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1 Resumen

En este Trabajo de Fin de Grado se analiza y agrupa una base de datos de tarjetas graficas de los ultimos 20 afios

utilizando técnicas de analisis de datos y aprendizaje no supervisado, principalmente el algoritmo K-means. El proceso

incluy6 la limpieza y transformacién de los datos, el andlisis exploratorio de variables numéricas y categoricas, y

la implementacion de diferentes modelos de agrupamiento: uno solo con variables numéricas, otro combinado con

variables categdricas y numéricas, y una version manual de K-means que permitié comparar distintas métricas de

distancia (euclidiana y Minkowski).

Se trabaja sobre una base de datos que contiene informacion sobre tarjetas graficas de diferentes fabricantes y genera-

ciones.



2 Introduccion

2.1 Contexto histérico y motivacion

Histéricamente, las tarjetas graficas han tenido un papel fundamental en la evolucion de los videojuegos y la compu-
tacion grafica. Desde sus inicios, estas unidades de procesamiento grafico (GPUs) han evolucionado de manera sig-
nificativa, permitiendo la creacion de graficos cada vez mas complejos y realistas. En sus primeras etapas, las GPUs
estaban disefiadas exclusivamente para acelerar el renderizado de graficos en 2D y 3D, pero con el tiempo, su arqui-

tectura se ha adaptado para soportar calculos mas generales.

Un ejemplo destacado de esta evolucion es su aplicacion en el analisis de imdgenes de resonancia magnética funcional
(fMRI). Segtn el trabajo de (Eklund et al.), las GPUs han demostrado ser herramientas altamente eficientes para ace-
lerar el procesamiento de datos de fMRI, que requiere manejar grandes volimenes de informacion y realizar calculos
intensivos. Este enfoque ha permitido reducir significativamente los tiempos de procesamiento en comparacion con
las CPUs tradicionales, haciendo posible realizar analisis mas rapidos y detallados de la actividad cerebral. Sin em-
bargo, los autores también destacan los desafios asociados, como la necesidad de adaptar algoritmos existentes para

aprovechar al maximo la arquitectura de las GPUs.

De manera complementaria, un estudio mas reciente de (Kalaiselvi et al.) también explora el uso de GPUs en aplicacio-
nes biomédicas, destacando su capacidad para manejar tareas de procesamiento intensivo en areas como la neurociencia
y la biomedicina. Ambos estudios coinciden en que las GPUs no solo ofrecen ventajas en términos de velocidad, sino
que también permiten realizar analisis mas complejos que antes eran inviables debido a las limitaciones de las CPUs.
Ademas, el estudio de 2017 amplia el enfoque al considerar no solo el rendimiento, sino también los desafios practicos,

como la optimizacion de algoritmos y la gestion de recursos computacionales en entornos biomédicos.

Mas recientemente, (Zhang et al.) ha desarrollado un marco computacional basado en GPUs que conecta la simulacion
neuronal con la inteligencia artificial. Este trabajo destaca como las GPUs pueden ser utilizadas para integrar modelos
de simulacién neuronal con algoritmos de aprendizaje profundo, permitiendo avances significativos en la comprension
de la actividad cerebral y en el desarrollo de sistemas de inteligencia artificial inspirados en el cerebro. Este enfoque
no solo mejora la eficiencia computacional, sino que también abre nuevas posibilidades para explorar la interaccion

entre la neurociencia y la inteligencia artificial, un campo emergente con un enorme potencial.

Estos hallazgos refuerzan la idea de que las GPUs han trascendido su propoésito original, convirtiéndose en herramientas
clave en campos como la investigacion médica, la neurociencia y la inteligencia artificial. Su capacidad para realizar
calculos paralelos de manera eficiente las convierte en un recurso indispensable para tareas de computacion intensiva,
como el analisis de datos de fMRI, la simulacion neuronal y otras aplicaciones biomédicas. Ademas, con la evolucion
de la inteligencia artificial y el aprendizaje profundo, las GPUs contintian ampliando su impacto en areas como la

simulacion cientifica, la mineria de datos y el desarrollo de tecnologias innovadoras.

2.2 Objetivos

El objetivo principal de este trabajo es analizar y agrupar tarjetas graficas en funcion de sus especificaciones técnicas y
caracteristicas relevantes, utilizando técnicas de analisis de datos y aprendizaje no supervisado. Para ello, se plantean

los siguientes objetivos especificos:



1. Describir y preparar la base de datos: Realizar una limpieza y transformacion exhaustiva de los datos, identifi-
cando y tratando valores atipicos, variables irrelevantes y datos faltantes, con el fin de obtener un conjunto de

datos adecuado para el analisis.

2. Explorar y analizar las variables clave: Llevar a cabo un andlisis exploratorio de las variables numéricas y ca-
tegodricas, identificando patrones, tendencias y relaciones relevantes entre las diferentes caracteristicas de las

tarjetas graficas.

3. Implementar y comparar métodos de agrupamiento: Aplicar el algoritmo K-means, tanto con variables numéricas
como combinando variables numéricas y categoricas, y comparar los resultados obtenidos. Ademas, implementar
el algoritmo K-means de forma manual para explorar el impacto de diferentes métricas de distancia, como la

distancia euclidiana y la distancia de Minkowski.

4. Interpretar y validar los grupos obtenidos: Analizar las caracteristicas de los clisteres resultantes, identificando
patrones comunes y diferencias entre los grupos, y evaluar la robustez y coherencia de los agrupamientos en

funcion de las especificaciones técnicas y la evolucion tecnologica de las tarjetas graficas.

5. Extraer conclusiones relevantes: Sintetizar los hallazgos obtenidos a lo largo del analisis, destacando las implica-
ciones practicas y teoricas del agrupamiento de tarjetas graficas y proponiendo posibles lineas de investigacion

futura.

2.3 Herramientas

En este trabajo se utilizara el lenguaje de programacion R como herramienta principal para el analisis de datos. A lo
largo del documento, se combinaran explicaciones teodricas con fragmentos de codigo en R, lo que permitira ilustrar
de manera practica los conceptos y métodos empleados. Este enfoque busca facilitar la comprension de los analisis

realizados y fomentar la reproducibilidad de los resultados.

2.4 Fundamentos académicos y aportacion novedosa

Alo largo de la carrera, he adquirido una solida base en técnicas estadisticas y de andlisis de datos, incluyendo el analisis
exploratorio de datos, el estudio de correlaciones entre variables, el analisis de componentes principales (PCA) y la
aplicacion de métodos de agrupamiento como el algoritmo k-means utilizando el software R. Estas herramientas me
han permitido abordar problemas complejos de clasificacion y segmentacion de datos, asi como interpretar y visualizar

patrones relevantes en conjuntos de datos multidimensionales.

Sin embargo, este trabajo incorpora también una vertiente novedosa respecto a lo aprendido en la carrera. En particular,
se ha desarrollado una implementacion manual del algoritmo k-means, lo que ha permitido un mayor control sobre el
proceso de agrupamiento y la posibilidad de experimentar con diferentes métricas de distancia, como la distancia de
Minkowski. Esta extension no solo enriquece el andlisis, sino que también permite evaluar la robustez de los resultados
frente a la presencia de valores atipicos y explorar alternativas mas flexibles a la distancia euclidiana tradicionalmente
utilizada. De este modo, el trabajo combina los conocimientos adquiridos durante la formacion académica con una
aproximacion mas avanzada y personalizada al problema de agrupamiento de tarjetas graficas.



3 Base de datos: descripcion, preparacion y analisis.

3.1 Descripcion de los datos

Vamos a usar una base de datos que contiene informacidn sobre tarjetas graficas de diferentes fabricantes de los ultimos
20 afios. La base de datos incluye diferentes especificaciones técnicas que nos ayudaran a analizar y agrupar las tarjetas

graficas.

A continuacion se procedera a cargar la base de datos con ayuda de la libreria readr.

set.seed(1234)
library(readr)
setwd("C:/Users/maikm/Desktop/Estadistica/TFG_git")

datos <- read_csv("data/tpu_gpus.csv")

El conjunto de datos contiene tanto variables categoricas como numéricas, aunque la mayoria de las variables son
categdricas en su estado original. A continuacién, se describen las principales variables y las transformaciones que se

realizaran para adaptarlas al analisis:

* Product Name: Identificador Ginico de cada tarjeta grafica. Por lo tanto no la trataremos como una variable, ya

que su Unico propdsito es identificar cada tarjeta grafica.

* GPU_Chip: Es una variable categdrica que nos indica el tipo de chip que utiliza la tarjeta grafica. A continuacion

mostraremos cuantos tipos de chips hay en la base de datos.

Tenemos 450 tipos de chips distintos. De los 450 tipos de chips diferentes, solamente tenemos 106 tarjetas graficas
con al menos 10 tarjetas por tipo de chip y tenemos alrededor de 161 tipos de chip con solamente 2 0 menos tarjetas

gréficas.

* Released: Fecha de lanzamiento de la tarjeta grafica. Originalmente, esta variable incluye valores como “Unk-

nown” y “Never Released”, que seran tratados de la siguiente manera:

— “Unknown”: Se convertira a NA.

— “Never Released”: Se eliminara la fila correspondiente.

— La fecha sera transformada a un formato de fecha estandar y categorizada en cinco intervalos: “Antes de
20007, “2000-20097, “2010-2015”, “2016-2020” y “Después de 2020

* Bus: Es una variable categorica que nos indica el tipo de bus que utiliza la tarjeta grafica. A continuacion mos-

traremos cuantos tipos de bus hay en la base de datos.
Tenemos 30 tipos de bus distintos.

* Memory: Variable categérica que combina informacion sobre el tamafio de memoria, el tipo de memoria y el

ancho del bus de memoria. Para facilitar el analisis, esta variable sera descompuesta en tres nuevas variables:



— Memory_Size (GB): Tamafio de la memoria, que sera transformado a un formato numérico y convertido
a gigabytes (GB), eliminando filas con valores como “System Shared”.

— Memory_Type: Tipo de memoria utilizada (por ejemplo, GDDR6, HBM2).

— Memory_Bus (bits): Ancho del bus de memoria, que sera transformado a un formato numérico.

* GPU_clock: Es una variable categorica que nos indica la velocidad del reloj de la GPU. Convertiremos esta
variable a numérica y la llamaremos GPU_clock (MHz).

* Memory_clock: Es una variable categérica que nos indica la velocidad del reloj de la memoria. Al igual que

con GPU_clock, convertiremos esta variable a numérica y la llamaremos Memory clock (MHz).

* Shaders TMUs_ROPs: Variable categdrica que combina informacion sobre el numero de unidades de som-
breado (Shaders), unidades de mapeo de texturas (TMUs) y tuberias de operaciones de rasterizacion (ROPs).

Esta variable sera descompuesta en tres nuevas variables:

— Shaders: Numero de unidades de sombreado, que sera transformado a un formato numérico.
— TMUs: Numero de unidades de mapeo de texturas, que sera transformado a un formato numérico.

— ROPs: Numero de tuberias de operaciones de rasterizacion, que serd transformado a un formato numérico.

+ ..1: Es una variable numérica que so6lo indica la fila en la que estamos. No aporta informacion relevante para el

analisis y por tanto la eliminamos.

Resumen de tratamiento de las variables

El tratamiento de las variables incluye:

» Limpieza de datos: Eliminacion de valores irrelevantes como “Never Released” y conversion de “Unknown” a
NA.

» Transformacion de formatos: Conversion de variables categoricas a numéricas donde sea necesario.

* Separacion de variables compuestas: Descomposicion de variables como “Memory”y “Shaders TMUs_ROPs”
en variables individuales para facilitar el analisis.

» Eliminacion de variables irrelevantes: Eliminacion de la variable “..1”.

3.2 Preparacion y procesamiento de los datos

En esta seccion, se realizaran las transformaciones necesarias para limpiar y preparar el conjunto de datos. Esto incluye
la eliminacion de valores irrelevantes, la transformacion de variables categoricas y numéricas, y la creacion de nuevas

variables derivadas para facilitar el anlisis posterior.

Cabe destacar que algunas de las filas de la variable Shaders TMUs_ROPs tienen 4 valores en lugar de 3. Esto se debe
a que las tarjetas graficas mas antiguas no tenian shaders unificados, sino que tenian shaders separados para pixeles
y vértices. Por este motivo, primero tendremos que separar la variable en 4 columnas: “Shaders 17, “Shaders_2”,
“TMUs” y “ROPs”. Luego trataremos 2 casos:

* Si hay 4 valores, los mantendremos como estan y elegiremos el valor mas alto entre Shaders 1 y Shaders 2
como el nimero de shaders.



Si hay 3 valores, nos llenara la columna ROPs con NAs y tendremos que mover el valor de TMUs a ROPs y el
valor de Shaders_2 a TMUs y rellenar Shaders_2 con NAs.

Una vez hayamos tratado ambos casos, crearemos una nueva variable llamada Shaders, que sera el maximo entre

Shaders 1y Shaders 2,y como en el caso de 3 valores, Shaders 2 serd NA, entonces Shaders serd igual a Shaders 1.

Elegimos el maximo entre Shaders 1y Shaders 2 porque el maximo entre los shaders de pixeles y de vértices en las

tarjetas antiguas es mas comparable con los shaders unificados que tenemos hoy en dia.

3.21

Limpieza y transformacion de variables

En esta seccidn, se realizardn las transformaciones de datos anteriormente descritas. Esto incluye:

Eliminacion de filas irrelevantes.
Separacion de variables compuestas.
Conversion de variables categdricas a numéricas.

Reorganizacion y eliminacion de columnas innecesarias.

Para ello, utilizaremos las siguientes librerias:

dplyr: Para la manipulacion de datos.
tidyr: Para la separacion de columnas y transformacion de datos.
stringr: Para la manipulacion de cadenas de texto.

lubridate: Para el manejo de fechas.

A continuacion se detallan las transformaciones y limpiezas realizadas en el conjunto de datos:

. Eliminacion de filas irrelevantes: Se eliminaron las filas donde la columna “Memory” contenia “System Sha-

red” y aquellas donde “Released” era “Never Released”.

Separacion de variables compuestas:

La columna “Memory” se separd en tres nuevas columnas:

— “Memory_Size (GB)”: Tamafio de la memoria, convertido a un formato numérico y expresado en gigaby-
tes (GB).
— “Memory_Type”: Tipo de memoria utilizada.

— “Memory_Bus (bits)”: Ancho del bus de memoria, convertido a un formato numérico.

Conversion de formatos:

La columna “Released” se transformo6 a un formato de fecha estandar y se categorizd en cinco intervalos: “Antes
de 20007, <2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020

Las columnas “Memory_clock” y “GPU_clock” se convirtieron a un formato numérico y se renombraron como
“Memory_clock (MHz)” y “GPU_clock (MHz)”, respectivamente.



library(dplyr)
library(tidyr)
library(stringr)
library(lubridate)

datos <- datos %>
# St la columna Memory tiene "System Shared" Y Released tiene "Never Released”,
#eliminar esas filas
filter(
Istr_detect(Memory, "System Shared"),
Istr_detect (Released, "Never Released")) %>%

# Separar la columna Memory
separate(Memory, into = c("Memory_Size (GB)", "Memory_Type",
"Memory_Bus (bits)"),
sep = ", ", remove = TRUE, fill = "right") %>%

# Convertir Memory_Bus (bits) a numérico Y Released a date

mutate (
“Memory_Bus (bits) = as.numeric(str_extract( Memory_Bus (bits) ™, "\\d+")),

# Primero convertimos "Unknown" a NA

Released = ifelse(Released == "Unknown", NA, Released),
Released = as.Date(parse_date_time(Released, orders = c("b d, Y", "Y")))
) Wh

# Convertir Memory_Stize (GB) a numérico y convertir a GB

mutate( Memory_Size (GB) = case_when(
str_detect( Memory_Size (GB), "GB") ~ as.numeric(str_extract( Memory_Size (GB) ",
"\\d+")),
str_detect ("Memory_Size (GB)~, "MB") ~ as.numeric(str_extract( Memory_Size (GB) ",
"\\d+")) / 1024,
str_detect( Memory_Size (GB) , "KB") ~ as.numeric(str_extract( Memory_Size (GB) ",
"\\d+")) / (1024 * 1024),
TRUE ~ NA_real_ # En cualquier otro caso, NA

)) W>h

# Separar Shaders_TMUs_ROPs en 4 columnas (Shaders_1, Shaders_2, TMUs, ROPs)
separate(Shaders_TMUs_ROPs, into = c("Shaders_1", "Shaders_2", "TMUs", "ROPs"),
sep = " / ", remove = TRUE, fill = "right") %>%

# Manejar casos donde hay solo 3 walores (z1 / 22 / z3)
mutate (
# Si ROPs es NA, significa que solo hay 3 walores (z1 / z2 / x3)



ROPs ifelse(is.na(ROPs), TMUs, ROPs), # Mover TMUs a ROPs

TMUs = ifelse(TMUs == ROPs, Shaders_2, TMUs), # Mover Shaders_2 a TMUs

Shaders_2 = ifelse(Shaders_2 == TMUs, NA, Shaders_2) # Poner NA en Shaders_2
) h>%

# Convertir a numérico Memory_clock y GPU_clock

mutate (
“Memory_clock (MHz) = as.numeric(str_extract( Memory_clock™, "\\d+")),
"GPU_clock (MHz) = as.numeric(str_extract( GPU_clock™, "\\d+"))

) h>h

# Crear la nueva variable Shaders: mazimo entre Shaders_1 y Shaders_2.
#Si Shaders_2 es NA, significa que estamos en el caso de 3 wvalores.
mutate (
Shaders = ifelse(!is.na(Shaders_2), pmax(Shaders_1, Shaders_2), Shaders_1)
) W%

# Mover la columna Shaders delante de TMUs y ROPs
relocate(Shaders, .before = TMUs) %>%

# Eliminar columnas innecesarias
select(-Shaders_1, -Shaders_2, -Memory_clock, -GPU_clock, -"...17) %>%

# Convertir Shaders, TMUs y ROPs a numérico

mutate(across(c( Shaders™, "TMUs~, "ROPs’), ~ suppressWarnings(as.numeric(.)))) %>%

# Convertir Released a categoéorico y dividir en 5 categorias
mutate (
Released = case_when(

Released < as.Date("2000-01-01") ~ "Antes de 2000",
Released < as.Date("2010-01-01") ~ "2000-2009",
Released < as.Date("2016-01-01") "2010-2015",
Released < as.Date("2021-01-01") ~ "2016-2020",
TRUE ~ "Después de 2020"

R

num_vars <- datos %>J, select(where(is.numeric)) %> names()

cat_vars <- datos %>, select(where(is.character)) %>% names()

3.2.2 Descripcion de las variables transformadas

Tras el procesamiento, el conjunto de datos contiene las siguientes variables:
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Variables categéricas:

cat_vars

## [1] "Product_Name" "GPU_Chip" "Released" "Bus" "Memory_Type"

* GPU_Chip: Como hemos mencionado anteriormente, es el tipo de chip que utiliza la tarjeta grafica.

* Released: Es una variable categérica nueva que hemos creado, y nos indica la fecha de lanzamiento de la tarjeta
grafica en 4 categorias: “Antes de 2000, “2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020

* Bus: Es el tipo de bus que utiliza la tarjeta grafica.

* Memory_Type: Es una variable categérica nueva que hemos creado a partir de la variable “Memory”, y nos

indica el tipo de memoria que utiliza la tarjeta grafica.

Variables numéricas:

num_vars
## [1] "Memory_Size (GB)" "Memory_Bus (bits)" "Shaders"
## [4] "TMUs" "ROPs" "Memory_clock (MHz)"

## [7] "GPU_clock (MHz)"

* Memory_Size (GB): Es una variable numérica nueva que hemos creado a partir de “Memory”, y nos indica la
cantidad de memoria que tiene la tarjeta grafica, medida en gigabytes (GB). Una mayor cantidad de memoria
permite manejar texturas y datos graficos mas grandes, lo que es crucial para juegos y aplicaciones con graficos

de alta resolucién o entornos complejos.

* Memory_Bus (bits): Es una variable numérica nueva que hemos creado a partir de “Memory”, y nos indica
el ancho del bus de memoria, medido en bits. Determina cuantos datos pueden transferirse entre la GPU y la
memoria en un ciclo de reloj. Un bus mas ancho permite un mayor ancho de banda, lo que mejora el rendimiento

en tareas graficas intensivas.

* Shaders: Es una variable numérica nueva que hemos extraido de la variable “Shaders TMUs ROPs”, y re-
presenta el nimero de unidades de sombreado (shaders) en la GPU. Los shaders son responsables de procesar
pixeles, vértices y otros elementos graficos. Un mayor numero de shaders generalmente indica un mayor poder

de procesamiento grafico.

* TMUs: Es una variable numérica nueva que hemos extraido de la variable “Shaders TMUs_ROPs”, y nos indica
las unidades de mapeo de texturas (TMUs), encargadas de aplicar texturas a los objetos 3D. Un mayor niimero

de TMUs permite manejar texturas mas complejas y mejorar la calidad visual.

* ROPs: Es una variable numérica nueva que hemos extraido de la variable “Shaders TMUs_ROPs”, y son las
tuberias de operaciones de rasterizaciéon (ROPs), responsables de escribir los pixeles finales en la memoria de
video. Un mayor numero de ROPs mejora el rendimiento en tareas como el antialiasing y la renderizacion de

pixeles.
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* Memory_clock (MHz): Es la velocidad del reloj de la memoria, medida en megahercios (MHz). Indica la fre-
cuencia a la que opera la memoria. Una mayor velocidad de reloj de la memoria permite un mayor ancho de

banda y un mejor rendimiento general.

* GPU_clock (MHz): Es la velocidad del reloj de la GPU, medida en megahercios (MHz). Indica la frecuencia
a la que opera el nucleo de la GPU. Una mayor velocidad de reloj de la GPU mejora el rendimiento en tareas

graficas y de procesamiento.

Tras las transformaciones, el conjunto de datos contiene un total de 7 variables numéricas y 5 variables categoricas.

3.3 Analisis exploratorio de datos

3.3.1 Estadisticas descriptivas

En esta seccion, se llevard a cabo un analisis descriptivo de las variables numéricas y categoricas del conjunto de
datos. Este andlisis tiene como objetivo proporcionar una vision general de las principales caracteristicas de los datos,

identificar patrones relevantes y detectar posibles irregularidades.
Ademas, se realizara la transformacion de la variable Released a un formato de factor ordenado, lo que permitira

organizar las fechas de lanzamiento de manera adecuada y facilitar su representacion en los graficos.

# Convertir Released a factor
datos$Released <- factor(datos$Released, levels = c("Antes de 2000", "2000-2009",
"2010-2015", "2016-2020", "Después de 2020"))

# Resumen de las wvartables

summary (datos)

## Product_Name GPU_Chip Released

## Length:3047 Length:3047 Antes de 2000 : 106

## Class :character Class :character 2000-2009 1 972

## Mode :character Mode :character 2010-2015 11367

# 2016-2020 1 402

## Después de 2020: 200

##

#Hit Bus Memory_Size (GB) Memory_Type Memory_Bus (bits)
## Length:3047 Min. 0.00003 Length:3047 Min. : 32.0
## Class :character 1st Qu.: 0.50000 Class :character 1st Qu.: 128.0
## Mode :character Median : 2.00000 Mode :character Median : 128.0
# Mean 3.46161 Mean 1 289.6
## 3rd Qu.: 4.00000 3rd Qu.: 256.0
## Max. :128.00000 Max. :8192.0
#Hit Shaders TMUs ROPs Memory_clock (MHz)
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 5.0
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## 1st Qu.: 40.0 1st Qu.: 8.00 1st Qu.: 8.00 1st Qu.: 600.0
## Median : 384.0 Median : 32.00 Median : 16.00 Median : 902.0

## Mean : 984.8 Mean : 60.25 Mean : 23.36 Mean : 957.9
## 3rd Qu.: 1152.0 3rd Qu.: 80.00 3rd Qu.: 32.00 3rd Qu.:1253.0
## Max. :21760.0  Max. :880.00 Max. :192.00  Max. :3000.0
## GPU_clock (MHz)
## Min. : 10.0
## 1st Qu.: 520.0
## Median : 750.0
## Mean : 758.2
## 3rd Qu.: 954.0
## Max. :2505.0

A continuacion, se presentan los principales hallazgos:
* Released: Vemos que antes de los 2000 se lanzaron muy pocas tarjetas graficas, entre 2000-2009 aumentd consi-

derablemente la frecuencia de lanzamiento y entre 2010-2015 hubo un “boom” de lanzamientos que disminuy6
entre 2016-2020 y volvid a aumentar después de 2020.
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Este comportamiento se visualiza mejor en el siguiente histograma:

library(ggplot2)

# Crear el histograma usando la variable Released como categérica
datos %>%

ggplot(aes(x = Released)) +

geom_bar (fill = "skyblue", color = "black") +

labs(title = "Distribucién de Fechas de Lanzamiento",
x = "Fecha de Lanzamiento",
y = "Frecuencia") +

theme_minimal ()

Frecuencia

Distribucién de Fechas de Lanzamiento

1000

500

Antes de 2000 2000-2009 2010-2015 2016-2020 Después de 2020
Fecha de Lanzamiento

Figura 1: Histograma de Fechas de Lanzamiento

* Memory_Size (GB): Vemos que la media es de 3.46 GB y el maximo es 128 GB, lo que puede indicar que podria
haber valores atipicos.

¢ Memory_Bus (bits): Vemos que la media es de 289.6 bits y el maximo es 8192 bits, lo que puede indicar que
podria haber valores atipicos.
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En general, vemos que la mayoria de las variables numéricas tienen una media bastante baja y un maximo muy alto,

lo que puede indicar que hay valores atipicos.

3.3.2 Tratamiento de valores perdidos

Vamos a comprobar si hay valores perdidos en las variables. Para ello, vamos a contar los NAs por variable y mostrar
todas las variables.

# Contar los NAs por wariable y mostrar todas las variables
na_counts <- datos %>
summarise_all(~ sum(is.na(.))) %»>%

pivot_longer(everything(), names_to = "Variable", values_to = "NA_Count")

# Mostrar la tabla completa de cuentas de NAs

print (na_counts)

## # A tibble: 12 x 2

## Variable NA_Count
#it <chr> <int>
## 1 Product_Name 0
## 2 GPU_Chip 0
## 3 Released 0
## 4 Bus 0
## 5 Memory_Size (GB) 0
## 6 Memory_Type 0
## 7 Memory_Bus (bits) 0
## 8 Shaders 0
## 9 TMUs 0
## 10 ROPs 0
## 11 Memory_clock (MHz) 0
## 12 GPU_clock (MHz) 0

No tenemos valores perdidos.

3.3.3 Tratamiento de valores atipicos

En esta seccion, se analizaran las variables numéricas para identificar posibles valores atipicos. Estos valores pueden
representar errores en los datos o, por el contrario, ser tarjetas graficas modernas con especificaciones muy altas. Para

ello, se utilizara un grafico de caja para visualizar la distribucion de cada variable numérica y detectar valores atipicos.

# Vemos si hay wvalores atipicos en las variables numéricas
datos %>%

select (where(is.numeric)) %>%
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gather () %>%
ggplot(aes(value)) +
geom_boxplot() +

facet_wrap(~key, scales = "free")
GPU_clock (MHz) Memory_Bus (bits) Memory_clock (MHz)
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0.2- 0.2- 0.2-
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Figura 2: Boxplot de las variables numéricas

Como sospechabamos, hay valores atipicos en todas las variables numéricas. Vamos a ver si esos valores atipicos son
errores o son tarjetas graficas modernas con especificaciones muy altas. Para ello, vamos a comparar la media de los
valores atipicos con la media de la variable completa. Esto nos permitira ver si de verdad son errores o son tarjetas

graficas modernas con especificaciones muy altas.

Vamos a crear una funcion que nos permita identificar los valores atipicos de una variable numérica y ver su media, asi
como la media de la variable completa para poder comparar resultados. Ademas, nos mostrara un grafico de puntos de

la variable seleccionada con Released como categoérica para ver su distribucion en las diferentes categorias de fecha.

identificar_atipicos <- function(datos, variable) {
# Calcular los cuartiles y el IQR
Q1 <- quantile(datos[[variable]], 0.25, na.rm = TRUE)
Q3 <- quantile(datos[[variable]], 0.75, na.rm = TRUE)
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IQR <- Q3 - Q1

# Definir los limites para valores atipicos
limite_inferior <- Q1 - 1.5 * IQR
limite_superior <- Q3 + 1.5 * IQR

# Identificar los walores atipicos
valores_atipicos <- datos[[variable]] [datos[[variable]] < limite_inferior

| datos[[variable]] > limite_superior]

# Filtrar las filas con valores atipicos
tarjetas_atipicas <- datos >%
filter(datos[[variable]] %in% valores_atipicos) %>%

select (Product_Name, “Released”, all_of(variable))

# Contar el numero de atipicos por fechas
num_atipicos <- tarjetas_atipicas %>/
count (Released, sort = TRUE) %>%

arrange (Released)

# Mostrar la media de la vartable seleccionada con el mombre de la wvariable

media_variable <- mean(datos[[variable]], na.rm = TRUE)

# Crear un grafico de puntos para la variable selecctionada con Released como categérica
grafico <- datos %>%
ggplot(aes(x = Released, y = .datal[[variable]])) +
geom_jitter(width = 0.2, alpha = 0.6, color = "blue") +
labs(
title = paste("Distribucién de", variable, "por Categorias de Fecha"),
x = "Categoria de Fecha de Lanzamiento",
y = variable
) +

theme_minimal ()

# Mostrar el grafico

print(grafico)

# Devolver un resumen de los wvalores atipicos y el numero de atipicos por fechas para
#compararlos con el resto de la wvariable y poner titulos a la lista
return(list(

valores_atipicos = summary(valores_atipicos),

media_variable = media_variable,

num_atipicos = num_atipicos
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))

A continuacidn se usara la funcion para las variables numéricas. Vamos a empezar por la variable Memory_Size (GB).

1. Memory_Size (GB):

identificar_atipicos(datos, "Memory_Size (GB)")

Distribucion de Memory_Size (GB) por Categorias de Fecha
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Figura 3: Valores atipicos de Memory_Size (GB)

## $valores_atipicos

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.00 12.00 16.00 24.13 24.00 128.00
##

## $media_variable
## [1] 3.461614
##

## $num_atipicos



## # A tibble: 3 x 2

## Released n
## <fct> <int>
## 1 2010-2015 31
## 2 2016-2020 75

## 3 Después de 2020 95

Resultados:

» La media de los valores atipicos es de 24.13 GB, considerablemente mayor que la media general de 3.46 GB.
» Los valores atipicos corresponden a tarjetas graficas lanzadas principalmente después de 2020, con algunas entre
2016 y 2020 y muy pocas entre 2010 y 2015.
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Vamos a ver con las demas variables:

2. Memory_Bus (bits):

identificar_atipicos(datos, "Memory_Bus (bits)")

Memory_Bus (bits)

##
##
##
##
##
##
##
##
##
##
##
##

Distribucion de Memory_Bus (bits) por Categorias de Fecha
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Figura 4: Valores atipicos de Memory_ Bus (bits)

$valores_atipicos

Min.
512

1st Qu. Median Mean 3rd Qu. Max.
512 3072 2709 4096 8192

$media_variable

[1] 289.

6278

$num_atipicos
# A tibble: 4 x 2

Released n
<fct> <int>
1 2000-2009 30
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## 2 2010-2015 36
## 3 2016-2020 50
## 4 Después de 2020 25

Resultados:

» Lamedia de los valores atipicos es de 2319 MHz, considerablemente mayor que la media general de 957.9 MHz.

* Los valores atipicos corresponden a tarjetas graficas lanzadas principalmente después de 2020.

3. Memory_clock (MHz):

identificar_atipicos(datos, "Memory_clock (MHz)")

Distribuciéon de Memory_clock (MHz) por Categorias de Fecha
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Figura 5: Valores atipicos de Memory_clock (MHz)

## $valores_atipicos

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2248 2250 2250 2319 2250 3000
##
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## $media_variable

## [1] 957.9084

##

## $num_atipicos

## # A tibble: 1 x 2

## Released n
## <fct> <int>
## 1 Después de 2020 18

Para la velocidad del reloj podemos observar el mismo patron donde la media de los valores atipicos es bastante mayor
que la media de la variable, y tenemos valores atipicos en tarjetas graficas modernas, la mayoria después de 2020 y
algunas entre 2016-2020.

Resultados:

* Los valores atipicos representan un patrén similar, con una media significativamente mayor que la media general,

con la mayoria de estos valores correspondientes a tarjetas graficas lanzadas después de 2020.
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4. Shaders, TMUs y ROPs:

identificar_atipicos(datos, "Shaders")

Shaders

##
##
##
##
##
##
##
##
##
##
##
##
##
##

Distribucion de Shaders por Categorias de Fecha
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# A tibble: 3 x 2
Released
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1 2010-2015
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3 Después de 2020
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Figura 6: Valores atipicos de Shaders
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identificar_atipicos(datos, "TMUs")

Distribucion de TMUs por Categorias de Fecha
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## $valores_atipicos
#it Min. 1st Qu.
## 192.0 224.0
##

## $media_variable
## [1] 60.25205

##

## $num_atipicos

## # A tibble: 3 x 2
##  Released

##t  <fct>

## 1 2010-2015

## 2 2016-2020

## 3 Después de 2020

Median
256.0

<int>
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Figura 7: Valores atipicos de TMUs

Mean 3rd Qu. Max.
283.3 288.0 880.0
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identificar_atipicos(datos, "ROPs")

Distribucion de ROPs por Categorias de Fecha
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Figura 8: Valores atipicos de ROPs

## $valores_atipicos

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 80.0 96.0 96.0 110.6 128.0 192.0
##

## $media_variable
## [1] 23.3597

##

## $num_atipicos

## # A tibble: 3 x 2

## Released n
## <fct> <int>
## 1 2010-2015 17
## 2 2016-2020 63

## 3 Después de 2020 88

Para Shaders, TMUs y ROPs vemos el mismo patron, donde la media de los valores atipicos es bastante mayor que
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la media de la variable, y tenemos valores atipicos en las tarjetas mas modernas, aunque aqui si que tenemos valores

atipicos en tarjetas graficas mas antiguas entre 2010 y 2015, aunque son muy pocos.

Resultados:

» Los valores atipicos en estas variables también corresponden principalmente a tarjetas graficas modernas. Sin

embargo, se identificaron algunos valores atipicos en tarjetas lanzadas entre 2010 y 2015, aunque son pocos.

5. Memory_Bus (bits):

identificar_atipicos(datos, "Memory_Bus (bits)")

Distribucion de Memory_Bus (bits) por Categorias de Fecha
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Figura 9: Valores atipicos de Memory_ Bus (bits)

## $valores_atipicos

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 512 512 3072 2709 4096 8192
#i#

## $media_variable
## [1] 289.6278
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##
## $num_atipicos
## # A tibble: 4 x 2

## Released n
## <fct> <int>
## 1 2000-2009 30
## 2 2010-2015 36
## 3 2016-2020 50
## 4 Después de 2020 25

Para esta variable observamos un patréon un poco diferente, ya que tenemos valores atipicos en casi todas las categorias

de fechas. Habria que investigar mas a fondo esta variable.
Para ello vamos a profundizar en lo que es el ancho de bus de memoria:

El ancho de bus de memoria se encarga de determinar cuantos bits de datos pueden ser transferidos entre la memoria
y la GPU en un ciclo de reloj. Un bus de memoria alto puede ser mas 1til en tareas que requieren un alto ancho de
banda, como la computacion cientifica, la inteligencia artificial o el procesamiento de graficos en tiempo real, donde

es importante transferir grandes cantidades de datos rapidamente.

Teniendo en cuenta que las GPUs, en su mayoria se utilizan para juegos, podria indicar que al haber valores muy
altos de ancho de bus de memoria para todas las categorias de fecha, hay ciertas tarjetas graficas disefiadas para tareas
especificas que requieren un alto ancho de banda, lo que podria explicar la presencia de valores atipicos en todas las

categorias de fecha.

Vamos a visualizar un grafico que muestre el reparto de Memory Bus (bits) por tipo de memoria, para ver si hay algan

patrén en los valores atipicos:
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# Grafico de dispersién de Memory_Bus (bits) por tipo de memoria
ggplot(datos, aes(x = Memory_Type, y = "Memory_Bus (bits) ™)) +
geom_boxplot() +

labs(
title = "Distribucién de Ancho de Bus de Memoria por Tipo de Memoria",
x = "Tipo de Memoria",

y = "Ancho de Bus de Memoria (bits)"
) +
theme_minimal() +

theme (axis.text.x = element_text(angle = 45, hjust = 1))

Distribucion de Ancho de Bus de Memoria por Tipo de Memoria
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Figura 10: Distribucion de Memory Bus (bits) por Tipo de Memoria

Se ve claramente que las tecnologias HBM, HBM2 y HBM2e tienen un ancho de bus de memoria més alto que las
demas tecnologias. Esto es coherente con el proposito de la memoria HBM (High Bandwidth Memory), disefiada
especificamente para ofrecer un mayor ancho de banda. Como resultado, estas tarjetas son ideales para aplicaciones
que requieren una alta capacidad de transferencia de datos, como la computacion cientifica, la inteligencia artificial y

el aprendizaje profundo.

Resultados:
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» A diferencia de las demas variables, los valores atipicos en esta variable estan presentes en casi todas las cate-
gorias de fechas. Esto sugiere que el ancho del bus de memoria puede variar significativamente segun el disefio

de la tarjeta grafica, independientemente de su antigiiedad y por lo tanto no son errores.

3.3.4 Conclusiones del analisis exploratorio

1. Valores atipicos:

» Lamayoria de los valores atipicos en las variables numéricas corresponden a tarjetas graficas modernas, lanzadas
principalmente después de 2020. Esto es consistente con la evolucion tecnologica y el aumento de especificacio-
nes en las tarjetas graficas mas recientes. Por tanto, estos valores no se consideraran como atipicos en el sentido
tradicional, ya que representan avances tecnoldgicos en lugar de errores o anomalias.

* En el caso de Memory_ Bus (bits), se observaron valores atipicos en casi todas las categorias de fechas, pero esto
puede explicarse por el disefio especifico de algunas tarjetas graficas que requieren un alto ancho de banda para
aplicaciones especializadas. Por ejemplo, las tecnologias de memoria HBM, estan disefiadas para maximizar el
ancho de banda. Estas tarjetas graficas suelen priorizar el rendimiento en la transferencia de datos, lo que explica
los valores significativamente mas altos en el ancho de bus de memoria.

2. Tendencias en el lanzamiento de tarjetas graficas:

* En la Figura 1 se observaba un aumento significativo en el nimero de lanzamientos de tarjetas graficas entre
2000y 2015, seguido de una disminucion entre 2016 y 2020, y un nuevo aumento después de 2020.

3. Calidad de datos:

» No se encontraron valores perdidos en el conjunto de datos, lo que sugiere una buena calidad de datos en general.
* Los valores atipicos parecen ser representativos de la evolucion tecnoldgica y diferencias en el disefio y aplica-
cion de las diferentes tarjetas graficas.

3.4 Relaciones entre variables clave

Parece interesante investigar si existen relaciones entre las diferentes variables para ver si podemos encontrar patrones

o tendencias en los datos.

3.4.1 Correlacion entre variables numéricas

Para investigar las relaciones entre las variables numéricas, se generd una matriz de correlacion. Este analisis permite

identificar las asociaciones mas fuertes entre las variables clave:

# Crear la matriz de correlacién
correlation_matrix <- cor(datos %>} select(where(is.numeric)),
use = "pairwise.complete.obs")

correlation_matrix

29



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Las relaciones mas fuertes las podemos encontrar obviamente entre Shaders, TMUs y ROPs, ya que son variables
que estan relacionadas entre si por naturaleza. Otras relaciones interesantes son entre el tamafio de la memoria y las
unidades de sombreado y las unidades de mapeo de texturas. También tenemos una relacion fuerte de esta variable con

el ancho del bus de memoria, lo que tiene sentido, ya que a mayor tamafio de memoria, mayor ancho de bus.

Otra relacion muy fuerte es entre la velocidad del reloj de la GPU y la velocidad del reloj de la memoria, lo que también

Memory_Size (GB)
Memory_Bus (bits)
Shaders

TMUs

ROPs

Memory_clock (MHz)
GPU_clock (MHz)

Memory_Size (GB)
Memory_Bus (bits)
Shaders

TMUs

ROPs

Memory_clock (MHz)

GPU_clock (MHz)

Memory_Size (GB) Memory_Bus (bits)  Shaders
1.0000000 0.63647622 0.7360566
0.6364762 1.00000000 0.4721906
0.7360566 0.47219056 1.0000000
0.8155536 0.62422670 0.9161432
0.6079784 0.45209917 0.8330208
0.3828492 0.04784241 0.5043913
0.4034626 0.15275376 0.5236997

ROPs Memory_clock (MHz) GPU_clock (MHz)
.6079784 0.38284920 0.4034626
.4520992 0.04784241 0.1527538
.8330208 0.50439129 0.5236997
.8535990 0.55324266 0.5461143
.0000000 0.57651257 0.5919399
.5765126 1.00000000 0.8211419
.5919399 0.82114193 1.0000000

tiene sentido, ya que a mayor velocidad de reloj, mayor rendimiento.

Principales hallazgos:

* Shaders, TMUs y ROPs: Estas variables estan fuertemente correlacionadas entre si, lo que es esperado, ya que
estas variables estan relacionadas por diseflo y representan diferentes aspectos del procesamiento grafico.

* Memory_Size (GB): Esta variable muestra una correlacion positiva con Shaders, TMUs, ROPs y Memory Bus
(bits). Esto tiene sentido, ya que con mayor capacidad de memoria, se pueden manejar mas unidades de som-

breado y un mayor ancho de bus.

* Memory_Bus (bits): Tiene una correlacion positiva con Memory_Size (GB) y Shaders, lo que indica que un

mayor ancho de bus esta asociado con un mayor tamafio de memoria y un mayor ntimero de unidades de som-

breado.

* GPU_clock (MHz) y Memory_clock (MHz): Estas variables estan fuertemente correlacionadas entre si, lo que
sugiere que a medida que aumenta la velocidad del reloj de la GPU, también aumenta la velocidad del reloj de

la memoria.

3.4.2 Visualizacion de relaciones clave

Relacion entre el tamaiio de memoria y el ancho de bus de memoria
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Para explorar la relacion entre el tamafio de memoria y el ancho de bus de memoria, se gener6 un grafico de dispersion

agrupado por el tipo de memoria:

# Relacton entre Memory_Size (GB) y Memory_clock (MHz), coloreado por GPU_Chip
ggplot(datos, aes(x = "Memory_Size (GB) ', y = "Memory_Bus (bits)’,
color = Memory_Type )) +
geom_point (alpha = 0.7, size = 3) +
labs(
title = "Relacidén entre Tamafio de Memoria y Ancho de Bus",
subtitle = "Agrupado por tipo de Memoria",
x = "Memory_Size (GB)",
y = "Memory_Bus (bits)"
) +
theme_minimal() +

theme (legend.position = "bottom") # Para evitar que la leyenda oculte datos
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Figura 11: Relacion entre Tamafio de Memoria y Ancho de Bus de Memoria

Observaciones iniciales: La Figura 11 muestra una gran cantidad de puntos agrupados, lo que dificulta la interpre-
tacion debido a la diversidad de tipos de memoria. Para mejorar la visualizacion, se procedera a filtrar los tipos de

memoria mas comunes y se volvera a generar el grafico:
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# Ver cudantos datos hay por tipo de memoria
datos %>
count (Memory_Type, sort = TRUE) %>’
arrange (desc(n)) %>%

print (n=nrow(.))

## # A tibble: 26 x 2

## Memory_Type n
#i#t <chr> <int>
## 1 GDDR5 1145
## 2 GDDR3 508
## 3 DDR3 424
## 4 DDR 314
## 5 GDDR6 211
## 6 DDR2 140
## 7 SDR 87
## 8 HBM2 36
## 9 GDDR5X 30
## 10 GDDR4 25
## 11 HBM 23
## 12 HBM2e 22
## 13 GDDR6X 20
## 14 DRAM 17
## 15 EDO 11
## 16 VRAM 7
## 17 eDRAM 6
## 18 DDR4 4
## 19 HBM3 4
## 20 GDDR2 3
## 21 GDDR7 3
## 22 LPDDR4X 2
## 23 SGR 2
## 24 FPM 1
## 25 LPDDR5 1
## 26 SGRAM 1

Viendo el reparto de los tipos de memoria, vamos a quedarnos con aquellos tipos de memoria que tengan mas de 15

tarjetas graficas.

# Filtrar los tipos de memoria mas comunes
tipos_memoria_comunes <- datos %>7
count (Memory_Type, sort = TRUE) %>7
filter(n > 15) %>%
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pull (Memory_Type)

A continuacion, vamos a filtrar los datos para quedarnos solo con los tipos de memoria mas comunes y eliminamos el
valor més alto de Memory_Size (GB) para evitar que el grafico esté muy sesgado por un solo punto. Esto nos permitira

ver mejor la relacion entre el tamafio de memoria y el ancho de bus de memoria.

# Filtrar los datos para quedarnos sélo con los tipos de memoria mdas comunes
datos_filtrados <- datos %>
filter (Memory_Type %in’, tipos_memoria_comunes) 7>%

filter("Memory_Size (GB)~ != max( Memory_Size (GB) , na.rm = TRUE))

# Hacemos el grafico de nuevo
ggplot (datos_filtrados, aes(x = "Memory_Size (GB) , y = "Memory_Bus (bits)’,
color = Memory_Type )) +

geom_point(alpha = 0.7, size = 3) +

labs(
title = "Relacidén entre Tamafio de Memoria y Ancho de Bus",
subtitle = "Agrupado por tipo de Memoria",

x = "Memory_Size (GB)",
y = "Memory_Bus (bits)"
)+
theme_minimal () +

theme (legend.position = "bottom") # Para evitar que la leyenda oculte datos

coord_cartesian(xlim = c(0, 32), ylim = c(0, 1024)) # Ajustar limites de los ejes

## <ggproto object: Class CoordCartesian, Coord, gg>

## aspect: function

#i# backtransform_range: function
## clip: on

#i# default: FALSE

#it distance: function

## expand: TRUE

## is_free: function

## is_linear: function

#it labels: function

## limits: list

#it modify_scales: function
## range: function

## render_axis_h: function
## render_axis_v: function
## render_bg: function
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Figura 12: Relacion entre Tamafio de Memoria y Ancho de Bus de Memoria (Filtrado)
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## render_fg: function

## setup_data: function

## setup_layout: function

#H# setup_panel_guides: function

## setup_panel_params: function

## setup_params: function

## train_panel_guides: function

## transform: function

## super: <ggproto object: Class CoordCartesian, Coord, gg>

Este grafico nos permite visualizar con mayor claridad las diferencias entre los distintos tipos de memoria en las tarjetas

graficas.

Interpretacion:

* Las tecnologias mas antiguas, como GDDR3 y DDR3, presentan un reloj de memoria y un reloj de GPU mas

bajos en comparacion con las tecnologias mas recientes.

* Las tarjetas graficas con memoria HBM, HBM2 y HBM2e destacan por su ancho de bus significativamente
mas alto, aunque su tamafio de memoria es similar al de tecnologias como GDDR5X, GDDR6 y GDDR6X.
Como habiamos mencionado anteriormente, esto se debe al proposito de las memorias de tipo HBM, que estan
disefiadas para ofrecer un mayor ancho de banda, lo que las hace ideales para aplicaciones que requieren una alta

capacidad de transferencia de datos.

* Por otro lado, las tarjetas graficas con memoria GDDR5X, GDDR6 y GDDR6X parecen priorizar un mayor
tamaflo de memoria, lo que resulta beneficioso para juegos y aplicaciones graficas avanzadas que necesitan
almacenar y procesar texturas y datos graficos complejos. Esto es consistente con el enfoque de NVIDIA, la

marca lider en el mercado de videojuegos, que utiliza estas tecnologias en sus tarjetas graficas mas modernas.

Relacion entre el reloj de memoria y el reloj de GPU

Otra relacion interesante es la existente entre el reloj de memoria y el reloj de GPU, agrupada por el tipo de chip. Dado
que hay muchos tipos de chips diferentes, vamos a filtrar los tipos de chip mas comunes para facilitar la visualizacion.

# Ver cuantos datos hay por tipo de chip
datos %>%
count (GPU_Chip, sort = TRUE) %>
arrange(desc(n)) %>%
print(n = 25)

## # A tibble: 335 x 2

## GPU_Chip n
## <chr> <int>
## 1 GK104 151
## 2 GM107 81
## 3 GK107 79
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## 4 Tahiti 64
## 5 G92 53
## 6 Oland 48
## 7 GM108 47
## 8 Pitcairn a7
## O Cape Verde 46
## 10 GK208 45
## 11 GK106 42
## 12 GM204 41
## 13 Amethyst 37
## 14 GP104 37
## 15 Tropo 35
## 16 Baffin 32
## 17 G71 32
## 18 G80 32
## 19 Meso 30
## 20 Venus 30
## 21 RV770 29
## 22 GT200B 28
## 23 Bonaire 27
## 24 Jet 27
## 25 RV670 27

## # i 310 more rows

# Filtrar los tipos de chip mas comunes
tipos_chip_comunes <- datos %>’
count (GPU_Chip, sort = TRUE) %>%
filter(n > 50) %>%
pull(GPU_Chip)

Usaremos los tipos de chip que tengan méas de 50 tarjetas graficas.

# Filtrar los datos para quedarnos sélo con los tipos de chip mas comunes
datos_filtrados_chip <- datos %>
filter (GPU_Chip %in% tipos_chip_comunes)

# Hacemos el grafico de nuevo
ggplot(datos_filtrados_chip, aes(x = "Memory_clock (MHz) ",
y = "GPU_clock (MHz) , color = GPU_Chip)) +
geom_point(alpha = 0.7, size = 3) +
labs(
title = "Relacidén entre Reloj de Memoria y Reloj de GPU",
subtitle = "Agrupado por tipo de Chip",
x = "Memory_clock (MHz)",
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y = "GPU_clock (MH=z)"
)+
theme_minimal() +
theme (legend.position = "bottom") # Para evitar que la leyenda oculte datos
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Figura 13: Relacion entre Reloj de Memoria y Reloj de GPU (Filtrado)

Interpretacién:

* Las tarjetas graficas con chips GK104 y Tahiti parecen ofrecer un rendimiento superior, con relojes de memoria

y GPU mas altos.

* Los chips GM107 y GK107 presentan un reloj de GPU mas alto, pero un reloj de memoria mas bajo, lo que

sugiere una arquitectura mas antigua.

* Las tarjetas graficas mas modernas tienden a tener una mayor capacidad de memoria, lo que puede estar relacio-

nado con un aumento en la frecuencia de la memoria.
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3.4.3 Conclusiones del analisis de relaciones

En esta seccion, se han explorado las relaciones entre las variables clave del conjunto de datos, centrandose en las

variables numéricas mas relevantes. A continuacion, se presentan las principales conclusiones:

1. Correlaciones:

+ Se identificaron correlaciones significativas entre las variables numéricas, especialmente entre Shaders,
TMUs y ROPs, asi como entre Memory Size (GB) y Memory Bus (bits).

 La velocidad del reloj de la GPU y la velocidad del reloj de la memoria también mostraron una fuerte
correlacion, lo que sugiere que a medida que aumenta la velocidad del reloj de la GPU, también lo hace la

velocidad del reloj de la memoria.
2. Visualizacion de relaciones clave:

 Relacion entre el tamafio de memoria y el ancho de bus de memoria (agrupado por tipo de memoria):
(Figura 12)

— Se observo que las tecnologias de memoria HBM, HBM2 y HBM2e tienen un ancho de bus signifi-
cativamente mas alto en comparacion con otras tecnologias, lo que es coherente con su propésito de
ofrecer un mayor ancho de banda.

— Las tarjetas graficas con memoria GDDR5X, GDDR6 y GDDR6X tienden a priorizar un mayor tamafio

de memoria, lo que es beneficioso para juegos y aplicaciones graficas avanzadas.

+ Relacion entre el reloj de memoria y el reloj de GPU (agrupado por tipo de chip): (Figura 13)

* Las tarjetas graficas con chips GK104 y Tahiti destacaron por ofrecer un rendimiento superior, con relojes
de memoria y GPU mas altos.

* Los chips GM107 y GK107 mostraron un reloj de GPU mas alto, pero un reloj de memoria mas bajo, lo

que sugiere una arquitectura mas antigua.

4 Clustering

4.1 Fundamentos teoricos del método

Vamos a realizar un analisis clustering para ver si podemos agrupar las tarjetas graficas segun sus especificaciones

técnicas. Para ello, vamos a usar el método de k-means.

A continuacion, una breve descripcion de qué es clustering y como funciona el método de k-means, extraido del manual:

“An Introduction to Statistical Learning with aplications in R” (Manual).

El clustering (o agrupamiento) es una técnica de aprendizaje no supervisado que busca identificar subgrupos o “cliste-
res” dentro de un conjunto de datos. El objetivo es agrupar observaciones de manera que aquellas dentro de un mismo
cluster sean similares entre si, mientras que las observaciones de diferentes clusteres sean distintas. Para lograr esto,
es necessario definir qué significa que dos observaciones sean similares o distintas, lo cual depende del contexto y del

conocimiento del dominio.
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Por ejemplo, en un estudio de muestras de tejido de pacientes con cancer de mama, donde cada muestra tiene varias
caracteristicas (como medidas clinicas o expresiones génicas), el clustering podria ayudar a identificar subtipos des-
conocidos de la enfermedad. Este es un problema no supervisado, ya que no se cuenta con etiquetas predefinidas, a
diferencia de los problemas supervisados, donde el objetivo es predecir un resultado especifico.

En el articulo “A Review of Clustering Techniques and Developments” (Saxena et al.), se menciona que no existe una
definicion precisa de lo que constituye un “clister”, lo que ha llevado al desarrollo de diferentes enfoques y técnicas de
clustering. Algunos sugieren que las técnicas de clustering pueden dividirse en dos grandes categorias: jerarquicas y
de particion. Otros proponen categorias adicionales, como métodos basados en densidad, métodos basados en modelos

y métodos basados en cuadriculas.

Cada enfoque utiliza un principio de inclusion diferente para definir los clusteres, y la eleccion del método adecuado
depende del tipo de datos y del objetivo del analisis. Ademas, el nimero de clusteres en los que se divide un conjunto
de datos suele ser decidido por el usuario, utilizando métodos heuristicos, de prueba y error, o enfoques evolutivos. La
precision del clustering depende en gran medida de esta decision, ya que un nimero adecuado de clisteres maximiza

la similitud intra-cluster y minimiza la similitud inter-cluster.

(Saxena et al.) menciona dos enfoques principales: jerarquico y particional.

1. Clustering jerarquico: Este enfoque puede ser aglomerativo (comenzando con cada punto como un cluster
individual y fusionandolos) o divisivo (comenzando con un tnico clister y dividiéndolo). Dentro de estas ca-
tegorias, se utilizan métodos como el enlace simple, completo o promedio. Ejemplos de algoritmos incluyen
BIRCH, CURE, ROCK y CHAMELEON.

Como se menciona en el articulo “Hierarchical Clustering Algorithms for Document Datasets” (Zhao et al.), el clus-
tering jerarquico es especialmente util en aplicaciones donde los datos tienen una estructura jerarquica natural, como
taxonomias bioldgicas o arboles filogenéticos. Este enfoque genera dendrogramas, que son representaciones visuales
que permiten explorar los datos en diferentes niveles de granularidad. Esto resulta ideal para tareas como la organiza-

cion de grandes colecciones de documentos, donde los dendrogramas facilitan la navegacion y exploracion interactiva.

Ademas, los métodos jerarquicos son ttiles en casos donde los clusteres tienen subclusteres, proporcionando una re-
presentacion consistente y predecible de los datos. Por ejemplo, en el analisis de textos, los dendrogramas pueden
organizar documentos en categorias generales y subcategorias mas especificas, lo que mejora la comprension y el

analisis de grandes volumenes de informacion.

2. Clustering particional: Este enfoque divide los datos en un nimero predefinido de clusteres. Puede basarse
en distancias, modelos probabilisticos o densidad. Ejemplos de algoritmos incluyen K-means, PAM, CLARA,
CLARANS, DBSCAN y CLIQUE.

Entre los métodos de clustering particional, k-means es uno de los mas utilizados, y es el que utilizaremos en este
analisis. Algunos ejemplos de su uso son por ejemplo en (Neshat et al.), donde se utiliza para identificar valores
atipicos dentro de cada cluster o en (Oyelade et al.), donde se ha usado para agrupar diferentes estudiantes en funcion
de sus resultados académicos.

Esta clasificacion resalta la diversidad de técnicas disponibles, cada una adecuada para diferentes tipos de datos y

objetivos analiticos.

De entre los diferentes métodos de clustering, nosotros usaremos el método k-means.
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4.2 Clustering con K-means

El método K-means es una técnica de agrupamiento que busca dividir un conjunto de datos en un niumero predefinido
de grupos o clusteres. Su objetivo principal es organizar las observaciones de manera que las que pertenecen a un
mismo cluster sean lo mas similares posible entre si, mientras que las observaciones de diferentes clusteres sean lo
mas distintas posible. Para lograr esto, K-means utiliza un enfoque iterativo que ajusta continuamente los grupos hasta

encontrar una solucioén 6ptima.

4.2.1 Algoritmo K-means

Como bien se explica en (Manual), el algoritmo K-means sigue los siguientes pasos:

1. Inmicializacién: Se asigna aleatoriamente un ntimero del 1 al K a cada observacion, lo que sirve como asignacion
inicial de cluasteres.

C,,Cy,...,C,,eRP
donde C; es el i-ésimo centroide y p es el nimero de variables.

2. Tteracion: Se repiten los siguientes pasos hasta que las asignaciones de clusteres no cambien:

(a) Para cada uno de los ( k) cltsteres, se calcula el centroide como el vector de medias de las observaciones

asignadas:

1
C =—
7Sl

Ty
z,€S;

donde Sj es el conjunto de observaciones asignadas al clister (j )y |S j| su tamafo.

(b) Para cada observacion x,, se calcula la distancia a cada centroide y se asigna al cluster mds cercano:

x; € S, donde c*=arg minkd(azi,Cj)

¢ ¢ 7=1,...,
donde d(x;, C;) es la distancia entre x; y el centroide C’.

El algoritmo K-means garantiza que el valor de la funcion objetivo, que mide la variacion intra-cluster total, disminuya
en cada iteracion. Esto se debe a que cada paso del algoritmo estd disefiado para mejorar la asignacion de clusteres o

los centroides:

1. Calculo de los centroides (Paso 2(a)): En este paso, los centroides de los clusteres se calculan como las medias
de las observaciones asignadas a cada cluster. Este calculo minimiza la suma de las desviaciones cuadradas

dentro de cada cluster, ya que las medias son los valores que minimizan esta suma.

2. Reasignacion de observaciones (Paso 2(b)): Cada observacion se reasigna al cluster cuyo centroide esté mas
cerca. Este proceso asegura que cada observacion esté asignada al cluster que minimiza su contribucion a la

variacion intra-cluster.
En cada iteracion, estos dos pasos reducen la variacion intra-cluster total, ya que:
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 El calculo de los centroides minimiza las desviaciones dentro de cada cluster.

+ La reasignacion de observaciones mejora la asignacion de clisteres, reduciendo atin mas la variacion.

Por lo tanto, el algoritmo K-means siempre converge a un 6ptimo local, ya que la funcién objetivo no puede aumentar en
ninguna iteracion. Sin embargo, debido a que el algoritmo encuentra un éptimo local, los resultados pueden depender de
la asignacion inicial de los clusteres. Por esta razon, es recomendable ejecutar el algoritmo varias veces con diferentes

inicializaciones y seleccionar la solucién con el valor més bajo de la funcién objetivo.

En (Singh et al.) se presentan diferentes métricas para calcular la distancia entre observaciones y centroides, entre las

que destacan la distancia euclidiana, la distancia de Manhattan, la distancia de Chebychev y la distancia de Minkowski.

» Distancia euclidiana: Se calcula como la raiz cuadrada de la suma de las diferencias al cuadrado entre las coor-
denadas de dos puntos. Es la métrica mas comunmente utilizada en el algoritmo K-means debido a su simplicidad

y a que funciona bien en datos donde las relaciones entre las variables son lineales.

* Distancia de Manhattan: Se calcula como la suma de las diferencias absolutas entre las coordenadas de dos
puntos. Es 1til cuando los datos tienen una estructura en forma de cuadricula o cuando las relaciones entre las

variables no son lineales. Por ejemplo, se utiliza en analisis de redes o en datos geograficos.

+ Distancia de Chebychev: Se calcula como la méxima diferencia absoluta entre las coordenadas de dos puntos.
Es adecuada cuando se desea priorizar la dimension con la mayor diferencia, como en problemas donde el peor

caso es mas relevante que la suma total de diferencias.

+ Distancia de Minkowski: Es una generalizacion de las distancias euclidiana y de Manhattan, y se calcula como
la raiz p-ésima de la suma de las diferencias absolutas elevadas a la p-ésima potencia. Es 1til cuando se desea
ajustar el parametro p para controlar la sensibilidad a las diferencias en las dimensiones. Por ejemplo, conp = 1
se obtiene la distancia de Manhattan, y con p = 2 se obtiene la distancia euclidiana.

La eleccion de la métrica de distancia depende del contexto del problema y de las caracteristicas de los datos. En este
analisis, como habiamos mencionado en los objetivos, vamos a utilizar por una parte la distancia euclidiana, que es la

mas comunmente utilizada en el algoritmo K-means, y por otra parte la distancia de Minkowski, que es util cuando

hay muchos valores atipicos.

Matematicamente, la variacion intra-cluster para un cliister C';, se calcula como:

Donde:

* |C}| es el mimero de observaciones en el clister C,,.

* z,; es el valor de la j-¢sima variable para la i-ésima observacion.

El objetivo del algoritmo es minimizar la suma total de W (C),) para todos los clusteres K:
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K
Minimizar E W(Cy)
k=1
En el contexto de este analisis, usaremos K-means para agrupar tarjetas graficas seglin sus especificaciones técnicas

(como memoria, velocidad de reloj, etc.) y asi identificar patrones o categorias naturales.

4.3 Aplicacion del método K-means

En este analisis, aplicaremos el método K-means para identificar patrones en las tarjetas graficas basandonos en sus es-
pecificaciones técnicas. El objetivo es agrupar las tarjetas graficas en clisteres que compartan caracteristicas similares,

lo que nos permitira identificar categorias naturales dentro de los datos.

Primero, aplicaremos el método K-means utilizando unicamente las variables numéricas. Este analisis nos permitira
identificar patrones basados exclusivamente en las especificaciones técnicas cuantitativas de las tarjetas graficas. A
continuacion, aplicaremos el método K-means utilizando tanto las variables numéricas como las categoricas. Este
enfoque nos permitira identificar si existen patrones adicionales al considerar las variables categéricas, como el tipo

de memoria o el fabricante, junto con las especificaciones técnicas.

Finalmente, compararemos los resultados obtenidos de ambos enfoques para evaluar si la inclusion de variables cate-

goricas mejora la identificacion de patrones en las tarjetas graficas.

4.3.1 Clustering con variables numéricas

En este apartado, aplicaremos el método K-means utilizando inicamente las variables numéricas seleccionadas. Este
analisis nos permitira identificar patrones basados exclusivamente en las especificaciones técnicas cuantitativas de las

tarjetas graficas.

4.3.1.1 Estandardizacion de los datos

Es importante estandarizar los datos antes de aplicar el método K-means, ya que este algoritmo es sensible a la escala
de las variables. La estandarizacion transforma los datos para que tengan una media de 0 y una desviacion estandar de

1, lo que permite que todas las variables contribuyan de manera equitativa al calculo.

Para ello, primero vamos a seleccionar las variables numéricas relevantes para el clustering. En este caso, vamos a usar

las siguientes variables:

* Memory_Size (GB)

* Memory_Bus (bits)

Shaders, TMUs y ROPs

* Memory_clock (MHz)

GPU_clock (MHz)
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# Seleccionar las variables numéricas relevantes para el clustering
variables_clustering <- datos %>}
select ("Memory_Size (GB) ~, “Memory_Bus (bits)”, Shaders, TMUs, ROPs,
“Memory_clock (MHz) ™, “GPU_clock (MHz) )

# Escalar los datos para mormalizar las variables

variables_clustering_scaled <- scale(variables_clustering)

# Verificar los datos escalados

summary (variables_clustering_scaled)

## Memory_Size (GB)  Memory_Bus (bits) Shaders TMUs

## Min. :-0.43884  Min. :-0.37302  Min. :-0.56361  Min. :-0.7510
## 1st Qu.:-0.37546 1st Qu.:-0.23403 1st Qu.:-0.54072 1st Qu.:-0.6513
## Median :-0.18529 Median :-0.23403 Median :-0.34384 Median :-0.3522

## Mean : 0.00000 Mean : 0.00000 Mean : 0.00000 Mean : 0.0000
## 3rd Qu.: 0.06825 3rd Qu.:-0.04869 3rd Qu.: 0.09572 3rd Qu.: 0.2462
## Max. :15.78824  Max. :11.44203 Max. :11.89044  Max. :10.2180
#it ROPs Memory_clock (MHz) GPU_clock (MHz)

## Min. :-0.8659 Min. :-1.9464 Min. :-2.02622

## 1st Qu.:-0.5693 1st Qu.:-0.7311 1st Qu.:-0.64506
## Median :-0.2728 Median :-0.1142 Median :-0.02218

## Mean : 0.0000 Mean : 0.0000 Mean : 0.00000
## 3rd Qu.: 0.3203 3rd Qu.: 0.6028 3rd Qu.: 0.53028
## Max. : 6.2508 Max. : 4.1712 Max. : 4.73063

4.3.1.2 Determinacion del nimero 6ptimo de clusteres (K)

Para determinar el nimero optimo de clusteres (K) en el método K-means, utilizamos el método del codo segun (Cui
et al.), una técnica que evalua la calidad del agrupamiento en funcién de la variacion intra-cluster. Este método se basa
en la métrica WCSS (Within-Cluster Sum-of-Squares), que mide la suma de las distancias al cuadrado entre cada

punto y el centroide de su clister. Cuanto menor sea el valor de WCSS, mejor sera la compactacion de los clusteres.

Funcionamiento del método del codo:

1. Calculo de WCSS para diferentes valores de K: Se ejecuta el algoritmo K-means para diferentes valores de
K y se calcula el WCSS correspondiente. Inicialmente, con K = 1, el valor de WCSS es alto, ya que todos los
puntos pertenecen a un tinico clister. A medida que K aumenta, WCSS disminuye porque los puntos estan mas

cerca de sus centroides.

2. Grafica de WCSS vs. K: Se grafica el valor de WCSS en funcion de K. En el eje x se representan los valores
de K,y en el eje y, los valores de WCSS.
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3. Identificacién del “codo”: El “codo” de la grafica es el punto donde la disminuciéon de WCSS comienza a
estabilizarse. Este punto indica el nimero 6ptimo de clisteres, ya que agregar mas clusteres después de este

punto no mejora significativamente la compactacion.

La métrica WCSS se calcula como:

K
WCSS = Z Z distancia(P;, C},)?

k=11icC},

Donde:

+ C,, es el centroide del cluster k.
P, es un punto de datos en el cluster k.

+ La distancia se calcula tipicamente utilizando la métrica euclidiana.

En nuestro analisis, utilizaremos el método del codo para determinar el nimero 6ptimo de clisteres antes de aplicar el

algoritmo K-means.

Para graficar los resultados del método del codo y visualizar los clusteres obtenidos, utilizaremos la libreria
factoextra. Esta libreria proporciona herramientas para visualizar e interpretar resultados de analisis multivariado,

incluyendo métodos de clustering como K-means.

La funcion fviz_nbclust de factoextra permite calcular y graficar la métrica WCSS (Within-Cluster Sum-of-

Squares) para diferentes valores de K, ayudandonos a identificar el nimero 6ptimo de clusteres.

44



library(factoextra)

# Calcular la vartacion intra-clister para diferentes valores de K
fviz_nbclust(variables_clustering_scaled, kmeans, method = "wss") +
labs(title = "Método del Codo para Determinar K",
x = "Numero de Clusteres (K)",

y = "Suma de Distancias al Cuadrado (WCSS)")

Método del Codo para Determinar K

20000 -

15000 1

10000 1

Suma de Distancias al Cuadrado (WCSS)

5000 1

1 2 3 4 5 6 7 8 9 10
Numero de Clusteres (K)

Figura 14: Método del Codo para Determinar K

Vemos que el codo esta entre k=5 y k=6. Primero vamos a probar con k=5 y luego con k=6.

4.3.1.3 Aplicacion del método K-means

Vamos a aplicar el método K-means para k=5 y k=6. Para ello, vamos a usar la funciéon kmeans de R. La funcion
kmeans toma como argumentos los datos, el numero de clusteres (K) y el nimero de inicios aleatorios (nstart). El

namero de inicios aleatorios se usa para evitar que el algoritmo se quede atrapado en un minimo local.

En el manual de (Manual) se recomienda usar un valor de nstart entre 20 y 50. En este caso, vamos a usar nstart=25.
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Para graficar los clusteres obtenidos vamos a usar la funciéon fviz_cluster de la libreria factoextra, que permite

visualizar los resultados del clustering de manera intuitiva.

Esta representacion grafica muestra los clusteres obtenidos al aplicar el método K-means con ( K =5 ). Cada punto en
el grafico representa una tarjeta grafica, proyectada en un espacio bidimensional utilizando componentes principales
(PCA) para reducir la dimensionalidad de los datos. Los puntos estan coloreados segun el cluster al que pertenecen, y

los centroides de los clusteres estan marcados con un simbolo distintivo.

El grafico permite observar como se agrupan las tarjetas graficas en funcion de sus especificaciones técnicas. La se-
paracion entre los clusteres indica qué tan distintos son entre si, mientras que la compactacion dentro de cada cluster

refleja la similitud de las tarjetas graficas agrupadas.
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# Aplicar K-means con K=5

kmeans_result_5 <- kmeans(variables_clustering_scaled, centers = 5, nstart = 25)

# Calcular la variacién intra-clister

intra_cluster_variation_5 <- sum(kmeans_result_5$withinss)

# Graficar los clusteres obtentidos con K=5
fviz_cluster (kmeans_result_5, data = variables_clustering_scaled) +

labs(title = "Clusteres de Tarjetas Graficas (K=5)",

x = "Componente 1",

y = "Componente 2")

Clusteres de Tarjetas Gréficas (K=5)

4680

10-

Componente 2

0 5 10 15
Componente 1

Figura 15: Clusteres de Tarjetas Graficas (K=5)

# Mostrar la variacion intra-cluster

cat("Variacién intra-clister total:", intra_cluster_variation_5, "\n")

## Variacion intra-clister total: 6157.303

Resultados:
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» La variacion intra-cluster total es de 6157.302724.

* El grafico de la Figura 15 muestra la distribucion de los clusteres obtenidos con K=5. Se observa que los clisteres
estan bien definidos, aunque en el grupo 3, las tarjetas graficas estan muy dispersas, lo que sugiere que este grupo

puede contener tarjetas graficas de diferentes generaciones o arquitecturas.

A continuacion, aplicaremos el método K-means con K=6 para ver si obtenemos una mejor definicion de los clisteres

y si la variacion intra-claster disminuye.

Se seguiran los mismos pasos que antes, pero ahora con K=6. Esto nos permitird comparar los resultados obtenidos

con K=5 y K=6, y ver si la inclusion de un cluster adicional mejora la definicion de los grupos.
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# Aplicar K-means con K=6

kmeans_result_6 <- kmeans(variables_clustering_scaled, centers = 6, nstart =

# Calcular la variacién intra-clister

intra_cluster_variation_6 <- sum(kmeans_result_6$withinss)

# Mostrar la variacién intra-cliuster

cat("Variacidén intra-clister total:", intra_cluster_variation_6, "\n")

## Variacion intra-cluster total: 4842.295

# Graficar los clusteres obtentdos con K=6
fviz_cluster (kmeans_result_6, data = variables_clustering_scaled) +
labs(title = "Clusteres de Tarjetas Graficas (K=6)",
x = "Componente 1",

y = "Componente 2")

Clusteres de Tarjetas Graficas (K=6)

10-

Componente 2

0 5 10 15
Componente 1

Figura 16: Clusteres de Tarjetas Graficas (K=6)
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# Mostrar la variaciéon intra-clister

cat("Variacién intra-clister total:", intra_cluster_variation_6, "\n")

## Variacion intra-cluster total: 4842.295
Resultados:

» La variacion intra-cluster total es de 4842.2953772.

* El grafico de la Figura 16 muestra la distribucion de los clusteres obtenidos con K=6. Se observa que los clisteres
estan bien definidos, aunque aqui también hay un grupo (grupo 4) que estd muy disperso, y ademas hay cierta

superposicion entre los grupos 3 y 4.
Resultados globales
+ La variacion intra-cluster total es de 6157.302724 para k=5 y de 4842.2953772 para k=6, lo que indica que el

modelo con k=6 tiene menos variacion interna. Esto se debe a que tenemos un grupo mas.

* Ambos modelos muestran clusteres bien definidos, aunque para el modelo con k=5, el grupo 3 estad mas disperso,

lo mismo pasa en el grupo 4 para el modelo k=6

* Elmodelo con k=6 tiene una variacion intra-clister total menor, lo que indica que los clusteres son mas compactos
y estan mejor definidos. Pese a haber superposicion entre los grupos 3 y 4, sélamente son 2 tarjetas graficas las

que estan en ambos grupos.

En un analisis posterior, veremos con mas claridad si es un problema para el modelo o no.

4.3.1.4 Analisis de los grupos obtenidos en el clustering

Vamos a analizar los grupos obtenidos en el clustering para ver si podemos identificar patrones o caracteristicas comu-
nes entre las tarjetas graficas de cada grupo.

Para ello, tendremos que seguir los siguientes pasos:

1. Afadir la variable de cluster al conjunto de datos original.
2. Agrupar los datos por cluster y calcular las estadisticas descriptivas.
3. Visualizar las caracteristicas de cada cluster.

4. Analizar los resultados y ver si podemos identificar patrones o caracteristicas comunes entre las tarjetas graficas

de cada grupo.

Empezamos con el analisis de los grupo obtenidos con k=6. Para ello, vamos a seguir los pasos mencionados anterior-
mente, donde mostraremos por una parte una tabla Con el resumen de las medias de cada variable por cluster y por
otra parte un grafico de barras con las medias de cada variable por cluster para una mejor visualizacion.

Resumen por cluster con medias (K=6):
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library(kableExtra)
# Anadir la variable de cluster al conjunto de datos original

datos$cluster_6 <- kmeans_result_6$cluster

# Agrupar los datos por cluster y calcular la media
resumen_por_cluster_media <- datos %>’
group_by(cluster_6) %>%
summarise (across(c( Memory_Size (GB)~, “Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) , “GPU_clock (MHz) ), mean,

.names = "media_{.col}"))

# Generar una tabla con kable
kable (resumen_por_cluster_media,
caption = "\\label{tab:resumen_por_cluster_media} Resumen de las medias por clister",
col.names = c("Claster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 1: Resumen de las medias por cluster

Cluster Memoria (GB)  Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 13.5392157  285.9608  4195.45098 202.117647  83.960784 1697.2549 1412.7451
2 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746
3 14.0967742  3897.8065  4347.87097 260.645161 88.645161 805.3710 1081.8226
4 64.5925926 3712.0000 11553.18519 526.518519 122.074074 1602.5556 1276.1852
5 3.9983871  221.5226  1402.52903  89.641290  31.194839 1429.2568 970.5213
6 1.5751929  163.5093 379.07717  31.305443 13.912266 928.4614 750.0991

51



# Grafico de barras para las medias de cada variable por cliuster
resumen_por_cluster_media %>%
pivot_longer(cols = -cluster_6, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_6), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Media de las Variables por Cluster", x = "Claster", y = "Media") +

theme_minimal ()

Media de las Variables por Cluster

12000
9000 Variable
. media_GPU_clock (MHz)
. media_Memory_Bus (bits)
._‘g - . media_Memory_clock (MHz)
% . media_Memory_Size (GB)
. media_ROPs
. media_Shaders
3000 . media_TMUs
o, L. Ulu.
1 2 3 4 5 6
Cluster
Figura 17: Media de las Variables por Cluster (K=6)
Observaciones:

* El grupo 4 destaca por tener una media de Shaders bastante mas alta que el resto de grupos, que podria indicar

que el namero de Shaders es el principal factor que define este grupo.

* El grupo 2 es el que tiene los valores mas bajos, lo que sugiere que este grupo esta formado por tarjetas graficas
de gama baja.

* Los grupos 3 y 4 tienen valores de ancho de banda mas altos, lo que sugiere que estos grupos estan formados
por tarjetas graficas disefiadas para tareas que requieren un alto ancho de banda.
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Ahora vamos a analizar los grupos obtenidos con k=5. Para ello, vamos a seguir los mismos pasos que hemos seguido

para el analisis de los grupos obtenidos con k=6.

# Afiadir la variable de cluster al conjunto de datos original

datos$cluster_5 <- kmeans_result_b$cluster
# Agrupar los datos por cluster y calcular la media

resumen_por_cluster_media5 <- datos ’>%
group_by(cluster_5) %>
summarise (across(c( Memory_Size (GB) , “Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) , “GPU_clock (MHz) ), mean,

.names = "media_{.coll}"))

# Generar una tabla con kable
kable(resumen_por_cluster_mediab,
caption = "\\label{tab:resumen_por_cluster_mediab} Resumen de las medias por clister",
col.names = c("Cluster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 2: Resumen de las medias por claster

Cluster Memoria (GB)  Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 1.6396161  163.2756 394.39685  32.11417  14.102362 939.9283 758.9039
2 4.4273585  223.1950  1521.00629  96.32201  34.193711 1468.6025 1013.4201
3 56.4444444 3921.7778 10115.55556 485.55556  125.333333 1449.5000 1248.6389
4 0.1772596  146.3586 13.40505 5.36919 5.337317 307.7397 328.9588
5 14.4041451 1276.1865  4747.27461 231.62694  90.943005 1417.5596 1285.3523
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# Grafico de barras para las medias de cada variable por cliuster

resumen_por_cluster_mediab %>%

pivot_longer(cols = -cluster_5, names_to = "Variable", values_to = "Media") %>%

ggplot(aes(x = factor(cluster_5), y = Media, fill = Variable)) +

geom_bar(stat = "identity", position = "dodge") +

labs(title = "Media de las Variables por Cluster", x = "Claster", y = "Media") +

theme_minimal ()

Media de las Variables por Cluster
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B 5000
S . media_Memory_Size (GB)
. media_ROPs
. media_Shaders
2500 . media_TMUs
ouLﬂl aal
1 2 3 4 5
Claster
Figura 18: Media de las Variables por Cluster (K=5)
Observaciones:

* Aqui si que encontramos un grupo (grupo3) cuya caracteristica principal es el ancho de banda alto. También es

el que mas niimero de Shaders tiene, aunque esto podria deberse a ciertos valores muy altos que suben la media.
Por eso mas adelante vamos a ver la varianza de cada grupo. Este grupo podria estar formado en gran parte por
las tarjetas graficas de tipo HBM, que como habiamos mencionado anteriormente, estan disefiadas para ofrecer

un mayor ancho de banda.

Para confirmar si realmente el grupo 3 estd formado por tarjetas graficas de tipo HBM, vamos a mostrar el numero de

tarjetas graficas de tipo HBM, HBM2 y HBM2e que hay en cada grupo.
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# Contar el numero de tarjetas graficas de tipo HBM, HBMZ2 y HBMZ2e en cada grupo
conteo_hbm <- datos %>’

group_by(cluster_5, Memory_Type) %>

summarise(n = n(), .groups = 'drop') %>%

filter (Memory_Type %in), c("HBM", "HBM2", "HBM2e", "HBM3"))

# Hacer una tabla con kable
kable(conteo_hbm,
caption = "\\label{tab:conteo_hbm} Nimero de tarjetas graficas de tipo HBM, HBM2,
HBM2e y HBM3 por clister",
col.names = c("Clister", "Tipo de Memoria", "Namero de Tarjetas Graficas"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 3: Numero de tarjetas graficas de tipo HBM, HBM2, HBM2e y HBM3 por cluster

Cluster Tipo de Memoria Numero de Tarjetas Graficas

1 HBM2 3
2 HBM2 2
3 HBM2 7
3 HBM2e 15
3 HBM3 4
5 HBM 23
5 HBM2 24
5 HBM2e 7

La mayoria de las tarjetas graficas de tipo HBM se clasifican en los grupo 3 y 5, aunque de entre las HBM, las mas
potentes (HBM2e y HBM3) se agrupan en su mayoria en el grupo 3, lo que explicaria el alto ancho de banda de este

grupo. El grupo 5 presentaba el segundo mayor nimero de ancho de banda.

Vamos a ver la varianza de cada grupo con k=5.

# Agrupar los datos por cluster y calcular la varianza

resumen_por_cluster_varianzab <- datos %>’
group_by(cluster_5) %>%
summarise (across(c( Memory_Size (GB) , “Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) , “GPU_clock (MHz) ), var,

.names = "var_{.coll}"))
# Generar una tabla con kable

kable(resumen_por_cluster_varianzab,

caption = "\\label{tab:resumen_por_cluster_varianzab5} Resumen de las varianzas por clister",
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col.names = c("Cluster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 4: Resumen de las varianzas por cluster

Cluster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 1.5249875 11755.98 70559.348 337.40933 57.41111 26168.18 28147.59
2 7.9321378 10737.16 454439.611  1745.46797  205.72062 56619.84 84275.02
3 910.4253968 6036008.63 25948029.968 21821.51111 4651.88571 157241.34 190159.44
4 0.0387919 36646.34 1452.154 34.91139 21.02170 25738.94 25201.28
5 63.2837327 2544950.72  4290858.888  2670.19344  518.96028 268289.30 178457.64
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# Grafico de barras para las varianzas de cada variable por cliuster

resumen_por_cluster_varianzab 7>7

pivot_longer(cols = -cluster_5, names_to = "Variable", values_to = "Varianza") %>%

ggplot(aes(x = factor(cluster_5), y = Varianza, fill = Variable)) +

geom_bar(stat = "identity", position = "dodge") +

labs(title = "Varianza de las Variables por Cliaster", x = "Claster", y = "Varianza") +

theme_minimal ()
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Figura 19: Varianza de las Variables por Cluster (K=5)

Observaciones:

* En el grupo 3 vemos una varianza muy alta en el nimero de Shaders, lo que sugiere que este grupo esta formado
por tarjetas graficas de diferentes generaciones o arquitecturas. Esto podria ser un indicativo de que el grupo 3
esta formado por tarjetas graficas de gama alta, pero con diferentes arquitecturas. El ancho de banda también
tiene una varianza elevada, lo que podria explicarse por la presencia de tarjetas graficas de tipo HBM, que como
hemos mencionado anteriormente, estan disefiadas para ofrecer un mayor ancho de banda.

» Los grupos 1, 2 y 4 tienen una varianza baja en todas las variables, lo que sugiere que estos grupos estan muy
homogéneos y que las tarjetas graficas de estos grupos tienen caracteristicas similares.
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Conclusiones:

* Pese a que el modelo con k=6 tiene una variacion intra-cluster total menor, para nuestro analisis nos interesa mas
tener las tarjetas graficas con la tecnologia HBM juntas, por lo que el modelo con k=5 es mas adecuado para

nuestro analisis.

No obstante, vamos a ver si con el modelo conjunto de variables numéricas y categdricas obtenemos un mejor

resultado.

Vamos a guardar los resultados obtenidos en una variable para poder compararlos con los resultados obtenidos con el

modelo conjunto de variables numéricas y categoricas.

# Crear un wvector de conclusiones
conclusiones_k5 <- c(
"E1l grupo 3 se caracteriza por tener un ancho de banda alto,",
"lo que podria indicar que estd formado por tarjetas graficas de tipo HBM.",
"Los grupos 1, 2 y 4 tienen una varianza baja en todas las variables,",
"lo que sugiere que estos grupos estan muy homogéneos y bien definidos."
)
# Crear un data frame resumen para el modelo k=5
tabla_resultados_kmeans_5 <- data.frame(
Modelo = "Solo numéricas",
Numero_Clusters = length(unique(kmeans_result_5$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_5,

n

Conclusiones = paste(conclusiones_k5, collapse = )

4.3.2 Clustering con variables numéricas y categéricas

En este apartado, incluiermos algunas variables categoricas al método k-means, para asi poder comparar los resultados

obtenidos con el modelo anterior y ver si, al incluir variables categoricas, obtenemos un mejor resultado.

En la base de datos tenemos las siguientes variables categoricas:

* GPU_Chip: Chip de la GPU.
* Bus: Tipo de bus.

* Memory_Type: Tipo de memoria.

Released: Fecha de lanzamiento.

De estas variables nos interesa sélamente usar la variable “Memory Type”, ya que es la que mas puede influir en el
rendimiento de la tarjeta grafica. La variable “GPU_Chip” no nos interesa porque, como se ha podido observar en el
apartado 2.1, tenemos 335 tipos de chip diferentes, lo que nos generaria un nimero muy elevado de variables dummy.
La variable “Bus” tampoco nos interesa porque no tiene un impacto significativo en el rendimiento de la tarjeta grafica,

pues la mayoria de las tarjetas graficas utilizan el bus PCle.
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4.3.2.1 Preparacion de los datos

Para incluir variables categoricas en el método K-means, es necesario convertirlas en variables dummy. Esto se logra
utilizando la funcion dummy_cols de la libreria fastDummies, que crea variables dummy para las variables catego-
ricas seleccionadas. Las variables dummy son variables binarias que indican la presencia o ausencia de una categoria

especifica.

Después de crear las variables dummy, combinaremos las variables numéricas y categoricas en un solo conjunto de
datos. Esto nos permitira aplicar el método K-means a un conjunto de datos que incluye tanto variables numéricas
como categodricas. Finalmente, escalaremos los datos para normalizar las variables para que todas tengan la misma

importancia en el analisis.

library(fastDummies)
# Transformar la vatable memory_type a factor
datos_transform <- datos %>
mutate (Memory_Type = as.factor(Memory_Type))
# Crear wvariables dummy para las wvariables categéricas seleccionadas
datos_dummy <- datos_transform 7>
dummy_cols(select_columns = c("Memory_Type"), remove_first_dummy = TRUE)
# Combinar numéricas y categoéoricas
datos_combinados <- datos_transform %>
select ("Memory_Size (GB) , “Memory_Bus (bits)”, Shaders, TMUs, ROPs,
“Memory_clock (MHz)~, “GPU_clock (MHz) ) %>%
cbind(datos_dummy %>% select(starts_with("Memory_Type_")))
# Escalar los datos para mormalizar las variables
datos_combinados_scaled <- scale(datos_combinados)
# Ver cuantas variables nuevas se han creado al hacer dummies

nvariables <- ncol(datos_combinados)

nvariables

## [1] 32

Después de crear las variables dummy, vemos que el nimero total de variables ha ascendido a 32 variables.

Tantas variables podrian hacer que el algoritmo K-means no funcione correctamente, por lo que vamos a aplicar el

método PCA para reducir la dimensionalidad de los datos.
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4.3.2.2 Fundamento tedrico del anilisis de componentes principales (PCA)

(Manual) explica que el PCA es un método no supervisado que se utiliza para resumir un conjunto grande de varia-
bles correlacionadas mediante un nimero menor de variables representativas llamadas componentes principales. Estas
componentes son direcciones en el espacio de caracteristicas a lo largo de las cuales los datos originales presentan
una alta variabilidad, y definen lineas y subespacios que estan lo mas cerca posible del conjunto de datos. PCA se usa
tanto para producir variables derivadas que pueden emplearse en modelos de aprendizaje supervisado como para la
visualizacion de datos o para la imputacion de valores faltantes en una matriz de datos.

¢ Como funciona PCA?

El PCA encuentra una representacion de los datos en un espacio de menor dimension, donde cada dimension es una

combinacion lineal de las variables originales.

Imaginemos que tenemos un conjunto de datos con p variables originales X, Xy, ..., X,

La primera componente se calcula como:
Zy =1 Xy + 0 Xg + -+ 0 X,

donde los coeficientes ¢,; se denominan cargas, y cumplen la condicion:

D
> sh=1
=1

PCA tiene como objetivo maximizar la varianza de la nueva variable Z, es decir, encontrar la direccion en el espacio
de los datos a lo largo de la cual las observaciones presentan la mayor variabilidad posible. Esto se hace resolviendo
un problema de optimizacion bajo la restriccion mencionada anteriormente.

El conjunto de valores z;; obtenidos para cada observacion se denominan scores del primer componente.

Una vez determinado el primer componente principal Z;, se puede calcular el segundo componente principal Z;.

Este es otra combinacion lineal de las variables originales X, ..., X, pero con dos condiciones:
1. Debe tener la maxima varianza posible, igual que Z;.
2. Debe ser no correlacionado con Z,, lo cual equivale a que su vector de cargas ¢, sea ortogonal al vector de
cargas del primer componente, ¢ .
La forma general del segundo componente es:
Zig = Q1251 + Goolio + -+ Doy,

donde ¢y = (19, Paa, -+, Ppa) €s el vector de cargas del segundo componente principal, y cumple:

. Z;):l ¢3, = 1 (normalizacion), y
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* ¢y L ¢, (ortogonalidad).

Este proceso se repite para obtener mas componentes principales Z3, Z, ..., Z; (con M < p), cada uno maximizando

la varianza restante y siendo ortogonal a los anteriores.

4.3.2.3 Aplicacion del PCA

Vamos a aplicar el PCA a los datos combinados. Para ello, vamos a usar la funcion PCA de la libreria FactoMineR,

que permite realizar un analisis de componentes principales de manera sencilla.

La funcién PCA toma como argumentos los datos, el nimero de componentes principales a calcular y el grafico a
generar. En este caso, vamos a calcular todos los componentes principales y no vamos a generar graficos. Con esta
funcion, podemos obtener facilmente la varianza explicada por cada componente principal con la funciéon eig, que

devuelve un data frame con la varianza explicada por cada componente principal.

library(FactoMineR)
# Realtizar PCA
pca_result <- PCA(datos_combinados_scaled, graph = FALSE)

# Ver la warianza explicada por cada componente principal

pca_var <- pca_result$eig

pca_var

## eigenvalue percentage of variance cumulative percentage of variance
## comp 1 5.32700624 16.64689451 16.64689
## comp 2 2.24726968 7.02271776 23.66961
## comp 3 1.39849281 4.37029004 28.03990
## comp 4 1.23319452 3.85373288 31.89364
## comp 5 1.18271645 3.69598891 35.58962
## comp 6 1.15939412 3.62310661 39.21273
## comp 7 1.07048094 3.34525292 42.55798
## comp 8 1.04989121 3.28091002 45.83889
## comp 9 1.03425554 3.23204857 49.07094
## comp 10 1.01924387 3.18513710 52.25608
## comp 11 1.01143834 3.16074480 55.41682
## comp 12 1.01124085 3.16012766 58.57695
## comp 13 1.01015492 3.15673413 61.73369
## comp 14 1.00439888 3.13874650 64.87243
## comp 15 1.00288571 3.13401784 68.00645
## comp 16 1.00259693 3.13311540 71.13957
## comp 17 1.00245519 3.13267245 74.27224
## comp 18 1.00202792 3.13133724 77.40358
## comp 19 1.00132527 3.12914147 80.53272
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## comp 20 1.00106724 3.12833513 83.66105
## comp 21 1.00078643 3.12745760 86.78851
## comp 22 1.00048747 3.12652336 89.91503
## comp 23 1.00040438 3.12626368 93.04130
## comp 24 1.00032843 3.12602634 96.16732
## comp 25 0.39834403 1.24482510 97.41215
## comp 26 0.35610868 1.11283961 98.52499
## comp 27 0.18335509 0.57298465 99.09797
## comp 28 0.10156016 0.31737552 99.41535
## comp 29 0.07146214 0.22331919 99.63867
## comp 30 0.04620136 0.14437924 99.78305
## comp 31 0.04385966 0.13706145 99.92011
## comp 32 0.02556555 0.07989233 100.00000

Vemos que con 19 componentes principales explicamos el 80% de la varianza total. Como queremos obtener el menor
nimero de componentes principales que expliquen el 80% de la varianza total, vamos a intentar agrupar los tipos de

memoria menos comunes en una sola categoria llamada “Otros”.

4.3.2.4 Agrupacion de tipos de memoria y aplicacion del PCA

Como habiamos hecho en el apartado 2.4.2, vamos a filtrar los tipos de memoria, pero esta vez vamos a filtrar los
menos comunes. Luego vamos a agrupas estas tarjetas graficas en una sola categoria llamada “Otros”. Vamos a llamarla

datos2 para diferenciarla con la base de datos original.

Ademas, vamos a agrupar HBM, HBM2, HBM2e y HBM3 en una sola categoria llamada “HBM”

# Crear una copia de los datos originales para trabajar con ella

datos2 <- datos
# Filtrar los tipos de memoria menos comunes
tipos_memoria_no_comunes <- datos2 7>’
count (Memory_Type, sort = TRUE) %>
filter(n < 15) %>%
pull(Memory_Type)

# Agrupar los tipos de memoria menos comunes en una sola categoria llamada "Otros"

datos2$Memory_Type <- ifelse(datos2$Memory_Type %in) tipos_memoria_no_comunes, "Otros",

datos2$Memory_Type)

# Agrupar HBM, HBMZ2 y HBMZe en una sola categoria llamada "HBM"

datos2$Memory_Type <- ifelse(datos2$Memory_Type %in% c("HBM", "HBM2", "HBM2e", "HBM3"), "HBM",
datos2$Memory_Type)
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Ahora que hemos agrupado los tipos de memoria menos comunes, vamos a volver a crear las variables dummy y aplicar
el PCA.

# Transformar la variable memory_type a factor

datos2$Memory_Type <- as.factor(datos2$Memory_Type)

# Crear wvariables dummy para las variables categéricas seleccionadas
datos_dummy2 <- datos2 %>’

dummy_cols(select_columns = c("Memory_Type"), remove_first_dummy = TRUE)

# Combinar numéricas y categéricas
datos_combinados2 <- datos2 %>
select ( Memory_Size (GB) , “Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) , “GPU_clock (MHz) ) %>%
cbind(datos_dummy2 %>} select(starts_with("Memory_Type_")))

# Escalar los datos para normalizar las variables
datos_combinados_scaled2 <- scale(datos_combinados2)
# Ver cuantas variables nuevas se han creado al hacer dummies

nvariables2 <- ncol(datos_combinados_scaled?2)

nvariables?2

## [1] 19

Ahora que hemos agrupado los tipos de memoria menos comunes, el numero total de variables ha descendido a 19

variables.

Vamos a aplicar de nuevo el PCA con la nueva base de datos reducida para ver cuantos componentes principales

necesitamos para poder realizar el clustering.

# Realvzar PCA
pca_result2 <- PCA(datos_combinados_scaled2, graph = FALSE)

# Ver la warianza explicada por cada componente principal

pca_var2 <- pca_result2$eig

pca_var2

## eigenvalue percentage of variance cumulative percentage of variance
## comp 1 5.23247717 27.5393535 27.53935
## comp 2 2.20352143 11.5974812 39.13683
## comp 3 1.38728320 7.3014905 46.43833
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## comp 4 1.22149152 6.4289027 52.86723
## comp 5 1.16513867 6.1323088 58.99954
## comp 6 1.06365013 5.5981586 64.59770
## comp 7 1.05243183 5.5391149 70.13681
## comp 8 1.03011566 5.4216614 75.55847
## comp 9 1.02250842 5.3816233 80.94009
## comp 10 1.01130568 5.3226615 86.26276
## comp 11 1.00887570 5.3098721 91.57263
## comp 12 0.51775051 2.7250027 94.29763
## comp 13 0.41195491 2.1681837 96.46581
## comp 14 0.30355378 1.5976515 98.06347
## comp 15 0.11690998 0.6153157 98.67878
## comp 16 0.09556421 0.5029695 99.18175
## comp 17 0.07010610 0.3689795 99.55073
## comp 18 0.04938565 0.2599245 99.81066
## comp 19 0.03597546 0.1893445 100.00000

Aqui vemos que con 9 componentes principales explicamos el 80% de la varianza total, pero nos interesa mas tener el
menor niumero posible de componentes principales, por lo que vamos a quedarnos con 8 componentes principales, que

explican el 75% de la varianza total.

4.3.2.5 Meétodo del codo con PCA

Vamos a aplicar el método del codo con 8 componentes principales para determinar el nimero dptimo de clusteres
(K). Para ello, vamos a aplicar de nuevo la funcién PCA, donde podremos seleccionar 8 componentes principales
introduciendo el argumento ncp = 9 seguido de $indcoord, que nos devolvera las coordenadas de los individuos en
el espacio de las componentes principales. Con estas coordenadas, vamos a aplicar el método del codo para determinar

el niimero optimo de clusteres (K).
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# Seleccionar las primeras 9 componentes principales

pca_data <- PCA(datos_combinados_scaled2, ncp = 8, graph = FALSE)$ind$coord
# Hacer el método del codo

fviz_nbclust(pca_data, kmeans, method = "wss") +
labs(title = "Método del Codo para Determinar K",
x = "Namero de Clasteres (K)",

y = "Suma de Distancias al Cuadrado (WCSS)")

Método del Codo para Determinar K

40000 1

30000 1

20000 1

Suma de Distancias al Cuadrado (WCSS)

10000 1

3 4 5 6 7 8
Numero de Clusteres (K)

Figura 20: Método del Codo para Determinar K con PCA

Vemos un ligero codo en k=8, por lo que vamos a aplicar el método k-means con k=8.

4.3.2.6 Aplicacion del método K-means con PCA

10

En este apartado, vamos a aplicar el método k-means con k=8. Para ello, similar a lo que hicimos en el apartado

3.3.1.3, vamos a usar la funcion kmeans de R.

Esta vez vamos a usar el argumento centers = 8 para indicar que queremos 8 clusteres. También vamos a usar el
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argumento nstart = 25 para evitar que el algoritmo se quede atrapado en un minimo local. Luego vamos a calcular
la variacion intra-clister total y graficar los clusteres obtenidos. Para ello, vamos a usar la funciéon fviz_cluster de

la libreria factoextra, que permite visualizar los resultados del clustering de manera intuitiva.

# Aplicar K-means con K=8

kmeans_result_8 <- kmeans(pca_data, centers = 8, nstart = 25)

# Calcular la variaciéon intra-cluster
intra_cluster_variation_8 <- sum(kmeans_result_8$withinss)

intra_cluster_variation_8

## [1] 9501.153
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# Graficar los clusteres obtentidos con K=8
fviz_cluster (kmeans_result_8, data = pca_data) +
labs(title = "Clusteres de Tarjetas Graficas (K=8)",
x = "Componente 1",

y = "Componente 2")

Clusteres de Tarjetas Graficas (K=8)

N 465,
/‘\ O
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c
[%))]
—
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w

Pk [ pofxHpplol

-5.0 -25 0.0 25
Componente 1

Figura 21: Clusteres de Tarjetas Graficas (K=8)

Resultados:

» La variacion intra-cluster total es de 9501.1530549.

* El grafico de la Figura 21 muestra la distribucion de los clusteres obtenidos con K=8. Se observa que los grupos
1 y 2 tienen cierta superposicion, igual que los grupos 3 y 6.

* Los grupos 7 y 8 son los que mejor definidos estan, pues muestran muy poca variacion interna y estan bien
separados entre si.

* El grupo 5 es el que mas disperso estd, lo que sugiere que este grupo puede contener tarjetas graficas de diferentes
generaciones o arquitecturas.
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4.3.2.7 Anailisis de los grupos obtenidos en el clustering

Vamos a analizar los grupos obtenidos en el clustering para ver si podemos identificar patrones o caracteristicas comu-

nes entre las tarjetas graficas de cada grupo.

Para ello, primero calcularemos la media y la varianza de cada variable por clister. Para facilitar la visualizacion de

los resultados, generaremos tablas con kable para mostrar las medias y varianzas de cada variable por cluster.

Resumen por cluster con medias:

# Afiadir la variable de clister al conjunto de datos original

datos2$cluster_8 <- kmeans_result_8$cluster

# Agrupar los datos por cluster y calcular la media
resumen_por_cluster_media8 <- datos2 %>%
group_by(cluster_8) %>/
summarise (across(c( Memory_Size (GB) , “Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) , “GPU_clock (MHz) ), mean,

.names = "media_{.col}"))

# Generar una tabla con kable

kable (resumen_por_cluster_media8,
caption = "\\label{tab:resumen_por_cluster_media8} Resumen de las medias por cluster",

col.names = c("Cluster", "Memoria (GB)", "Bus (bits)",

"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),

format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 5: Resumen de las medias por cluster

Cluster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 27.9250000 4249.60000 5185.600000 315.5000000 89.100000 944.7125 1075.6625
2 1.4474910 364.30769 237.538462 11.5128205 7.282051 387.6154 279.2051
3 0.0196149 91.07692 1.615385 0.9807692 1.634615 114.2500 109.8269
4 0.4341728  194.48471 95.876471  16.8858824 10.109412 558.4812 462.8282
5 11.9962406  221.23308 4032.962406 174.0150376 72.541353 1666.2632 1397.7932
6 3.3391608  209.87413  1111.342657  75.1923077 26.870629 1274.4231 890.5140
7 0.3263393  105.60000 37.307143 7.2428571  5.085714 403.4786 496.8071
8 1.9559257 93.88679 342.971698 23.8726415 10.033019 905.2099 821.5212
Resumen por varianzas de cada grupo:
# Agrupar los datos por clister y calcular la varianza
resumen_por_cluster_varianza8 <- datos2 >7
group_by(cluster_8) %>%
summarise (across(c( Memory_Size (GB) , “Memory_Bus (bits) , Shaders, TMUs, ROPs,

“Memory_clock (MHz) , “GPU_clock (MHz) ), var,
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.names = "var_{.col}"))

# Generar una tabla con kable

kable(resumen_por_cluster_varianza8,
caption = "\\label{tab:resumen_por_cluster_varianza8} Resumen de las varianzas por clister",
col.names = c("Cluster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 6: Resumen de las varianzas por cluster

Clister Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 976.8550633  1356512.243  5.271498e+06 20086.025316 2023.2810127 147042.840 26835.543
2 12.7982443  576167.903  9.809682¢+05  1022.887989  190.4183536 370341.559 216202.115
3 0.0003874 1605.975  6.467513e-01 3.397685 0.8166542 3493.451 3974.824
4 0.2792182 11811.430  2.631748e+04 361.302627 51.6122788 82301.089 28289.146
5 88.7358349 11264.044  1.247734e+07 12335.728075 1390.8001702 108285.221 216185.667
6 7.5704555 11775.620  4.438798e+05 2127.039101 257.2010964 74074.159 30369.897
7 0.0505883 3163.350 4.568315e+03 54.242754 10.4961973 11348.194 12172.013
8 1.5803612 1757.869  2.924894e+04 102.120857 19.8097819 10845.258 28051.253
Observaciones:

* El grupo 1 tiene con diferencia la media mas alta de ancho de bus, lo que podria sugerir que estd formado
principalmente por tarjetas graficas de memoria HBM. También tiene la media mas alta de memoria, que indica
que este grupo también esta formado por tarjetas graficas de gama alta a parte de las tarjetas graficas con memoria
HBM.

 El grupo 2 no destaca en ninguna variable, lo que podria sugerir que estaria formado por tarjetas con el tipo de

memoria Otros o por tarjetas de gama media.

* El grupo 3 tiene la media y varianza mas baja en la mayoria de las variables, lo que sugiere que este grupo esta

formado por tarjetas graficas de gama baja.

* Atn con estas tablas, no podemos concluir por qué hay cierta superposicion entre los grupos 1y 2, y entre los
grupos 3 y 6. Para ello, vamos a ver si podemos encontrar alguna relacion entre los grupos obtenidos y el tipo

de memoria de las tarjetas graficas.

Vamos a ver si podemos encontrar alguna relacion entre los grupos obtenidos y el tipo de memoria de las tarjetas
graficas. Para ello, vamos a contar el numero de tarjetas graficas por tipo de memoria en cada cluster y también el
numero total de tarjetas graficas por tipo de memoria en la base de datos. Esto nos permitira ver si hay algun tipo de

memoria que esté mas presente en un clister que en otro.

# Combinar las tablas de resumen por cliuster y resumen total
resumen_comparacion <- resumen_por_cluster_memoria %>’
left_join(resumen_total_memoria, by = "Memory_Type", suffix = c("_cluster", "_total")) %>%

mutate(porcentaje_cluster = n_cluster / n_total * 100)
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# Generar una tabla con kable
tabla_comparacion <- kable(resumen_comparacion,
caption = "\\label{tab:comparacion_memoria} Comparacién del nimero de tarjetas graficas por tipo
col.names = c("Cliaster", "Tipo de Memoria", "Numero en Claster",
"Namero Total", "Porcentaje en Cluster"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

tabla_comparacion

Tabla 7: Comparacion del nimero de tarjetas graficas por tipo de memoria

Cluster Tipo de Memoria Numero en Cluster Numero Total Porcentaje en Cluster

1 HBM 76 81 93.8271605
1 Otros 4 45 8.8888889
2 Otros 39 45 86.6666667
3 SDR 87 87 100.0000000
3 DRAM 17 17 100.0000000
4 GDDR3 508 508 100.0000000
4 DDR 314 314 100.0000000
4 GDDR4 25 25 100.0000000
4 GDDR6 2 211 0.9478673
4 HBM 1 81 1.2345679
5 GDDR6 209 211 99.0521327
5 GDDRS5X 30 30 100.0000000
5 GDDR6X 20 20 100.0000000
5 GDDR5 5 1145 0.4366812
5 Otros 2 45 4.4444444
6 GDDRS 1140 1145 99.5633188
6 HBM 4 81 4.9382716
7 DDR2 140 140 100.0000000
8 DDR3 424 424 100.0000000

Observaciones:

* El grupo 1 esta formado principalmente por las tarjetas graficas con memoria HBM, lo que quiere decir que este
grupo deberia tener un ancho de bus mas alto que el resto de grupos. Esto se puede ver en la Tabla 1 de resumen
de medias, donde el grupo 1 tiene la media mas alta de ancho de bus.

* El grupo 2 esta formado principalmente por las tarjetas graficas con “Otros” tipos de memoria, lo que podria
explicar la superposicion con el grupo 1, ya que este grupo tiene una media de ancho de bus mas baja que el
grupo 1, pero ligeramente mas alta que el resto de grupos. Ademas, el tipo de memoria Otros s6lamente esta

presente en estos dos grupos.

* El grupo 3 esta predominado por las tarjetas graficas con memoria SDR y DRAM, lo que podria sugerir que estas
dos arquitecturas son muy similares entre si. Como habiamos visto en la Tabla 1, el grupo 3 tiene las medias

mas bajas en todas las variables, lo que seguramente se podria deber a que estas tecnologias son mas antiguas.
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 El grupo 4 esta formado por 5 tipos de memoria diferentes, siendo la mayoria GDDR3, DDR y GDDR6, donde
la totalidad de estos tipos de memoria estan en este grupo. En la Tabla 1 vemos que el grupo 4 no tiene ninguna
variable que destaque sobre el resto, esto quiere decir que este grupo esta formado por tarjetas graficas de gama
media-baja.

* El grupo 5 esta formado por basicamente todas las tarjetas graficas con memoria GDDR6, GDDR5X y GDDR6X,
que son memorias de gama alta, lo que se puede observar también en la Tabla 1, donde el grupo 5 presenta las
medias méas altas, solamente superadas por el grupo 1, aunque en reloj de memoria y reloj de GPU, el grupo 5
tiene las medias mas altas. Esto tiene sentido, ya que, como habiamos mencionado anteriormente, las tarjetas
graficas con memoria HBM estan especializadas en tareas que requieren un alto ancho de banda, mientras que las
tarjetas graficas con memoria GDDR6, GDDR5X y GDDR6X estan disefiadas para ofrecer un alto rendimiento

en juegos y aplicaciones graficas.

* El grupo 6 esta formado mayoritariamente por tarjetas graficas con memoria GDDRS, que es una memoria de

gama media-alta.

* Los grupos 7 y 8 estan formados unicamente por una memoria cada uno, siendo la memoria DDR2 y DDR3
respectivamente, donde ambos tienen el 100% de las tarjetas graficas con ese tipo de memoria. Esto podria
explicar por qué estos grupos estan tan bien definidos, ya que al ser un tinico tipo de memoria, no hay variacion

interna entre las tarjetas graficas de estos grupos.

Guardamos los resultados obtenidos en una variable para poder compararlos con los resultados obtenidos con el modelo

conjunto de variables numéricas y categoéricas.

# Crear un vector de conclustiones

conclusiones_k8 <- c(

)

"Se tuvo que hacer un PCA para reducir la dimensionalidad de los datos.",
"Después de aplicar el PCA y realizar el clustering,",
"se observd que los grupos 1 y 2 tienen cierta superposiciédn,",

"igual que los grupos 3 y 6.",

"Habia un par de grupos bien definidos y otros que estaban mas dispersos.",

"Luego se concluyd que los grupos estaban principalmente definidos",

"por el tipo de memoria de las tarjetas graficas."

# Crear un data frame resumen para el modelo k=5

tabla_resultados_kmeans_8 <- data.frame(

Modelo = "Numéricas y categdricas",
Numero_Clusters = length(unique(kmeans_result_8$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_8,

Conclusiones = paste(conclusiones_k8, collapse = " ")

4.3.3 Comparacion de los dos modelos

En este apartado, vamos a comparar los resultados obtenidos con el modelo de s6lo variables numéricas y el modelo de

variables numéricas y categoricas. Para ello, vamos a crear una tabla con los resultados obtenidos en ambos modelos,
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donde incluiremos el numero de clusteres, la variacion intra-cluster total y las conclusiones obtenidas en cada modelo.

# Unimos los resultados de ambos modelos en una sola tabla

tabla_resultados_kmeans <- rbind(tabla_resultados_kmeans_ 5, tabla_resultados_kmeans_8)

# Generar una tabla con kable
kable(tabla_resultados_kmeans,
caption = "\\label{tab:comparacion_modelos} Comparacién de los resultados de los modelos K-means"
col.names = c("Modelo", "Numero de Clusteres",
"Variacién Intra-Cluster", "Conclusiones"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position")) %>%

column_spec(4, width = "8cm")

Tabla 8: Comparacion de los resultados de los modelos K-means

Modelo Numero de Clasteres  Variacion Intra-Cluster  Conclusiones

Solo numéricas 5 6157.303 El grupo 3 se caracteriza por tener un ancho de banda
alto, lo que podria indicar que esta formado por tarjetas
graficas de tipo HBM. Los grupos 1, 2 y 4 tienen una
varianza baja en todas las variables, lo que sugiere que
estos grupos estan muy homogéneos y bien definidos.

Numéricas y categoricas 8 9501.153  Se tuvo que hacer un PCA para reducir la
dimensionalidad de los datos. Después de aplicar el PCA
y realizar el clustering, se observo que los grupos 1y 2
tienen cierta superposicion, igual que los grupos 3 y 6.
Habia un par de grupos bien definidos y otros que
estaban mas dispersos. Luego se concluy6 que los
grupos estaban principalmente definidos por el tipo de
memoria de las tarjetas graficas.

Frente a los resultados obtenidos, el modelo con sélo variables numéricas resulta ser mas sencillo de interpretar, con
una variacion intra-clister total mas baja, grupos mejor definidos y menos dispersos. Ademas, este modelo tiene en
cuenta mas las especificaciones técnicas de las tarjetas graficas que el modelo con el tipo de memoria, donde este

clasificaba las tarjetas graficas principalmente por el tipo de memoria.

4.4 Implementacion manual del algoritmo K-means

En este apartado, vamos a implementar el algoritmo k-means de manera manual, lo que nos permitira utilizar distintas

medidas de distancia y analizar si los grupos resultantes difieren en funcién de la métrica empleada.

En el andlisis anterior, hemos utilizado la funcion kmeans de R, que implementa el algoritmo k-means clasico utilizando
la distancia euclidiana como medida de proximidad entre observaciones y centroides. Sin embargo, como se menciond
en el apartado 3.2.1, existen otras medidas de distancia que pueden ser ttiles en funcion de la naturaleza de los datos
y de los objetivos del analisis, como la distancia de Manhattan, ladistancia de Chebyshevoladistancia
de Minkowski. Esta tlltima es especialmente interesante, ya que generaliza tanto la distancia euclidiana (cuando ( p
=2)) como la de Manhattan (cuando ( p = 1)), permitiendo ajustar el parametro ( p ) para controlar la sensibilidad a

valores extremos.
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En nuestro caso, el andlisis exploratorio ha mostrado la presencia de valores atipicos, especialmente en las tarjetas
graficas mas modernas (apartado 2.3.3). En estos escenarios, la distancia euclidiana puede verse muy influida por
estos valores extremos, lo que podria afectar a la formacion de los clusteres. Por el contrario, la distancia de Manhattan
y, en general, la distancia de Minkowski con ( p < 2 ), son menos sensibles a los valores atipicos, lo que podria dar

lugar a agrupamientos mas robustos.

Por lo tanto, la estrategia sera la siguiente:

1. Implementaremos el algoritmo k-means manualmente utilizando la distancia euclidiana. Esto nos permitira com-
parar directamente los resultados con los obtenidos previamente mediante la funciéon kmeans de R y validar que

la implementacion es correcta.

2. Aplicaremos el algoritmo utilizando la distancia de Minkowski, ajustando el pardmetro ( p ) para explorar si se
obtienen agrupamientos diferentes o incluso mejores, especialmente en presencia de valores atipicos. De este
modo, podremos evaluar si la eleccion de la métrica de distancia influye en la calidad y la interpretacion de los

clusteres obtenidos.

4.4.1 Repaso tedrico del algoritmo K-means

En el apartado 3.2.1 se ha explicado el algoritmo k-means, pero aqui vamos a profundizar un poco mas en su expresion

matematica y los pasos que sigue el algoritmo.

Como bien habiamos mencionado, el algoritmo k-means, para minimizar la suma total de distancias al cuadrado entre

los puntos y los centroides sigue los siguientes pasos:
1. Inicializacion: Se seleccionan aleatoriamente ( k ) puntos del conjunto de datos como centroides iniciales.
Matematicamente, esto se puede expresar como:
C,,Cy,...,CLeRP

donde C; es el i-ésimo centroide y p es el numero de variables.

Esto en R, podemos hacerlo con la funciéon sample, que selecciona aleatoriamente ( k ) puntos del conjunto de datos.

En este caso, s6lo queremos las variables numéricas.

# Centroides iniciales aleatortios de las wvartables numéricas

centroides_iniciales <- datos_num[sample(l:nrow(datos_num), k), ]

2. Encontrar la distancia entre cada punto y cada centroide.

Primero tendremos que inicializar una matriz para las distancias, donde cada fila representa un punto y cada columna

representa un centroide.

73



# Inictalizar una matriz para las distancias

distancias <- matrix(0, nrow = nrow(datos_num), ncol = k)

Una vez tenemos la matriz de distancias, tendremos que, en cada iteracion, calcular la distancia de cada punto a cada
centroide. En nuestro caso, como habiamos mencionado, vamos a usar la distancia euclidiana y la distancia de Min-
kowski. Para diferenciar si estamos usando la distancia euclidiana o la de Minkowski, vamos a usar un argumento
method que nos permita elegir entre ambas, y luego en el bucle for que calcula las distancias, vamos a usar un if

para elegir la distancia a calcular.

» Formula para la distancia euclidiana:

deuclidean (:Ei? C]) =

» Formula para la distancia de Minkowski:

P

p
dminkowski (mia Oj) = Z |xil - le |p
=1

La tinica diferencia entre ambas férmulas es la potencia a la que elevamos las diferencias entre los puntos y los centroi-
des. En el caso de la distancia euclidiana, elevamos al cuadrado, y en el caso de Minkowski, elevamos a ( p ), donde el
valor de ( p ) lo elegimos nosotros. En este caso, vamos a usar el valor de (p=1.5), que es un valor intermedio entre

la distancia euclidiana y la de Manhattan.

for (iter in 1:max_iter) {
# Calcular las distancias euclidianas
if (method == "euclidean") {
for (j in 1:k) {
distancias[, j] <- sqrt(rowSums((as.matrix(datos_num) -
matrix(rep(as.numeric(centroides[j, 1),

nrow(datos_num)),
ncol = p, byrow = TRUE))~2))

}
# Calcular las distancias de Minkowsk?
} else if (method == "minkowski") {

for (j in 1:k) {
distancias[, j] <- (rowSums(abs(as.matrix(datos_num) -
matrix(rep(as.numeric(centroides[j, 1),
nrow(datos_num)),
ncol = p,
byrow = TRUE)) “p_minkowski))~ (1/p_minkowski)

74



3. Asignar cada punto al cluster correspondiente al centroide mas cercano. Esto se puede hacer utilizando la funcion

apply de R, que aplica una funcién a cada fila o columna de un data frame.

# Asignar cada punto al cluster correspondiente al centroide mds cercano

nueva_asignacion <- apply(distancias, 1, which.min)

Ademas queremos que el bucle pare si la asignacion de clusteres no cambia, es decir, si la nueva asignacion es igual a

la anterior. Para ello, vamos a usar un if que compare ambas asignaciones.

# Si la asignaction no cambia, salir del bucle

if (all(nueva_asignacion == asignacion_clusters)) break

4. Actualizar los centroides de cada clister. Para ello, vamos a calcular la media de cada cluster y asignarla al nuevo
centroide. Esto se puede hacer utilizando la funcion colMeans de R, que calcula la media de cada columna de

un data frame.

# Actualizar los centroides de cada clister

for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {

centroides[idx, ] <- colMeans(puntos_cluster)

Esta parte del algoritmo funciona de la siguiente manera:

+ Para cada cluster, seleccionamos los puntos que pertenecen a ese clister (asignacion_clusters == idx).
+ Si hay puntos en ese cluster (nrow(puntos_cluster) > 0), calculamos la media de cada variable y la asignamos al
nuevo centroide.

* Sino hay puntos en ese clister, no hacemos nada y el centroide se queda como estaba.

4.4.2 Creacion del algoritmo K-means manual

Ahora que hemos explicado el algoritmo k-means, vamos a implementarlo manualmente en R. Para ello, vamos a crear

una funcion kmeans_manual que implemente el algoritmo k-means siguiendo los pasos descritos anteriormente.

kmeans_manual <- function(datos, k = 5, max_iter = 100, method = "euclidean",
p_minkowski = 2, seed = 123) {
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set.seed(seed)

# Seleccionar solo wvariables numéricas menos las variables cluster_5, cluster_6 y
#cluster_8 y estandarizar
datos_num <- datos %>%

select(-c(cluster_5, cluster_6)) %>%

select (where(is.numeric)) %>%

scale() %>%

as.data.frame()

n <- nrow(datos_num)

p <- ncol(datos_num)

# Intcializar centroides aleatorios
centroides <- as.matrix(datos_num[sample(l:n, k), 1)
asignacion_clusters <- rep(0, n)

distancias <- matrix(0, nrow = n, ncol = k)

for (iter in 1:max_iter) {
# Calcular las distancias euclidianas
if (method == "euclidean") {
for (j in 1:k) {
distancias[, j] <- sqrt(rowSums((as.matrix(datos_num) -

matrix(rep(as.numeric(centroides(j, 1),
nrow(datos_num)),
ncol = p, byrow = TRUE))~2))

}
# Calcular las distancias de Minkowsk?
} else if (method == "minkowski") {

for (j in 1:k) {
distancias[, j] <- (rowSums(abs(as.matrix(datos_num) -
matrix(rep(as.numeric(centroides(j, 1),
nrow(datos_num)),

ncol = p,

byrow = TRUE)) “p_minkowski))~ (1/p_minkowski)

}
nueva_asignacion <- apply(distancias, 1, which.min)
if (all(nueva_asignacion == asignacion_clusters)) break
asignacion_clusters <- nueva_asignacion
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]

if (nrow(puntos_cluster) > 0) {
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centroides[idx, ] <- colMeans(puntos_cluster)

}
withinss <- numeric(k)
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {
withinss[idx] <- sum(rowSums((as.matrix(puntos_cluster) -
matrix(rep(as.numeric(centroides[idx, 1),
nrow(puntos_cluster)),
ncol = p, byrow = TRUE))"2))

3

list(cluster = asignacion_clusters,

centers = centroides,
withinss = withinss,
tot.withinss = sum(withinss),
iter = iter,

datos_num = datos_num)

Con la funcién kmeans_manual implementada, ahora podemos aplicarla a nuestro conjunto de datos. Vamos a aplicar

el algoritmo k-means manualmente utilizando la distancia euclidiana y la distancia de Minkowski.

4.4.2.1 Uso de la funcion kmeans_manual con distancia euclidiana

Uso de la funcién para distancia euclidiana:

# Aplicar el algoritmo k-means manual
kmeans_result_manual <- kmeans_manual(datos, k = 5)

table (kmeans_result_manual$cluster)

#i
## 1 2 3 4 5
## 778 1231 82 208 748

# wvariacion intra-cluster total
intra_cluster_variation_euclidiana <- kmeans_result_manual$tot.withinss
cat("Variacién intra-clister total (Euclidiana):",

intra_cluster_variation_euclidiana, "\n")

## Variacién intra-clister total (Euclidiana): 6160.19
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# Graficar los clusteres obtentdos
fviz_cluster(list(data = kmeans_result_manual$datos_num,

cluster = kmeans_result_manual$cluster))

Cluster plot

10-

Dim2 (18.9%)

0 5 10 15
Dim1 (64.9%)

Figura 22: Clusteres de Tarjetas Graficas (Euclidiana)

Resumen por cluster con medias:

# Afadir la variable de clister al conjunto de datos original

datos$cluster_manual <- kmeans_result_manual$cluster

# Agrupar los datos por cluster y calcular la media
resumen_por_cluster_media_manual <- datos %>’
group_by(cluster_manual) 7%>%
summarise (across(c( Memory_Size (GB) , "Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) , “GPU_clock (MHz) ), mean,

.names = "media_{.coll}"))

# Generar una tabla con kable

kable(resumen_por_cluster_media_manual,
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caption = "\\label{tab:resumen_por_cluster_media_manual} Resumen de las medias por cliuster (Eucli
col.names = c("Cliuster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 9: Resumen de las medias por cluster (Euclidiana)

Cluster Memoria (GB)  Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 4.0086761 223.6298 1407.32134  89.789203  31.300771 1429.3946 971.9460
2 1.5751929 163.5093  379.07717  31.305443 13.912266 928.4614 750.0991
3 30.1707317 4035.1220 6623.21951 349.365854 100.585366 1035.7317 1143.5732
4 13.8750000  322.3077 4261.23077 204.692308  84.115385 1683.2548 1403.5433
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

Tabla comparativa de las medias de kmeans manual con Euclidiana y el kmeans de R:

Tabla 10: Resumen de las medias por clister

Cluster Memoria (GB)  Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 1.6396161  163.2756 394.39685  32.11417  14.102362 939.9283 758.9039
2 4.4273585  223.1950  1521.00629  96.32201  34.193711 1468.6025 1013.4201
3 56.4444444 3921.7778 10115.55556 485.55556  125.333333 1449.5000 1248.6389
4 0.1772596  146.3586 13.40505 5.36919 5.337317 307.7397 328.9588
5 14.4041451 1276.1865  4747.27461 231.62694  90.943005 1417.5596 1285.3523

Tabla 11: Resumen de las medias por cluster (Euclidiana)

Claster Memoria (GB)  Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 4.0086761 223.6298 1407.32134  89.789203  31.300771 1429.3946 971.9460
2 1.5751929 163.5093  379.07717  31.305443 13.912266 928.4614 750.0991
3 30.1707317 4035.1220 6623.21951 349.365854 100.585366 1035.7317 1143.5732
4 13.8750000  322.3077 4261.23077 204.692308  84.115385 1683.2548 1403.5433
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

Si nos fijamos bien en las tablas de medias, vemos que los resultados son muy similares entre el k-means de R y
el k-means manual con distancia euclidiana. Podemes identificar las siguientes relaciones entre los grupos de ambos
modelos:

* El grupo 1 del k-means de R corresponde al grupo 2 del k-means manual con distancia euclidiana,

* el grupo 2 corresponde al grupo 1 del k-means manual con distancia euclidiana,

* el grupo 3 corresponde al grupo 3 del k-means manual con distancia euclidiana,

* el grupo 4 corresponde al grupo 5 del k-means manual con distancia euclidiana y,

* el grupo 5 corresponde al grupo 4 del k-means manual con distancia euclidiana.
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Esto indica que la implementacion del algoritmo k-means manual es correcta y que los resultados obtenidos son con-
sistentes con los obtenidos con la funcion kmeans de R. Este resultado es esperado, ya que la funcion kmeans de R

utiliza la distancia euclidiana por defecto para calcular las distancias entre los puntos y los centroides.

Para una visualizacion mas clara, vamos a crear una tabla que muestre la correspondencia entre los grupos del k-means

de R y los grupos del k-means manual con distancia euclidiana.

# Crear una tabla de correspondencia entre los grupos del k-means de R y
#los grupos del k-means manual con distanctia euclidiana
tabla_correspondencia <- data.frame(

Grupo_kmeans_R = 1:5,

Grupo_kmeans_manual = c(2, 1, 3, 5, 4)

# Unir la tabla de correspondencia con las medias de ambos modelos

tabla_correspondencia_medias <- tabla_correspondencia %>’

left_join(resumen_por_cluster_mediab, by = c("Grupo_kmeans_R" = "cluster_5")) %>%
left_join(resumen_por_cluster_media_manual, by = c("Grupo_kmeans_manual" = "cluster_manual"),
suffix = c("_R", "_Manual"))

# Seleccionar y renombrar columnas para mayor claridad
tabla_correspondencia_medias <- tabla_correspondencia_medias %>%
select(
Grupo_kmeans_R, Grupo_kmeans_manual,

starts_with("media_ ")

# Cambia los mombres de las columnas para que sean mas descriptivos
colnames(tabla_correspondencia_medias) <- c(
"Grupo K-means R", "Grupo K-means Manual",
"Memoria (GB) R", "Bus (bits) R", "Shaders R", "TMUs R", "ROPs R",
"Reloj Memoria (MHz) R", "Reloj GPU (MHz) R",
"Memoria (GB) Manual", "Bus (bits) Manual", "Shaders Manual",

"TMUs Manual", "ROPs Manual", "Reloj Memoria (MHz) Manual", "Reloj GPU (MHz) Manual"

# Poner la tabla en formato largo
tabla_vertical <- tabla_correspondencia_medias %>%
pivot_longer (
cols = -c( Grupo K-means R*, “Grupo K-means Manual’),
names_to = c("Variable", "Modelo"),
names_pattern = "(.*) (R|Manual)",
values_to = "Media"

) 5>
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pivot_wider(
names_from = Modelo,

values_from = Media

# Opcional: ordenar por grupo y variable
tabla_vertical <- tabla_vertical %>%

arrange ("Grupo K-means R°, Variable) %>%

mutate (

"R™ = round("R™, 2),

“Manual® = round( Manual™, 2)
)

# Mostrar la tabla en wertical con kable
kable(tabla_vertical,
caption = "\\label{tab:comparacion_medias_vert} Comparacidén de medias por grupo
y variable: K-means R vs K-means manual",
col.names = c("Grupo K-means R", "Grupo K-means Manual", "Variable", "Media R", "Media Manual"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))
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Tabla 12: Comparacion de medias por grupo y variable: K-means R vs K-means manual

Grupo K-means R Grupo K-means Manual  Variable Media R Media Manual
1 2 Bus (bits) 163.28 163.51
1 2 Memoria (GB) 1.64 1.58
1 2 ROPs 14.10 13.91
1 2 Reloj GPU (MHz) 758.90 750.10
1 2 Reloj Memoria (MHz) 939.93 928.46
1 2 Shaders 394.40 379.08
1 2 TMUs 32.11 31.31
2 1 Bus (bits) 223.19 223.63
2 1 Memoria (GB) 4.43 4.01
2 1  ROPs 34.19 31.30
2 1 Reloj GPU (MHz) 1013.42 971.95
2 1 Reloj Memoria (MHz) 1468.60 1429.39
2 1 Shaders 1521.01 1407.32
2 1 TMUs 96.32 89.79
3 3 Bus (bits) 3921.78 4035.12
3 3 Memoria (GB) 56.44 30.17
3 3 ROPs 125.33 100.59
3 3 Reloj GPU (MHz) 1248.64 1143.57
3 3 Reloj Memoria (MHz) 1449.50 1035.73
3 3 Shaders 10115.56 6623.22
3 3 TMUs 485.56 349.37
4 5 Bus (bits) 146.36 146.14
4 5 Memoria (GB) 0.18 0.17
4 5 ROPs 5.34 5.29
4 5 Reloj GPU (MHz) 328.96 327.47
4 5 Reloj Memoria (MHz) 307.74 305.74
4 5 Shaders 13.41 12.81
4 5 TMUs 5.37 5.31
5 4  Bus (bits) 1276.19 322.31
5 4 Memoria (GB) 14.40 13.88
5 4 ROPs 90.94 84.12
5 4 Reloj GPU (MHz) 1285.35 1403.54
5 4 Reloj Memoria (MHz)  1417.56 1683.25
5 4 Shaders 4747.27 4261.23
5 4 TMUs 231.63 204.69

Vemos que las medias son muy similares entre ambos modelos, lo que confirma que la implementacién del algoritmo
k-means manual es correcta y que los resultados obtenidos son consistentes con los obtenidos con la funciéon kmeans
de R.

# Crear un vector de conclustiones
conclusiones_manual_euclidiana <- c(
"La implementacidén manual del algoritmo k-means con distancia euclidiana",
"ha dado resultados muy similares a los obtenidos con la funcién kmeans de R.",

"Los grupos obtenidos son consistentes y las medias de las variables son muy parecidas.",
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"Esto indica que la implementacidén es correcta y que los resultados son validos."
)
# Crear un data frame resumen para el modelo k=5
tabla_resultados_manual_euclidiana <- data.frame(

Modelo = "K-means manual (Euclidiana)",

Numero_Clusters = length(unique(kmeans_result_manual$cluster)),

Variacion_Intra_Cluster = intra_cluster_variation_euclidiana,

Conclusiones = paste(conclusiones_manual_euclidiana, collapse = " ")

4.4.2.2 Uso de la funcion kmeans_manual con distancia de Minkowski

Ahora que hemos establecido que la implementacion manual del algoritmo k-means otorga resultados muy parecidos
a los obtenidos con la funcion kmeans de R, vamos a ver si usando la distancia de Minkowski obtenemos resultados

diferentes o mejores, especialmente en presencia de valores atipicos.

Uso de la funcién para Minkowski:

# Aplicar el algoritmo k-means manual con Minkowsk?:
kmeans_result_minkowski <- kmeans_manual(datos, k = 5, method = "minkowski",
p_minkowski = 1.5)

table (kmeans_result_minkowski$cluster)

#
## 1 2 3 4 5
## 778 1231 74 216 748

# variacién intra-clister total
intra_cluster_variation_minkowski <- kmeans_result_minkowski$tot.withinss

cat("Variacién intra-clister total (Minkowski):", intra_cluster_variation_minkowski, "\n")

## Variacidén intra-clister total (Minkowski): 6155.124

&3



# Graficar los clusteres obtentdos
fviz_cluster(list(data = kmeans_result_minkowski$datos_num,

cluster = kmeans_result_minkowski$cluster))

Cluster plot
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Figura 23: Clusteres de Tarjetas Graficas (K=5) con K-means Manual (Minkowski)

Como podemos ver en el grafico, los clusteres obtenidos son también muy similares a los obtenidos con la funcion
kmeans de R y con la implementacion manual del algoritmo k-means con distancia euclidiana. Sin embargo, la varia-

cion intra-cluster total es ligeramente mas baja, lo que sugiere que los cliisteres son un poco mas compactos.

Aqui también vemos que el grupo 3 estd mas disperso que el resto de grupos. En el analisis de los grupos obtenidos con
la funcién de R, habiamos concluido que se debia a que este grupo estaba principalmente formado por tarjetas graficas
de tipo de memoria HBM y de gama alta, pero con arquitecturas diferentes. Vamos a ver si esto se repite en el analisis
de los grupos obtenidos con la distancia de Minkowski. Para ello, vamos a ver contar el nimero de tarjetas que hay por

tipo de memoria en cada cluster, igual que hicimos en el apartado 3.3.1.4.

# Contar el numero de tarjetas graficas por tipo de memoria en cada clister
resumen_por_cluster_memoria_minkowski <- datos >’
group_by(cluster_manual = kmeans_result_minkowski$cluster, Memory_Type) %>’
summarise(n = n()) %>%

ungroup() %>%
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arrange (cluster_manual, desc(n))
# Contar el numero total de tarjetas grdficas por tipo de memoria
resumen_total_memoria_minkowski <- datos %>%
group_by (Memory_Type) %>%
summarise(n = n()) %>%
ungroup() %>%
arrange(desc(n))
# Mostrar una tabla con kable
tabla_comparacion_minkowski <- resumen_por_cluster_memoria_minkowski 7>
left_join(resumen_total_memoria_minkowski, by = "Memory_Type", suffix = c("_cluster", "_total")) %>%
mutate(porcentaje_cluster = n_cluster / n_total * 100)
# Generar una tabla con kable
tabla_comparacion_minkowski <- kable(tabla_comparacion_minkowski,
caption = "\\label{tab:comparacion_memoria_minkowski} Comparacién del nimero de
tarjetas graficas por tipo de memoria (Minkowski)",
col.names = c("Claster", "Tipo de Memoria", "Numero en Claster",
"Namero Total", "Porcentaje en Cluster"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

tabla_comparacion_minkowski
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Tabla 13: Comparacion del nimero de tarjetas graficas por tipo de memoria (Minkowski)

Cluster Tipo de Memoria Numero en Cluster Numero Total Porcentaje en Cluster

1 GDDRS5 672 1145 58.6899563
1 GDDR6 96 211 45.4976303
1 HBM2 4 36 111111111
1  GDDRSX 2 30 6.6666667
1 LPDDR4X 2 2 100.0000000
1 DDR3 1 424 0.2358491
1 LPDDRS 1 1 100.0000000
2 GDDRS 423 1145 36.9432314
2 DDR3 414 424 97.6415094
2 GDDR3 352 508 69.2913386
2 GDDR4 25 25 100.0000000
2 DDR2 7 140 5.0000000
2 DDR4 4 4 100.0000000
2 GDDR6 3 211 1.4218009
2 HBM2 3 36 8.3333333
3 HBM2 25 36 69.4444444
3 HBM 23 23 100.0000000
3 HBMZ2e 22 22 100.0000000
3 HBM3 4 4 100.0000000
4 GDDR6 112 211 53.0805687
4 GDDRS5 49 1145 4.2794760
4 GDDRS5X 28 30 93.3333333
4 GDDR6X 20 20 100.0000000
4 HBM2 4 36 11.1111111
4 GDDR?7 3 3 100.0000000
5 DDR 314 314 100.0000000
5 GDDR3 156 508 30.7086614
5 DDR2 133 140 95.0000000
5 SDR 87 87 100.0000000
5 DRAM 17 17 100.0000000
5 EDO 11 11 100.0000000
5 DDR3 9 424 2.1226415
5 VRAM 7 7 100.0000000
5 eDRAM 6 6 100.0000000
5 GDDR2 3 3 100.0000000
5 SGR 2 2 100.0000000
5 FPM 1 1 100.0000000
5 GDDRS5 1 1145 0.0873362
5 SGRAM 1 1 100.0000000

Observaciones
 Seobserva claramente que el grupo 3 agrupa la mayoria de las tarjetas graficas con memoria HBM. Esto contrasta

con los resultados obtenidos anteriormente (Tabla 3 del apartado 3.3.1.4), donde las tarjetas con memoria HBM

estaban repartidas en varios grupos. La utilizacion de la distancia de Minkowski ha permitido que estas tarjetas
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se agrupen de forma mas coherente, lo que indica que esta métrica es mas robusta frente a valores atipicos.

» La mayor dispersion observada en el grupo 3 puede explicarse porque, aunque todas las tarjetas comparten la
caracteristica de un ancho de bus elevado (propio de la memoria HBM), pueden diferir en otras especificaciones
técnicas debido a pertenecer a distintas generaciones o arquitecturas. Por ello, dentro del grupo existe una mayor

variabilidad en el resto de variables.

* El grupo 4 también esta mas disperso que el resto de grupos. Vemos que en general esta formado por tarjetas de
gama alta, pero no podemos explicar con estos datos por qué hay cierta dispersion entre las tarjetas graficas. Por

ello, vamos a analizar mas a fondo este grupo.

Resumen por cluster con medias:

# Afiadir la variable de cluster al conjunto de datos original
datos$cluster_minkowski <- kmeans_result_minkowski$cluster
# Agrupar los datos por cluster y calcular la media
resumen_por_cluster_media_minkowski <- datos %>%
group_by(cluster_minkowski) %>/
summarise (across(c( Memory_Size (GB) , “Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) ™, “GPU_clock (MHz) ), mean,
.names = "media_{.col}"))
# Generar una tabla con kable
kable(resumen_por_cluster_media_minkowski,
caption = "\\label{tab:resumen_por_cluster_media_minkowski} Resumen de las medias por clister (Mi
col.names = c("Cluster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 14: Resumen de las medias por cluster (Minkowski)

Cluster Memoria (GB)  Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)
1 4.0086761  223.6298 1407.32134  89.789203 31.300771 1429.3946 971.9460
2 1.5751929  163.5093  379.07717  31.305443 13.912266 928.4614 750.0991
3 29.4324324  4428.1081 5346.59459 324.864865 91.135135 947.5270 1081.2297
4 147314815  325.1852 4786.07407 218.444444 87.962963 1689.4907 1415.2731
5 0.1734311 146.1390 12.81016 5.308823  5.287433 305.7420 327.4746

# Grafico de barras de medias de cada variable por cluster
resumen_por_cluster_media_minkowski %>%
pivot_longer(cols = -cluster_minkowski, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_minkowski), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Medias de cada variable por clister (Minkowski)",

x = "Claster", y = "Media") +
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theme_minimal() +

scale_fill_brewer(palette = "Set3")

Medias de cada variable por cluster (Minkowski)
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Figura 24: Medias de cada variable por cluster (Minkowski)

Viendo las medias, en efecto podemos observar que el grupo 3 tiene la media més alta de ancho de bus, y que junto
con el grupo 4 presentan en general las medias mas altas de todas las variables, lo que indica que estos grupos estan

formados por tarjetas graficas de gama alta.

Vamos a ver en qué fechas se lanzaron las tarjetas graficas del grupo 4, para ver si podemos entender mejor por qué
hay cierta dispersion entre las tarjetas graficas de este grupo. Para ello, vamos a crear una tabla con las fechas de

lanzamiento de las tarjetas graficas del grupo 4.

Tabla 15: Tarjetas graficas del grupo 4 por fecha de lanzamiento

Fecha de lanzamiento  Numero de tarjetas graficas

Después de 2020 104
2016-2020 84
2010-2015 28

Aqui podemos ver que la gran mayoria de las tarjetas graficas del grupo 4 fueron lanzadas después de 2020 y entre
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2016 y 2020, con unas pocas lanzadas entre 2015 y 2015. Esto indica que el grupo 4 esta formado por tarjetas graficas
de gama alta, pero de distintas generaciones, lo que podria explicar la dispersion observada, ya que entre 2010-2015
y la actualidad ha habido un gran avance en la tecnologia de las tarjetas graficas, lo que ha permitido mejorar las

especificaciones técnicas de las mismas.

Entonces la dispersion podria estar causada por las tarjetas graficas lanzadas entre 2010 y 2015, que son de generaciones

mas antiguas y por tanto tienen especificaciones técnicas mas bajas que las tarjetas graficas lanzadas después de 2020.

Dicho esto, parece interesante ver como se comportan los demas grupos en cuanto a fechas de lanzamiento. Para
ello, vamos a crear un grafico de barras agrupadas que muestre el nimero de tarjetas graficas por grupo y fecha de
lanzamiento, donde ademas afiadiremos una etiqueta con el porcentaje del total de tarjetas graficas por grupo y fecha

de lanzamiento, pero sélo en el menor valor de cada grupo.

Con esto, podremos ver como se distribuyen las tarjetas graficas por grupo y fecha de lanzamiento, y si hay una relacion

entre la dispersion de los grupos y la fecha de lanzamiento de las tarjetas graficas.

# Calcular el total y el porcentaje por grupo
tarjetas_por_fecha <- datos %>
group_by(cluster_minkowski, Released) %>%
summarise(n = n(), .groups = "drop") %>%
group_by(cluster_minkowski) %>Y
mutate (total_grupo = sum(n),
porcentaje = round(100 * n / total_grupo, 1),
min n = min(n),

label = ifelse(n == min_n, pasteO(porcentaje, "7%"), NA))
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# Grafico de barras agrupadas con etiqueta solo en el menor wvalor
ggplot(tarjetas_por_fecha, aes(x = factor(cluster_minkowski), y = n, fill = Released)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.8)) +
geom_text (aes(label = label),
position = position_dodge(width = 0.8),
vjust = -0.5,
color = "black",
size = 3,
na.rm = TRUE) +

labs(
title = "Tarjetas graficas por grupo y fecha de lanzamiento",
x = "Grupo",
y = "Namero de tarjetas graficas",
fill = "Fecha de lanzamiento"
) +

theme_minimal() +
scale_fill_brewer(palette = "Set2")
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Figura 25: Tarjetas graficas por grupo y fecha de lanzamiento
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Segtin el grafico de la Figura 25, podemos ver que en los grupos 3 y 4, que eran los que mas dispersos estaban, tienen
los porcentajes mas altos del periodo de fecha de lanzamiento que menor nimero de tarjetas graficas tienen en sus
respectivos grupos. Ademas, en estos dos grupos, la mayoria de las tarjetas graficas son de entre 2016 y después de
2020, lo que podria explicar la dispersion observada en estos grupos, ya que las tarjetas graficas de estas fechas son de

gama alta y tienen especificaciones técnicas mas altas que las tarjetas graficas de generaciones anteriores.

Para confirmar esta hipdtesis, vamos a ver si los grupos 3 y 4 tienen una mayor variabilidad en las especificaciones
técnicas de las tarjetas graficas. Para ello, vamos a calcular la desviacion estandar de cada variable por grupo y ver si

hay una mayor variabilidad en los grupos 3 y 4.

# Calcular la desviacidn estdandar de cada wvariable por grupo
desviacion_estandar_por_grupo <- datos 7%>%
group_by(cluster_minkowski) %>/
summarise (across(c( Memory_Size (GB) , “Memory_Bus (bits) , Shaders, TMUs, ROPs,
“Memory_clock (MHz) , “GPU_clock (MHz) ), sd,

.names = "sd_{.col}"))
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# Grafico de barras de desviaction estandar de cada variable por cluster

ggplot(desviacion_estandar_por_grupo 7%>%

pivot_longer(cols = -cluster_minkowski, names_to = "Variable",
values_to = "Desviacién Esténdar"),
aes(x = factor(cluster_minkowski), y = "Desviacién Estéandar”, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Desviacidén estandar de cada variable por clister (Minkowski)",
x = "Claster", y = "Desviacidén Estandar") +

theme_minimal() +

scale_fill_brewer(palette = "Set3")
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Figura 26: Desviacion estandar de cada variable por cluster (Minkowski)

Vemos que efectivamente los grupos 3 y 4 tienen una mayor variabilidad en las especificaciones técnicas de las tarjetas
graficas, lo que confirma nuestra hipdtesis de que la dispersion observada en estos grupos se debe a la presencia de
tarjetas graficas de distintas generaciones y arquitecturas.

# Crear un vector de conclustiones
conclusiones_manual_minkowski <- c(

"La implementacidén manual del algoritmo k-means con distancia de Minkowski",
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"ha dado resultados muy similares a los obtenidos con la funcién kmeans de R.",
"Los grupos obtenidos son consistentes y las medias de las variables son muy parecidas.",
"La variacién intra-claster total es ligeramente mas baja que con la distancia euclidiana,",
"lo que sugiere que los clisteres son un poco mas compactos.",
"E1l grupo 3 agrupa la mayoria de las tarjetas graficas con memoria HBM,",
"mientras que el grupo 4 estd formado por tarjetas graficas de gama alta, pero de distintas generacio:
"La dispersidén observada en estos grupos se debe a la presencia de tarjetas graficas de distintas gen
)
# Crear un data frame resumen para el modelo k=5
tabla_resultados_manual_minkowski <- data.frame(
Modelo = "K-means manual (Minkowski)",
Numero_Clusters = length(unique(kmeans_result_manual$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_minkowski,

Conclusiones = paste(conclusiones_manual_minkowski, collapse = " ")

5 Conclusiones

5.1 Valoracion del cumplimiento de los objetivos

A lo largo de este trabajo se han cumplido los objetivos planteados al inicio del estudio:

1. Describir y preparar la base de datos: Se realiz6 una exhaustiva limpieza y transformacion de los datos, iden-
tificando y tratando valores atipicos, variables irrelevantes y datos faltantes. Esto permitié obtener un conjunto

de datos adecuado y fiable para el analisis posterior.

2. Explorar y analizar las variables clave: Se llevo a cabo un analisis exploratorio detallado de las variables
numéricas y categoricas, identificando patrones, tendencias y relaciones relevantes entre las diferentes carac-
teristicas de las tarjetas graficas. Este andlisis facilito la interpretacion de los resultados obtenidos en las fases

posteriores.

3. Implementar y comparar métodos de agrupamiento: Se aplico el algoritmo K-means en diferentes escena-
rios: utilizando tinicamente variables numéricas, combinando variables numéricas y categéricas, y mediante una
implementacion manual que permitié experimentar con distintas métricas de distancia (euclidiana y Minkows-
ki). Ademas, para poder reducir la dimensionalidad del conjunto de datos en el caso del modelo combinado
de variables numéricas y categodricas, se empled el analisis de componentes principales (PCA), lo que permitio

sintetizar la informacion y facilitar la interpretacion de los resultados.

4. Interpretar y validar los grupos obtenidos: Se analizaron en profundidad las caracteristicas de los clusteres
resultantes, identificando patrones comunes y diferencias entre los grupos. Ademas, se evalu6 la robustez y
coherencia de los agrupamientos en funcion de las especificaciones técnicas y la evolucion tecnoldgica de las

tarjetas graficas.
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5. Extraer conclusiones relevantes: Finalmente, se sintetizaron los hallazgos obtenidos, destacando las implica-

ciones practicas y tedricas del agrupamiento de tarjetas graficas.

En definitiva, el trabajo ha permitido alcanzar todos los objetivos propuestos, proporcionando una vision integral y
objetiva sobre la clasificacion y segmentacion de tarjetas graficas en funcion de sus caracteristicas técnicas, y demos-
trando la utilidad del PCA como herramienta para el analisis y reduccion de la dimensionalidad en conjuntos de datos
complejos. Ademas, la implementacion manual del algoritmo K-means ha permitido profundizar en el entendimiento

del funcionamiento de este método de agrupamiento y su aplicacion en el contexto de las tarjetas graficas.

5.2 Conclusiones finales
En primer lugar, se presenta una tabla con los resultados obtenidos en cada uno de los modelos:

# Combinar todos los data frames de resultados

tabla_resultados_comparativa <- rbind(
tabla_resultados_kmeans,
tabla_resultados_manual_euclidiana,

tabla_resultados_manual_minkowski

# Generar una tabla con kable
kable(tabla_resultados_comparativa,
caption = "\\label{tab:comparacion_modelos_todos} Comparacién de los resultados de los modelos K-
col.names = c("Modelo", "Numero de Clusteres",
"Variacién Intra-Cluster", "Conclusiones"),
format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position")) %>%

column_spec(4, width = "8cm")
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Tabla 16: Comparacion de los resultados de los modelos K-means

Modelo Numero de Clusteres  Variacion Intra-Cluster  Conclusiones

Solo numéricas 5 6157.303  El grupo 3 se caracteriza por tener un ancho de banda
alto, lo que podria indicar que esta formado por tarjetas
graficas de tipo HBM. Los grupos 1, 2 y 4 tienen una
varianza baja en todas las variables, lo que sugiere que
estos grupos estan muy homogéneos y bien definidos.

Numéricas y categéricas 8 9501.153  Se tuvo que hacer un PCA para reducir la
dimensionalidad de los datos. Después de aplicar el PCA
y realizar el clustering, se observo que los grupos 1y 2
tienen cierta superposicion, igual que los grupos 3 y 6.
Habia un par de grupos bien definidos y otros que
estaban mas dispersos. Luego se concluyd que los
grupos estaban principalmente definidos por el tipo de
memoria de las tarjetas graficas.

K-means manual (Euclidiana) 5 6160.190 La implementacién manual del algoritmo k-means con
distancia euclidiana ha dado resultados muy similares a
los obtenidos con la funcién kmeans de R. Los grupos
obtenidos son consistentes y las medias de las variables
son muy parecidas. Esto indica que la implementacion es
correcta y que los resultados son validos.

K-means manual (Minkowski) 5 6155.124  La implementacion manual del algoritmo k-means con
distancia de Minkowski ha dado resultados muy
similares a los obtenidos con la funcion kmeans de R.
Los grupos obtenidos son consistentes y las medias de
las variables son muy parecidas. La variacion
intra-cluster total es ligeramente mas baja que con la
distancia euclidiana, lo que sugiere que los clusteres son
un poco mas compactos. El grupo 3 agrupa la mayoria de
las tarjetas graficas con memoria HBM, mientras que el
grupo 4 esta formado por tarjetas graficas de gama alta,
pero de distintas generaciones. La dispersion observada
en estos grupos se debe a la presencia de tarjetas graficas
de distintas generaciones y arquitecturas.

En la Tabla 16 podemos observar que el inico modelo que incluia variables categoricas (modelo combinado) no ha sido
capaz de encontrar una estructura clara en los datos, lo que indica que las variables categéricas no aportan informacion
relevante para el agrupamiento de tarjetas graficas para nuestro caso. Por tanto, los modelos que Ginicamente utilizan
variables numéricas (tanto el K-means de R como la implementacion manual) han sido los mas efectivos para identificar
patrones y segmentar las tarjetas graficas en clusteres coherentes, donde los tres modelos han obtenido resultados muy
similares en cuanto al nimero de clusteres y la variacion intra-cluster, asi como la clasificacion de las tarjetas graficas.
No obstante, cabe destacar que el modelo con la distancia de Minkowski, ha presentado una variacion intra-cluster
ligeramente menor, lo que sugiere que los clusteres son un poco mas compactos y homogéneos, especialmente en el

caso de las tarjetas graficas con memoria HBM.

Hablando de las tarjetas graficas con memoria HBM, durante todo el trabajo hemos visto que estas tarjetas graficas
se diferencian mucho mas de las demads, ya que tienen un uso muy especial comparado con el uso habitual de las
tarjetas graficas, que es el gaming. Este uso especial se resume en que las tarjetas graficas con memoria HBM estan
disenadas para tareas que requieren un alto rendimiento en el procesamiento de datos, como la inteligencia artificial,
el aprendizaje automatico, la computacion cientifica y el procesamiento de datos biomédicos. Esto lo consiguen con
un ancho de bus elevado, que se ha podido observar a lo largo del analisis, tanto en el analisis exploratorio de datos
como en los modelos de agrupamiento, donde hemos visto que las tarjetas graficas con memoria HBM se agrupan en

un cluster propio, lo que indica que estas tarjetas graficas tienen unas especificaciones técnicas muy diferentes al resto
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de tarjetas graficas.

5.3 Reflexion personal

La realizacion de este Trabajo de Fin de Grado ha supuesto un importante proceso de aprendizaje y desarrollo personal
en varios ambitos. En primer lugar, he adquirido una mayor destreza en el uso de R Markdown como herramienta
integral para la elaboracion de documentos cientificos y técnicos. Gracias a este proyecto, he aprendido a gestionar
referencias bibliograficas mediante archivos .bib, a utilizar el sistema de indices y referencias cruzadas de manera
automatica, y a estructurar un documento extenso de forma clara y profesional. Considero que estas competencias
seran muy valiosas tanto en futuros estudios como en el &mbito laboral, donde la capacidad de documentar y presentar

resultados de manera formal y reproducible es cada vez mas demandada.

Otro aspecto fundamental ha sido la mejora en la presentacion y comunicacion de resultados. El hecho de tener que
exponer los analisis y conclusiones de forma coherente, estructurada y comprensible me ha obligado a reflexionar
sobre la mejor manera de transmitir la informacion, adaptando el lenguaje y los recursos graficos al publico objetivo.
Esta habilidad es esencial en cualquier entorno profesional, ya que la claridad en la comunicacion de resultados puede

marcar la diferencia en la toma de decisiones.

Asimismo, este trabajo me ha permitido desarrollar la capacidad de investigar a fondo, enfrentandome a problemas nue-
vos y buscando soluciones de manera autonoma. He aprendido a consultar fuentes especializadas, comparar enfoques

y adaptar las metodologias a las caracteristicas concretas de los datos y los objetivos del analisis.

En el plano técnico, la implementacion manual del algoritmo K-means ha sido especialmente enriquecedora. No solo
me ha permitido comprender en profundidad el funcionamiento interno del método, sino también experimentar con
diferentes métricas de distancia y valorar su impacto en los resultados. Esta experiencia me ha dado una vision mas

critica y flexible sobre el uso de algoritmos de agrupamiento en la practica.

Por ultimo, he ampliado notablemente mis conocimientos sobre tarjetas graficas y sus aplicaciones, descubriendo que
su utilidad va mucho mas alla del ambito de los videojuegos. Ahora comprendo mejor su papel en areas como la
inteligencia artificial, la computacion cientifica o el procesamiento de datos biomédicos, lo que me ha permitido valorar

la importancia de la tecnologia en contextos muy diversos.

En definitiva, este TFG ha supuesto un reto que me ha permitido crecer tanto a nivel técnico como personal, y me ha

motivado a seguir aprendiendo y profundizando en el analisis de datos y sus aplicaciones reales.

6 Lineas futuras

A partir de los resultados obtenidos en este trabajo, se abren varias lineas interesantes para continuar y profundizar en

el analisis:

* Optimizacion de los modelos de agrupamiento: Seria interesante explorar técnicas avanzadas de optimiza-
cion de agrupamiento para la seleccion automatica del nimero dptimo de clisteres y la mejora de la robustez
de los resultados. Ademas, se podrian comparar otros algoritmos de clustering, como DBSCAN que se habia

mencionado en el apartado 4.1, para evaluar su desempefio frente a K-means en este contexto.
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* Exploracion de nuevos ambitos de aplicacion:
Los resultados del clustering han puesto de manifiesto la existencia de grupos de tarjetas graficas con caracteris-
ticas técnicas diferenciadas, especialmente aquellas con memoria HBM. En el futuro, me gustaria profundizar
en el analisis de otros segmentos identificados por los modelos de agrupamiento, investigando sus aplicaciones
especificas en ambitos como el gaming, la computacion cientifica, el procesamiento de datos biomédicos o in-
cluso el renderizado profesional. Esto permitiria comprender mejor el impacto de la evolucion tecnoldgica de

las GPUs en diferentes sectores y orientar el analisis hacia casos de uso concretos.

Estas lineas futuras permitirian enriquecer el estudio, aportar una vision mas completa sobre la segmentacion tecnolo-

gica de las tarjetas graficas y abrir nuevas oportunidades de investigacion aplicada en el ambito del analisis de datos.
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