251325142515
251625172518
25192520252125222523 252425252526
25272528

25292530 25312532

25332534

25352536253725382539
2540

2541
2542

2543
2544

254525462547254825492550255125522553
25542555

25562557
255825592560
25612562

2563
2564

2565
256625672568256925702571

2572
257325742575257625772578

2579

2580258125822583258425852586
258725882589

25902591
2592
2593

2594

25952596
2597

25982599260026012602260326042605
2606
2607
260826092610
261126122613261426152616 261726182619
26202621

26222623 262426252626
2627

2628
2629

2630263126322633
2634

26352636
2637

2638263926402641264226432644

2645

264626472648264926502651265226532654
265526562657

26582659
2660
2661

2662

2663
26642665

266626672668
266926702671

2672
267326742675267626772678 267926802681

268226832684
26852686 268726882689

2690

2691

2692

269326942695269626972698
2699

2700
2701

27022703

2704 27052706
2707270827092710
271127122713

2714271527162717

27182719

2720
27212722

27232724
272527262727

27282729

2730

2731
27322733
273427352736273727382739274027412742
2743274427452746274727482749275027512752

2753

27542755
2756
2757275827592760276127622763

2764
2765

27662767 27682769
2770277127722773

2774

2775

27762777
2778

2779
2780

2781
2782

27832784

27852786
278727882789

27902791

2792

2793
27942795
279627972798279928002801280228032804
2805280628072808280928102811281228132814

2815

28162817
2818
2819282028212822282328242825

28262827 28282829
2830283128322833

2834

2835

28362837
2838

2839
2840

2841

28422843

28442845
28462847

2848

2849
2850

2851
2852

2853
28542855

28562857
285828592860

28612862

2863

2864
28652866
286728682869287028712872287328742875
2876287728782879288028812882288328842885

2886

28872888
2889
2890289128922893289428952896

28972898 28992900
2901290229032904

2905

2906

29072908
2909

2910
2911

2912
2913

29142915

29162917
29182919

29202921

2922

2923
2924292529262927

2928

29292930
2931
2932

29332934 29352936
2937293829392940

2941

2942

2943

2944
2945

2946
29472948

294929502951
29522953295429552956295729582959296029612962

2963
29642965

2966
29672968296929702971297229732974

2975297629772978
29792980298129822983
29842985298629872988298929902991

299229932994
299529962997

2998

2999

30003001
3002
3003300430053006
3007
300830093010

3011
3012
3013301430153016301730183019

30203021
30223023302430253026302730283029303030313032303330343035
3036

303730383039304030413042
3043

3044

3045
3046

3047
0

5

10

0 5 10 15
Componente 1

C
om

po
ne

nt
e

2

cluster

a

a

a

a

a

a

1

2

3

4

5

6

Clústeres de Tarjetas Gráficas (K=6)

Figura 16: Clústeres de Tarjetas Gráficas (K=6)

49

Mostrar la variación intra-clúster
cat("Variación intra-clúster total:", intra_cluster_variation_6, "\n")

Variación intra-clúster total: 4842.295

Resultados:

• La variación intra-clúster total es de 4842.2953772.

• El gráfico de laFigura 16muestra la distribución de los clústeres obtenidos conK=6. Se observa que los clústeres
están bien definidos, aunque aquí también hay un grupo (grupo 4) que está muy disperso, y además hay cierta
superposición entre los grupos 3 y 4.

Resultados globales

• La variación intra-clúster total es de 6157.302724 para k=5 y de 4842.2953772 para k=6, lo que indica que el
modelo con k=6 tiene menos variación interna. Esto se debe a que tenemos un grupo más.

• Ambos modelos muestran clústeres bien definidos, aunque para el modelo con k=5, el grupo 3 está más disperso,
lo mismo pasa en el grupo 4 para el modelo k=6

• Elmodelo con k=6 tiene una variación intra-clúster total menor, lo que indica que los clústeres sonmás compactos
y están mejor definidos. Pese a haber superposición entre los grupos 3 y 4, sólamente son 2 tarjetas gráficas las
que están en ambos grupos.

En un análisis posterior, veremos con más claridad si es un problema para el modelo o no.

4.3.1.4 Análisis de los grupos obtenidos en el clustering

Vamos a analizar los grupos obtenidos en el clustering para ver si podemos identificar patrones o características comu-
nes entre las tarjetas gráficas de cada grupo.

Para ello, tendremos que seguir los siguientes pasos:

1. Añadir la variable de clúster al conjunto de datos original.

2. Agrupar los datos por clúster y calcular las estadísticas descriptivas.

3. Visualizar las características de cada clúster.

4. Analizar los resultados y ver si podemos identificar patrones o características comunes entre las tarjetas gráficas
de cada grupo.

Empezamos con el análisis de los grupo obtenidos con k=6. Para ello, vamos a seguir los pasos mencionados anterior-
mente, donde mostraremos por una parte una tabla Con el resumen de las medias de cada variable por clúster y por
otra parte un gráfico de barras con las medias de cada variable por clúster para una mejor visualización.

Resumen por clúster con medias (K=6):

50

library(kableExtra)
Añadir la variable de clúster al conjunto de datos original
datos$cluster_6 <- kmeans_result_6$cluster

Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media <- datos %>%
group_by(cluster_6) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

Generar una tabla con kable
kable(resumen_por_cluster_media,

caption = "\\label{tab:resumen_por_cluster_media} Resumen de las medias por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 1: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 13.5392157 285.9608 4195.45098 202.117647 83.960784 1697.2549 1412.7451
2 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746
3 14.0967742 3897.8065 4347.87097 260.645161 88.645161 805.3710 1081.8226
4 64.5925926 3712.0000 11553.18519 526.518519 122.074074 1602.5556 1276.1852
5 3.9983871 221.5226 1402.52903 89.641290 31.194839 1429.2568 970.5213

6 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991

51

Gráfico de barras para las medias de cada variable por clúster
resumen_por_cluster_media %>%
pivot_longer(cols = -cluster_6, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_6), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Media de las Variables por Clúster", x = "Clúster", y = "Media") +
theme_minimal()

0

3000

6000

9000

12000

1 2 3 4 5 6
Clúster

M
ed

ia

Variable

media_GPU_clock (MHz)

media_Memory_Bus (bits)

media_Memory_clock (MHz)

media_Memory_Size (GB)

media_ROPs

media_Shaders

media_TMUs

Media de las Variables por Clúster

Figura 17: Media de las Variables por Clúster (K=6)

Observaciones:

• El grupo 4 destaca por tener una media de Shaders bastante más alta que el resto de grupos, que podría indicar
que el número de Shaders es el principal factor que define este grupo.

• El grupo 2 es el que tiene los valores más bajos, lo que sugiere que este grupo está formado por tarjetas gráficas
de gama baja.

• Los grupos 3 y 4 tienen valores de ancho de banda más altos, lo que sugiere que estos grupos están formados
por tarjetas gráficas diseñadas para tareas que requieren un alto ancho de banda.

52

Ahora vamos a analizar los grupos obtenidos con k=5. Para ello, vamos a seguir los mismos pasos que hemos seguido
para el análisis de los grupos obtenidos con k=6.

Añadir la variable de clúster al conjunto de datos original
datos$cluster_5 <- kmeans_result_5$cluster

Agrupar los datos por clúster y calcular la media

resumen_por_cluster_media5 <- datos %>%
group_by(cluster_5) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

Generar una tabla con kable
kable(resumen_por_cluster_media5,

caption = "\\label{tab:resumen_por_cluster_media5} Resumen de las medias por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 2: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 1.6396161 163.2756 394.39685 32.11417 14.102362 939.9283 758.9039
2 4.4273585 223.1950 1521.00629 96.32201 34.193711 1468.6025 1013.4201
3 56.4444444 3921.7778 10115.55556 485.55556 125.333333 1449.5000 1248.6389
4 0.1772596 146.3586 13.40505 5.36919 5.337317 307.7397 328.9588
5 14.4041451 1276.1865 4747.27461 231.62694 90.943005 1417.5596 1285.3523

53

Gráfico de barras para las medias de cada variable por clúster
resumen_por_cluster_media5 %>%
pivot_longer(cols = -cluster_5, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_5), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Media de las Variables por Clúster", x = "Clúster", y = "Media") +
theme_minimal()

0

2500

5000

7500

10000

1 2 3 4 5
Clúster

M
ed

ia

Variable

media_GPU_clock (MHz)

media_Memory_Bus (bits)

media_Memory_clock (MHz)

media_Memory_Size (GB)

media_ROPs

media_Shaders

media_TMUs

Media de las Variables por Clúster

Figura 18: Media de las Variables por Clúster (K=5)

Observaciones:

• Aquí sí que encontramos un grupo (grupo3) cuya característica principal es el ancho de banda alto. También es
el que más número de Shaders tiene, aunque esto podría deberse a ciertos valores muy altos que suben la media.
Por eso más adelante vamos a ver la varianza de cada grupo. Este grupo podría estar formado en gran parte por
las tarjetas gráficas de tipo HBM, que como habíamos mencionado anteriormente, están diseñadas para ofrecer
un mayor ancho de banda.

Para confirmar si realmente el grupo 3 está formado por tarjetas gráficas de tipo HBM, vamos a mostrar el número de
tarjetas gráficas de tipo HBM, HBM2 y HBM2e que hay en cada grupo.

54

Contar el número de tarjetas gráficas de tipo HBM, HBM2 y HBM2e en cada grupo
conteo_hbm <- datos %>%
group_by(cluster_5, Memory_Type) %>%
summarise(n = n(), .groups = 'drop') %>%
filter(Memory_Type %in% c("HBM", "HBM2", "HBM2e", "HBM3"))

Hacer una tabla con kable
kable(conteo_hbm,

caption = "\\label{tab:conteo_hbm} Número de tarjetas gráficas de tipo HBM, HBM2,
HBM2e y HBM3 por clúster",

col.names = c("Clúster", "Tipo de Memoria", "Número de Tarjetas Gráficas"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 3: Número de tarjetas gráficas de tipo HBM, HBM2, HBM2e y HBM3 por clúster

Clúster Tipo de Memoria Número de Tarjetas Gráficas

1 HBM2 3
2 HBM2 2
3 HBM2 7
3 HBM2e 15
3 HBM3 4

5 HBM 23
5 HBM2 24
5 HBM2e 7

La mayoría de las tarjetas gráficas de tipo HBM se clasifican en los grupo 3 y 5, aunque de entre las HBM, las más
potentes (HBM2e y HBM3) se agrupan en su mayoría en el grupo 3, lo que explicaría el alto ancho de banda de este
grupo. El grupo 5 presentaba el segundo mayor número de ancho de banda.

Vamos a ver la varianza de cada grupo con k=5.

Agrupar los datos por clúster y calcular la varianza

resumen_por_cluster_varianza5 <- datos %>%
group_by(cluster_5) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), var,
.names = "var_{.col}"))

Generar una tabla con kable

kable(resumen_por_cluster_varianza5,
caption = "\\label{tab:resumen_por_cluster_varianza5} Resumen de las varianzas por clúster",

55

col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 4: Resumen de las varianzas por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 1.5249875 11755.98 70559.348 337.40933 57.41111 26168.18 28147.59
2 7.9321378 10737.16 454439.611 1745.46797 205.72062 56619.84 84275.02
3 910.4253968 6036008.63 25948029.968 21821.51111 4651.88571 157241.34 190159.44
4 0.0387919 36646.34 1452.154 34.91139 21.02170 25738.94 25201.28
5 63.2837327 2544950.72 4290858.888 2670.19344 518.96028 268289.30 178457.64

56

Gráfico de barras para las varianzas de cada variable por clúster
resumen_por_cluster_varianza5 %>%
pivot_longer(cols = -cluster_5, names_to = "Variable", values_to = "Varianza") %>%
ggplot(aes(x = factor(cluster_5), y = Varianza, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Varianza de las Variables por Clúster", x = "Clúster", y = "Varianza") +
theme_minimal()

0e+00

1e+07

2e+07

1 2 3 4 5
Clúster

V
ar

ia
nz

a

Variable

var_GPU_clock (MHz)

var_Memory_Bus (bits)

var_Memory_clock (MHz)

var_Memory_Size (GB)

var_ROPs

var_Shaders

var_TMUs

Varianza de las Variables por Clúster

Figura 19: Varianza de las Variables por Clúster (K=5)

Observaciones:

• En el grupo 3 vemos una varianza muy alta en el número de Shaders, lo que sugiere que este grupo está formado
por tarjetas gráficas de diferentes generaciones o arquitecturas. Esto podría ser un indicativo de que el grupo 3
está formado por tarjetas gráficas de gama alta, pero con diferentes arquitecturas. El ancho de banda también
tiene una varianza elevada, lo que podría explicarse por la presencia de tarjetas gráficas de tipo HBM, que como
hemos mencionado anteriormente, están diseñadas para ofrecer un mayor ancho de banda.

• Los grupos 1, 2 y 4 tienen una varianza baja en todas las variables, lo que sugiere que estos grupos están muy
homogéneos y que las tarjetas gráficas de estos grupos tienen características similares.

57

Conclusiones:

• Pese a que el modelo con k=6 tiene una variación intra-clúster total menor, para nuestro análisis nos interesa más
tener las tarjetas gráficas con la tecnología HBM juntas, por lo que el modelo con k=5 es más adecuado para
nuestro análisis.

No obstante, vamos a ver si con el modelo conjunto de variables numéricas y categóricas obtenemos un mejor
resultado.

Vamos a guardar los resultados obtenidos en una variable para poder compararlos con los resultados obtenidos con el
modelo conjunto de variables numéricas y categóricas.

Crear un vector de conclusiones
conclusiones_k5 <- c(
"El grupo 3 se caracteriza por tener un ancho de banda alto,",
"lo que podría indicar que está formado por tarjetas gráficas de tipo HBM.",
"Los grupos 1, 2 y 4 tienen una varianza baja en todas las variables,",
"lo que sugiere que estos grupos están muy homogéneos y bien definidos."

)
Crear un data frame resumen para el modelo k=5
tabla_resultados_kmeans_5 <- data.frame(
Modelo = "Solo numéricas",
Numero_Clusters = length(unique(kmeans_result_5$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_5,
Conclusiones = paste(conclusiones_k5, collapse = " ")

)

4.3.2 Clustering con variables numéricas y categóricas

En este apartado, incluiermos algunas variables categóricas al método k-means, para así poder comparar los resultados
obtenidos con el modelo anterior y ver si, al incluir variables categóricas, obtenemos un mejor resultado.

En la base de datos tenemos las siguientes variables categóricas:

• GPU_Chip: Chip de la GPU.

• Bus: Tipo de bus.

• Memory_Type: Tipo de memoria.

• Released: Fecha de lanzamiento.

De estas variables nos interesa sólamente usar la variable “Memory_Type”, ya que es la que más puede influir en el
rendimiento de la tarjeta gráfica. La variable “GPU_Chip” no nos interesa porque, como se ha podido observar en el
apartado 2.1, tenemos 335 tipos de chip diferentes, lo que nos generaría un número muy elevado de variables dummy.
La variable “Bus” tampoco nos interesa porque no tiene un impacto significativo en el rendimiento de la tarjeta gráfica,
pues la mayoría de las tarjetas gráficas utilizan el bus PCIe.

58

4.3.2.1 Preparación de los datos

Para incluir variables categóricas en el método K-means, es necesario convertirlas en variables dummy. Esto se logra
utilizando la función dummy_cols de la librería fastDummies, que crea variables dummy para las variables categó-
ricas seleccionadas. Las variables dummy son variables binarias que indican la presencia o ausencia de una categoría
específica.

Después de crear las variables dummy, combinaremos las variables numéricas y categóricas en un solo conjunto de
datos. Esto nos permitirá aplicar el método K-means a un conjunto de datos que incluye tanto variables numéricas
como categóricas. Finalmente, escalaremos los datos para normalizar las variables para que todas tengan la misma
importancia en el análisis.

library(fastDummies)

Transformar la vaiable memory_type a factor
datos_transform <- datos %>%
mutate(Memory_Type = as.factor(Memory_Type))

Crear variables dummy para las variables categóricas seleccionadas
datos_dummy <- datos_transform %>%
dummy_cols(select_columns = c("Memory_Type"), remove_first_dummy = TRUE)

Combinar numéricas y categóricas
datos_combinados <- datos_transform %>%
select(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`) %>%
cbind(datos_dummy %>% select(starts_with("Memory_Type_")))

Escalar los datos para normalizar las variables

datos_combinados_scaled <- scale(datos_combinados)

Ver cuántas variables nuevas se han creado al hacer dummies

nvariables <- ncol(datos_combinados)

nvariables

[1] 32

Después de crear las variables dummy, vemos que el número total de variables ha ascendido a 32 variables.

Tantas variables podrían hacer que el algoritmo K-means no funcione correctamente, por lo que vamos a aplicar el
método PCA para reducir la dimensionalidad de los datos.

59

4.3.2.2 Fundamento teórico del análisis de componentes principales (PCA)

(Manual) explica que el PCA es un método no supervisado que se utiliza para resumir un conjunto grande de varia-
bles correlacionadas mediante un número menor de variables representativas llamadas componentes principales. Estas
componentes son direcciones en el espacio de características a lo largo de las cuales los datos originales presentan
una alta variabilidad, y definen líneas y subespacios que están lo más cerca posible del conjunto de datos. PCA se usa
tanto para producir variables derivadas que pueden emplearse en modelos de aprendizaje supervisado como para la
visualización de datos o para la imputación de valores faltantes en una matriz de datos.

¿Cómo funciona PCA?

El PCA encuentra una representación de los datos en un espacio de menor dimensión, donde cada dimensión es una
combinación lineal de las variables originales.

Imaginemos que tenemos un conjunto de datos con 𝑝 variables originales 𝑋1, 𝑋2, … , 𝑋𝑝.

La primera componente se calcula como:

𝑍1 = 𝜙11𝑋1 + 𝜙21𝑋2 + ⋯ + 𝜙𝑝1𝑋𝑝

donde los coeficientes 𝜙𝑖𝑗 se denominan cargas, y cumplen la condición:

𝑝
∑
𝑗=1

𝜙2
𝑗1 = 1

PCA tiene como objetivomaximizar la varianza de la nueva variable𝑍1, es decir, encontrar la dirección en el espacio
de los datos a lo largo de la cual las observaciones presentan la mayor variabilidad posible. Esto se hace resolviendo
un problema de optimización bajo la restricción mencionada anteriormente.

El conjunto de valores 𝑧𝑖1 obtenidos para cada observación se denominan scores del primer componente.

Una vez determinado el primer componente principal 𝑍1, se puede calcular el segundo componente principal 𝑍2.
Este es otra combinación lineal de las variables originales 𝑋1, ..., 𝑋𝑝, pero con dos condiciones:

1. Debe tener la máxima varianza posible, igual que 𝑍1.
2. Debe ser no correlacionado con 𝑍1, lo cual equivale a que su vector de cargas 𝜙2 sea ortogonal al vector de

cargas del primer componente, 𝜙1.

La forma general del segundo componente es:

𝑧𝑖2 = 𝜙12𝑥𝑖1 + 𝜙22𝑥𝑖2 + ⋯ + 𝜙𝑝2𝑥𝑖𝑝

donde 𝜙2 = (𝜙12, 𝜙22, ..., 𝜙𝑝2) es el vector de cargas del segundo componente principal, y cumple:

• ∑𝑝
𝑗=1 𝜙2

𝑗2 = 1 (normalización), y

60

• 𝜙2 ⟂ 𝜙1 (ortogonalidad).

Este proceso se repite para obtener más componentes principales𝑍3, 𝑍4, ..., 𝑍𝑀 (con𝑀 ≤ 𝑝), cada uno maximizando
la varianza restante y siendo ortogonal a los anteriores.

4.3.2.3 Aplicación del PCA

Vamos a aplicar el PCA a los datos combinados. Para ello, vamos a usar la función PCA de la librería FactoMineR,
que permite realizar un análisis de componentes principales de manera sencilla.

La función PCA toma como argumentos los datos, el número de componentes principales a calcular y el gráfico a
generar. En este caso, vamos a calcular todos los componentes principales y no vamos a generar gráficos. Con esta
función, podemos obtener fácilmente la varianza explicada por cada componente principal con la función eig, que
devuelve un data frame con la varianza explicada por cada componente principal.

library(FactoMineR)
Realizar PCA
pca_result <- PCA(datos_combinados_scaled, graph = FALSE)

Ver la varianza explicada por cada componente principal

pca_var <- pca_result$eig
pca_var

eigenvalue percentage of variance cumulative percentage of variance
comp 1 5.32700624 16.64689451 16.64689
comp 2 2.24726968 7.02271776 23.66961
comp 3 1.39849281 4.37029004 28.03990
comp 4 1.23319452 3.85373288 31.89364
comp 5 1.18271645 3.69598891 35.58962
comp 6 1.15939412 3.62310661 39.21273
comp 7 1.07048094 3.34525292 42.55798
comp 8 1.04989121 3.28091002 45.83889
comp 9 1.03425554 3.23204857 49.07094
comp 10 1.01924387 3.18513710 52.25608
comp 11 1.01143834 3.16074480 55.41682
comp 12 1.01124085 3.16012766 58.57695
comp 13 1.01015492 3.15673413 61.73369
comp 14 1.00439888 3.13874650 64.87243
comp 15 1.00288571 3.13401784 68.00645
comp 16 1.00259693 3.13311540 71.13957
comp 17 1.00245519 3.13267245 74.27224
comp 18 1.00202792 3.13133724 77.40358
comp 19 1.00132527 3.12914147 80.53272

61

comp 20 1.00106724 3.12833513 83.66105
comp 21 1.00078643 3.12745760 86.78851
comp 22 1.00048747 3.12652336 89.91503
comp 23 1.00040438 3.12626368 93.04130
comp 24 1.00032843 3.12602634 96.16732
comp 25 0.39834403 1.24482510 97.41215
comp 26 0.35610868 1.11283961 98.52499
comp 27 0.18335509 0.57298465 99.09797
comp 28 0.10156016 0.31737552 99.41535
comp 29 0.07146214 0.22331919 99.63867
comp 30 0.04620136 0.14437924 99.78305
comp 31 0.04385966 0.13706145 99.92011
comp 32 0.02556555 0.07989233 100.00000

Vemos que con 19 componentes principales explicamos el 80% de la varianza total. Como queremos obtener el menor
número de componentes principales que expliquen el 80% de la varianza total, vamos a intentar agrupar los tipos de
memoria menos comunes en una sola categoría llamada “Otros”.

4.3.2.4 Agrupación de tipos de memoria y aplicación del PCA

Como habíamos hecho en el apartado 2.4.2, vamos a filtrar los tipos de memoria, pero esta vez vamos a filtrar los
menos comunes. Luego vamos a agrupas estas tarjetas gráficas en una sola categoría llamada “Otros”. Vamos a llamarla
datos2 para diferenciarla con la base de datos original.

Además, vamos a agrupar HBM, HBM2, HBM2e y HBM3 en una sola categoría llamada “HBM”

Crear una copia de los datos originales para trabajar con ella
datos2 <- datos

Filtrar los tipos de memoria menos comunes
tipos_memoria_no_comunes <- datos2 %>%
count(Memory_Type, sort = TRUE) %>%
filter(n < 15) %>%
pull(Memory_Type)

Agrupar los tipos de memoria menos comunes en una sola categoría llamada "Otros"

datos2$Memory_Type <- ifelse(datos2$Memory_Type %in% tipos_memoria_no_comunes, "Otros",
datos2$Memory_Type)

Agrupar HBM, HBM2 y HBM2e en una sola categoría llamada "HBM"

datos2$Memory_Type <- ifelse(datos2$Memory_Type %in% c("HBM", "HBM2", "HBM2e", "HBM3"), "HBM",
datos2$Memory_Type)

62

Ahora que hemos agrupado los tipos de memoria menos comunes, vamos a volver a crear las variables dummy y aplicar
el PCA.

Transformar la variable memory_type a factor
datos2$Memory_Type <- as.factor(datos2$Memory_Type)

Crear variables dummy para las variables categóricas seleccionadas
datos_dummy2 <- datos2 %>%
dummy_cols(select_columns = c("Memory_Type"), remove_first_dummy = TRUE)

Combinar numéricas y categóricas
datos_combinados2 <- datos2 %>%
select(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`) %>%
cbind(datos_dummy2 %>% select(starts_with("Memory_Type_")))

Escalar los datos para normalizar las variables

datos_combinados_scaled2 <- scale(datos_combinados2)

Ver cuántas variables nuevas se han creado al hacer dummies
nvariables2 <- ncol(datos_combinados_scaled2)
nvariables2

[1] 19

Ahora que hemos agrupado los tipos de memoria menos comunes, el número total de variables ha descendido a 19
variables.

Vamos a aplicar de nuevo el PCA con la nueva base de datos reducida para ver cuántos componentes principales
necesitamos para poder realizar el clustering.

Realizar PCA
pca_result2 <- PCA(datos_combinados_scaled2, graph = FALSE)

Ver la varianza explicada por cada componente principal

pca_var2 <- pca_result2$eig
pca_var2

eigenvalue percentage of variance cumulative percentage of variance
comp 1 5.23247717 27.5393535 27.53935
comp 2 2.20352143 11.5974812 39.13683
comp 3 1.38728320 7.3014905 46.43833

63

comp 4 1.22149152 6.4289027 52.86723
comp 5 1.16513867 6.1323088 58.99954
comp 6 1.06365013 5.5981586 64.59770
comp 7 1.05243183 5.5391149 70.13681
comp 8 1.03011566 5.4216614 75.55847
comp 9 1.02250842 5.3816233 80.94009
comp 10 1.01130568 5.3226615 86.26276
comp 11 1.00887570 5.3098721 91.57263
comp 12 0.51775051 2.7250027 94.29763
comp 13 0.41195491 2.1681837 96.46581
comp 14 0.30355378 1.5976515 98.06347
comp 15 0.11690998 0.6153157 98.67878
comp 16 0.09556421 0.5029695 99.18175
comp 17 0.07010610 0.3689795 99.55073
comp 18 0.04938565 0.2599245 99.81066
comp 19 0.03597546 0.1893445 100.00000

Aquí vemos que con 9 componentes principales explicamos el 80% de la varianza total, pero nos interesa más tener el
menor número posible de componentes principales, por lo que vamos a quedarnos con 8 componentes principales, que
explican el 75% de la varianza total.

4.3.2.5 Método del codo con PCA

Vamos a aplicar el método del codo con 8 componentes principales para determinar el número óptimo de clústeres
(𝐾). Para ello, vamos a aplicar de nuevo la función PCA, donde podremos seleccionar 8 componentes principales
introduciendo el argumento ncp = 9 seguido de $𝑖𝑛𝑑coord, que nos devolverá las coordenadas de los individuos en
el espacio de las componentes principales. Con estas coordenadas, vamos a aplicar el método del codo para determinar
el número óptimo de clústeres (𝐾).

64

Seleccionar las primeras 9 componentes principales
pca_data <- PCA(datos_combinados_scaled2, ncp = 8, graph = FALSE)indcoord

Hacer el método del codo

fviz_nbclust(pca_data, kmeans, method = "wss") +
labs(title = "Método del Codo para Determinar K",

x = "Número de Clústeres (K)",
y = "Suma de Distancias al Cuadrado (WCSS)")

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10
Número de Clústeres (K)

S
um

a
de

 D
is

ta
nc

ia
s

al
 C

ua
dr

ad
o

(W
C

S
S

)

Método del Codo para Determinar K

Figura 20: Método del Codo para Determinar K con PCA

Vemos un ligero codo en k=8, por lo que vamos a aplicar el método k-means con k=8.

4.3.2.6 Aplicación del método K-means con PCA

En este apartado, vamos a aplicar el método k-means con k=8. Para ello, similar a lo que hicimos en el apartado
3.3.1.3, vamos a usar la función kmeans de R.

Esta vez vamos a usar el argumento centers = 8 para indicar que queremos 8 clústeres. También vamos a usar el

65

argumento nstart = 25 para evitar que el algoritmo se quede atrapado en un mínimo local. Luego vamos a calcular
la variación intra-clúster total y graficar los clústeres obtenidos. Para ello, vamos a usar la función fviz_cluster de
la librería factoextra, que permite visualizar los resultados del clustering de manera intuitiva.

Aplicar K-means con K=8
kmeans_result_8 <- kmeans(pca_data, centers = 8, nstart = 25)

Calcular la variación intra-clúster
intra_cluster_variation_8 <- sum(kmeans_result_8$withinss)
intra_cluster_variation_8

[1] 9501.153

66

Graficar los clústeres obtenidos con K=8
fviz_cluster(kmeans_result_8, data = pca_data) +
labs(title = "Clústeres de Tarjetas Gráficas (K=8)",

x = "Componente 1",
y = "Componente 2")

123456789

1011

12131415161718

1920212223

24

2526272829303132

33343536

3738

3940414243444546

47

4849

5051

5253545556 57585960

61

6263

64

6566676869707172737475767778798081 82838485 8687888990919293949596979899 100101102103104105106107108109110111112113
114115116117118119 120121122123124125126127 128129130131132133 134135136

137

138139140141142143144145146147148149150151152153154155156157158159160161 162163164165166167168169170 171172173174

175

176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 209210211212213214215216217218219220 221222223224225 226227228229230231232233234
235

236237238239240
241242

243244245246247248249250251252253254255256257
258

259260261
262263264265266267

268 269270271272273274275276277278279280281282283
284285

286287
288

289290291292293294
295

296297298299300301302303304305306307308309310311312313314315316317318319

320

321

322323324

325326

327328

329330331332
333
334

335336337338339340341342343344345346347348349

350351
352

353

354

355
356
357358

359

360361

362
363364365

366

367368

369

370371372373
374
375376

377378

379
380381382383384385

386

387

388389390391392393

394

395396

397

398

399400

401

402403

404
405

406
407408409410411412

413

414
415416

417
418

419
420

421422423

424

425426427

428429430431
432
433
434435436437438439

440
441

442443
444

445
446
447448449450451

452
453454455

456457

458
459

460

461

462

463

464465

466
467468

469470471
472

473
474475476477
478

479

480
481

482

483484

485

486487

488489
490
491

492493494

495496

497

498

499500501
502
503504505506
507508
509510511512

513

514515

516

517518519520

521
522523524525
526527528529

530
531532533
534

535

536
537538
539540

541542
543544545546

547
548549550551
552553554

555556557
558
559
560

561
562563564

565

566567
568
569
570
571

572
573

574575576

577

578579580

581
582583584

585
586587588
589590591
592

593594595596

597
598

599
600601

602
603

604
605

606
607

608

609

610
611

612

613614615
616

617
618
619620
621622
623

624625

626
627
628

629

630

631

632633634635636637
638639

640

641

642

643644

645

646
647

648

649

650
651

652653

654
655

656

657
658

659660

661662663664665666667
668

669670671672673674675676677678679680681682683684685686687
688

689690691692693694695696697698699700701702703704705706707708

709710711

712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
743

744745
746

747
748

749
750751

752
753

754755756

757

758759760761762763764
765

766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
798 799800801802803804805806807808809810811812813814815816817818
819

820821822
823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875

876
877878879

880881882883884
885886

887
888

889
890891892893894

895896897898899900
901

902903904905
906907908909910911912913914915916

917
918

919
920921922923

924925
926
927928929930931932933934935936937938939940941 942943944945946 947948

949
950

951
952953

954955
956957958959960961962963964965966967968969

970971972973974975976977978979980981982
983

984985986987988989990 991992993 99499599699799899910001001
1002

100310041005
1006

100710081009

1010

1011

1012101310141015
10161017

1018101910201021102210231024
1025

102610271028102910301031
1032

1033103410351036
10371038

1039104010411042
1043

1044
1045

1046
10471048

1049105010511052
10531054

1055 1056 10571058 10591060106110621063
1064

1065
1066

106710681069107010711072
10731074

107510761077
1078

1079108010811082
10831084

1085 1086
1087

1088
108910901091 10921093109410951096109710981099

1100
11011102110311041105
110611071108110911101111111211131114111511161117
11181119112011211122

1123
1124112511261127 1128112911301131113211331134 113511361137113811391140114111421143114411451146114711481149 115011511152115311541155 115611571158115911601161116211631164116511661167116811691170117111721173117411751176

11771178
1179

1180

118111821183118411851186118711881189119011911192119311941195
1196

119711981199
1200

1201
12021203120412051206

12071208
120912101211

12121213
12141215121612171218

12191220 12211222
1223

1224
1225

12261227 12281229
12301231

1232123312341235
1236

1237 123812391240
1241

124212431244
12451246

1247124812491250
12511252

12531254125512561257
1258

1259126012611262
1263

12641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289
12901291129212931294129512961297129812991300130113021303130413051306

1307
13081309

13101311
1312131313141315131613171318 131913201321

1322 132313241325
1326

132713281329
13301331

133213331334133513361337
1338

1339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369
137013711372

1373137413751376137713781379 13801381138213831384
1385

138613871388
13891390

13911392139313941395139613971398139914001401140214031404140514061407140814091410
141114121413

1414
14151416

1417
141814191420

1421

14221423142414251426142714281429

1430
1431

1432

1433
143414351436
143714381439144014411442
144314441445
1446

144714481449
145014511452
1453

1454145514561457

145814591460146114621463146414651466
14671468146914701471147214731474147514761477147814791480

14811482
14831484

1485
1486

1487148814891490149114921493
14941495149614971498

1499 1500
1501150215031504

1505
15061507

15081509
15101511

1512
1513

151415151516
151715181519

1520
152115221523
152415251526
1527

1528152915301531
15321533

1534153515361537
15381539

154015411542
1543

1544
15451546
15471548
15491550
15511552
1553155415551556155715581559

1560 156115621563156415651566156715681569
1570

15711572
1573

1574
1575157615771578157915801581
1582
1583

1584158515861587
1588

15891590
1591

1592
15931594

15951596
159715981599
160016011602

1603
160416051606
160716081609
1610

161116121613
16141615

16161617
16181619

162016211622
1623

1624
16251626
16271628
16291630
16311632
1633163416351636163716381639

1640 1641164216431644
1645

16461647
16481649165016511652165316541655
1656
1657

1658165916601661
1662

16631664
1665

1666
16671668

16691670
1671
16721673167416751676
167716781679
16801681168216831684168516861687168816891690169116921693169416951696

16971698
1699

17001701
17021703
17041705

17061707170817091710
17111712171317141715

171617171718171917201721172217231724172517261727172817291730173117321733173417351736
1737

17381739

17401741174217431744

1745

17461747

174817491750
17511752

1753175417551756
17571758
175917601761

17621763176417651766
1767

1768176917701771
1772

1773
1774
17751776177717781779

1780
17811782178317841785178617871788

1789

1790179117921793
1794179517961797179817991800180118021803

18041805
1806

1807180818091810

1811
18121813181418151816
18171818181918201821

18221823

182418251826

18271828
18291830

18311832183318341835
1836

18371838
1839
1840

18411842
18431844

1845
18461847

18481849
1850

18511852
1853

18541855
1856
1857185818591860186118621863

18641865186618671868
1869

18701871187218731874
1875

1876
1877187818791880188118821883188418851886188718881889189018911892

18931894
1895

1896189718981899
19001901190219031904190519061907190819091910

1911
19121913

191419151916

19171918
19191920

192119221923192419251926
1927

19281929
19301931

19321933
19341935
1936

19371938
19391940

1941
19421943

1944194519461947
1948

194919501951
1952
1953195419551956195719581959

1960196119621963
1964

19651966196719681969
1970197119721973197419751976197719781979198019811982198319841985

19861987
1988

1989199019911992
199319941995199619971998199920002001
200220032004200520062007200820092010201120122013201420152016

2017
2018201920202021202220232024

2025

2026202720282029203020312032203320342035
2036

2037
2038203920402041

2042
2043204420452046

20472048

2049

20502051205220532054205520562057205820592060

2061206220632064

20652066
2067206820692070
20712072
2073

2074

2075
20762077
2078207920802081
2082

2083208420852086
20872088208920902091

20922093
2094209520962097

2098209921002101210221032104

21052106210721082109211021112112211321142115211621172118211921202121212221232124

2125
21262127

21282129

2130
21312132
2133

21342135
21362137213821392140

21412142

21432144

2145

21462147

2148
214921502151
2152

2153

2154
21552156
2157215821592160
2161

21622163216421652166216721682169217021712172
21732174217521762177

21782179218021812182

2183218421852186

21872188218921902191219221932194

219521962197219821992200220122022203220422052206
2207

22082209

22102211

2212
22132214
2215

22162217
2218221922202221222222232224222522262227

2228

22292230
223122322233
2234

2235
22362237
2238223922402241
2242

2243224422452246
2247

22482249225022512252
22532254225522562257
2258

22592260226122622263

2264226522662267

22682269227022712272227322742275

227622772278227922802281
2282

22832284

22852286

2287
22882289
2290

22912292
2293229422952296229722982299230023012302

2303
2304230523062307230823092310231123122313231423152316231723182319
232023212322232323242325232623272328

23292330
2331233223332334233523362337233823392340

2341

234223432344234523462347

2348

23492350
2351

2352
23532354
235523562357
235823592360

2361

2362
236323642365
23662367
2368236923702371

2372
2373

237423752376
2377

23782379238023812382238323842385
23862387

2388
2389239023912392

2393 2394
2395239623972398

23992400
2401

2402240324042405240624072408

2409

241024112412
2413

2414241524162417241824192420242124222423

2424

24252426
2427

24282429
243024312432

2433

24342435

24362437

2438
243924402441
2442

2443

244424452446
24472448244924502451

2452
2453

24542455245624572458245924602461
24622463

2464
2465246624672468

2469 24702471247224732474
24752476

2477
24782479248024812482248324842485

2486

248724882489
2490

2491249224932494249524962497249824992500

2501

25022503
2504

250525062507250825092510
25112512251325142515

251625172518

25192520

252125222523

25242525

2526
252725282529
2530

2531

2532

25332534

253525362537

25382539
25402541254225432544

2545
2546

25472548254925502551255225532554
25552556

2557
2558255925602561

2562 25632564256525662567
25682569

2570
25712572257325742575257625772578

2579

258025812582
2583

2584258525862587258825892590259125922593

2594

25952596
2597

25982599260026012602260326042605
2606

2607
260826092610

261126122613

261426152616

26172618

2619
262026212622
2623

2624

2625262626272628262926302631263226332634
2635

26362637263826392640264126422643
2644

2645

26462647264826492650
2651

2652265326542655265626572658265926602661

2662

2663
26642665

266626672668

266926702671

2672267326742675267626772678

26792680

2681
2682268326842685
2686

2687
26882689

2690

2691

2692

269326942695269626972698

2699

2700
2701
27022703

2704

2705

27062707270827092710
271127122713271427152716271727182719

2720
2721
272227232724
272527262727

27282729

27302731273227332734273527362737
27382739

2740
2741

27422743
2744

2745
27462747274827492750275127522753275427552756

2757275827592760
27612762

2763
27642765

27662767
27682769

27702771

277227732774

2775

2776

2777

2778

277927802781

2782
2783
278427852786
278727882789

27902791

27922793279427952796279727982799
28002801

2802
2803

28042805
2806

2807
28082809281028112812281328142815281628172818

2819282028212822
28232824

2825

28262827
28282829

28302831

283228332834

2835

2836

2837

2838

283928402841

28422843

28442845

28462847

2848

2849

285028512852

2853
2854
285528562857
285828592860

28612862

28632864286528662867286828692870
28712872

2873
2874

28752876
2877

2878
28792880288128822883288428852886288728882889

2890289128922893
28942895

2896

28972898
28992900

29012902

290329042905

2906

2907

2908

2909

291029112912

2913
2914
291529162917
29182919

29202921

2922292329242925292629272928292929302931
2932

29332934
29352936

29372938

293929402941

2942

2943

2944

294529462947

29482949

29502951

295229532954295529562957
29582959296029612962

2963

29642965

2966
2967

2968296929702971297229732974

29752976297729782979298029812982
2983298429852986

2987
2988

2989
2990

2991

299229932994299529962997

2998

2999

30003001
3002

300330043005
3006

30073008300930103011301230133014301530163017301830193020
3021302230233024

3025
3026302730283029303030313032303330343035

3036
303730383039
304030413042

3043
3044

3045

3046

3047

−6

−3

0

3

−5.0 −2.5 0.0 2.5
Componente 1

C
om

po
ne

nt
e

2

cluster

a

a

a

a

a

a

a

a

1

2

3

4

5

6

7

8

Clústeres de Tarjetas Gráficas (K=8)

Figura 21: Clústeres de Tarjetas Gráficas (K=8)

Resultados:

• La variación intra-clúster total es de 9501.1530549.

• El gráfico de la Figura 21muestra la distribución de los clústeres obtenidos con K=8. Se observa que los grupos
1 y 2 tienen cierta superposición, igual que los grupos 3 y 6.

• Los grupos 7 y 8 son los que mejor definidos están, pues muestran muy poca variación interna y están bien
separados entre sí.

• El grupo 5 es el que más disperso está, lo que sugiere que este grupo puede contener tarjetas gráficas de diferentes
generaciones o arquitecturas.

67

4.3.2.7 Análisis de los grupos obtenidos en el clustering

Vamos a analizar los grupos obtenidos en el clustering para ver si podemos identificar patrones o características comu-
nes entre las tarjetas gráficas de cada grupo.

Para ello, primero calcularemos la media y la varianza de cada variable por clúster. Para facilitar la visualización de
los resultados, generaremos tablas con kable para mostrar las medias y varianzas de cada variable por clúster.

Resumen por clúster con medias:

Añadir la variable de clúster al conjunto de datos original
datos2$cluster_8 <- kmeans_result_8$cluster

Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media8 <- datos2 %>%
group_by(cluster_8) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

Generar una tabla con kable
kable(resumen_por_cluster_media8,

caption = "\\label{tab:resumen_por_cluster_media8} Resumen de las medias por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 5: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 27.9250000 4249.60000 5185.600000 315.5000000 89.100000 944.7125 1075.6625
2 1.4474910 364.30769 237.538462 11.5128205 7.282051 387.6154 279.2051
3 0.0196149 91.07692 1.615385 0.9807692 1.634615 114.2500 109.8269
4 0.4341728 194.48471 95.876471 16.8858824 10.109412 558.4812 462.8282
5 11.9962406 221.23308 4032.962406 174.0150376 72.541353 1666.2632 1397.7932

6 3.3391608 209.87413 1111.342657 75.1923077 26.870629 1274.4231 890.5140
7 0.3263393 105.60000 37.307143 7.2428571 5.085714 403.4786 496.8071
8 1.9559257 93.88679 342.971698 23.8726415 10.033019 905.2099 821.5212

Resumen por varianzas de cada grupo:

Agrupar los datos por clúster y calcular la varianza
resumen_por_cluster_varianza8 <- datos2 %>%
group_by(cluster_8) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), var,

68

.names = "var_{.col}"))
Generar una tabla con kable
kable(resumen_por_cluster_varianza8,

caption = "\\label{tab:resumen_por_cluster_varianza8} Resumen de las varianzas por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 6: Resumen de las varianzas por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 976.8550633 1356512.243 5.271498e+06 20086.025316 2023.2810127 147042.840 26835.543
2 12.7982443 576167.903 9.809682e+05 1022.887989 190.4183536 370341.559 216202.115
3 0.0003874 1605.975 6.467513e-01 3.397685 0.8166542 3493.451 3974.824
4 0.2792182 11811.430 2.631748e+04 361.302627 51.6122788 82301.089 28289.146
5 88.7358349 11264.044 1.247734e+07 12335.728075 1390.8001702 108285.221 216185.667

6 7.5704555 11775.620 4.438798e+05 2127.039101 257.2010964 74074.159 30369.897
7 0.0505883 3163.350 4.568315e+03 54.242754 10.4961973 11348.194 12172.013
8 1.5803612 1757.869 2.924894e+04 102.120857 19.8097819 10845.258 28051.253

Observaciones:

• El grupo 1 tiene con diferencia la media más alta de ancho de bus, lo que podría sugerir que está formado
principalmente por tarjetas gráficas de memoria HBM. También tiene la media más alta de memoria, que indica
que este grupo también está formado por tarjetas gráficas de gama alta a parte de las tarjetas gráficas conmemoria
HBM.

• El grupo 2 no destaca en ninguna variable, lo que podría sugerir que estaría formado por tarjetas con el tipo de
memoria Otros o por tarjetas de gama media.

• El grupo 3 tiene la media y varianza más baja en la mayoría de las variables, lo que sugiere que este grupo está
formado por tarjetas gráficas de gama baja.

• Aún con estas tablas, no podemos concluir por qué hay cierta superposición entre los grupos 1 y 2, y entre los
grupos 3 y 6. Para ello, vamos a ver si podemos encontrar alguna relación entre los grupos obtenidos y el tipo
de memoria de las tarjetas gráficas.

Vamos a ver si podemos encontrar alguna relación entre los grupos obtenidos y el tipo de memoria de las tarjetas
gráficas. Para ello, vamos a contar el número de tarjetas gráficas por tipo de memoria en cada clúster y también el
número total de tarjetas gráficas por tipo de memoria en la base de datos. Esto nos permitirá ver si hay algún tipo de
memoria que esté más presente en un clúster que en otro.

Combinar las tablas de resumen por clúster y resumen total
resumen_comparacion <- resumen_por_cluster_memoria %>%
left_join(resumen_total_memoria, by = "Memory_Type", suffix = c("_cluster", "_total")) %>%
mutate(porcentaje_cluster = n_cluster / n_total * 100)

69

Generar una tabla con kable
tabla_comparacion <- kable(resumen_comparacion,

caption = "\\label{tab:comparacion_memoria} Comparación del número de tarjetas gráficas por tipo de memoria",
col.names = c("Clúster", "Tipo de Memoria", "Número en Clúster",
"Número Total", "Porcentaje en Clúster"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

tabla_comparacion

Tabla 7: Comparación del número de tarjetas gráficas por tipo de memoria

Clúster Tipo de Memoria Número en Clúster Número Total Porcentaje en Clúster

1 HBM 76 81 93.8271605
1 Otros 4 45 8.8888889
2 Otros 39 45 86.6666667
3 SDR 87 87 100.0000000
3 DRAM 17 17 100.0000000

4 GDDR3 508 508 100.0000000
4 DDR 314 314 100.0000000
4 GDDR4 25 25 100.0000000
4 GDDR6 2 211 0.9478673
4 HBM 1 81 1.2345679

5 GDDR6 209 211 99.0521327
5 GDDR5X 30 30 100.0000000
5 GDDR6X 20 20 100.0000000
5 GDDR5 5 1145 0.4366812
5 Otros 2 45 4.4444444

6 GDDR5 1140 1145 99.5633188
6 HBM 4 81 4.9382716
7 DDR2 140 140 100.0000000
8 DDR3 424 424 100.0000000

Observaciones:

• El grupo 1 está formado principalmente por las tarjetas gráficas con memoria HBM, lo que quiere decir que este
grupo debería tener un ancho de bus más alto que el resto de grupos. Esto se puede ver en la Tabla 1 de resumen
de medias, donde el grupo 1 tiene la media más alta de ancho de bus.

• El grupo 2 está formado principalmente por las tarjetas gráficas con “Otros” tipos de memoria, lo que podría
explicar la superposición con el grupo 1, ya que este grupo tiene una media de ancho de bus más baja que el
grupo 1, pero ligeramente más alta que el resto de grupos. Además, el tipo de memoria Otros sólamente está
presente en estos dos grupos.

• El grupo 3 está predominado por las tarjetas gráficas con memoria SDR y DRAM, lo que podría sugerir que estas
dos arquitecturas son muy similares entre sí. Como habíamos visto en la Tabla 1, el grupo 3 tiene las medias
más bajas en todas las variables, lo que seguramente se podría deber a que estas tecnologías son más antiguas.

70

• El grupo 4 está formado por 5 tipos de memoria diferentes, siendo la mayoría GDDR3, DDR y GDDR6, donde
la totalidad de estos tipos de memoria están en este grupo. En la Tabla 1 vemos que el grupo 4 no tiene ninguna
variable que destaque sobre el resto, esto quiere decir que este grupo está formado por tarjetas gráficas de gama
media-baja.

• El grupo 5 está formado por básicamente todas las tarjetas gráficas conmemoria GDDR6, GDDR5X yGDDR6X,
que son memorias de gama alta, lo que se puede observar también en la Tabla 1, donde el grupo 5 presenta las
medias más altas, sólamente superadas por el grupo 1, aunque en reloj de memoria y reloj de GPU, el grupo 5
tiene las medias más altas. Esto tiene sentido, ya que, como habíamos mencionado anteriormente, las tarjetas
gráficas con memoria HBM están especializadas en tareas que requieren un alto ancho de banda, mientras que las
tarjetas gráficas con memoria GDDR6, GDDR5X y GDDR6X están diseñadas para ofrecer un alto rendimiento
en juegos y aplicaciones gráficas.

• El grupo 6 está formado mayoritariamente por tarjetas gráficas con memoria GDDR5, que es una memoria de
gama media-alta.

• Los grupos 7 y 8 están formados únicamente por una memoria cada uno, siendo la memoria DDR2 y DDR3
respectivamente, donde ambos tienen el 100% de las tarjetas gráficas con ese tipo de memoria. Esto podría
explicar por qué estos grupos están tan bien definidos, ya que al ser un único tipo de memoria, no hay variación
interna entre las tarjetas gráficas de estos grupos.

Guardamos los resultados obtenidos en una variable para poder compararlos con los resultados obtenidos con el modelo
conjunto de variables numéricas y categóricas.

Crear un vector de conclusiones
conclusiones_k8 <- c(
"Se tuvo que hacer un PCA para reducir la dimensionalidad de los datos.",
"Después de aplicar el PCA y realizar el clustering,",
"se observó que los grupos 1 y 2 tienen cierta superposición,",
"igual que los grupos 3 y 6.",
"Había un par de grupos bien definidos y otros que estaban más dispersos.",
"Luego se concluyó que los grupos estaban principalmente definidos",
"por el tipo de memoria de las tarjetas gráficas."

)
Crear un data frame resumen para el modelo k=5
tabla_resultados_kmeans_8 <- data.frame(
Modelo = "Numéricas y categóricas",
Numero_Clusters = length(unique(kmeans_result_8$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_8,
Conclusiones = paste(conclusiones_k8, collapse = " ")

)

4.3.3 Comparación de los dos modelos

En este apartado, vamos a comparar los resultados obtenidos con el modelo de sólo variables numéricas y el modelo de
variables numéricas y categóricas. Para ello, vamos a crear una tabla con los resultados obtenidos en ambos modelos,

71

donde incluiremos el número de clústeres, la variación intra-clúster total y las conclusiones obtenidas en cada modelo.

Unimos los resultados de ambos modelos en una sola tabla
tabla_resultados_kmeans <- rbind(tabla_resultados_kmeans_5, tabla_resultados_kmeans_8)

Generar una tabla con kable
kable(tabla_resultados_kmeans,

caption = "\\label{tab:comparacion_modelos} Comparación de los resultados de los modelos K-means",
col.names = c("Modelo", "Número de Clústeres",
"Variación Intra-Cluster", "Conclusiones"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position")) %>%
column_spec(4, width = "8cm")

Tabla 8: Comparación de los resultados de los modelos K-means

Modelo Número de Clústeres Variación Intra-Cluster Conclusiones

Solo numéricas 5 6157.303 El grupo 3 se caracteriza por tener un ancho de banda
alto, lo que podría indicar que está formado por tarjetas
gráficas de tipo HBM. Los grupos 1, 2 y 4 tienen una
varianza baja en todas las variables, lo que sugiere que
estos grupos están muy homogéneos y bien definidos.

Numéricas y categóricas 8 9501.153 Se tuvo que hacer un PCA para reducir la
dimensionalidad de los datos. Después de aplicar el PCA
y realizar el clustering, se observó que los grupos 1 y 2
tienen cierta superposición, igual que los grupos 3 y 6.
Había un par de grupos bien definidos y otros que
estaban más dispersos. Luego se concluyó que los
grupos estaban principalmente definidos por el tipo de
memoria de las tarjetas gráficas.

Frente a los resultados obtenidos, el modelo con sólo variables numéricas resulta ser más sencillo de interpretar, con
una variación intra-clúster total más baja, grupos mejor definidos y menos dispersos. Además, este modelo tiene en
cuenta más las especificaciones técnicas de las tarjetas gráficas que el modelo con el tipo de memoria, donde este
clasificaba las tarjetas gráficas principalmente por el tipo de memoria.

4.4 Implementación manual del algoritmo K-means

En este apartado, vamos a implementar el algoritmo k-means de manera manual, lo que nos permitirá utilizar distintas
medidas de distancia y analizar si los grupos resultantes difieren en función de la métrica empleada.

En el análisis anterior, hemos utilizado la función kmeans de R, que implementa el algoritmo k-means clásico utilizando
la distancia euclidiana como medida de proximidad entre observaciones y centroides. Sin embargo, como se mencionó
en el apartado 3.2.1, existen otras medidas de distancia que pueden ser útiles en función de la naturaleza de los datos
y de los objetivos del análisis, como la distancia de Manhattan, la distancia de Chebyshev o la distancia
de Minkowski. Esta última es especialmente interesante, ya que generaliza tanto la distancia euclidiana (cuando (p
= 2)) como la de Manhattan (cuando (p = 1)), permitiendo ajustar el parámetro (p) para controlar la sensibilidad a
valores extremos.

72

En nuestro caso, el análisis exploratorio ha mostrado la presencia de valores atípicos, especialmente en las tarjetas
gráficas más modernas (apartado 2.3.3). En estos escenarios, la distancia euclidiana puede verse muy influida por
estos valores extremos, lo que podría afectar a la formación de los clústeres. Por el contrario, la distancia de Manhattan
y, en general, la distancia de Minkowski con (p < 2), son menos sensibles a los valores atípicos, lo que podría dar
lugar a agrupamientos más robustos.

Por lo tanto, la estrategia será la siguiente:

1. Implementaremos el algoritmo k-means manualmente utilizando la distancia euclidiana. Esto nos permitirá com-
parar directamente los resultados con los obtenidos previamente mediante la función kmeans de R y validar que
la implementación es correcta.

2. Aplicaremos el algoritmo utilizando la distancia de Minkowski, ajustando el parámetro (p) para explorar si se
obtienen agrupamientos diferentes o incluso mejores, especialmente en presencia de valores atípicos. De este
modo, podremos evaluar si la elección de la métrica de distancia influye en la calidad y la interpretación de los
clústeres obtenidos.

4.4.1 Repaso teórico del algoritmo K-means

En el apartado 3.2.1 se ha explicado el algoritmo k-means, pero aquí vamos a profundizar un poco más en su expresión
matemática y los pasos que sigue el algoritmo.

Como bien habíamos mencionado, el algoritmo k-means, para minimizar la suma total de distancias al cuadrado entre
los puntos y los centroides sigue los siguientes pasos:

1. Inicialización: Se seleccionan aleatoriamente (k) puntos del conjunto de datos como centroides iniciales.

Matemáticamente, esto se puede expresar como:

𝐶1, 𝐶2, … , 𝐶𝑘 ∈ ℝ𝑝

donde 𝐶𝑖 es el i-ésimo centroide y 𝑝 es el número de variables.

Esto en R, podemos hacerlo con la función sample, que selecciona aleatoriamente (k) puntos del conjunto de datos.
En este caso, sólo queremos las variables numéricas.

Centroides iniciales aleatorios de las variables numéricas
centroides_iniciales <- datos_num[sample(1:nrow(datos_num), k),]

2. Encontrar la distancia entre cada punto y cada centroide.

Primero tendremos que inicializar una matriz para las distancias, donde cada fila representa un punto y cada columna
representa un centroide.

73

Inicializar una matriz para las distancias
distancias <- matrix(0, nrow = nrow(datos_num), ncol = k)

Una vez tenemos la matriz de distancias, tendremos que, en cada iteración, calcular la distancia de cada punto a cada
centroide. En nuestro caso, como habíamos mencionado, vamos a usar la distancia euclidiana y la distancia de Min-
kowski. Para diferenciar si estamos usando la distancia euclidiana o la de Minkowski, vamos a usar un argumento
method que nos permita elegir entre ambas, y luego en el bucle for que calcula las distancias, vamos a usar un if
para elegir la distancia a calcular.

• Fórmula para la distancia euclidiana:

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥𝑖, 𝐶𝑗) =
√√√
⎷

𝑝
∑
𝑙=1

(𝑥𝑖𝑙 − 𝐶𝑗𝑙)2

• Fórmula para la distancia de Minkowski:

𝑑𝑚𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖(𝑥𝑖, 𝐶𝑗) = (
𝑝

∑
𝑙=1

|𝑥𝑖𝑙 − 𝐶𝑗𝑙|𝑝)
1
𝑝

La única diferencia entre ambas fórmulas es la potencia a la que elevamos las diferencias entre los puntos y los centroi-
des. En el caso de la distancia euclidiana, elevamos al cuadrado, y en el caso de Minkowski, elevamos a (p), donde el
valor de (p) lo elegimos nosotros. En este caso, vamos a usar el valor de (p = 1.5), que es un valor intermedio entre
la distancia euclidiana y la de Manhattan.

for (iter in 1:max_iter) {
Calcular las distancias euclidianas
if (method == "euclidean") {
for (j in 1:k) {
distancias[, j] <- sqrt(rowSums((as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j,]),
nrow(datos_num)),
ncol = p, byrow = TRUE))^2))

}
Calcular las distancias de Minkowski
} else if (method == "minkowski") {
for (j in 1:k) {
distancias[, j] <- (rowSums(abs(as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j,]),
nrow(datos_num)),
ncol = p,
byrow = TRUE))^p_minkowski))^(1/p_minkowski)

74

}
}
}

3. Asignar cada punto al clúster correspondiente al centroide más cercano. Esto se puede hacer utilizando la función
apply de R, que aplica una función a cada fila o columna de un data frame.

Asignar cada punto al clúster correspondiente al centroide más cercano
nueva_asignacion <- apply(distancias, 1, which.min)

Además queremos que el bucle pare si la asignación de clústeres no cambia, es decir, si la nueva asignación es igual a
la anterior. Para ello, vamos a usar un if que compare ambas asignaciones.

Si la asignación no cambia, salir del bucle
if (all(nueva_asignacion == asignacion_clusters)) break

4. Actualizar los centroides de cada clúster. Para ello, vamos a calcular la media de cada clúster y asignarla al nuevo
centroide. Esto se puede hacer utilizando la función colMeans de R, que calcula la media de cada columna de
un data frame.

Actualizar los centroides de cada clúster
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {
centroides[idx,] <- colMeans(puntos_cluster)

}
}

Esta parte del algoritmo funciona de la siguiente manera:

• Para cada clúster, seleccionamos los puntos que pertenecen a ese clúster (asignacion_clusters == idx).
• Si hay puntos en ese clúster (nrow(puntos_cluster) > 0), calculamos la media de cada variable y la asignamos al
nuevo centroide.

• Si no hay puntos en ese clúster, no hacemos nada y el centroide se queda como estaba.

4.4.2 Creación del algoritmo K-means manual

Ahora que hemos explicado el algoritmo k-means, vamos a implementarlo manualmente en R. Para ello, vamos a crear
una función kmeans_manual que implemente el algoritmo k-means siguiendo los pasos descritos anteriormente.

kmeans_manual <- function(datos, k = 5, max_iter = 100, method = "euclidean",
p_minkowski = 2, seed = 123) {

75

set.seed(seed)

Seleccionar solo variables numéricas menos las variables cluster_5, cluster_6 y
#cluster_8 y estandarizar
datos_num <- datos %>%
select(-c(cluster_5, cluster_6)) %>%
select(where(is.numeric)) %>%
scale() %>%
as.data.frame()

n <- nrow(datos_num)
p <- ncol(datos_num)

Inicializar centroides aleatorios
centroides <- as.matrix(datos_num[sample(1:n, k),])
asignacion_clusters <- rep(0, n)
distancias <- matrix(0, nrow = n, ncol = k)

for (iter in 1:max_iter) {
Calcular las distancias euclidianas
if (method == "euclidean") {
for (j in 1:k) {
distancias[, j] <- sqrt(rowSums((as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j,]),
nrow(datos_num)),
ncol = p, byrow = TRUE))^2))

}
Calcular las distancias de Minkowski
} else if (method == "minkowski") {
for (j in 1:k) {
distancias[, j] <- (rowSums(abs(as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j,]),
nrow(datos_num)),
ncol = p,
byrow = TRUE))^p_minkowski))^(1/p_minkowski)

}
}
nueva_asignacion <- apply(distancias, 1, which.min)
if (all(nueva_asignacion == asignacion_clusters)) break
asignacion_clusters <- nueva_asignacion
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {

76

centroides[idx,] <- colMeans(puntos_cluster)
}

}
}
withinss <- numeric(k)
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {
withinss[idx] <- sum(rowSums((as.matrix(puntos_cluster) -

matrix(rep(as.numeric(centroides[idx,]),
nrow(puntos_cluster)),
ncol = p, byrow = TRUE))^2))

}
}
list(cluster = asignacion_clusters,

centers = centroides,
withinss = withinss,
tot.withinss = sum(withinss),
iter = iter,
datos_num = datos_num)

}

Con la función kmeans_manual implementada, ahora podemos aplicarla a nuestro conjunto de datos. Vamos a aplicar
el algoritmo k-means manualmente utilizando la distancia euclidiana y la distancia de Minkowski.

4.4.2.1 Uso de la función kmeans_manual con distancia euclidiana

Uso de la función para distancia euclidiana:

Aplicar el algoritmo k-means manual
kmeans_result_manual <- kmeans_manual(datos, k = 5)
table(kmeans_result_manual$cluster)

##
1 2 3 4 5
778 1231 82 208 748

variación intra-clúster total
intra_cluster_variation_euclidiana <- kmeans_result_manual$tot.withinss
cat("Variación intra-clúster total (Euclidiana):",
intra_cluster_variation_euclidiana, "\n")

Variación intra-clúster total (Euclidiana): 6160.19

77

Graficar los clústeres obtenidos
fviz_cluster(list(data = kmeans_result_manual$datos_num,

cluster = kmeans_result_manual$cluster))

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136

137

138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174

175

176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
248249250251252253254255256257258259260261262
263264265266

267268269270271272273274275276277278279280281282
283284285286287288289290291292293294295296297298

299300301302303
304305306307308

309310311312313314315
316317318319

320

321

322323324

325
326

327328

329330

331
332

333
334

335336337338339340341342343 344345346347348
349

350

351352

353354355
356

357358
359

360361

362
363364

365366
367368

369

370371372373374
375376377378

379
380

381382
383384

385

386

387

388
389390391392393

394395396

397

398

399400

401

402403

404

405

406
407
408

409410411
412413 414415416417 418419

420

421
422

423

424

425426
427

428
429430431

432
433

434435436
437

438439
440

441
442

443
444445

446
447

448
449
450

451

452

453454455

456
457

458
459

460

461

462

463

464465

466

467468

469470471 472
473

474475476477
478

479

480481

482

483484

485
486487

488
489

490

491

492493
494

495496
497

498 499500501
502

503
504
505506

507508
509510

511
512513
514

515
516

517518519520

521

522

523524
525

526

527528

529

530531
532

533
534

535

536
537
538

539540541542
543544545546

547548549
550551

552
553

554
555556557

558
559

560
561

562 563564

565

566567

568
569

570

571

572

573

574575
576577

578579
580

581

582
583584

585
586587588

589590591

592
593

594595596
597598

599
600601

602 603604
605

606

607

608

609610 611612

613

614615
616

617

618
619620 621

622
623

624
625

626627
628

629
630

631

632633634
635636637

638
639 640

641
642

643
644

645

646
647

648

649

650

651 652653

654
655

656
657

658

659660
661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
706707708709710711712713714715716
717718719720721722723724725726727728729730731732733734735736737738739740741742743
744745746747748749750751752753754755756

757
758759
760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
791792793794795796797798799800801802803
804805806807808

809810811812813814815816817818819820821822823824825826827828829830
831832833834835836837838839840841842843

844845846847848849850851852853854855856857858859
860861862863864865866867868869870871872873874875876

877878879880881882883884885886887
888

889890
891892

893894895896897898899900901902903904905906907908909910911912913914915916
917918
919920921922923
924

925926
927928929930931932933934935936
937938939940941942
943944945946947
948949
950

951
952953

954955956957958959960961962963964
965966967968969

970971972973974975976977978979980981982983984985986987988989990991992993994
995996
9979989991000100110021003100410051006100710081009

1010

1011

1012101310141015101610171018101910201021102210231024
1025

102610271028102910301031103210331034103510361037
103810391040104110421043104410451046104710481049105010511052105310541055

1056
1057
1058

1059
10601061

106210631064
1065

1066
106710681069

1070
1071107210731074

1075
10761077

1078
1079108010811082108310841085

1086

10871088108910901091
1092

1093109410951096
10971098109911001101110211031104

11051106110711081109111011111112
1113111411151116

11171118111911201121112211231124112511261127
1128
112911301131113211331134
113511361137113811391140
114111421143114411451146114711481149
1150
11511152115311541155
1156
1157115811591160
1161

116211631164116511661167116811691170117111721173117411751176117711781179
1180

118111821183118411851186
11871188
11891190119111921193119411951196
119711981199120012011202120312041205120612071208

1209
1210
12111212121312141215121612171218

12191220
1221122212231224

1225
12261227

12281229
12301231123212331234123512361237

123812391240
1241

12421243124412451246
1247

12481249125012511252
1253125412551256125712581259126012611262

1263
126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305

130613071308
1309131013111312131313141315131613171318
13191320

13211322
132313241325

1326
13271328132913301331133213331334133513361337

1338
133913401341134213431344134513461347134813491350135113521353135413551356

135713581359136013611362136313641365136613671368
13691370137113721373137413751376137713781379
13801381138213831384

1385
138613871388138913901391139213931394139513961397139813991400140114021403
1404140514061407140814091410
1411141214131414141514161417

141814191420
1421 142214231424142514261427

14281429
14301431

1432
14331434

143514361437143814391440144114421443144414451446144714481449145014511452
1453

145414551456
1457

145814591460
1461

1462146314641465
1466

1467
1468146914701471
1472147314741475
147614771478147914801481148214831484

1485
1486

1487148814891490149114921493

1494149514961497
149814991500150115021503

1504
1505

15061507
15081509

15101511
1512

15131514
15151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537
1538153915401541154215431544
1545

1546
1547

154815491550
15511552

155315541555155615571558
15591560156115621563156415651566156715681569157015711572

1573
15741575

157615771578
15791580158115821583

1584158515861587

1588

1589
1590

1591
1592
15931594

15951596
1597

15981599160016011602160316041605160616071608160916101611161216131614161516161617
1618161916201621162216231624
1625

1626
1627

162816291630
16311632

163316341635163616371638
163916401641164216431644164516461647

1648
1649
16501651165216531654165516561657

1658165916601661

1662

1663
1664

1665
1666
16671668

16691670
1671

16721673167416751676
1677167816791680

1681168216831684
16851686168716881689

1690
16911692

1693169416951696

16971698

1699

1700
1701

17021703
17041705

1706

170717081709171017111712171317141715 17161717171817191720
1721

172217231724172517261727172817291730
1731173217331734

173517361737
17381739

1740174117421743
17441745 17461747174817491750

1751
17521753

175417551756
17571758

17591760
1761

17621763
17641765176617671768176917701771

177217731774
177517761777

17781779
1780

1781
1782178317841785178617871788

1789
1790

179117921793
1794179517961797179817991800180118021803
18041805

1806

1807180818091810
181118121813181418151816
18171818181918201821

1822
1823

182418251826
18271828
1829

183018311832183318341835183618371838
1839

1840
18411842184318441845

1846
184718481849185018511852

1853185418551856
185718581859

186018611862186318641865186618671868
1869

1870
187118721873187418751876
187718781879
1880
1881188218831884

1885
1886188718881889189018911892

18931894
1895

18961897189818991900
1901

19021903
1904
19051906

1907190819091910
1911

19121913
191419151916

19171918
1919

1920
1921192219231924

192519261927192819291930193119321933
19341935

1936
19371938193919401941

1942
19431944194519461947

1948
1949195019511952

195319541955
19561957195819591960196119621963

1964
19651966196719681969
197019711972
1973
1974197519761977

1978
1979198019811982198319841985

19861987
1988

19891990199119921993
19941995

19961997
1998
19992000

2001

20022003200420052006
2007

2008
2009

2010
201120122013

2014
201520162017

201820192020
20212022202320242025

20262027
2028

2029203020312032203320342035
2036

2037

20382039204020412042
2043
2044

2045
204620472048

204920502051205220532054
2055

2056
2057

2058205920602061206220632064
20652066
2067206820692070207120722073 2074207520762077

20782079
2080

2081208220832084
208520862087208820892090209120922093 2094

20952096209720982099210021012102
210321042105210621072108210921102111

21122113211421152116211721182119212021212122
21232124

2125
21262127

21282129
2130
21312132

2133213421352136213721382139214021412142
21432144

214521462147
21482149215021512152 2153215421552156

21572158
2159

216021612162216321642165
21662167216821692170

21712172
21732174217521762177

21782179218021812182 2183
218421852186218721882189219021912192
219321942195219621972198

219922002201220222032204220522062207
22082209

22102211
2212
22132214

221522162217
2218
2219222022212222222322242225

22262227
2228 222922302231223222332234 223522362237

22382239
2240

22412242224322442245
224622472248224922502251

2252
22532254225522562257225822592260226122622263 2264

226522662267226822692270227122722273
227422752276

227722782279228022812282
22832284

22852286
2287
22882289

229022912292
2293
2294229522962297229822992300

23012302
23032304230523062307

23082309
2310

2311
2312231323142315

2316
2317231823192320232123222323
23242325

232623272328
232923302331
2332233323342335233623372338

23392340
2341

2342
23432344234523462347

2348
23492350

2351
2352

2353
2354

2355
2356
2357235823592360

2361

2362
23632364236523662367

2368
2369

2370
23712372

2373
23742375237623772378237923802381238223832384
23852386

23872388
238923902391
23922393

23942395
239623972398239924002401

2402
240324042405240624072408

2409

2410241124122413241424152416
241724182419

24202421
2422
2423

2424

24252426
2427

24282429
243024312432
243324342435 243624372438
24392440

24412442 2443244424452446
2447

2448
2449

2450
2451

245224532454245524562457245824592460
24612462

24632464
246524662467
24682469

2470
2471

2472
247324742475247624772478

2479
248024812482248324842485

2486

2487248824892490249124922493
249424952496

24972498
2499
2500

2501

25022503
2504

2505
2506250725082509

2510
25112512251325142515
251625172518
25192520252125222523 252425252526
25272528

25292530 25312532

25332534

25352536253725382539
2540

2541
2542

2543
2544

254525462547254825492550255125522553
25542555

25562557
255825592560
25612562

2563
2564

2565
256625672568256925702571

2572
257325742575257625772578

2579

2580258125822583258425852586
258725882589

25902591
2592
2593

2594

25952596
2597

25982599260026012602260326042605
2606
2607
260826092610
261126122613261426152616 261726182619
26202621

26222623 262426252626
2627

2628
2629

2630263126322633
2634

26352636
2637

2638263926402641264226432644

2645

264626472648264926502651265226532654
265526562657

26582659
2660
2661

2662

2663
26642665

266626672668
266926702671

2672
267326742675267626772678 267926802681

268226832684
26852686 268726882689

2690

2691

2692

269326942695269626972698
2699

2700
2701

27022703

2704 27052706
2707270827092710
271127122713

2714271527162717

27182719

2720
27212722

27232724
272527262727

27282729

2730

2731
27322733
273427352736273727382739274027412742
2743274427452746274727482749275027512752

2753

27542755
2756
2757275827592760276127622763

2764
2765

27662767 27682769
2770277127722773

2774

2775

27762777
2778

2779
2780

2781
2782

27832784

27852786
278727882789

27902791

2792

2793
27942795
279627972798279928002801280228032804
2805280628072808280928102811281228132814

2815

28162817
2818
2819282028212822282328242825

28262827 28282829
2830283128322833

2834

2835

28362837
2838

2839
2840

2841

28422843

28442845
28462847

2848

2849
2850

2851
2852

2853
28542855

28562857
285828592860

28612862

2863

2864
28652866
286728682869287028712872287328742875
2876287728782879288028812882288328842885

2886

28872888
2889
2890289128922893289428952896

28972898 28992900
2901290229032904

2905

2906

29072908
2909

2910
2911

2912
2913

29142915

29162917
29182919

29202921

2922

2923
2924292529262927

2928

29292930
2931
2932

29332934 29352936
2937293829392940

2941

2942

2943

2944
2945

2946
29472948

294929502951
29522953295429552956295729582959296029612962

2963
29642965

2966
29672968296929702971297229732974

2975297629772978
29792980298129822983
29842985298629872988298929902991

299229932994
299529962997

2998

2999

30003001
3002
3003300430053006
3007
300830093010

3011
3012
3013301430153016301730183019

30203021
30223023302430253026302730283029303030313032303330343035
3036

303730383039304030413042
3043

3044

3045
3046

3047
0

5

10

0 5 10 15
Dim1 (64.9%)

D
im

2
(1

8.
9%

)

cluster

a

a

a

a

a

1

2

3

4

5

Cluster plot

Figura 22: Clústeres de Tarjetas Gráficas (Euclidiana)

Resumen por cluster con medias:

Añadir la variable de clúster al conjunto de datos original
datos$cluster_manual <- kmeans_result_manual$cluster

Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media_manual <- datos %>%
group_by(cluster_manual) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

Generar una tabla con kable
kable(resumen_por_cluster_media_manual,

78

caption = "\\label{tab:resumen_por_cluster_media_manual} Resumen de las medias por clúster (Euclidiana)",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 9: Resumen de las medias por clúster (Euclidiana)

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 4.0086761 223.6298 1407.32134 89.789203 31.300771 1429.3946 971.9460
2 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991
3 30.1707317 4035.1220 6623.21951 349.365854 100.585366 1035.7317 1143.5732
4 13.8750000 322.3077 4261.23077 204.692308 84.115385 1683.2548 1403.5433
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

Tabla comparativa de las medias de kmeans manual con Euclidiana y el kmeans de R:

Tabla 10: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 1.6396161 163.2756 394.39685 32.11417 14.102362 939.9283 758.9039
2 4.4273585 223.1950 1521.00629 96.32201 34.193711 1468.6025 1013.4201
3 56.4444444 3921.7778 10115.55556 485.55556 125.333333 1449.5000 1248.6389
4 0.1772596 146.3586 13.40505 5.36919 5.337317 307.7397 328.9588
5 14.4041451 1276.1865 4747.27461 231.62694 90.943005 1417.5596 1285.3523

Tabla 11: Resumen de las medias por clúster (Euclidiana)

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 4.0086761 223.6298 1407.32134 89.789203 31.300771 1429.3946 971.9460
2 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991
3 30.1707317 4035.1220 6623.21951 349.365854 100.585366 1035.7317 1143.5732
4 13.8750000 322.3077 4261.23077 204.692308 84.115385 1683.2548 1403.5433
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

Si nos fijamos bien en las tablas de medias, vemos que los resultados son muy similares entre el k-means de R y
el k-means manual con distancia euclidiana. Podemes identificar las siguientes relaciones entre los grupos de ambos
modelos:

• El grupo 1 del k-means de R corresponde al grupo 2 del k-means manual con distancia euclidiana,

• el grupo 2 corresponde al grupo 1 del k-means manual con distancia euclidiana,

• el grupo 3 corresponde al grupo 3 del k-means manual con distancia euclidiana,

• el grupo 4 corresponde al grupo 5 del k-means manual con distancia euclidiana y,

• el grupo 5 corresponde al grupo 4 del k-means manual con distancia euclidiana.

79

Esto indica que la implementación del algoritmo k-means manual es correcta y que los resultados obtenidos son con-
sistentes con los obtenidos con la función kmeans de R. Este resultado es esperado, ya que la función kmeans de R
utiliza la distancia euclidiana por defecto para calcular las distancias entre los puntos y los centroides.

Para una visualización más clara, vamos a crear una tabla que muestre la correspondencia entre los grupos del k-means
de R y los grupos del k-means manual con distancia euclidiana.

Crear una tabla de correspondencia entre los grupos del k-means de R y
#los grupos del k-means manual con distancia euclidiana
tabla_correspondencia <- data.frame(
Grupo_kmeans_R = 1:5,
Grupo_kmeans_manual = c(2, 1, 3, 5, 4)

)

Unir la tabla de correspondencia con las medias de ambos modelos
tabla_correspondencia_medias <- tabla_correspondencia %>%
left_join(resumen_por_cluster_media5, by = c("Grupo_kmeans_R" = "cluster_5")) %>%
left_join(resumen_por_cluster_media_manual, by = c("Grupo_kmeans_manual" = "cluster_manual"),

suffix = c("_R", "_Manual"))

Seleccionar y renombrar columnas para mayor claridad
tabla_correspondencia_medias <- tabla_correspondencia_medias %>%
select(
Grupo_kmeans_R, Grupo_kmeans_manual,
starts_with("media_")

)

Cambia los nombres de las columnas para que sean más descriptivos
colnames(tabla_correspondencia_medias) <- c(
"Grupo K-means R", "Grupo K-means Manual",
"Memoria (GB) R", "Bus (bits) R", "Shaders R", "TMUs R", "ROPs R",
"Reloj Memoria (MHz) R", "Reloj GPU (MHz) R",
"Memoria (GB) Manual", "Bus (bits) Manual", "Shaders Manual",
"TMUs Manual", "ROPs Manual", "Reloj Memoria (MHz) Manual", "Reloj GPU (MHz) Manual"

)

Poner la tabla en formato largo
tabla_vertical <- tabla_correspondencia_medias %>%
pivot_longer(
cols = -c(`Grupo K-means R`, `Grupo K-means Manual`),
names_to = c("Variable", "Modelo"),
names_pattern = "(.*) (R|Manual)",
values_to = "Media"

) %>%

80

pivot_wider(
names_from = Modelo,
values_from = Media

)

Opcional: ordenar por grupo y variable
tabla_vertical <- tabla_vertical %>%
arrange(`Grupo K-means R`, Variable) %>%
mutate(
`R` = round(`R`, 2),
`Manual` = round(`Manual`, 2)

)

Mostrar la tabla en vertical con kable
kable(tabla_vertical,

caption = "\\label{tab:comparacion_medias_vert} Comparación de medias por grupo
y variable: K-means R vs K-means manual",

col.names = c("Grupo K-means R", "Grupo K-means Manual", "Variable", "Media R", "Media Manual"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

81

Tabla 12: Comparación de medias por grupo y variable: K-means R vs K-means manual

Grupo K-means R Grupo K-means Manual Variable Media R Media Manual

1 2 Bus (bits) 163.28 163.51
1 2 Memoria (GB) 1.64 1.58
1 2 ROPs 14.10 13.91
1 2 Reloj GPU (MHz) 758.90 750.10
1 2 Reloj Memoria (MHz) 939.93 928.46

1 2 Shaders 394.40 379.08
1 2 TMUs 32.11 31.31
2 1 Bus (bits) 223.19 223.63
2 1 Memoria (GB) 4.43 4.01
2 1 ROPs 34.19 31.30

2 1 Reloj GPU (MHz) 1013.42 971.95
2 1 Reloj Memoria (MHz) 1468.60 1429.39
2 1 Shaders 1521.01 1407.32
2 1 TMUs 96.32 89.79
3 3 Bus (bits) 3921.78 4035.12

3 3 Memoria (GB) 56.44 30.17
3 3 ROPs 125.33 100.59
3 3 Reloj GPU (MHz) 1248.64 1143.57
3 3 Reloj Memoria (MHz) 1449.50 1035.73
3 3 Shaders 10115.56 6623.22

3 3 TMUs 485.56 349.37
4 5 Bus (bits) 146.36 146.14
4 5 Memoria (GB) 0.18 0.17
4 5 ROPs 5.34 5.29
4 5 Reloj GPU (MHz) 328.96 327.47

4 5 Reloj Memoria (MHz) 307.74 305.74
4 5 Shaders 13.41 12.81
4 5 TMUs 5.37 5.31
5 4 Bus (bits) 1276.19 322.31
5 4 Memoria (GB) 14.40 13.88

5 4 ROPs 90.94 84.12
5 4 Reloj GPU (MHz) 1285.35 1403.54
5 4 Reloj Memoria (MHz) 1417.56 1683.25
5 4 Shaders 4747.27 4261.23
5 4 TMUs 231.63 204.69

Vemos que las medias son muy similares entre ambos modelos, lo que confirma que la implementación del algoritmo
k-means manual es correcta y que los resultados obtenidos son consistentes con los obtenidos con la función kmeans
de R.

Crear un vector de conclusiones
conclusiones_manual_euclidiana <- c(
"La implementación manual del algoritmo k-means con distancia euclidiana",
"ha dado resultados muy similares a los obtenidos con la función kmeans de R.",
"Los grupos obtenidos son consistentes y las medias de las variables son muy parecidas.",

82

"Esto indica que la implementación es correcta y que los resultados son válidos."
)
Crear un data frame resumen para el modelo k=5
tabla_resultados_manual_euclidiana <- data.frame(
Modelo = "K-means manual (Euclidiana)",
Numero_Clusters = length(unique(kmeans_result_manual$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_euclidiana,
Conclusiones = paste(conclusiones_manual_euclidiana, collapse = " ")

)

4.4.2.2 Uso de la función kmeans_manual con distancia de Minkowski

Ahora que hemos establecido que la implementación manual del algoritmo k-means otorga resultados muy parecidos
a los obtenidos con la función kmeans de R, vamos a ver si usando la distancia de Minkowski obtenemos resultados
diferentes o mejores, especialmente en presencia de valores atípicos.

Uso de la función para Minkowski:

Aplicar el algoritmo k-means manual con Minkowski
kmeans_result_minkowski <- kmeans_manual(datos, k = 5, method = "minkowski",

p_minkowski = 1.5)
table(kmeans_result_minkowski$cluster)

##
1 2 3 4 5
778 1231 74 216 748

variación intra-clúster total
intra_cluster_variation_minkowski <- kmeans_result_minkowski$tot.withinss
cat("Variación intra-clúster total (Minkowski):", intra_cluster_variation_minkowski, "\n")

Variación intra-clúster total (Minkowski): 6155.124

83

Graficar los clústeres obtenidos
fviz_cluster(list(data = kmeans_result_minkowski$datos_num,

cluster = kmeans_result_minkowski$cluster))

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136

137

138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174

175

176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243

244245246247

248249250251252253254255256257258259260261262

263264

265

266

267268269270271272273274275276277278279280281

282

283284285286287288289290291292293294295296297298
299300301302

303

304305306307308
309310311312313314315316317318319

320

321

322323324

325
326

327328

329330

331
332

333

334

335336337338339340341342343 344345346347348
349

350

351
352

353354355

356
357358

359

360361

362
363364

365366
367368

369

370371

372373

374

375376

377378
379

380

381382
383384

385

386

387

388
389390391392393

394395396
397

398

399400

401

402

403404

405

406
407
408

409410411
412

413

414415416

417

418

419
420

421422
423

424

425426
427

428
429430431

432
433

434435436
437

438439
440

441
442

443
444445

446
447

448449
450
451452453454455

456
457

458
459

460

461

462

463

464465

466

467468

469470471 472

473
474475476477

478
479

480481

482

483484

485

486487

488
489

490
491

492

493
494

495496

497
498 499500501

502
503

504
505506

507508
509510

511
512513
514

515

516

517518519520

521
522

523524
525

526

527528

529

530531
532

533534

535

536537
538539540

541542
543544545

546 547

548549
550551

552553

554
555556557

558
559560561

562
563564

565

566567

568569
570

571
572

573

574
575

576577

578579
580

581

582
583584

585
586

587588
589590591

592
593

594595

596
597598
599

600601
602

603604
605

606

607

608

609610 611612

613

614615 616

617
618

619

620 621
622

623

624
625

626627
628

629

630

631

632633634

635636637
638

639
640 641

642
643

644 645
646

647
648

649
650651

652653
654

655

656657
658

659660

661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
717718719720721722723724725726727728729730731732733734735736737738739740741742743
744745746747748749750751752753754755756
757
758759
760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
791792793794795796797798799800801802803
804805806807808

809810811812813814815816817818819820821822823824825826827828829830
831832833834835836837838839840841842843844845846847848849850851852853854855856857858859

860861862863864865866867868869870871872873874875876
877878879880881882883884885886887888

889890

891892

893894895896897898899900901902903904905906907908909910911912913914915916
917918
919920921922923
924

925926

927

928929930

931932933934

935936

937938939940941942943944945946947

948949

950

951

952953

954955956957958959960961962

963964

965

966

967

968969

970971972973974975

976977

978979980981982

983984

985986987

988989990991992993994995996

997998

9991000

1001

1002100310041005

1006

100710081009

1010

1011

1012101310141015101610171018101910201021102210231024
1025

10261027102810291030103110321033103410351036

1037

103810391040104110421043104410451046104710481049105010511052105310541055

1056
1057
1058

1059
10601061

106210631064

1065

1066

106710681069

1070

1071

107210731074

1075
10761077

1078

1079108010811082

10831084

1085
1086

1087108810891090

1091
1092

1093109410951096

10971098

10991100

1101110211031104

110511061107

110811091110111111121113111411151116

1117

11181119112011211122

11231124

112511261127
1128
112911301131113211331134
113511361137113811391140114111421143114411451146114711481149
1150
11511152115311541155
1156
11571158115911601161

116211631164116511661167

1168

11691170117111721173117411751176
117711781179

1180
118111821183118411851186

118711881189119011911192119311941195

1196

119711981199120012011202

12031204

1205

120612071208
1209
121012111212121312141215121612171218

12191220

1221122212231224

1225

12261227
12281229

1230

1231

12321233

1234

1235

1236

1237

123812391240

1241

12421243124412451246

1247

124812491250

12511252

1253125412551256

1257

12581259126012611262

1263

1264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291

1292

12931294129512961297129812991300130113021303
130413051306130713081309131013111312131313141315131613171318

131913201321

1322

132313241325

1326

13271328132913301331133213331334133513361337

1338

13391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
13801381138213831384

1385

1386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
1411141214131414141514161417

14181419
1420

1421 1422
142314241425

1426142714281429
1430

1431

1432
1433143414351436

143714381439
144014411442

144314441445
1446144714481449145014511452

1453
14541455

1456
1457

14581459

1460

1461

1462

146314641465
1466

1467

1468146914701471
1472147314741475147614771478147914801481148214831484

1485
1486

1487148814891490149114921493

1494149514961497149814991500150115021503
1504

1505
15061507
15081509

15101511

1512
1513151415151516

1517151815191520152115221523
152415251526

15271528152915301531153215331534153515361537
1538153915401541154215431544
1545

1546
1547

1548
1549

1550
15511552

15531554155515561557
1558

1559
1560156115621563156415651566156715681569157015711572

1573
15741575

157615771578157915801581
15821583

1584158515861587

1588
15891590

1591
1592
15931594

15951596

1597
15981599

1600160116021603160416051606
160716081609

16101611161216131614161516161617
1618161916201621162216231624
1625

1626
1627

1628
1629

1630
16311632

16331634163516361637
1638

1639
16401641164216431644164516461647

1648
1649
165016511652165316541655
16561657

1658165916601661

1662
16631664

1665
1666
16671668

16691670

1671

167216731674
16751676

167716781679
1680

1681168216831684
1685168616871688

1689
1690

169116921693169416951696

16971698

1699
17001701

17021703

17041705

1706

17071708
17091710

17111712171317141715 171617171718171917201721172217231724

1725172617271728

1729

1730

1731173217331734
173517361737

1738

1739
174017411742174317441745

17461747

174817491750

1751
17521753

175417551756
17571758

17591760
1761

1762176317641765176617671768176917701771
177217731774

177517761777
17781779

17801781
1782178317841785178617871788

1789
1790179117921793

1794179517961797179817991800180118021803

18041805

1806

1807
180818091810

18111812181318141815181618171818181918201821

1822
1823

18241825182618271828
1829

1830
183118321833183418351836183718381839

1840
18411842184318441845

1846
184718481849185018511852

1853185418551856
185718581859

1860186118621863
18641865186618671868

1869
1870

187118721873187418751876
187718781879
1880
18811882188318841885

1886188718881889189018911892

18931894

1895

1896
189718981899

1900
1901

19021903

1904

190519061907190819091910

1911

1912
1913

19141915191619171918
1919

1920
192119221923192419251926192719281929193019311932193319341935

1936
19371938193919401941

1942
19431944194519461947

1948
1949195019511952

195319541955
1956195719581959

1960196119621963
1964

19651966196719681969
197019711972
1973
19741975197619771978

1979198019811982198319841985

19861987

1988

1989
199019911992

1993
19941995

19961997

1998

19992000

2001

20022003
200420052006

2007
20082009

2010
201120122013

2014
201520162017

201820192020
2021202220232024

2025

20262027
2028

2029203020312032203320342035
2036

2037

2038
2039204020412042

2043

2044
2045
20462047

2048

204920502051205220532054
2055

2056
2057

2058
2059

2060

2061206220632064
20652066
2067206820692070207120722073 2074207520762077

2078
2079

2080
208120822083208420852086208720882089

20902091
20922093 20942095

2096209720982099210021012102
2103210421052106210721082109211021112112211321142115211621172118211921202121212221232124

2125
21262127

21282129
2130
2131
2132

2133213421352136213721382139214021412142
21432144

2145 2146
214721482149215021512152 2153215421552156

2157
2158

2159
2160216121622163216421652166216721682169217021712172217321742175

21762177
21782179218021812182 21832184

21852186218721882189219021912192
219321942195219621972198219922002201220222032204220522062207

22082209
22102211
2212
2213
2214

22152216221722182219222022212222222322242225
2226

22272228 22292230
2231223222332234 223522362237

2238
2239

2240
224122422243224422452246224722482249225022512252225322542255

22562257
225822592260226122622263 22642265

22662267226822692270227122722273
227422752276227722782279228022812282

22832284
22852286
2287
2288
2289

22902291229222932294229522962297229822992300
2301

230223032304230523062307
2308

2309
2310

231123122313
23142315

23162317
231823192320232123222323

23242325
23262327

2328
2329233023312332233323342335233623372338

2339
23402341

2342

23432344234523462347
2348

23492350
2351

2352

2353
2354

2355
2356
235723582359

2360

2361

236223632364236523662367
2368

2369
2370

23712372

2373
23742375237623772378237923802381238223832384
23852386

23872388
238923902391
23922393

23942395239623972398239924002401

2402
240324042405240624072408

2409

24102411241224132414
24152416

2417
24182419

24202421
2422
2423

2424

24252426
242724282429

2430
24312432

2433
2434

2435

24362437

2438
2439

2440
24412442

2443

244424452446
2447

2448
2449

2450
2451

245224532454245524562457245824592460
24612462

24632464
246524662467
24682469

24702471247224732474247524762477
2478
2479

248024812482248324842485

2486

24872488248924902491
24922493

2494
24952496

24972498
2499
2500

2501

25022503
2504

25052506250725082509
2510

25112512251325142515
2516

25172518

25192520
2521

25222523

25242525

2526
2527

2528
25292530

2531

2532

25332534

253525362537

25382539
2540

2541
2542

2543
2544

254525462547254825492550255125522553
25542555

25562557
255825592560
25612562

25632564256525662567256825692570
2571
2572

257325742575257625772578

2579

25802581258225832584
25852586

2587
25882589

25902591
2592
2593

2594

25952596
259725982599260026012602260326042605

2606
2607
2608

26092610

2611261226132614
26152616

26172618

2619
2620

2621
26222623

2624

2625
2626

2627
2628

2629
2630263126322633
2634

2635
2636
2637

2638263926402641264226432644

2645

264626472648
2649265026512652

26532654
2655
26562657

26582659
2660
2661

2662

2663
26642665

266626672668

266926702671

2672
2673

26742675267626772678

26792680

2681
26822683
2684
26852686

2687

26882689

2690

2691

2692

269326942695269626972698

2699

2700
2701

27022703

2704

2705

2706
2707270827092710271127122713

2714271527162717

27182719
2720

27212722

27232724

272527262727

27282729

2730

273127322733
27342735273627372738273927402741274227432744274527462747274827492750

27512752

2753

27542755
2756
2757275827592760276127622763

2764
2765

27662767

27682769
27702771

27722773
2774

2775

2776
2777

2778
2779

2780
2781

2782
27832784

27852786

278727882789

27902791

2792

279327942795
27962797279827992800280128022803280428052806280728082809281028112812

28132814

2815

28162817
2818
2819282028212822282328242825

28262827

28282829
28302831

28322833
2834

2835

2836
2837

2838
2839

2840
2841

28422843

28442845
28462847

2848

2849
2850

2851
2852

2853
28542855

28562857

285828592860

28612862

2863

286428652866
28672868286928702871287228732874287528762877287828792880288128822883

28842885

2886

28872888
2889
2890289128922893289428952896

28972898

28992900
29012902

29032904
2905

2906

2907
2908

2909
2910

2911
2912

2913
29142915

29162917

29182919

29202921

2922

292329242925
29262927

2928

29292930
2931
2932

29332934

29352936
29372938

29392940
2941

2942

2943

2944
2945

2946
2947

2948
29492950

2951
29522953295429552956295729582959296029612962

2963

29642965296629672968296929702971
297229732974

29752976

29772978

2979

2980298129822983

2984298529862987

2988298929902991
299229932994

2995
29962997

2998

2999
30003001

3002

300330043005

3006

3007300830093010

3011

3012301330143015301630173018301930203021
30223023302430253026302730283029303030313032303330343035
3036

30373038303930403041

3042

3043
3044

3045
3046

3047

−4

0

4

8

0 5 10 15
Dim1 (57.9%)

D
im

2
(2

2%
)

cluster

a

a

a

a

a

1

2

3

4

5

Cluster plot

Figura 23: Clústeres de Tarjetas Gráficas (K=5) con K-means Manual (Minkowski)

Como podemos ver en el gráfico, los clústeres obtenidos son también muy similares a los obtenidos con la función
kmeans de R y con la implementación manual del algoritmo k-means con distancia euclidiana. Sin embargo, la varia-
ción intra-clúster total es ligeramente más baja, lo que sugiere que los clústeres son un poco más compactos.

Aquí también vemos que el grupo 3 está más disperso que el resto de grupos. En el análisis de los grupos obtenidos con
la función de R, habíamos concluido que se debía a que este grupo estaba principalmente formado por tarjetas gráficas
de tipo de memoria HBM y de gama alta, pero con arquitecturas diferentes. Vamos a ver si esto se repite en el análisis
de los grupos obtenidos con la distancia de Minkowski. Para ello, vamos a ver contar el número de tarjetas que hay por
tipo de memoria en cada clúster, igual que hicimos en el apartado 3.3.1.4.

Contar el número de tarjetas gráficas por tipo de memoria en cada clúster
resumen_por_cluster_memoria_minkowski <- datos %>%
group_by(cluster_manual = kmeans_result_minkowski$cluster, Memory_Type) %>%
summarise(n = n()) %>%
ungroup() %>%

84

arrange(cluster_manual, desc(n))
Contar el número total de tarjetas gráficas por tipo de memoria
resumen_total_memoria_minkowski <- datos %>%
group_by(Memory_Type) %>%
summarise(n = n()) %>%
ungroup() %>%
arrange(desc(n))

Mostrar una tabla con kable
tabla_comparacion_minkowski <- resumen_por_cluster_memoria_minkowski %>%
left_join(resumen_total_memoria_minkowski, by = "Memory_Type", suffix = c("_cluster", "_total")) %>%
mutate(porcentaje_cluster = n_cluster / n_total * 100)

Generar una tabla con kable
tabla_comparacion_minkowski <- kable(tabla_comparacion_minkowski,

caption = "\\label{tab:comparacion_memoria_minkowski} Comparación del número de
tarjetas gráficas por tipo de memoria (Minkowski)",

col.names = c("Clúster", "Tipo de Memoria", "Número en Clúster",
"Número Total", "Porcentaje en Clúster"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))
tabla_comparacion_minkowski

85

Tabla 13: Comparación del número de tarjetas gráficas por tipo de memoria (Minkowski)

Clúster Tipo de Memoria Número en Clúster Número Total Porcentaje en Clúster

1 GDDR5 672 1145 58.6899563
1 GDDR6 96 211 45.4976303
1 HBM2 4 36 11.1111111
1 GDDR5X 2 30 6.6666667
1 LPDDR4X 2 2 100.0000000

1 DDR3 1 424 0.2358491
1 LPDDR5 1 1 100.0000000
2 GDDR5 423 1145 36.9432314
2 DDR3 414 424 97.6415094
2 GDDR3 352 508 69.2913386

2 GDDR4 25 25 100.0000000
2 DDR2 7 140 5.0000000
2 DDR4 4 4 100.0000000
2 GDDR6 3 211 1.4218009
2 HBM2 3 36 8.3333333

3 HBM2 25 36 69.4444444
3 HBM 23 23 100.0000000
3 HBM2e 22 22 100.0000000
3 HBM3 4 4 100.0000000
4 GDDR6 112 211 53.0805687

4 GDDR5 49 1145 4.2794760
4 GDDR5X 28 30 93.3333333
4 GDDR6X 20 20 100.0000000
4 HBM2 4 36 11.1111111
4 GDDR7 3 3 100.0000000

5 DDR 314 314 100.0000000
5 GDDR3 156 508 30.7086614
5 DDR2 133 140 95.0000000
5 SDR 87 87 100.0000000
5 DRAM 17 17 100.0000000

5 EDO 11 11 100.0000000
5 DDR3 9 424 2.1226415
5 VRAM 7 7 100.0000000
5 eDRAM 6 6 100.0000000
5 GDDR2 3 3 100.0000000

5 SGR 2 2 100.0000000
5 FPM 1 1 100.0000000
5 GDDR5 1 1145 0.0873362
5 SGRAM 1 1 100.0000000

Observaciones

• Se observa claramente que el grupo 3 agrupa la mayoría de las tarjetas gráficas conmemoria HBM. Esto contrasta
con los resultados obtenidos anteriormente (Tabla 3 del apartado 3.3.1.4), donde las tarjetas con memoria HBM
estaban repartidas en varios grupos. La utilización de la distancia de Minkowski ha permitido que estas tarjetas

86

se agrupen de forma más coherente, lo que indica que esta métrica es más robusta frente a valores atípicos.

• La mayor dispersión observada en el grupo 3 puede explicarse porque, aunque todas las tarjetas comparten la
característica de un ancho de bus elevado (propio de la memoria HBM), pueden diferir en otras especificaciones
técnicas debido a pertenecer a distintas generaciones o arquitecturas. Por ello, dentro del grupo existe una mayor
variabilidad en el resto de variables.

• El grupo 4 también está más disperso que el resto de grupos. Vemos que en general está formado por tarjetas de
gama alta, pero no podemos explicar con estos datos por qué hay cierta dispersión entre las tarjetas gráficas. Por
ello, vamos a analizar más a fondo este grupo.

Resumen por cluster con medias:

Añadir la variable de clúster al conjunto de datos original
datos$cluster_minkowski <- kmeans_result_minkowski$cluster
Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media_minkowski <- datos %>%
group_by(cluster_minkowski) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

Generar una tabla con kable
kable(resumen_por_cluster_media_minkowski,

caption = "\\label{tab:resumen_por_cluster_media_minkowski} Resumen de las medias por clúster (Minkowski)",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 14: Resumen de las medias por clúster (Minkowski)

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 4.0086761 223.6298 1407.32134 89.789203 31.300771 1429.3946 971.9460
2 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991
3 29.4324324 4428.1081 5346.59459 324.864865 91.135135 947.5270 1081.2297
4 14.7314815 325.1852 4786.07407 218.444444 87.962963 1689.4907 1415.2731
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

Gráfico de barras de medias de cada variable por clúster
resumen_por_cluster_media_minkowski %>%
pivot_longer(cols = -cluster_minkowski, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_minkowski), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Medias de cada variable por clúster (Minkowski)",

x = "Clúster", y = "Media") +

87

theme_minimal() +
scale_fill_brewer(palette = "Set3")

0

2000

4000

1 2 3 4 5
Clúster

M
ed

ia

Variable

media_GPU_clock (MHz)

media_Memory_Bus (bits)

media_Memory_clock (MHz)

media_Memory_Size (GB)

media_ROPs

media_Shaders

media_TMUs

Medias de cada variable por clúster (Minkowski)

Figura 24: Medias de cada variable por clúster (Minkowski)

Viendo las medias, en efecto podemos observar que el grupo 3 tiene la media más alta de ancho de bus, y que junto
con el grupo 4 presentan en general las medias más altas de todas las variables, lo que indica que estos grupos están
formados por tarjetas gráficas de gama alta.

Vamos a ver en qué fechas se lanzaron las tarjetas gráficas del grupo 4, para ver si podemos entender mejor por qué
hay cierta dispersión entre las tarjetas gráficas de este grupo. Para ello, vamos a crear una tabla con las fechas de
lanzamiento de las tarjetas gráficas del grupo 4.

Tabla 15: Tarjetas gráficas del grupo 4 por fecha de lanzamiento

Fecha de lanzamiento Número de tarjetas gráficas

Después de 2020 104
2016-2020 84
2010-2015 28

Aquí podemos ver que la gran mayoría de las tarjetas gráficas del grupo 4 fueron lanzadas después de 2020 y entre

88

2016 y 2020, con unas pocas lanzadas entre 2015 y 2015. Esto indica que el grupo 4 está formado por tarjetas gráficas
de gama alta, pero de distintas generaciones, lo que podría explicar la dispersión observada, ya que entre 2010-2015
y la actualidad ha habido un gran avance en la tecnología de las tarjetas gráficas, lo que ha permitido mejorar las
especificaciones técnicas de las mismas.

Entonces la dispersión podría estar causada por las tarjetas gráficas lanzadas entre 2010 y 2015, que son de generaciones
más antiguas y por tanto tienen especificaciones técnicas más bajas que las tarjetas gráficas lanzadas después de 2020.

Dicho esto, parece interesante ver cómo se comportan los demás grupos en cuanto a fechas de lanzamiento. Para
ello, vamos a crear un gráfico de barras agrupadas que muestre el número de tarjetas gráficas por grupo y fecha de
lanzamiento, donde además añadiremos una etiqueta con el porcentaje del total de tarjetas gráficas por grupo y fecha
de lanzamiento, pero sólo en el menor valor de cada grupo.

Con esto, podremos ver cómo se distribuyen las tarjetas gráficas por grupo y fecha de lanzamiento, y si hay una relación
entre la dispersión de los grupos y la fecha de lanzamiento de las tarjetas gráficas.

Calcular el total y el porcentaje por grupo
tarjetas_por_fecha <- datos %>%
group_by(cluster_minkowski, Released) %>%
summarise(n = n(), .groups = "drop") %>%
group_by(cluster_minkowski) %>%
mutate(total_grupo = sum(n),

porcentaje = round(100 * n / total_grupo, 1),
min_n = min(n),
label = ifelse(n == min_n, paste0(porcentaje, "%"), NA))

89

Gráfico de barras agrupadas con etiqueta solo en el menor valor
ggplot(tarjetas_por_fecha, aes(x = factor(cluster_minkowski), y = n, fill = Released)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.8)) +
geom_text(aes(label = label),

position = position_dodge(width = 0.8),
vjust = -0.5,
color = "black",
size = 3,
na.rm = TRUE) +

labs(
title = "Tarjetas gráficas por grupo y fecha de lanzamiento",
x = "Grupo",
y = "Número de tarjetas gráficas",
fill = "Fecha de lanzamiento"

) +
theme_minimal() +
scale_fill_brewer(palette = "Set2")

8.7%

0.3% 14.9%
13% 2.3%

0

200

400

600

800

1 2 3 4 5
Grupo

N
úm

er
o

de
 ta

rje
ta

s
gr

áf
ic

as

Fecha de lanzamiento

Antes de 2000

2000−2009

2010−2015

2016−2020

Después de 2020

Tarjetas gráficas por grupo y fecha de lanzamiento

Figura 25: Tarjetas gráficas por grupo y fecha de lanzamiento

90

Según el gráfico de la Figura 25, podemos ver que en los grupos 3 y 4, que eran los que más dispersos estaban, tienen
los porcentajes más altos del periodo de fecha de lanzamiento que menor número de tarjetas gráficas tienen en sus
respectivos grupos. Además, en estos dos grupos, la mayoría de las tarjetas gráficas son de entre 2016 y después de
2020, lo que podría explicar la dispersión observada en estos grupos, ya que las tarjetas gráficas de estas fechas son de
gama alta y tienen especificaciones técnicas más altas que las tarjetas gráficas de generaciones anteriores.

Para confirmar esta hipótesis, vamos a ver si los grupos 3 y 4 tienen una mayor variabilidad en las especificaciones
técnicas de las tarjetas gráficas. Para ello, vamos a calcular la desviación estándar de cada variable por grupo y ver si
hay una mayor variabilidad en los grupos 3 y 4.

Calcular la desviación estándar de cada variable por grupo
desviacion_estandar_por_grupo <- datos %>%
group_by(cluster_minkowski) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), sd,
.names = "sd_{.col}"))

91

Gráfico de barras de desviación estándar de cada variable por clúster
ggplot(desviacion_estandar_por_grupo %>%

pivot_longer(cols = -cluster_minkowski, names_to = "Variable",
values_to = "Desviación Estándar"),

aes(x = factor(cluster_minkowski), y = `Desviación Estándar`, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Desviación estándar de cada variable por clúster (Minkowski)",

x = "Clúster", y = "Desviación Estándar") +
theme_minimal() +
scale_fill_brewer(palette = "Set3")

0

1000

2000

3000

1 2 3 4 5
Clúster

D
es

vi
ac

ió
n

E
st

án
da

r

Variable

sd_GPU_clock (MHz)

sd_Memory_Bus (bits)

sd_Memory_clock (MHz)

sd_Memory_Size (GB)

sd_ROPs

sd_Shaders

sd_TMUs

Desviación estándar de cada variable por clúster (Minkowski)

Figura 26: Desviación estándar de cada variable por clúster (Minkowski)

Vemos que efectivamente los grupos 3 y 4 tienen una mayor variabilidad en las especificaciones técnicas de las tarjetas
gráficas, lo que confirma nuestra hipótesis de que la dispersión observada en estos grupos se debe a la presencia de
tarjetas gráficas de distintas generaciones y arquitecturas.

Crear un vector de conclusiones
conclusiones_manual_minkowski <- c(
"La implementación manual del algoritmo k-means con distancia de Minkowski",

92

"ha dado resultados muy similares a los obtenidos con la función kmeans de R.",
"Los grupos obtenidos son consistentes y las medias de las variables son muy parecidas.",
"La variación intra-clúster total es ligeramente más baja que con la distancia euclidiana,",
"lo que sugiere que los clústeres son un poco más compactos.",
"El grupo 3 agrupa la mayoría de las tarjetas gráficas con memoria HBM,",
"mientras que el grupo 4 está formado por tarjetas gráficas de gama alta, pero de distintas generaciones.",
"La dispersión observada en estos grupos se debe a la presencia de tarjetas gráficas de distintas generaciones y arquitecturas."

)
Crear un data frame resumen para el modelo k=5
tabla_resultados_manual_minkowski <- data.frame(
Modelo = "K-means manual (Minkowski)",
Numero_Clusters = length(unique(kmeans_result_manual$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_minkowski,
Conclusiones = paste(conclusiones_manual_minkowski, collapse = " ")

)

5 Conclusiones

5.1 Valoración del cumplimiento de los objetivos

A lo largo de este trabajo se han cumplido los objetivos planteados al inicio del estudio:

1. Describir y preparar la base de datos: Se realizó una exhaustiva limpieza y transformación de los datos, iden-
tificando y tratando valores atípicos, variables irrelevantes y datos faltantes. Esto permitió obtener un conjunto
de datos adecuado y fiable para el análisis posterior.

2. Explorar y analizar las variables clave: Se llevó a cabo un análisis exploratorio detallado de las variables
numéricas y categóricas, identificando patrones, tendencias y relaciones relevantes entre las diferentes carac-
terísticas de las tarjetas gráficas. Este análisis facilitó la interpretación de los resultados obtenidos en las fases
posteriores.

3. Implementar y comparar métodos de agrupamiento: Se aplicó el algoritmo K-means en diferentes escena-
rios: utilizando únicamente variables numéricas, combinando variables numéricas y categóricas, y mediante una
implementación manual que permitió experimentar con distintas métricas de distancia (euclidiana y Minkows-
ki). Además, para poder reducir la dimensionalidad del conjunto de datos en el caso del modelo combinado
de variables numéricas y categóricas, se empleó el análisis de componentes principales (PCA), lo que permitió
sintetizar la información y facilitar la interpretación de los resultados.

4. Interpretar y validar los grupos obtenidos: Se analizaron en profundidad las características de los clústeres
resultantes, identificando patrones comunes y diferencias entre los grupos. Además, se evaluó la robustez y
coherencia de los agrupamientos en función de las especificaciones técnicas y la evolución tecnológica de las
tarjetas gráficas.

93

5. Extraer conclusiones relevantes: Finalmente, se sintetizaron los hallazgos obtenidos, destacando las implica-
ciones prácticas y teóricas del agrupamiento de tarjetas gráficas.

En definitiva, el trabajo ha permitido alcanzar todos los objetivos propuestos, proporcionando una visión integral y
objetiva sobre la clasificación y segmentación de tarjetas gráficas en función de sus características técnicas, y demos-
trando la utilidad del PCA como herramienta para el análisis y reducción de la dimensionalidad en conjuntos de datos
complejos. Además, la implementación manual del algoritmo K-means ha permitido profundizar en el entendimiento
del funcionamiento de este método de agrupamiento y su aplicación en el contexto de las tarjetas gráficas.

5.2 Conclusiones finales

En primer lugar, se presenta una tabla con los resultados obtenidos en cada uno de los modelos:

Combinar todos los data frames de resultados
tabla_resultados_comparativa <- rbind(
tabla_resultados_kmeans,
tabla_resultados_manual_euclidiana,
tabla_resultados_manual_minkowski

)

Generar una tabla con kable
kable(tabla_resultados_comparativa,

caption = "\\label{tab:comparacion_modelos_todos} Comparación de los resultados de los modelos K-means",
col.names = c("Modelo", "Número de Clústeres",
"Variación Intra-Cluster", "Conclusiones"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position")) %>%
column_spec(4, width = "8cm")

94

Tabla 16: Comparación de los resultados de los modelos K-means

Modelo Número de Clústeres Variación Intra-Cluster Conclusiones

Solo numéricas 5 6157.303 El grupo 3 se caracteriza por tener un ancho de banda
alto, lo que podría indicar que está formado por tarjetas
gráficas de tipo HBM. Los grupos 1, 2 y 4 tienen una
varianza baja en todas las variables, lo que sugiere que
estos grupos están muy homogéneos y bien definidos.

Numéricas y categóricas 8 9501.153 Se tuvo que hacer un PCA para reducir la
dimensionalidad de los datos. Después de aplicar el PCA
y realizar el clustering, se observó que los grupos 1 y 2
tienen cierta superposición, igual que los grupos 3 y 6.
Había un par de grupos bien definidos y otros que
estaban más dispersos. Luego se concluyó que los
grupos estaban principalmente definidos por el tipo de
memoria de las tarjetas gráficas.

K-means manual (Euclidiana) 5 6160.190 La implementación manual del algoritmo k-means con
distancia euclidiana ha dado resultados muy similares a
los obtenidos con la función kmeans de R. Los grupos
obtenidos son consistentes y las medias de las variables
son muy parecidas. Esto indica que la implementación es
correcta y que los resultados son válidos.

K-means manual (Minkowski) 5 6155.124 La implementación manual del algoritmo k-means con
distancia de Minkowski ha dado resultados muy
similares a los obtenidos con la función kmeans de R.
Los grupos obtenidos son consistentes y las medias de
las variables son muy parecidas. La variación
intra-clúster total es ligeramente más baja que con la
distancia euclidiana, lo que sugiere que los clústeres son
un poco más compactos. El grupo 3 agrupa la mayoría de
las tarjetas gráficas con memoria HBM, mientras que el
grupo 4 está formado por tarjetas gráficas de gama alta,
pero de distintas generaciones. La dispersión observada
en estos grupos se debe a la presencia de tarjetas gráficas
de distintas generaciones y arquitecturas.

En laTabla 16 podemos observar que el únicomodelo que incluía variables categóricas (modelo combinado) no ha sido
capaz de encontrar una estructura clara en los datos, lo que indica que las variables categóricas no aportan información
relevante para el agrupamiento de tarjetas gráficas para nuestro caso. Por tanto, los modelos que únicamente utilizan
variables numéricas (tanto el K-means de R como la implementaciónmanual) han sido losmás efectivos para identificar
patrones y segmentar las tarjetas gráficas en clústeres coherentes, donde los tres modelos han obtenido resultados muy
similares en cuanto al número de clústeres y la variación intra-clúster, así como la clasificación de las tarjetas gráficas.
No obstante, cabe destacar que el modelo con la distancia de Minkowski, ha presentado una variación intra-cluster
ligeramente menor, lo que sugiere que los clústeres son un poco más compactos y homogéneos, especialmente en el
caso de las tarjetas gráficas con memoria HBM.

Hablando de las tarjetas gráficas con memoria HBM, durante todo el trabajo hemos visto que estas tarjetas gráficas
se diferencian mucho más de las demás, ya que tienen un uso muy especial comparado con el uso habitual de las
tarjetas gráficas, que es el gaming. Este uso especial se resume en que las tarjetas gráficas con memoria HBM están
diseñadas para tareas que requieren un alto rendimiento en el procesamiento de datos, como la inteligencia artificial,
el aprendizaje automático, la computación científica y el procesamiento de datos biomédicos. Esto lo consiguen con
un ancho de bus elevado, que se ha podido observar a lo largo del análisis, tanto en el análisis exploratorio de datos
como en los modelos de agrupamiento, donde hemos visto que las tarjetas gráficas con memoria HBM se agrupan en
un clúster propio, lo que indica que estas tarjetas gráficas tienen unas especificaciones técnicas muy diferentes al resto

95

de tarjetas gráficas.

5.3 Reflexión personal

La realización de este Trabajo de Fin de Grado ha supuesto un importante proceso de aprendizaje y desarrollo personal
en varios ámbitos. En primer lugar, he adquirido una mayor destreza en el uso de R Markdown como herramienta
integral para la elaboración de documentos científicos y técnicos. Gracias a este proyecto, he aprendido a gestionar
referencias bibliográficas mediante archivos .bib, a utilizar el sistema de índices y referencias cruzadas de manera
automática, y a estructurar un documento extenso de forma clara y profesional. Considero que estas competencias
serán muy valiosas tanto en futuros estudios como en el ámbito laboral, donde la capacidad de documentar y presentar
resultados de manera formal y reproducible es cada vez más demandada.

Otro aspecto fundamental ha sido la mejora en la presentación y comunicación de resultados. El hecho de tener que
exponer los análisis y conclusiones de forma coherente, estructurada y comprensible me ha obligado a reflexionar
sobre la mejor manera de transmitir la información, adaptando el lenguaje y los recursos gráficos al público objetivo.
Esta habilidad es esencial en cualquier entorno profesional, ya que la claridad en la comunicación de resultados puede
marcar la diferencia en la toma de decisiones.

Asimismo, este trabajo me ha permitido desarrollar la capacidad de investigar a fondo, enfrentándome a problemas nue-
vos y buscando soluciones de manera autónoma. He aprendido a consultar fuentes especializadas, comparar enfoques
y adaptar las metodologías a las características concretas de los datos y los objetivos del análisis.

En el plano técnico, la implementación manual del algoritmo K-means ha sido especialmente enriquecedora. No solo
me ha permitido comprender en profundidad el funcionamiento interno del método, sino también experimentar con
diferentes métricas de distancia y valorar su impacto en los resultados. Esta experiencia me ha dado una visión más
crítica y flexible sobre el uso de algoritmos de agrupamiento en la práctica.

Por último, he ampliado notablemente mis conocimientos sobre tarjetas gráficas y sus aplicaciones, descubriendo que
su utilidad va mucho más allá del ámbito de los videojuegos. Ahora comprendo mejor su papel en áreas como la
inteligencia artificial, la computación científica o el procesamiento de datos biomédicos, lo que me ha permitido valorar
la importancia de la tecnología en contextos muy diversos.

En definitiva, este TFG ha supuesto un reto que me ha permitido crecer tanto a nivel técnico como personal, y me ha
motivado a seguir aprendiendo y profundizando en el análisis de datos y sus aplicaciones reales.

6 Líneas futuras

A partir de los resultados obtenidos en este trabajo, se abren varias líneas interesantes para continuar y profundizar en
el análisis:

• Optimización de los modelos de agrupamiento: Sería interesante explorar técnicas avanzadas de optimiza-
ción de agrupamiento para la selección automática del número óptimo de clústeres y la mejora de la robustez
de los resultados. Además, se podrían comparar otros algoritmos de clustering, como DBSCAN que se había
mencionado en el apartado 4.1, para evaluar su desempeño frente a K-means en este contexto.

96

• Exploración de nuevos ámbitos de aplicación:
Los resultados del clustering han puesto de manifiesto la existencia de grupos de tarjetas gráficas con caracterís-
ticas técnicas diferenciadas, especialmente aquellas con memoria HBM. En el futuro, me gustaría profundizar
en el análisis de otros segmentos identificados por los modelos de agrupamiento, investigando sus aplicaciones
específicas en ámbitos como el gaming, la computación científica, el procesamiento de datos biomédicos o in-
cluso el renderizado profesional. Esto permitiría comprender mejor el impacto de la evolución tecnológica de
las GPUs en diferentes sectores y orientar el análisis hacia casos de uso concretos.

Estas líneas futuras permitirían enriquecer el estudio, aportar una visión más completa sobre la segmentación tecnoló-
gica de las tarjetas gráficas y abrir nuevas oportunidades de investigación aplicada en el ámbito del análisis de datos.

Referencias

Cui, Mengyao, et al. “Introduction to the k-Means Clustering Algorithm Based on the Elbow Method.” Accounting,
Auditing and Finance, vol. 1, no. 1, 2020, pp. 5–8.

Eklund, Anders, et al. “fMRI Analysis on the GPU—Possibilities and Challenges.” Computer Methods and Programs
in Biomedicine, vol. 105, no. 2, 2012, pp. 145–61.

Kalaiselvi, T., et al. “Survey of Using GPU CUDA Programming Model in Medical Image Analysis.” Informatics in
Medicine Unlocked, vol. 9, 2017, pp. 133–44.

Manual, A. Beginner’s. An Introduction to Statistical Learning with Applications in r. 2013.
Neshat, Mehdi, et al. “Wind Turbine Power Output Prediction Using a New Hybrid Neuro-Evolutionary Method.”

Energy, vol. 229, 2021, p. 120617.
Oyelade, Olanrewaju Jelili, et al. “Application of k Means Clustering Algorithm for Prediction of Students Academic

Performance.” arXiv Preprint arXiv:1002.2425, 2010.
Saxena, Amit, et al. “A Review of Clustering Techniques and Developments.” Neurocomputing, vol. 267, 2017, pp.

664–81.
Singh, Archana, et al. “K-Means with Three Different Distance Metrics.” International Journal of Computer Applica-

tions, vol. 67, no. 10, 2013.
Zhang, Yichen, et al. “A GPU-Based Computational Framework That Bridges Neuron Simulation and Artificial Inte-

lligence.” Nature Communications, vol. 14, no. 1, 2023, p. 5798.
Zhao, Ying, et al. “Hierarchical Clustering Algorithms for Document Datasets.” Data Mining and Knowledge Disco-

very, vol. 10, 2005, pp. 141–68.

97

	Resumen
	Introducción
	Contexto histórico y motivación
	Objetivos
	Herramientas
	Fundamentos académicos y aportación novedosa

	Base de datos: descripción, preparación y análisis.
	Descripción de los datos
	Preparación y procesamiento de los datos
	Limpieza y transformación de variables
	Descripción de las variables transformadas

	Análisis exploratorio de datos
	Estadísticas descriptivas
	Tratamiento de valores perdidos
	Tratamiento de valores atípicos
	Conclusiones del análisis exploratorio

	Relaciones entre variables clave
	Correlación entre variables numéricas
	Visualización de relaciones clave
	Conclusiones del análisis de relaciones

	Clustering
	Fundamentos teóricos del método
	Clustering con K-means
	Algoritmo K-means

	Aplicación del método K-means
	Clustering con variables numéricas
	Estandardización de los datos
	Determinación del número óptimo de clústeres (K)
	Aplicación del método K-means
	Análisis de los grupos obtenidos en el clustering

	Clustering con variables numéricas y categóricas
	Preparación de los datos
	Fundamento teórico del análisis de componentes principales (PCA)
	Aplicación del PCA
	Agrupación de tipos de memoria y aplicación del PCA
	Método del codo con PCA
	Aplicación del método K-means con PCA
	Análisis de los grupos obtenidos en el clustering

	Comparación de los dos modelos

	Implementación manual del algoritmo K-means
	Repaso teórico del algoritmo K-means
	Creación del algoritmo K-means manual
	Uso de la función kmeans_manual con distancia euclidiana
	Uso de la función kmeans_manual con distancia de Minkowski

	Conclusiones
	Valoración del cumplimiento de los objetivos
	Conclusiones finales
	Reflexión personal

	Líneas futuras
	Referencias

