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1 Resumen

En este Trabajo de Fin de Grado se analiza y agrupa una base de datos de tarjetas gráficas de los últimos 20 años
utilizando técnicas de análisis de datos y aprendizaje no supervisado, principalmente el algoritmo K-means. El proceso
incluyó la limpieza y transformación de los datos, el análisis exploratorio de variables numéricas y categóricas, y
la implementación de diferentes modelos de agrupamiento: uno solo con variables numéricas, otro combinado con
variables categóricas y numéricas, y una versión manual de K-means que permitió comparar distintas métricas de
distancia (euclidiana y Minkowski).

Se trabaja sobre una base de datos que contiene información sobre tarjetas gráficas de diferentes fabricantes y genera-
ciones.
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2 Introducción

2.1 Contexto histórico y motivación

Históricamente, las tarjetas gráficas han tenido un papel fundamental en la evolución de los videojuegos y la compu-
tación gráfica. Desde sus inicios, estas unidades de procesamiento gráfico (GPUs) han evolucionado de manera sig-
nificativa, permitiendo la creación de gráficos cada vez más complejos y realistas. En sus primeras etapas, las GPUs
estaban diseñadas exclusivamente para acelerar el renderizado de gráficos en 2D y 3D, pero con el tiempo, su arqui-
tectura se ha adaptado para soportar cálculos más generales.

Un ejemplo destacado de esta evolución es su aplicación en el análisis de imágenes de resonancia magnética funcional
(fMRI). Según el trabajo de (Eklund et al.), las GPUs han demostrado ser herramientas altamente eficientes para ace-
lerar el procesamiento de datos de fMRI, que requiere manejar grandes volúmenes de información y realizar cálculos
intensivos. Este enfoque ha permitido reducir significativamente los tiempos de procesamiento en comparación con
las CPUs tradicionales, haciendo posible realizar análisis más rápidos y detallados de la actividad cerebral. Sin em-
bargo, los autores también destacan los desafíos asociados, como la necesidad de adaptar algoritmos existentes para
aprovechar al máximo la arquitectura de las GPUs.

De manera complementaria, un estudio más reciente de (Kalaiselvi et al.) también explora el uso de GPUs en aplicacio-
nes biomédicas, destacando su capacidad para manejar tareas de procesamiento intensivo en áreas como la neurociencia
y la biomedicina. Ambos estudios coinciden en que las GPUs no solo ofrecen ventajas en términos de velocidad, sino
que también permiten realizar análisis más complejos que antes eran inviables debido a las limitaciones de las CPUs.
Además, el estudio de 2017 amplía el enfoque al considerar no solo el rendimiento, sino también los desafíos prácticos,
como la optimización de algoritmos y la gestión de recursos computacionales en entornos biomédicos.

Más recientemente, (Zhang et al.) ha desarrollado un marco computacional basado en GPUs que conecta la simulación
neuronal con la inteligencia artificial. Este trabajo destaca cómo las GPUs pueden ser utilizadas para integrar modelos
de simulación neuronal con algoritmos de aprendizaje profundo, permitiendo avances significativos en la comprensión
de la actividad cerebral y en el desarrollo de sistemas de inteligencia artificial inspirados en el cerebro. Este enfoque
no solo mejora la eficiencia computacional, sino que también abre nuevas posibilidades para explorar la interacción
entre la neurociencia y la inteligencia artificial, un campo emergente con un enorme potencial.

Estos hallazgos refuerzan la idea de que las GPUs han trascendido su propósito original, convirtiéndose en herramientas
clave en campos como la investigación médica, la neurociencia y la inteligencia artificial. Su capacidad para realizar
cálculos paralelos de manera eficiente las convierte en un recurso indispensable para tareas de computación intensiva,
como el análisis de datos de fMRI, la simulación neuronal y otras aplicaciones biomédicas. Además, con la evolución
de la inteligencia artificial y el aprendizaje profundo, las GPUs continúan ampliando su impacto en áreas como la
simulación científica, la minería de datos y el desarrollo de tecnologías innovadoras.

2.2 Objetivos

El objetivo principal de este trabajo es analizar y agrupar tarjetas gráficas en función de sus especificaciones técnicas y
características relevantes, utilizando técnicas de análisis de datos y aprendizaje no supervisado. Para ello, se plantean
los siguientes objetivos específicos:
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1. Describir y preparar la base de datos: Realizar una limpieza y transformación exhaustiva de los datos, identifi-
cando y tratando valores atípicos, variables irrelevantes y datos faltantes, con el fin de obtener un conjunto de
datos adecuado para el análisis.

2. Explorar y analizar las variables clave: Llevar a cabo un análisis exploratorio de las variables numéricas y ca-
tegóricas, identificando patrones, tendencias y relaciones relevantes entre las diferentes características de las
tarjetas gráficas.

3. Implementar y comparar métodos de agrupamiento: Aplicar el algoritmoK-means, tanto con variables numéricas
como combinando variables numéricas y categóricas, y comparar los resultados obtenidos. Además, implementar
el algoritmo K-means de forma manual para explorar el impacto de diferentes métricas de distancia, como la
distancia euclidiana y la distancia de Minkowski.

4. Interpretar y validar los grupos obtenidos: Analizar las características de los clústeres resultantes, identificando
patrones comunes y diferencias entre los grupos, y evaluar la robustez y coherencia de los agrupamientos en
función de las especificaciones técnicas y la evolución tecnológica de las tarjetas gráficas.

5. Extraer conclusiones relevantes: Sintetizar los hallazgos obtenidos a lo largo del análisis, destacando las implica-
ciones prácticas y teóricas del agrupamiento de tarjetas gráficas y proponiendo posibles líneas de investigación
futura.

2.3 Herramientas

En este trabajo se utilizará el lenguaje de programación R como herramienta principal para el análisis de datos. A lo
largo del documento, se combinarán explicaciones teóricas con fragmentos de código en R, lo que permitirá ilustrar
de manera práctica los conceptos y métodos empleados. Este enfoque busca facilitar la comprensión de los análisis
realizados y fomentar la reproducibilidad de los resultados.

2.4 Fundamentos académicos y aportación novedosa

A lo largo de la carrera, he adquirido una sólida base en técnicas estadísticas y de análisis de datos, incluyendo el análisis
exploratorio de datos, el estudio de correlaciones entre variables, el análisis de componentes principales (PCA) y la
aplicación de métodos de agrupamiento como el algoritmo k-means utilizando el software R. Estas herramientas me
han permitido abordar problemas complejos de clasificación y segmentación de datos, así como interpretar y visualizar
patrones relevantes en conjuntos de datos multidimensionales.

Sin embargo, este trabajo incorpora también una vertiente novedosa respecto a lo aprendido en la carrera. En particular,
se ha desarrollado una implementación manual del algoritmo k-means, lo que ha permitido un mayor control sobre el
proceso de agrupamiento y la posibilidad de experimentar con diferentes métricas de distancia, como la distancia de
Minkowski. Esta extensión no solo enriquece el análisis, sino que también permite evaluar la robustez de los resultados
frente a la presencia de valores atípicos y explorar alternativas más flexibles a la distancia euclidiana tradicionalmente
utilizada. De este modo, el trabajo combina los conocimientos adquiridos durante la formación académica con una
aproximación más avanzada y personalizada al problema de agrupamiento de tarjetas gráficas.
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3 Base de datos: descripción, preparación y análisis.

3.1 Descripción de los datos

Vamos a usar una base de datos que contiene información sobre tarjetas gráficas de diferentes fabricantes de los últimos
20 años. La base de datos incluye diferentes especificaciones técnicas que nos ayudarán a analizar y agrupar las tarjetas
gráficas.

A continuación se procederá a cargar la base de datos con ayuda de la librería readr.

set.seed(1234)
library(readr)
setwd("C:/Users/maikm/Desktop/Estadística/TFG_git")
datos <- read_csv("data/tpu_gpus.csv")

El conjunto de datos contiene tanto variables categóricas como numéricas, aunque la mayoría de las variables son
categóricas en su estado original. A continuación, se describen las principales variables y las transformaciones que se
realizarán para adaptarlas al análisis:

• Product_Name: Identificador único de cada tarjeta gráfica. Por lo tanto no la trataremos como una variable, ya
que su único propósito es identificar cada tarjeta gráfica.

• GPU_Chip: Es una variable categórica que nos indica el tipo de chip que utiliza la tarjeta gráfica. A continuación
mostraremos cuántos tipos de chips hay en la base de datos.

Tenemos 450 tipos de chips distintos. De los 450 tipos de chips diferentes, solamente tenemos 106 tarjetas gráficas
con al menos 10 tarjetas por tipo de chip y tenemos alrededor de 161 tipos de chip con solamente 2 o menos tarjetas
gráficas.

• Released: Fecha de lanzamiento de la tarjeta gráfica. Originalmente, esta variable incluye valores como “Unk-
nown” y “Never Released”, que serán tratados de la siguiente manera:

– “Unknown”: Se convertirá a NA.
– “Never Released”: Se eliminará la fila correspondiente.
– La fecha será transformada a un formato de fecha estándar y categorizada en cinco intervalos: “Antes de
2000”, “2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020”.

• Bus: Es una variable categórica que nos indica el tipo de bus que utiliza la tarjeta gráfica. A continuación mos-
traremos cuántos tipos de bus hay en la base de datos.

Tenemos 30 tipos de bus distintos.

• Memory: Variable categórica que combina información sobre el tamaño de memoria, el tipo de memoria y el
ancho del bus de memoria. Para facilitar el análisis, esta variable será descompuesta en tres nuevas variables:
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– Memory_Size (GB): Tamaño de la memoria, que será transformado a un formato numérico y convertido
a gigabytes (GB), eliminando filas con valores como “System Shared”.

– Memory_Type: Tipo de memoria utilizada (por ejemplo, GDDR6, HBM2).
– Memory_Bus (bits): Ancho del bus de memoria, que será transformado a un formato numérico.

• GPU_clock: Es una variable categórica que nos indica la velocidad del reloj de la GPU. Convertiremos esta
variable a numérica y la llamaremos GPU_clock (MHz).

• Memory_clock: Es una variable categórica que nos indica la velocidad del reloj de la memoria. Al igual que
con GPU_clock, convertiremos esta variable a numérica y la llamaremos Memory_clock (MHz).

• Shaders_TMUs_ROPs: Variable categórica que combina información sobre el número de unidades de som-
breado (Shaders), unidades de mapeo de texturas (TMUs) y tuberías de operaciones de rasterización (ROPs).
Esta variable será descompuesta en tres nuevas variables:

– Shaders: Número de unidades de sombreado, que será transformado a un formato numérico.
– TMUs: Número de unidades de mapeo de texturas, que será transformado a un formato numérico.
– ROPs: Número de tuberías de operaciones de rasterización, que será transformado a un formato numérico.

• ..1: Es una variable numérica que sólo indica la fila en la que estamos. No aporta información relevante para el
análisis y por tanto la eliminamos.

Resumen de tratamiento de las variables

El tratamiento de las variables incluye:

• Limpieza de datos: Eliminación de valores irrelevantes como “Never Released” y conversión de “Unknown” a
NA.

• Transformación de formatos: Conversión de variables categóricas a numéricas donde sea necesario.
• Separación de variables compuestas: Descomposición de variables como “Memory” y “Shaders_TMUs_ROPs”
en variables individuales para facilitar el análisis.

• Eliminación de variables irrelevantes: Eliminación de la variable “..1”.

3.2 Preparación y procesamiento de los datos

En esta sección, se realizarán las transformaciones necesarias para limpiar y preparar el conjunto de datos. Esto incluye
la eliminación de valores irrelevantes, la transformación de variables categóricas y numéricas, y la creación de nuevas
variables derivadas para facilitar el análisis posterior.

Cabe destacar que algunas de las filas de la variable Shaders_TMUs_ROPs tienen 4 valores en lugar de 3. Esto se debe
a que las tarjetas gráficas más antiguas no tenían shaders unificados, sino que tenían shaders separados para píxeles
y vértices. Por este motivo, primero tendremos que separar la variable en 4 columnas: “Shaders_1”, “Shaders_2”,
“TMUs” y “ROPs”. Luego trataremos 2 casos:

• Si hay 4 valores, los mantendremos como están y elegiremos el valor más alto entre Shaders_1 y Shaders_2
como el número de shaders.
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• Si hay 3 valores, nos llenará la columna ROPs con NAs y tendremos que mover el valor de TMUs a ROPs y el
valor de Shaders_2 a TMUs y rellenar Shaders_2 con NAs.

Una vez hayamos tratado ambos casos, crearemos una nueva variable llamada Shaders, que será el máximo entre
Shaders_1 y Shaders_2, y como en el caso de 3 valores, Shaders_2 será NA, entonces Shaders será igual a Shaders_1.

Elegimos el máximo entre Shaders_1 y Shaders_2 porque el máximo entre los shaders de píxeles y de vértices en las
tarjetas antiguas es más comparable con los shaders unificados que tenemos hoy en día.

3.2.1 Limpieza y transformación de variables

En esta sección, se realizarán las transformaciones de datos anteriormente descritas. Esto incluye:

• Eliminación de filas irrelevantes.
• Separación de variables compuestas.
• Conversión de variables categóricas a numéricas.
• Reorganización y eliminación de columnas innecesarias.

Para ello, utilizaremos las siguientes librerías:

• dplyr: Para la manipulación de datos.
• tidyr: Para la separación de columnas y transformación de datos.
• stringr: Para la manipulación de cadenas de texto.
• lubridate: Para el manejo de fechas.

A continuación se detallan las transformaciones y limpiezas realizadas en el conjunto de datos:

1. Eliminación de filas irrelevantes: Se eliminaron las filas donde la columna “Memory” contenía “System Sha-
red” y aquellas donde “Released” era “Never Released”.

2. Separación de variables compuestas:

• La columna “Memory” se separó en tres nuevas columnas:

– “Memory_Size (GB)”: Tamaño de la memoria, convertido a un formato numérico y expresado en gigaby-
tes (GB).

– “Memory_Type”: Tipo de memoria utilizada.
– “Memory_Bus (bits)”: Ancho del bus de memoria, convertido a un formato numérico.

3. Conversión de formatos:

• La columna “Released” se transformó a un formato de fecha estándar y se categorizó en cinco intervalos: “Antes
de 2000”, “2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020”.

• Las columnas “Memory_clock” y “GPU_clock” se convirtieron a un formato numérico y se renombraron como
“Memory_clock (MHz)” y “GPU_clock (MHz)”, respectivamente.
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library(dplyr)
library(tidyr)
library(stringr)
library(lubridate)

datos <- datos %>%
# Si la columna Memory tiene "System Shared" Y Released tiene "Never Released",
#eliminar esas filas
filter(

!str_detect(Memory, "System Shared"),
!str_detect(Released, "Never Released")) %>%

# Separar la columna Memory
separate(Memory, into = c("Memory_Size (GB)", "Memory_Type",

"Memory_Bus (bits)"),
sep = ", ", remove = TRUE, fill = "right") %>%

# Convertir Memory_Bus (bits) a numérico Y Released a date
mutate(
`Memory_Bus (bits)` = as.numeric(str_extract(`Memory_Bus (bits)`, "\\d+")),
# Primero convertimos "Unknown" a NA
Released = ifelse(Released == "Unknown", NA, Released),
Released = as.Date(parse_date_time(Released, orders = c("b d, Y", "Y")))

) %>%

# Convertir Memory_Size (GB) a numérico y convertir a GB
mutate(`Memory_Size (GB)` = case_when(
str_detect(`Memory_Size (GB)`, "GB") ~ as.numeric(str_extract(`Memory_Size (GB)`,
"\\d+")),
str_detect(`Memory_Size (GB)`, "MB") ~ as.numeric(str_extract(`Memory_Size (GB)`,
"\\d+")) / 1024,
str_detect(`Memory_Size (GB)`, "KB") ~ as.numeric(str_extract(`Memory_Size (GB)`,
"\\d+")) / (1024 * 1024),
TRUE ~ NA_real_ # En cualquier otro caso, NA

)) %>%

# Separar Shaders_TMUs_ROPs en 4 columnas (Shaders_1, Shaders_2, TMUs, ROPs)
separate(Shaders_TMUs_ROPs, into = c("Shaders_1", "Shaders_2", "TMUs", "ROPs"),

sep = " / ", remove = TRUE, fill = "right") %>%

# Manejar casos donde hay solo 3 valores (x1 / x2 / x3)
mutate(

# Si ROPs es NA, significa que solo hay 3 valores (x1 / x2 / x3)
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ROPs = ifelse(is.na(ROPs), TMUs, ROPs), # Mover TMUs a ROPs
TMUs = ifelse(TMUs == ROPs, Shaders_2, TMUs), # Mover Shaders_2 a TMUs
Shaders_2 = ifelse(Shaders_2 == TMUs, NA, Shaders_2) # Poner NA en Shaders_2

) %>%

# Convertir a numérico Memory_clock y GPU_clock
mutate(
`Memory_clock (MHz)` = as.numeric(str_extract(`Memory_clock`, "\\d+")),
`GPU_clock (MHz)` = as.numeric(str_extract(`GPU_clock`, "\\d+"))

) %>%

# Crear la nueva variable Shaders: máximo entre Shaders_1 y Shaders_2.
#Si Shaders_2 es NA, significa que estamos en el caso de 3 valores.
mutate(
Shaders = ifelse(!is.na(Shaders_2), pmax(Shaders_1, Shaders_2), Shaders_1)

) %>%

# Mover la columna Shaders delante de TMUs y ROPs
relocate(Shaders, .before = TMUs) %>%

# Eliminar columnas innecesarias
select(-Shaders_1, -Shaders_2, -Memory_clock, -GPU_clock, -`...1`) %>%

# Convertir Shaders, TMUs y ROPs a numérico
mutate(across(c(`Shaders`, `TMUs`, `ROPs`), ~ suppressWarnings(as.numeric(.)))) %>%

# Convertir Released a categórico y dividir en 5 categorías
mutate(
Released = case_when(
Released < as.Date("2000-01-01") ~ "Antes de 2000",
Released < as.Date("2010-01-01") ~ "2000-2009",
Released < as.Date("2016-01-01") ~ "2010-2015",
Released < as.Date("2021-01-01") ~ "2016-2020",
TRUE ~ "Después de 2020"

)
)

num_vars <- datos %>% select(where(is.numeric)) %>% names()
cat_vars <- datos %>% select(where(is.character)) %>% names()

3.2.2 Descripción de las variables transformadas

Tras el procesamiento, el conjunto de datos contiene las siguientes variables:

10



Variables categóricas:

cat_vars

## [1] "Product_Name" "GPU_Chip" "Released" "Bus" "Memory_Type"

• GPU_Chip: Como hemos mencionado anteriormente, es el tipo de chip que utiliza la tarjeta gráfica.

• Released: Es una variable categórica nueva que hemos creado, y nos indica la fecha de lanzamiento de la tarjeta
gráfica en 4 categorías: “Antes de 2000”, “2000-2009”, “2010-2015”, “2016-2020” y “Después de 2020”.

• Bus: Es el tipo de bus que utiliza la tarjeta gráfica.

• Memory_Type: Es una variable categórica nueva que hemos creado a partir de la variable “Memory”, y nos
indica el tipo de memoria que utiliza la tarjeta gráfica.

Variables numéricas:

num_vars

## [1] "Memory_Size (GB)" "Memory_Bus (bits)" "Shaders"
## [4] "TMUs" "ROPs" "Memory_clock (MHz)"
## [7] "GPU_clock (MHz)"

• Memory_Size (GB): Es una variable numérica nueva que hemos creado a partir de “Memory”, y nos indica la
cantidad de memoria que tiene la tarjeta gráfica, medida en gigabytes (GB). Una mayor cantidad de memoria
permite manejar texturas y datos gráficos más grandes, lo que es crucial para juegos y aplicaciones con gráficos
de alta resolución o entornos complejos.

• Memory_Bus (bits): Es una variable numérica nueva que hemos creado a partir de “Memory”, y nos indica
el ancho del bus de memoria, medido en bits. Determina cuántos datos pueden transferirse entre la GPU y la
memoria en un ciclo de reloj. Un bus más ancho permite un mayor ancho de banda, lo que mejora el rendimiento
en tareas gráficas intensivas.

• Shaders: Es una variable numérica nueva que hemos extraído de la variable “Shaders_TMUs_ROPs”, y re-
presenta el número de unidades de sombreado (shaders) en la GPU. Los shaders son responsables de procesar
píxeles, vértices y otros elementos gráficos. Un mayor número de shaders generalmente indica un mayor poder
de procesamiento gráfico.

• TMUs: Es una variable numérica nueva que hemos extraído de la variable “Shaders_TMUs_ROPs”, y nos indica
las unidades de mapeo de texturas (TMUs), encargadas de aplicar texturas a los objetos 3D. Un mayor número
de TMUs permite manejar texturas más complejas y mejorar la calidad visual.

• ROPs: Es una variable numérica nueva que hemos extraído de la variable “Shaders_TMUs_ROPs”, y son las
tuberías de operaciones de rasterización (ROPs), responsables de escribir los píxeles finales en la memoria de
video. Un mayor número de ROPs mejora el rendimiento en tareas como el antialiasing y la renderización de
píxeles.
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• Memory_clock (MHz): Es la velocidad del reloj de la memoria, medida en megahercios (MHz). Indica la fre-
cuencia a la que opera la memoria. Una mayor velocidad de reloj de la memoria permite un mayor ancho de
banda y un mejor rendimiento general.

• GPU_clock (MHz): Es la velocidad del reloj de la GPU, medida en megahercios (MHz). Indica la frecuencia
a la que opera el núcleo de la GPU. Una mayor velocidad de reloj de la GPU mejora el rendimiento en tareas
gráficas y de procesamiento.

Tras las transformaciones, el conjunto de datos contiene un total de 7 variables numéricas y 5 variables categóricas.

3.3 Análisis exploratorio de datos

3.3.1 Estadísticas descriptivas

En esta sección, se llevará a cabo un análisis descriptivo de las variables numéricas y categóricas del conjunto de
datos. Este análisis tiene como objetivo proporcionar una visión general de las principales características de los datos,
identificar patrones relevantes y detectar posibles irregularidades.

Además, se realizará la transformación de la variable Released a un formato de factor ordenado, lo que permitirá
organizar las fechas de lanzamiento de manera adecuada y facilitar su representación en los gráficos.

# Convertir Released a factor
datos$Released <- factor(datos$Released, levels = c("Antes de 2000", "2000-2009",
"2010-2015", "2016-2020", "Después de 2020"))

# Resumen de las variables
summary(datos)

## Product_Name GPU_Chip Released
## Length:3047 Length:3047 Antes de 2000 : 106
## Class :character Class :character 2000-2009 : 972
## Mode :character Mode :character 2010-2015 :1367
## 2016-2020 : 402
## Después de 2020: 200
##
## Bus Memory_Size (GB) Memory_Type Memory_Bus (bits)
## Length:3047 Min. : 0.00003 Length:3047 Min. : 32.0
## Class :character 1st Qu.: 0.50000 Class :character 1st Qu.: 128.0
## Mode :character Median : 2.00000 Mode :character Median : 128.0
## Mean : 3.46161 Mean : 289.6
## 3rd Qu.: 4.00000 3rd Qu.: 256.0
## Max. :128.00000 Max. :8192.0
## Shaders TMUs ROPs Memory_clock (MHz)
## Min. : 0.0 Min. : 0.00 Min. : 0.00 Min. : 5.0
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## 1st Qu.: 40.0 1st Qu.: 8.00 1st Qu.: 8.00 1st Qu.: 600.0
## Median : 384.0 Median : 32.00 Median : 16.00 Median : 902.0
## Mean : 984.8 Mean : 60.25 Mean : 23.36 Mean : 957.9
## 3rd Qu.: 1152.0 3rd Qu.: 80.00 3rd Qu.: 32.00 3rd Qu.:1253.0
## Max. :21760.0 Max. :880.00 Max. :192.00 Max. :3000.0
## GPU_clock (MHz)
## Min. : 10.0
## 1st Qu.: 520.0
## Median : 750.0
## Mean : 758.2
## 3rd Qu.: 954.0
## Max. :2505.0

A continuación, se presentan los principales hallazgos:

• Released: Vemos que antes de los 2000 se lanzaron muy pocas tarjetas gráficas, entre 2000-2009 aumentó consi-
derablemente la frecuencia de lanzamiento y entre 2010-2015 hubo un “boom” de lanzamientos que disminuyó
entre 2016-2020 y volvió a aumentar después de 2020.
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Este comportamiento se visualiza mejor en el siguiente histograma:

library(ggplot2)
# Crear el histograma usando la variable Released como categórica
datos %>%
ggplot(aes(x = Released)) +
geom_bar(fill = "skyblue", color = "black") +
labs(title = "Distribución de Fechas de Lanzamiento",

x = "Fecha de Lanzamiento",
y = "Frecuencia") +

theme_minimal()
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Figura 1: Histograma de Fechas de Lanzamiento

• Memory_Size (GB): Vemos que la media es de 3.46 GB y el máximo es 128 GB, lo que puede indicar que podría
haber valores atípicos.

• Memory_Bus (bits): Vemos que la media es de 289.6 bits y el máximo es 8192 bits, lo que puede indicar que
podría haber valores atípicos.
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En general, vemos que la mayoría de las variables numéricas tienen una media bastante baja y un máximo muy alto,
lo que puede indicar que hay valores atípicos.

3.3.2 Tratamiento de valores perdidos

Vamos a comprobar si hay valores perdidos en las variables. Para ello, vamos a contar los NAs por variable y mostrar
todas las variables.

# Contar los NAs por variable y mostrar todas las variables
na_counts <- datos %>%
summarise_all(~ sum(is.na(.))) %>%
pivot_longer(everything(), names_to = "Variable", values_to = "NA_Count")

# Mostrar la tabla completa de cuentas de NAs
print(na_counts)

## # A tibble: 12 x 2
## Variable NA_Count
## <chr> <int>
## 1 Product_Name 0
## 2 GPU_Chip 0
## 3 Released 0
## 4 Bus 0
## 5 Memory_Size (GB) 0
## 6 Memory_Type 0
## 7 Memory_Bus (bits) 0
## 8 Shaders 0
## 9 TMUs 0
## 10 ROPs 0
## 11 Memory_clock (MHz) 0
## 12 GPU_clock (MHz) 0

No tenemos valores perdidos.

3.3.3 Tratamiento de valores atípicos

En esta sección, se analizarán las variables numéricas para identificar posibles valores atípicos. Estos valores pueden
representar errores en los datos o, por el contrario, ser tarjetas gráficas modernas con especificaciones muy altas. Para
ello, se utilizará un gráfico de caja para visualizar la distribución de cada variable numérica y detectar valores atípicos.

# Vemos si hay valores atípicos en las variables numéricas
datos %>%
select(where(is.numeric)) %>%
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gather() %>%
ggplot(aes(value)) +
geom_boxplot() +
facet_wrap(~key, scales = "free")
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Figura 2: Boxplot de las variables numéricas

Como sospechábamos, hay valores atípicos en todas las variables numéricas. Vamos a ver si esos valores atípicos son
errores o son tarjetas gráficas modernas con especificaciones muy altas. Para ello, vamos a comparar la media de los
valores atípicos con la media de la variable completa. Esto nos permitirá ver si de verdad son errores o son tarjetas
gráficas modernas con especificaciones muy altas.

Vamos a crear una función que nos permita identificar los valores atípicos de una variable numérica y ver su media, así
como la media de la variable completa para poder comparar resultados. Además, nos mostrará un gráfico de puntos de
la variable seleccionada con Released como categórica para ver su distribución en las diferentes categorías de fecha.

identificar_atipicos <- function(datos, variable) {
# Calcular los cuartiles y el IQR
Q1 <- quantile(datos[[variable]], 0.25, na.rm = TRUE)
Q3 <- quantile(datos[[variable]], 0.75, na.rm = TRUE)
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IQR <- Q3 - Q1

# Definir los límites para valores atípicos
limite_inferior <- Q1 - 1.5 * IQR
limite_superior <- Q3 + 1.5 * IQR

# Identificar los valores atípicos
valores_atipicos <- datos[[variable]][datos[[variable]] < limite_inferior
| datos[[variable]] > limite_superior]

# Filtrar las filas con valores atípicos
tarjetas_atipicas <- datos %>%
filter(datos[[variable]] %in% valores_atipicos) %>%
select(Product_Name, `Released`, all_of(variable))

# Contar el número de atípicos por fechas
num_atipicos <- tarjetas_atipicas %>%
count(Released, sort = TRUE) %>%
arrange(Released)

# Mostrar la media de la variable seleccionada con el nombre de la variable
media_variable <- mean(datos[[variable]], na.rm = TRUE)

# Crear un gráfico de puntos para la variable seleccionada con Released como categórica
grafico <- datos %>%
ggplot(aes(x = Released, y = .data[[variable]])) +
geom_jitter(width = 0.2, alpha = 0.6, color = "blue") +
labs(
title = paste("Distribución de", variable, "por Categorías de Fecha"),
x = "Categoría de Fecha de Lanzamiento",
y = variable

) +
theme_minimal()

# Mostrar el gráfico
print(grafico)

# Devolver un resumen de los valores atípicos y el número de atípicos por fechas para
#compararlos con el resto de la variable y poner títulos a la lista
return(list(
valores_atipicos = summary(valores_atipicos),
media_variable = media_variable,
num_atipicos = num_atipicos
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))
}

A continuación se usará la función para las variables numéricas. Vamos a empezar por la variableMemory_Size (GB).

1. Memory_Size (GB):

identificar_atipicos(datos, "Memory_Size (GB)")
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Figura 3: Valores atípicos de Memory_Size (GB)

## $valores_atipicos
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.00 12.00 16.00 24.13 24.00 128.00
##
## $media_variable
## [1] 3.461614
##
## $num_atipicos
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## # A tibble: 3 x 2
## Released n
## <fct> <int>
## 1 2010-2015 31
## 2 2016-2020 75
## 3 Después de 2020 95

Resultados:

• La media de los valores atípicos es de 24.13 GB, considerablemente mayor que la media general de 3.46 GB.
• Los valores atípicos corresponden a tarjetas gráficas lanzadas principalmente después de 2020, con algunas entre
2016 y 2020 y muy pocas entre 2010 y 2015.
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Vamos a ver con las demás variables:

2. Memory_Bus (bits):

identificar_atipicos(datos, "Memory_Bus (bits)")
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Figura 4: Valores atípicos de Memory_Bus (bits)

## $valores_atipicos
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 512 512 3072 2709 4096 8192
##
## $media_variable
## [1] 289.6278
##
## $num_atipicos
## # A tibble: 4 x 2
## Released n
## <fct> <int>
## 1 2000-2009 30
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## 2 2010-2015 36
## 3 2016-2020 50
## 4 Después de 2020 25

Resultados:

• La media de los valores atípicos es de 2319MHz, considerablemente mayor que la media general de 957.9 MHz.
• Los valores atípicos corresponden a tarjetas gráficas lanzadas principalmente después de 2020.

3. Memory_clock (MHz):

identificar_atipicos(datos, "Memory_clock (MHz)")
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Figura 5: Valores atípicos de Memory_clock (MHz)

## $valores_atipicos
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2248 2250 2250 2319 2250 3000
##
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## $media_variable
## [1] 957.9084
##
## $num_atipicos
## # A tibble: 1 x 2
## Released n
## <fct> <int>
## 1 Después de 2020 18

Para la velocidad del reloj podemos observar el mismo patrón donde la media de los valores atípicos es bastante mayor
que la media de la variable, y tenemos valores atípicos en tarjetas gráficas modernas, la mayoría después de 2020 y
algunas entre 2016-2020.

Resultados:

• Los valores atípicos representan un patrón similar, con unamedia significativamente mayor que la media general,
con la mayoría de estos valores correspondientes a tarjetas gráficas lanzadas después de 2020.
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4. Shaders, TMUs y ROPs:

identificar_atipicos(datos, "Shaders")
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Figura 6: Valores atípicos de Shaders

## $valores_atipicos
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2880 3584 4224 5594 6208 21760
##
## $media_variable
## [1] 984.7594
##
## $num_atipicos
## # A tibble: 3 x 2
## Released n
## <fct> <int>
## 1 2010-2015 34
## 2 2016-2020 89
## 3 Después de 2020 113
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identificar_atipicos(datos, "TMUs")
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Figura 7: Valores atípicos de TMUs

## $valores_atipicos
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 192.0 224.0 256.0 283.3 288.0 880.0
##
## $media_variable
## [1] 60.25205
##
## $num_atipicos
## # A tibble: 3 x 2
## Released n
## <fct> <int>
## 1 2010-2015 48
## 2 2016-2020 86
## 3 Después de 2020 84
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identificar_atipicos(datos, "ROPs")
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Figura 8: Valores atípicos de ROPs

## $valores_atipicos
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 80.0 96.0 96.0 110.6 128.0 192.0
##
## $media_variable
## [1] 23.3597
##
## $num_atipicos
## # A tibble: 3 x 2
## Released n
## <fct> <int>
## 1 2010-2015 17
## 2 2016-2020 63
## 3 Después de 2020 88

Para Shaders, TMUs y ROPs vemos el mismo patrón, donde la media de los valores atípicos es bastante mayor que
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la media de la variable, y tenemos valores atípicos en las tarjetas más modernas, aunque aquí sí que tenemos valores
atípicos en tarjetas gráficas más antiguas entre 2010 y 2015, aunque son muy pocos.

Resultados:

• Los valores atípicos en estas variables también corresponden principalmente a tarjetas gráficas modernas. Sin
embargo, se identificaron algunos valores atípicos en tarjetas lanzadas entre 2010 y 2015, aunque son pocos.

5. Memory_Bus (bits):

identificar_atipicos(datos, "Memory_Bus (bits)")
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Figura 9: Valores atípicos de Memory_Bus (bits)

## $valores_atipicos
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 512 512 3072 2709 4096 8192
##
## $media_variable
## [1] 289.6278
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##
## $num_atipicos
## # A tibble: 4 x 2
## Released n
## <fct> <int>
## 1 2000-2009 30
## 2 2010-2015 36
## 3 2016-2020 50
## 4 Después de 2020 25

Para esta variable observamos un patrón un poco diferente, ya que tenemos valores atípicos en casi todas las categorías
de fechas. Habría que investigar más a fondo esta variable.

Para ello vamos a profundizar en lo que es el ancho de bus de memoria:

El ancho de bus de memoria se encarga de determinar cuántos bits de datos pueden ser transferidos entre la memoria
y la GPU en un ciclo de reloj. Un bus de memoria alto puede ser más útil en tareas que requieren un alto ancho de
banda, como la computación científica, la inteligencia artificial o el procesamiento de gráficos en tiempo real, donde
es importante transferir grandes cantidades de datos rápidamente.

Teniendo en cuenta que las GPUs, en su mayoría se utilizan para juegos, podría indicar que al haber valores muy
altos de ancho de bus de memoria para todas las categorías de fecha, hay ciertas tarjetas gráficas diseñadas para tareas
específicas que requieren un alto ancho de banda, lo que podría explicar la presencia de valores atípicos en todas las
categorías de fecha.

Vamos a visualizar un gráfico que muestre el reparto de Memory_Bus (bits) por tipo de memoria, para ver si hay algún
patrón en los valores atípicos:
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# Gráfico de dispersión de Memory_Bus (bits) por tipo de memoria
ggplot(datos, aes(x = Memory_Type, y = `Memory_Bus (bits)`)) +
geom_boxplot() +
labs(
title = "Distribución de Ancho de Bus de Memoria por Tipo de Memoria",
x = "Tipo de Memoria",
y = "Ancho de Bus de Memoria (bits)"

) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
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Figura 10: Distribución de Memory_Bus (bits) por Tipo de Memoria

Se ve claramente que las tecnologías HBM, HBM2 y HBM2e tienen un ancho de bus de memoria más alto que las
demás tecnologías. Esto es coherente con el propósito de la memoria HBM (High Bandwidth Memory), diseñada
específicamente para ofrecer un mayor ancho de banda. Como resultado, estas tarjetas son ideales para aplicaciones
que requieren una alta capacidad de transferencia de datos, como la computación científica, la inteligencia artificial y
el aprendizaje profundo.

Resultados:
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• A diferencia de las demás variables, los valores atípicos en esta variable están presentes en casi todas las cate-
gorías de fechas. Esto sugiere que el ancho del bus de memoria puede variar significativamente según el diseño
de la tarjeta gráfica, independientemente de su antigüedad y por lo tanto no son errores.

3.3.4 Conclusiones del análisis exploratorio

1. Valores atípicos:

• La mayoría de los valores atípicos en las variables numéricas corresponden a tarjetas gráficas modernas, lanzadas
principalmente después de 2020. Esto es consistente con la evolución tecnológica y el aumento de especificacio-
nes en las tarjetas gráficas más recientes. Por tanto, estos valores no se considerarán como atípicos en el sentido
tradicional, ya que representan avances tecnológicos en lugar de errores o anomalías.

• En el caso de Memory_Bus (bits), se observaron valores atípicos en casi todas las categorías de fechas, pero esto
puede explicarse por el diseño específico de algunas tarjetas gráficas que requieren un alto ancho de banda para
aplicaciones especializadas. Por ejemplo, las tecnologías de memoria HBM, están diseñadas para maximizar el
ancho de banda. Estas tarjetas gráficas suelen priorizar el rendimiento en la transferencia de datos, lo que explica
los valores significativamente más altos en el ancho de bus de memoria.

2. Tendencias en el lanzamiento de tarjetas gráficas:

• En la Figura 1 se observaba un aumento significativo en el número de lanzamientos de tarjetas gráficas entre
2000 y 2015, seguido de una disminución entre 2016 y 2020, y un nuevo aumento después de 2020.

3. Calidad de datos:

• No se encontraron valores perdidos en el conjunto de datos, lo que sugiere una buena calidad de datos en general.
• Los valores atípicos parecen ser representativos de la evolución tecnológica y diferencias en el diseño y aplica-
ción de las diferentes tarjetas gráficas.

3.4 Relaciones entre variables clave

Parece interesante investigar si existen relaciones entre las diferentes variables para ver si podemos encontrar patrones
o tendencias en los datos.

3.4.1 Correlación entre variables numéricas

Para investigar las relaciones entre las variables numéricas, se generó una matriz de correlación. Este análisis permite
identificar las asociaciones más fuertes entre las variables clave:

# Crear la matriz de correlación
correlation_matrix <- cor(datos %>% select(where(is.numeric)),

use = "pairwise.complete.obs")
correlation_matrix

29



## Memory_Size (GB) Memory_Bus (bits) Shaders TMUs
## Memory_Size (GB) 1.0000000 0.63647622 0.7360566 0.8155536
## Memory_Bus (bits) 0.6364762 1.00000000 0.4721906 0.6242267
## Shaders 0.7360566 0.47219056 1.0000000 0.9161432
## TMUs 0.8155536 0.62422670 0.9161432 1.0000000
## ROPs 0.6079784 0.45209917 0.8330208 0.8535990
## Memory_clock (MHz) 0.3828492 0.04784241 0.5043913 0.5532427
## GPU_clock (MHz) 0.4034626 0.15275376 0.5236997 0.5461143
## ROPs Memory_clock (MHz) GPU_clock (MHz)
## Memory_Size (GB) 0.6079784 0.38284920 0.4034626
## Memory_Bus (bits) 0.4520992 0.04784241 0.1527538
## Shaders 0.8330208 0.50439129 0.5236997
## TMUs 0.8535990 0.55324266 0.5461143
## ROPs 1.0000000 0.57651257 0.5919399
## Memory_clock (MHz) 0.5765126 1.00000000 0.8211419
## GPU_clock (MHz) 0.5919399 0.82114193 1.0000000

Las relaciones más fuertes las podemos encontrar obviamente entre Shaders, TMUs y ROPs, ya que son variables
que están relacionadas entre sí por naturaleza. Otras relaciones interesantes son entre el tamaño de la memoria y las
unidades de sombreado y las unidades de mapeo de texturas. También tenemos una relación fuerte de esta variable con
el ancho del bus de memoria, lo que tiene sentido, ya que a mayor tamaño de memoria, mayor ancho de bus.

Otra relación muy fuerte es entre la velocidad del reloj de la GPU y la velocidad del reloj de la memoria, lo que también
tiene sentido, ya que a mayor velocidad de reloj, mayor rendimiento.

Principales hallazgos:

• Shaders, TMUs y ROPs: Estas variables están fuertemente correlacionadas entre sí, lo que es esperado, ya que
estas variables están relacionadas por diseño y representan diferentes aspectos del procesamiento gráfico.

• Memory_Size (GB): Esta variable muestra una correlación positiva con Shaders, TMUs, ROPs y Memory_Bus
(bits). Esto tiene sentido, ya que con mayor capacidad de memoria, se pueden manejar más unidades de som-
breado y un mayor ancho de bus.

• Memory_Bus (bits): Tiene una correlación positiva con Memory_Size (GB) y Shaders, lo que indica que un
mayor ancho de bus está asociado con un mayor tamaño de memoria y un mayor número de unidades de som-
breado.

• GPU_clock (MHz) yMemory_clock (MHz): Estas variables están fuertemente correlacionadas entre sí, lo que
sugiere que a medida que aumenta la velocidad del reloj de la GPU, también aumenta la velocidad del reloj de
la memoria.

3.4.2 Visualización de relaciones clave

Relación entre el tamaño de memoria y el ancho de bus de memoria
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Para explorar la relación entre el tamaño de memoria y el ancho de bus de memoria, se generó un gráfico de dispersión
agrupado por el tipo de memoria:

# Relación entre Memory_Size (GB) y Memory_clock (MHz), coloreado por GPU_Chip
ggplot(datos, aes(x = `Memory_Size (GB)`, y = `Memory_Bus (bits)`,

color = Memory_Type )) +
geom_point(alpha = 0.7, size = 3) +
labs(
title = "Relación entre Tamaño de Memoria y Ancho de Bus",
subtitle = "Agrupado por tipo de Memoria",
x = "Memory_Size (GB)",
y = "Memory_Bus (bits)"

) +
theme_minimal() +
theme(legend.position = "bottom") # Para evitar que la leyenda oculte datos
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Figura 11: Relación entre Tamaño de Memoria y Ancho de Bus de Memoria

Observaciones iniciales: La Figura 11 muestra una gran cantidad de puntos agrupados, lo que dificulta la interpre-
tación debido a la diversidad de tipos de memoria. Para mejorar la visualización, se procederá a filtrar los tipos de
memoria más comunes y se volverá a generar el gráfico:
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# Ver cuántos datos hay por tipo de memoria
datos %>%
count(Memory_Type, sort = TRUE) %>%
arrange(desc(n)) %>%
print(n=nrow(.))

## # A tibble: 26 x 2
## Memory_Type n
## <chr> <int>
## 1 GDDR5 1145
## 2 GDDR3 508
## 3 DDR3 424
## 4 DDR 314
## 5 GDDR6 211
## 6 DDR2 140
## 7 SDR 87
## 8 HBM2 36
## 9 GDDR5X 30
## 10 GDDR4 25
## 11 HBM 23
## 12 HBM2e 22
## 13 GDDR6X 20
## 14 DRAM 17
## 15 EDO 11
## 16 VRAM 7
## 17 eDRAM 6
## 18 DDR4 4
## 19 HBM3 4
## 20 GDDR2 3
## 21 GDDR7 3
## 22 LPDDR4X 2
## 23 SGR 2
## 24 FPM 1
## 25 LPDDR5 1
## 26 SGRAM 1

Viendo el reparto de los tipos de memoria, vamos a quedarnos con aquellos tipos de memoria que tengan más de 15
tarjetas gráficas.

# Filtrar los tipos de memoria más comunes
tipos_memoria_comunes <- datos %>%
count(Memory_Type, sort = TRUE) %>%
filter(n > 15) %>%
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pull(Memory_Type)

A continuación, vamos a filtrar los datos para quedarnos sólo con los tipos de memoria más comunes y eliminamos el
valor más alto de Memory_Size (GB) para evitar que el gráfico esté muy sesgado por un solo punto. Esto nos permitirá
ver mejor la relación entre el tamaño de memoria y el ancho de bus de memoria.

# Filtrar los datos para quedarnos sólo con los tipos de memoria más comunes
datos_filtrados <- datos %>%
filter(Memory_Type %in% tipos_memoria_comunes) %>%
filter(`Memory_Size (GB)` != max(`Memory_Size (GB)`, na.rm = TRUE))

# Hacemos el gráfico de nuevo
ggplot(datos_filtrados, aes(x = `Memory_Size (GB)`, y = `Memory_Bus (bits)`,
color = Memory_Type )) +
geom_point(alpha = 0.7, size = 3) +
labs(
title = "Relación entre Tamaño de Memoria y Ancho de Bus",
subtitle = "Agrupado por tipo de Memoria",
x = "Memory_Size (GB)",
y = "Memory_Bus (bits)"

) +
theme_minimal() +
theme(legend.position = "bottom") # Para evitar que la leyenda oculte datos

coord_cartesian(xlim = c(0, 32), ylim = c(0, 1024)) # Ajustar límites de los ejes

## <ggproto object: Class CoordCartesian, Coord, gg>
## aspect: function
## backtransform_range: function
## clip: on
## default: FALSE
## distance: function
## expand: TRUE
## is_free: function
## is_linear: function
## labels: function
## limits: list
## modify_scales: function
## range: function
## render_axis_h: function
## render_axis_v: function
## render_bg: function
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Figura 12: Relación entre Tamaño de Memoria y Ancho de Bus de Memoria (Filtrado)
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## render_fg: function
## setup_data: function
## setup_layout: function
## setup_panel_guides: function
## setup_panel_params: function
## setup_params: function
## train_panel_guides: function
## transform: function
## super: <ggproto object: Class CoordCartesian, Coord, gg>

Este gráfico nos permite visualizar con mayor claridad las diferencias entre los distintos tipos de memoria en las tarjetas
gráficas.

Interpretación:

• Las tecnologías más antiguas, como GDDR3 y DDR3, presentan un reloj de memoria y un reloj de GPU más
bajos en comparación con las tecnologías más recientes.

• Las tarjetas gráficas con memoria HBM, HBM2 y HBM2e destacan por su ancho de bus significativamente
más alto, aunque su tamaño de memoria es similar al de tecnologías como GDDR5X, GDDR6 y GDDR6X.
Como habíamos mencionado anteriormente, esto se debe al propósito de las memorias de tipo HBM, que están
diseñadas para ofrecer un mayor ancho de banda, lo que las hace ideales para aplicaciones que requieren una alta
capacidad de transferencia de datos.

• Por otro lado, las tarjetas gráficas con memoria GDDR5X, GDDR6 y GDDR6X parecen priorizar un mayor
tamaño de memoria, lo que resulta beneficioso para juegos y aplicaciones gráficas avanzadas que necesitan
almacenar y procesar texturas y datos gráficos complejos. Esto es consistente con el enfoque de NVIDIA, la
marca líder en el mercado de videojuegos, que utiliza estas tecnologías en sus tarjetas gráficas más modernas.

Relación entre el reloj de memoria y el reloj de GPU

Otra relación interesante es la existente entre el reloj de memoria y el reloj de GPU, agrupada por el tipo de chip. Dado
que hay muchos tipos de chips diferentes, vamos a filtrar los tipos de chip más comunes para facilitar la visualización.

# Ver cuántos datos hay por tipo de chip
datos %>%
count(GPU_Chip, sort = TRUE) %>%
arrange(desc(n)) %>%
print(n = 25)

## # A tibble: 335 x 2
## GPU_Chip n
## <chr> <int>
## 1 GK104 151
## 2 GM107 81
## 3 GK107 79
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## 4 Tahiti 64
## 5 G92 53
## 6 Oland 48
## 7 GM108 47
## 8 Pitcairn 47
## 9 Cape Verde 46
## 10 GK208 45
## 11 GK106 42
## 12 GM204 41
## 13 Amethyst 37
## 14 GP104 37
## 15 Tropo 35
## 16 Baffin 32
## 17 G71 32
## 18 G80 32
## 19 Meso 30
## 20 Venus 30
## 21 RV770 29
## 22 GT200B 28
## 23 Bonaire 27
## 24 Jet 27
## 25 RV670 27
## # i 310 more rows

# Filtrar los tipos de chip más comunes
tipos_chip_comunes <- datos %>%
count(GPU_Chip, sort = TRUE) %>%
filter(n > 50) %>%
pull(GPU_Chip)

Usaremos los tipos de chip que tengan más de 50 tarjetas gráficas.

# Filtrar los datos para quedarnos sólo con los tipos de chip más comunes
datos_filtrados_chip <- datos %>%
filter(GPU_Chip %in% tipos_chip_comunes)

# Hacemos el gráfico de nuevo
ggplot(datos_filtrados_chip, aes(x = `Memory_clock (MHz)`,

y = `GPU_clock (MHz)`, color = GPU_Chip)) +
geom_point(alpha = 0.7, size = 3) +
labs(
title = "Relación entre Reloj de Memoria y Reloj de GPU",
subtitle = "Agrupado por tipo de Chip",
x = "Memory_clock (MHz)",
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y = "GPU_clock (MHz)"
) +
theme_minimal() +
theme(legend.position = "bottom") # Para evitar que la leyenda oculte datos
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Figura 13: Relación entre Reloj de Memoria y Reloj de GPU (Filtrado)

Interpretación:

• Las tarjetas gráficas con chips GK104 y Tahiti parecen ofrecer un rendimiento superior, con relojes de memoria
y GPU más altos.

• Los chips GM107 y GK107 presentan un reloj de GPU más alto, pero un reloj de memoria más bajo, lo que
sugiere una arquitectura más antigua.

• Las tarjetas gráficas más modernas tienden a tener una mayor capacidad de memoria, lo que puede estar relacio-
nado con un aumento en la frecuencia de la memoria.
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3.4.3 Conclusiones del análisis de relaciones

En esta sección, se han explorado las relaciones entre las variables clave del conjunto de datos, centrándose en las
variables numéricas más relevantes. A continuación, se presentan las principales conclusiones:

1. Correlaciones:

• Se identificaron correlaciones significativas entre las variables numéricas, especialmente entre Shaders,
TMUs y ROPs, así como entre Memory_Size (GB) y Memory_Bus (bits).

• La velocidad del reloj de la GPU y la velocidad del reloj de la memoria también mostraron una fuerte
correlación, lo que sugiere que a medida que aumenta la velocidad del reloj de la GPU, también lo hace la
velocidad del reloj de la memoria.

2. Visualización de relaciones clave:

• Relación entre el tamaño de memoria y el ancho de bus de memoria (agrupado por tipo de memoria):
(Figura 12)

– Se observó que las tecnologías de memoria HBM, HBM2 y HBM2e tienen un ancho de bus signifi-
cativamente más alto en comparación con otras tecnologías, lo que es coherente con su propósito de
ofrecer un mayor ancho de banda.

– Las tarjetas gráficas conmemoria GDDR5X,GDDR6 yGDDR6X tienden a priorizar unmayor tamaño
de memoria, lo que es beneficioso para juegos y aplicaciones gráficas avanzadas.

• Relación entre el reloj de memoria y el reloj de GPU (agrupado por tipo de chip): (Figura 13)
• Las tarjetas gráficas con chips GK104 y Tahiti destacaron por ofrecer un rendimiento superior, con relojes
de memoria y GPU más altos.

• Los chips GM107 y GK107 mostraron un reloj de GPU más alto, pero un reloj de memoria más bajo, lo
que sugiere una arquitectura más antigua.

4 Clustering

4.1 Fundamentos teóricos del método

Vamos a realizar un análisis clustering para ver si podemos agrupar las tarjetas gráficas según sus especificaciones
técnicas. Para ello, vamos a usar el método de k-means.

A continuación, una breve descripción de qué es clustering y cómo funciona el método de k-means, extraído del manual:
“An Introduction to Statistical Learning with aplications in R” (Manual).

El clustering (o agrupamiento) es una técnica de aprendizaje no supervisado que busca identificar subgrupos o “clúste-
res” dentro de un conjunto de datos. El objetivo es agrupar observaciones de manera que aquellas dentro de un mismo
clúster sean similares entre sí, mientras que las observaciones de diferentes clústeres sean distintas. Para lograr esto,
es necessario definir qué significa que dos observaciones sean similares o distintas, lo cual depende del contexto y del
conocimiento del dominio.
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Por ejemplo, en un estudio de muestras de tejido de pacientes con cáncer de mama, donde cada muestra tiene varias
características (como medidas clínicas o expresiones génicas), el clustering podría ayudar a identificar subtipos des-
conocidos de la enfermedad. Este es un problema no supervisado, ya que no se cuenta con etiquetas predefinidas, a
diferencia de los problemas supervisados, donde el objetivo es predecir un resultado específico.

En el artículo “A Review of Clustering Techniques and Developments” (Saxena et al.), se menciona que no existe una
definición precisa de lo que constituye un “clúster”, lo que ha llevado al desarrollo de diferentes enfoques y técnicas de
clustering. Algunos sugieren que las técnicas de clustering pueden dividirse en dos grandes categorías: jerárquicas y
de partición. Otros proponen categorías adicionales, como métodos basados en densidad, métodos basados en modelos
y métodos basados en cuadrículas.

Cada enfoque utiliza un principio de inclusión diferente para definir los clústeres, y la elección del método adecuado
depende del tipo de datos y del objetivo del análisis. Además, el número de clústeres en los que se divide un conjunto
de datos suele ser decidido por el usuario, utilizando métodos heurísticos, de prueba y error, o enfoques evolutivos. La
precisión del clustering depende en gran medida de esta decisión, ya que un número adecuado de clústeres maximiza
la similitud intra-clúster y minimiza la similitud inter-clúster.

(Saxena et al.) menciona dos enfoques principales: jerárquico y particional.

1. Clustering jerárquico: Este enfoque puede ser aglomerativo (comenzando con cada punto como un clúster
individual y fusionándolos) o divisivo (comenzando con un único clúster y dividiéndolo). Dentro de estas ca-
tegorías, se utilizan métodos como el enlace simple, completo o promedio. Ejemplos de algoritmos incluyen
BIRCH, CURE, ROCK y CHAMELEON.

Como se menciona en el artículo “Hierarchical Clustering Algorithms for Document Datasets” (Zhao et al.), el clus-
tering jerárquico es especialmente útil en aplicaciones donde los datos tienen una estructura jerárquica natural, como
taxonomías biológicas o árboles filogenéticos. Este enfoque genera dendrogramas, que son representaciones visuales
que permiten explorar los datos en diferentes niveles de granularidad. Esto resulta ideal para tareas como la organiza-
ción de grandes colecciones de documentos, donde los dendrogramas facilitan la navegación y exploración interactiva.

Además, los métodos jerárquicos son útiles en casos donde los clústeres tienen subclústeres, proporcionando una re-
presentación consistente y predecible de los datos. Por ejemplo, en el análisis de textos, los dendrogramas pueden
organizar documentos en categorías generales y subcategorías más específicas, lo que mejora la comprensión y el
análisis de grandes volúmenes de información.

2. Clustering particional: Este enfoque divide los datos en un número predefinido de clústeres. Puede basarse
en distancias, modelos probabilísticos o densidad. Ejemplos de algoritmos incluyen K-means, PAM, CLARA,
CLARANS, DBSCAN y CLIQUE.

Entre los métodos de clustering particional, k-means es uno de los más utilizados, y es el que utilizaremos en este
análisis. Algunos ejemplos de su uso son por ejemplo en (Neshat et al.), donde se utiliza para identificar valores
atípicos dentro de cada clúster o en (Oyelade et al.), donde se ha usado para agrupar diferentes estudiantes en función
de sus resultados académicos.

Esta clasificación resalta la diversidad de técnicas disponibles, cada una adecuada para diferentes tipos de datos y
objetivos analíticos.

De entre los diferentes métodos de clustering, nosotros usaremos el método k-means.

39



4.2 Clustering con K-means

El método K-means es una técnica de agrupamiento que busca dividir un conjunto de datos en un número predefinido
de grupos o clústeres. Su objetivo principal es organizar las observaciones de manera que las que pertenecen a un
mismo clúster sean lo más similares posible entre sí, mientras que las observaciones de diferentes clústeres sean lo
más distintas posible. Para lograr esto, K-means utiliza un enfoque iterativo que ajusta continuamente los grupos hasta
encontrar una solución óptima.

4.2.1 Algoritmo K-means

Como bien se explica en (Manual), el algoritmo K-means sigue los siguientes pasos:

1. Inicialización: Se asigna aleatoriamente un número del 1 al𝐾 a cada observación, lo que sirve como asignación
inicial de clústeres.

𝐶1, 𝐶2, … , 𝐶𝑘 ∈ ℝ𝑝

donde 𝐶𝑖 es el i-ésimo centroide y 𝑝 es el número de variables.

2. Iteración: Se repiten los siguientes pasos hasta que las asignaciones de clústeres no cambien:

(a) Para cada uno de los ( k ) clústeres, se calcula el centroide como el vector de medias de las observaciones
asignadas:

𝐶𝑗 = 1
|𝑆𝑗|

∑
𝑥𝑖∈𝑆𝑗

𝑥𝑖

donde 𝑆𝑗 es el conjunto de observaciones asignadas al clúster ( j ) y |𝑆𝑗| su tamaño.

(b) Para cada observación 𝑥𝑖, se calcula la distancia a cada centroide y se asigna al clúster más cercano:

𝑥𝑖 ∈ 𝑆𝑐∗ donde 𝑐∗ = arg min
𝑗=1,…,𝑘

𝑑(𝑥𝑖, 𝐶𝑗)

donde 𝑑(𝑥𝑖, 𝐶𝑗) es la distancia entre 𝑥𝑖 y el centroide 𝐶𝑗.

El algoritmo K-means garantiza que el valor de la función objetivo, que mide la variación intra-clúster total, disminuya
en cada iteración. Esto se debe a que cada paso del algoritmo está diseñado para mejorar la asignación de clústeres o
los centroides:

1. Cálculo de los centroides (Paso 2(a)): En este paso, los centroides de los clústeres se calculan como las medias
de las observaciones asignadas a cada clúster. Este cálculo minimiza la suma de las desviaciones cuadradas
dentro de cada clúster, ya que las medias son los valores que minimizan esta suma.

2. Reasignación de observaciones (Paso 2(b)): Cada observación se reasigna al clúster cuyo centroide esté más
cerca. Este proceso asegura que cada observación esté asignada al clúster que minimiza su contribución a la
variación intra-clúster.

En cada iteración, estos dos pasos reducen la variación intra-clúster total, ya que:
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• El cálculo de los centroides minimiza las desviaciones dentro de cada clúster.

• La reasignación de observaciones mejora la asignación de clústeres, reduciendo aún más la variación.

Por lo tanto, el algoritmoK-means siempre converge a un óptimo local, ya que la función objetivo no puede aumentar en
ninguna iteración. Sin embargo, debido a que el algoritmo encuentra un óptimo local, los resultados pueden depender de
la asignación inicial de los clústeres. Por esta razón, es recomendable ejecutar el algoritmo varias veces con diferentes
inicializaciones y seleccionar la solución con el valor más bajo de la función objetivo.

En (Singh et al.) se presentan diferentes métricas para calcular la distancia entre observaciones y centroides, entre las
que destacan la distancia euclidiana, la distancia de Manhattan, la distancia de Chebychev y la distancia de Minkowski.

• Distancia euclidiana: Se calcula como la raíz cuadrada de la suma de las diferencias al cuadrado entre las coor-
denadas de dos puntos. Es la métrica más comúnmente utilizada en el algoritmo K-means debido a su simplicidad
y a que funciona bien en datos donde las relaciones entre las variables son lineales.

• Distancia de Manhattan: Se calcula como la suma de las diferencias absolutas entre las coordenadas de dos
puntos. Es útil cuando los datos tienen una estructura en forma de cuadrícula o cuando las relaciones entre las
variables no son lineales. Por ejemplo, se utiliza en análisis de redes o en datos geográficos.

• Distancia de Chebychev: Se calcula como la máxima diferencia absoluta entre las coordenadas de dos puntos.
Es adecuada cuando se desea priorizar la dimensión con la mayor diferencia, como en problemas donde el peor
caso es más relevante que la suma total de diferencias.

• Distancia de Minkowski: Es una generalización de las distancias euclidiana y de Manhattan, y se calcula como
la raíz 𝑝-ésima de la suma de las diferencias absolutas elevadas a la 𝑝-ésima potencia. Es útil cuando se desea
ajustar el parámetro 𝑝 para controlar la sensibilidad a las diferencias en las dimensiones. Por ejemplo, con 𝑝 = 1
se obtiene la distancia de Manhattan, y con 𝑝 = 2 se obtiene la distancia euclidiana.

La elección de la métrica de distancia depende del contexto del problema y de las características de los datos. En este
análisis, como habíamos mencionado en los objetivos, vamos a utilizar por una parte la distancia euclidiana, que es la
más comúnmente utilizada en el algoritmo K-means, y por otra parte la distancia de Minkowski, que es útil cuando
hay muchos valores atípicos.

Matemáticamente, la variación intra-clúster para un clúster 𝐶𝑘 se calcula como:

𝑊(𝐶𝑘) = 1
|𝐶𝑘| ∑

𝑖,𝑖′∈𝐶𝑘

𝑝
∑
𝑗=1

(𝑥𝑖𝑗 − 𝑥2
𝑖′𝑗)

Donde:

• |𝐶𝑘| es el número de observaciones en el clúster 𝐶𝑘.

• 𝑥𝑖𝑗 es el valor de la 𝑗-ésima variable para la 𝑖-ésima observación.

El objetivo del algoritmo es minimizar la suma total de 𝑊(𝐶𝑘) para todos los clústeres 𝐾:
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Minimizar
𝐾

∑
𝑘=1

𝑊(𝐶𝑘)

En el contexto de este análisis, usaremos K-means para agrupar tarjetas gráficas según sus especificaciones técnicas
(como memoria, velocidad de reloj, etc.) y así identificar patrones o categorías naturales.

4.3 Aplicación del método K-means

En este análisis, aplicaremos el método K-means para identificar patrones en las tarjetas gráficas basándonos en sus es-
pecificaciones técnicas. El objetivo es agrupar las tarjetas gráficas en clústeres que compartan características similares,
lo que nos permitirá identificar categorías naturales dentro de los datos.

Primero, aplicaremos el método K-means utilizando únicamente las variables numéricas. Este análisis nos permitirá
identificar patrones basados exclusivamente en las especificaciones técnicas cuantitativas de las tarjetas gráficas. A
continuación, aplicaremos el método K-means utilizando tanto las variables numéricas como las categóricas. Este
enfoque nos permitirá identificar si existen patrones adicionales al considerar las variables categóricas, como el tipo
de memoria o el fabricante, junto con las especificaciones técnicas.

Finalmente, compararemos los resultados obtenidos de ambos enfoques para evaluar si la inclusión de variables cate-
góricas mejora la identificación de patrones en las tarjetas gráficas.

4.3.1 Clustering con variables numéricas

En este apartado, aplicaremos el método K-means utilizando únicamente las variables numéricas seleccionadas. Este
análisis nos permitirá identificar patrones basados exclusivamente en las especificaciones técnicas cuantitativas de las
tarjetas gráficas.

4.3.1.1 Estandardización de los datos

Es importante estandarizar los datos antes de aplicar el método K-means, ya que este algoritmo es sensible a la escala
de las variables. La estandarización transforma los datos para que tengan una media de 0 y una desviación estándar de
1, lo que permite que todas las variables contribuyan de manera equitativa al cálculo.

Para ello, primero vamos a seleccionar las variables numéricas relevantes para el clustering. En este caso, vamos a usar
las siguientes variables:

• Memory_Size (GB)

• Memory_Bus (bits)

• Shaders, TMUs y ROPs

• Memory_clock (MHz)

• GPU_clock (MHz)
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# Seleccionar las variables numéricas relevantes para el clustering
variables_clustering <- datos %>%
select(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`)

# Escalar los datos para normalizar las variables
variables_clustering_scaled <- scale(variables_clustering)

# Verificar los datos escalados
summary(variables_clustering_scaled)

## Memory_Size (GB) Memory_Bus (bits) Shaders TMUs
## Min. :-0.43884 Min. :-0.37302 Min. :-0.56361 Min. :-0.7510
## 1st Qu.:-0.37546 1st Qu.:-0.23403 1st Qu.:-0.54072 1st Qu.:-0.6513
## Median :-0.18529 Median :-0.23403 Median :-0.34384 Median :-0.3522
## Mean : 0.00000 Mean : 0.00000 Mean : 0.00000 Mean : 0.0000
## 3rd Qu.: 0.06825 3rd Qu.:-0.04869 3rd Qu.: 0.09572 3rd Qu.: 0.2462
## Max. :15.78824 Max. :11.44203 Max. :11.89044 Max. :10.2180
## ROPs Memory_clock (MHz) GPU_clock (MHz)
## Min. :-0.8659 Min. :-1.9464 Min. :-2.02622
## 1st Qu.:-0.5693 1st Qu.:-0.7311 1st Qu.:-0.64506
## Median :-0.2728 Median :-0.1142 Median :-0.02218
## Mean : 0.0000 Mean : 0.0000 Mean : 0.00000
## 3rd Qu.: 0.3203 3rd Qu.: 0.6028 3rd Qu.: 0.53028
## Max. : 6.2508 Max. : 4.1712 Max. : 4.73063

4.3.1.2 Determinación del número óptimo de clústeres (K)

Para determinar el número óptimo de clústeres (𝐾) en el método K-means, utilizamos elmétodo del codo según (Cui
et al.), una técnica que evalúa la calidad del agrupamiento en función de la variación intra-clúster. Este método se basa
en la métrica WCSS (Within-Cluster Sum-of-Squares), que mide la suma de las distancias al cuadrado entre cada
punto y el centroide de su clúster. Cuanto menor sea el valor de WCSS, mejor será la compactación de los clústeres.

Funcionamiento del método del codo:

1. Cálculo de WCSS para diferentes valores de 𝐾: Se ejecuta el algoritmo K-means para diferentes valores de
𝐾 y se calcula el WCSS correspondiente. Inicialmente, con 𝐾 = 1, el valor de WCSS es alto, ya que todos los
puntos pertenecen a un único clúster. A medida que 𝐾 aumenta, WCSS disminuye porque los puntos están más
cerca de sus centroides.

2. Gráfica de WCSS vs. 𝐾: Se grafica el valor de WCSS en función de 𝐾. En el eje 𝑥 se representan los valores
de 𝐾, y en el eje 𝑦, los valores de WCSS.
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3. Identificación del “codo”: El “codo” de la gráfica es el punto donde la disminución de WCSS comienza a
estabilizarse. Este punto indica el número óptimo de clústeres, ya que agregar más clústeres después de este
punto no mejora significativamente la compactación.

La métrica WCSS se calcula como:

𝑊𝐶𝑆𝑆 =
𝐾

∑
𝑘=1

∑
𝑖∈𝐶𝑘

distancia(𝑃𝑖, 𝐶𝑘)2

Donde:

• 𝐶𝑘 es el centroide del clúster 𝑘.

• 𝑃𝑖 es un punto de datos en el clúster 𝑘.

• La distancia se calcula típicamente utilizando la métrica euclidiana.

En nuestro análisis, utilizaremos el método del codo para determinar el número óptimo de clústeres antes de aplicar el
algoritmo K-means.

Para graficar los resultados del método del codo y visualizar los clústeres obtenidos, utilizaremos la librería
factoextra. Esta librería proporciona herramientas para visualizar e interpretar resultados de análisis multivariado,
incluyendo métodos de clustering como K-means.

La función fviz_nbclust de factoextra permite calcular y graficar la métrica WCSS (Within-Cluster Sum-of-
Squares) para diferentes valores de 𝐾, ayudándonos a identificar el número óptimo de clústeres.
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library(factoextra)

# Calcular la variación intra-clúster para diferentes valores de K
fviz_nbclust(variables_clustering_scaled, kmeans, method = "wss") +
labs(title = "Método del Codo para Determinar K",

x = "Número de Clústeres (K)",
y = "Suma de Distancias al Cuadrado (WCSS)")
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Figura 14: Método del Codo para Determinar K

Vemos que el codo está entre k=5 y k=6. Primero vamos a probar con k=5 y luego con k=6.

4.3.1.3 Aplicación del método K-means

Vamos a aplicar el método K-means para k=5 y k=6. Para ello, vamos a usar la función kmeans de R. La función
kmeans toma como argumentos los datos, el número de clústeres (K) y el número de inicios aleatorios (nstart). El
número de inicios aleatorios se usa para evitar que el algoritmo se quede atrapado en un mínimo local.

En el manual de (Manual) se recomienda usar un valor de nstart entre 20 y 50. En este caso, vamos a usar nstart=25.
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Para graficar los clústeres obtenidos vamos a usar la función fviz_cluster de la librería factoextra, que permite
visualizar los resultados del clustering de manera intuitiva.

Esta representación gráfica muestra los clústeres obtenidos al aplicar el método K-means con ( K = 5 ). Cada punto en
el gráfico representa una tarjeta gráfica, proyectada en un espacio bidimensional utilizando componentes principales
(PCA) para reducir la dimensionalidad de los datos. Los puntos están coloreados según el clúster al que pertenecen, y
los centroides de los clústeres están marcados con un símbolo distintivo.

El gráfico permite observar cómo se agrupan las tarjetas gráficas en función de sus especificaciones técnicas. La se-
paración entre los clústeres indica qué tan distintos son entre sí, mientras que la compactación dentro de cada clúster
refleja la similitud de las tarjetas gráficas agrupadas.
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# Aplicar K-means con K=5
kmeans_result_5 <- kmeans(variables_clustering_scaled, centers = 5, nstart = 25)

# Calcular la variación intra-clúster
intra_cluster_variation_5 <- sum(kmeans_result_5$withinss)

# Graficar los clústeres obtenidos con K=5
fviz_cluster(kmeans_result_5, data = variables_clustering_scaled) +
labs(title = "Clústeres de Tarjetas Gráficas (K=5)",

x = "Componente 1",
y = "Componente 2")
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Figura 15: Clústeres de Tarjetas Gráficas (K=5)

# Mostrar la variación intra-clúster
cat("Variación intra-clúster total:", intra_cluster_variation_5, "\n")

## Variación intra-clúster total: 6157.303

Resultados:
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• La variación intra-clúster total es de 6157.302724.

• El gráfico de laFigura 15muestra la distribución de los clústeres obtenidos conK=5. Se observa que los clústeres
están bien definidos, aunque en el grupo 3, las tarjetas gráficas están muy dispersas, lo que sugiere que este grupo
puede contener tarjetas gráficas de diferentes generaciones o arquitecturas.

A continuación, aplicaremos el método K-means con K=6 para ver si obtenemos una mejor definición de los clústeres
y si la variación intra-clúster disminuye.

Se seguirán los mismos pasos que antes, pero ahora con K=6. Esto nos permitirá comparar los resultados obtenidos
con K=5 y K=6, y ver si la inclusión de un clúster adicional mejora la definición de los grupos.
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# Aplicar K-means con K=6
kmeans_result_6 <- kmeans(variables_clustering_scaled, centers = 6, nstart = 25)

# Calcular la variación intra-clúster
intra_cluster_variation_6 <- sum(kmeans_result_6$withinss)

# Mostrar la variación intra-clúster
cat("Variación intra-clúster total:", intra_cluster_variation_6, "\n")

## Variación intra-clúster total: 4842.295

# Graficar los clústeres obtenidos con K=6
fviz_cluster(kmeans_result_6, data = variables_clustering_scaled) +
labs(title = "Clústeres de Tarjetas Gráficas (K=6)",

x = "Componente 1",
y = "Componente 2")
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Figura 16: Clústeres de Tarjetas Gráficas (K=6)
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# Mostrar la variación intra-clúster
cat("Variación intra-clúster total:", intra_cluster_variation_6, "\n")

## Variación intra-clúster total: 4842.295

Resultados:

• La variación intra-clúster total es de 4842.2953772.

• El gráfico de laFigura 16muestra la distribución de los clústeres obtenidos conK=6. Se observa que los clústeres
están bien definidos, aunque aquí también hay un grupo (grupo 4) que está muy disperso, y además hay cierta
superposición entre los grupos 3 y 4.

Resultados globales

• La variación intra-clúster total es de 6157.302724 para k=5 y de 4842.2953772 para k=6, lo que indica que el
modelo con k=6 tiene menos variación interna. Esto se debe a que tenemos un grupo más.

• Ambos modelos muestran clústeres bien definidos, aunque para el modelo con k=5, el grupo 3 está más disperso,
lo mismo pasa en el grupo 4 para el modelo k=6

• Elmodelo con k=6 tiene una variación intra-clúster total menor, lo que indica que los clústeres sonmás compactos
y están mejor definidos. Pese a haber superposición entre los grupos 3 y 4, sólamente son 2 tarjetas gráficas las
que están en ambos grupos.

En un análisis posterior, veremos con más claridad si es un problema para el modelo o no.

4.3.1.4 Análisis de los grupos obtenidos en el clustering

Vamos a analizar los grupos obtenidos en el clustering para ver si podemos identificar patrones o características comu-
nes entre las tarjetas gráficas de cada grupo.

Para ello, tendremos que seguir los siguientes pasos:

1. Añadir la variable de clúster al conjunto de datos original.

2. Agrupar los datos por clúster y calcular las estadísticas descriptivas.

3. Visualizar las características de cada clúster.

4. Analizar los resultados y ver si podemos identificar patrones o características comunes entre las tarjetas gráficas
de cada grupo.

Empezamos con el análisis de los grupo obtenidos con k=6. Para ello, vamos a seguir los pasos mencionados anterior-
mente, donde mostraremos por una parte una tabla Con el resumen de las medias de cada variable por clúster y por
otra parte un gráfico de barras con las medias de cada variable por clúster para una mejor visualización.

Resumen por clúster con medias (K=6):
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library(kableExtra)
# Añadir la variable de clúster al conjunto de datos original
datos$cluster_6 <- kmeans_result_6$cluster

# Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media <- datos %>%
group_by(cluster_6) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

# Generar una tabla con kable
kable(resumen_por_cluster_media,

caption = "\\label{tab:resumen_por_cluster_media} Resumen de las medias por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 1: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 13.5392157 285.9608 4195.45098 202.117647 83.960784 1697.2549 1412.7451
2 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746
3 14.0967742 3897.8065 4347.87097 260.645161 88.645161 805.3710 1081.8226
4 64.5925926 3712.0000 11553.18519 526.518519 122.074074 1602.5556 1276.1852
5 3.9983871 221.5226 1402.52903 89.641290 31.194839 1429.2568 970.5213

6 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991
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# Gráfico de barras para las medias de cada variable por clúster
resumen_por_cluster_media %>%
pivot_longer(cols = -cluster_6, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_6), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Media de las Variables por Clúster", x = "Clúster", y = "Media") +
theme_minimal()
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Figura 17: Media de las Variables por Clúster (K=6)

Observaciones:

• El grupo 4 destaca por tener una media de Shaders bastante más alta que el resto de grupos, que podría indicar
que el número de Shaders es el principal factor que define este grupo.

• El grupo 2 es el que tiene los valores más bajos, lo que sugiere que este grupo está formado por tarjetas gráficas
de gama baja.

• Los grupos 3 y 4 tienen valores de ancho de banda más altos, lo que sugiere que estos grupos están formados
por tarjetas gráficas diseñadas para tareas que requieren un alto ancho de banda.
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Ahora vamos a analizar los grupos obtenidos con k=5. Para ello, vamos a seguir los mismos pasos que hemos seguido
para el análisis de los grupos obtenidos con k=6.

# Añadir la variable de clúster al conjunto de datos original
datos$cluster_5 <- kmeans_result_5$cluster

# Agrupar los datos por clúster y calcular la media

resumen_por_cluster_media5 <- datos %>%
group_by(cluster_5) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

# Generar una tabla con kable
kable(resumen_por_cluster_media5,

caption = "\\label{tab:resumen_por_cluster_media5} Resumen de las medias por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 2: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 1.6396161 163.2756 394.39685 32.11417 14.102362 939.9283 758.9039
2 4.4273585 223.1950 1521.00629 96.32201 34.193711 1468.6025 1013.4201
3 56.4444444 3921.7778 10115.55556 485.55556 125.333333 1449.5000 1248.6389
4 0.1772596 146.3586 13.40505 5.36919 5.337317 307.7397 328.9588
5 14.4041451 1276.1865 4747.27461 231.62694 90.943005 1417.5596 1285.3523
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# Gráfico de barras para las medias de cada variable por clúster
resumen_por_cluster_media5 %>%
pivot_longer(cols = -cluster_5, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_5), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Media de las Variables por Clúster", x = "Clúster", y = "Media") +
theme_minimal()
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Figura 18: Media de las Variables por Clúster (K=5)

Observaciones:

• Aquí sí que encontramos un grupo (grupo3) cuya característica principal es el ancho de banda alto. También es
el que más número de Shaders tiene, aunque esto podría deberse a ciertos valores muy altos que suben la media.
Por eso más adelante vamos a ver la varianza de cada grupo. Este grupo podría estar formado en gran parte por
las tarjetas gráficas de tipo HBM, que como habíamos mencionado anteriormente, están diseñadas para ofrecer
un mayor ancho de banda.

Para confirmar si realmente el grupo 3 está formado por tarjetas gráficas de tipo HBM, vamos a mostrar el número de
tarjetas gráficas de tipo HBM, HBM2 y HBM2e que hay en cada grupo.
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# Contar el número de tarjetas gráficas de tipo HBM, HBM2 y HBM2e en cada grupo
conteo_hbm <- datos %>%
group_by(cluster_5, Memory_Type) %>%
summarise(n = n(), .groups = 'drop') %>%
filter(Memory_Type %in% c("HBM", "HBM2", "HBM2e", "HBM3"))

# Hacer una tabla con kable
kable(conteo_hbm,

caption = "\\label{tab:conteo_hbm} Número de tarjetas gráficas de tipo HBM, HBM2,
HBM2e y HBM3 por clúster",

col.names = c("Clúster", "Tipo de Memoria", "Número de Tarjetas Gráficas"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 3: Número de tarjetas gráficas de tipo HBM, HBM2, HBM2e y HBM3 por clúster

Clúster Tipo de Memoria Número de Tarjetas Gráficas

1 HBM2 3
2 HBM2 2
3 HBM2 7
3 HBM2e 15
3 HBM3 4

5 HBM 23
5 HBM2 24
5 HBM2e 7

La mayoría de las tarjetas gráficas de tipo HBM se clasifican en los grupo 3 y 5, aunque de entre las HBM, las más
potentes (HBM2e y HBM3) se agrupan en su mayoría en el grupo 3, lo que explicaría el alto ancho de banda de este
grupo. El grupo 5 presentaba el segundo mayor número de ancho de banda.

Vamos a ver la varianza de cada grupo con k=5.

# Agrupar los datos por clúster y calcular la varianza

resumen_por_cluster_varianza5 <- datos %>%
group_by(cluster_5) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), var,
.names = "var_{.col}"))

# Generar una tabla con kable

kable(resumen_por_cluster_varianza5,
caption = "\\label{tab:resumen_por_cluster_varianza5} Resumen de las varianzas por clúster",
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col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 4: Resumen de las varianzas por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 1.5249875 11755.98 70559.348 337.40933 57.41111 26168.18 28147.59
2 7.9321378 10737.16 454439.611 1745.46797 205.72062 56619.84 84275.02
3 910.4253968 6036008.63 25948029.968 21821.51111 4651.88571 157241.34 190159.44
4 0.0387919 36646.34 1452.154 34.91139 21.02170 25738.94 25201.28
5 63.2837327 2544950.72 4290858.888 2670.19344 518.96028 268289.30 178457.64
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# Gráfico de barras para las varianzas de cada variable por clúster
resumen_por_cluster_varianza5 %>%
pivot_longer(cols = -cluster_5, names_to = "Variable", values_to = "Varianza") %>%
ggplot(aes(x = factor(cluster_5), y = Varianza, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Varianza de las Variables por Clúster", x = "Clúster", y = "Varianza") +
theme_minimal()
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Figura 19: Varianza de las Variables por Clúster (K=5)

Observaciones:

• En el grupo 3 vemos una varianza muy alta en el número de Shaders, lo que sugiere que este grupo está formado
por tarjetas gráficas de diferentes generaciones o arquitecturas. Esto podría ser un indicativo de que el grupo 3
está formado por tarjetas gráficas de gama alta, pero con diferentes arquitecturas. El ancho de banda también
tiene una varianza elevada, lo que podría explicarse por la presencia de tarjetas gráficas de tipo HBM, que como
hemos mencionado anteriormente, están diseñadas para ofrecer un mayor ancho de banda.

• Los grupos 1, 2 y 4 tienen una varianza baja en todas las variables, lo que sugiere que estos grupos están muy
homogéneos y que las tarjetas gráficas de estos grupos tienen características similares.
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Conclusiones:

• Pese a que el modelo con k=6 tiene una variación intra-clúster total menor, para nuestro análisis nos interesa más
tener las tarjetas gráficas con la tecnología HBM juntas, por lo que el modelo con k=5 es más adecuado para
nuestro análisis.

No obstante, vamos a ver si con el modelo conjunto de variables numéricas y categóricas obtenemos un mejor
resultado.

Vamos a guardar los resultados obtenidos en una variable para poder compararlos con los resultados obtenidos con el
modelo conjunto de variables numéricas y categóricas.

# Crear un vector de conclusiones
conclusiones_k5 <- c(
"El grupo 3 se caracteriza por tener un ancho de banda alto,",
"lo que podría indicar que está formado por tarjetas gráficas de tipo HBM.",
"Los grupos 1, 2 y 4 tienen una varianza baja en todas las variables,",
"lo que sugiere que estos grupos están muy homogéneos y bien definidos."

)
# Crear un data frame resumen para el modelo k=5
tabla_resultados_kmeans_5 <- data.frame(
Modelo = "Solo numéricas",
Numero_Clusters = length(unique(kmeans_result_5$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_5,
Conclusiones = paste(conclusiones_k5, collapse = " ")

)

4.3.2 Clustering con variables numéricas y categóricas

En este apartado, incluiermos algunas variables categóricas al método k-means, para así poder comparar los resultados
obtenidos con el modelo anterior y ver si, al incluir variables categóricas, obtenemos un mejor resultado.

En la base de datos tenemos las siguientes variables categóricas:

• GPU_Chip: Chip de la GPU.

• Bus: Tipo de bus.

• Memory_Type: Tipo de memoria.

• Released: Fecha de lanzamiento.

De estas variables nos interesa sólamente usar la variable “Memory_Type”, ya que es la que más puede influir en el
rendimiento de la tarjeta gráfica. La variable “GPU_Chip” no nos interesa porque, como se ha podido observar en el
apartado 2.1, tenemos 335 tipos de chip diferentes, lo que nos generaría un número muy elevado de variables dummy.
La variable “Bus” tampoco nos interesa porque no tiene un impacto significativo en el rendimiento de la tarjeta gráfica,
pues la mayoría de las tarjetas gráficas utilizan el bus PCIe.
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4.3.2.1 Preparación de los datos

Para incluir variables categóricas en el método K-means, es necesario convertirlas en variables dummy. Esto se logra
utilizando la función dummy_cols de la librería fastDummies, que crea variables dummy para las variables categó-
ricas seleccionadas. Las variables dummy son variables binarias que indican la presencia o ausencia de una categoría
específica.

Después de crear las variables dummy, combinaremos las variables numéricas y categóricas en un solo conjunto de
datos. Esto nos permitirá aplicar el método K-means a un conjunto de datos que incluye tanto variables numéricas
como categóricas. Finalmente, escalaremos los datos para normalizar las variables para que todas tengan la misma
importancia en el análisis.

library(fastDummies)

# Transformar la vaiable memory_type a factor
datos_transform <- datos %>%
mutate(Memory_Type = as.factor(Memory_Type))

# Crear variables dummy para las variables categóricas seleccionadas
datos_dummy <- datos_transform %>%
dummy_cols(select_columns = c("Memory_Type"), remove_first_dummy = TRUE)

# Combinar numéricas y categóricas
datos_combinados <- datos_transform %>%
select(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`) %>%
cbind(datos_dummy %>% select(starts_with("Memory_Type_")))

# Escalar los datos para normalizar las variables

datos_combinados_scaled <- scale(datos_combinados)

# Ver cuántas variables nuevas se han creado al hacer dummies

nvariables <- ncol(datos_combinados)

nvariables

## [1] 32

Después de crear las variables dummy, vemos que el número total de variables ha ascendido a 32 variables.

Tantas variables podrían hacer que el algoritmo K-means no funcione correctamente, por lo que vamos a aplicar el
método PCA para reducir la dimensionalidad de los datos.
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4.3.2.2 Fundamento teórico del análisis de componentes principales (PCA)

(Manual) explica que el PCA es un método no supervisado que se utiliza para resumir un conjunto grande de varia-
bles correlacionadas mediante un número menor de variables representativas llamadas componentes principales. Estas
componentes son direcciones en el espacio de características a lo largo de las cuales los datos originales presentan
una alta variabilidad, y definen líneas y subespacios que están lo más cerca posible del conjunto de datos. PCA se usa
tanto para producir variables derivadas que pueden emplearse en modelos de aprendizaje supervisado como para la
visualización de datos o para la imputación de valores faltantes en una matriz de datos.

¿Cómo funciona PCA?

El PCA encuentra una representación de los datos en un espacio de menor dimensión, donde cada dimensión es una
combinación lineal de las variables originales.

Imaginemos que tenemos un conjunto de datos con 𝑝 variables originales 𝑋1, 𝑋2, … , 𝑋𝑝.

La primera componente se calcula como:

𝑍1 = 𝜙11𝑋1 + 𝜙21𝑋2 + ⋯ + 𝜙𝑝1𝑋𝑝

donde los coeficientes 𝜙𝑖𝑗 se denominan cargas, y cumplen la condición:

𝑝
∑
𝑗=1

𝜙2
𝑗1 = 1

PCA tiene como objetivomaximizar la varianza de la nueva variable𝑍1, es decir, encontrar la dirección en el espacio
de los datos a lo largo de la cual las observaciones presentan la mayor variabilidad posible. Esto se hace resolviendo
un problema de optimización bajo la restricción mencionada anteriormente.

El conjunto de valores 𝑧𝑖1 obtenidos para cada observación se denominan scores del primer componente.

Una vez determinado el primer componente principal 𝑍1, se puede calcular el segundo componente principal 𝑍2.
Este es otra combinación lineal de las variables originales 𝑋1, ..., 𝑋𝑝, pero con dos condiciones:

1. Debe tener la máxima varianza posible, igual que 𝑍1.
2. Debe ser no correlacionado con 𝑍1, lo cual equivale a que su vector de cargas 𝜙2 sea ortogonal al vector de

cargas del primer componente, 𝜙1.

La forma general del segundo componente es:

𝑧𝑖2 = 𝜙12𝑥𝑖1 + 𝜙22𝑥𝑖2 + ⋯ + 𝜙𝑝2𝑥𝑖𝑝

donde 𝜙2 = (𝜙12, 𝜙22, ..., 𝜙𝑝2) es el vector de cargas del segundo componente principal, y cumple:

• ∑𝑝
𝑗=1 𝜙2

𝑗2 = 1 (normalización), y
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• 𝜙2 ⟂ 𝜙1 (ortogonalidad).

Este proceso se repite para obtener más componentes principales𝑍3, 𝑍4, ..., 𝑍𝑀 (con𝑀 ≤ 𝑝), cada uno maximizando
la varianza restante y siendo ortogonal a los anteriores.

4.3.2.3 Aplicación del PCA

Vamos a aplicar el PCA a los datos combinados. Para ello, vamos a usar la función PCA de la librería FactoMineR,
que permite realizar un análisis de componentes principales de manera sencilla.

La función PCA toma como argumentos los datos, el número de componentes principales a calcular y el gráfico a
generar. En este caso, vamos a calcular todos los componentes principales y no vamos a generar gráficos. Con esta
función, podemos obtener fácilmente la varianza explicada por cada componente principal con la función eig, que
devuelve un data frame con la varianza explicada por cada componente principal.

library(FactoMineR)
# Realizar PCA
pca_result <- PCA(datos_combinados_scaled, graph = FALSE)

# Ver la varianza explicada por cada componente principal

pca_var <- pca_result$eig
pca_var

## eigenvalue percentage of variance cumulative percentage of variance
## comp 1 5.32700624 16.64689451 16.64689
## comp 2 2.24726968 7.02271776 23.66961
## comp 3 1.39849281 4.37029004 28.03990
## comp 4 1.23319452 3.85373288 31.89364
## comp 5 1.18271645 3.69598891 35.58962
## comp 6 1.15939412 3.62310661 39.21273
## comp 7 1.07048094 3.34525292 42.55798
## comp 8 1.04989121 3.28091002 45.83889
## comp 9 1.03425554 3.23204857 49.07094
## comp 10 1.01924387 3.18513710 52.25608
## comp 11 1.01143834 3.16074480 55.41682
## comp 12 1.01124085 3.16012766 58.57695
## comp 13 1.01015492 3.15673413 61.73369
## comp 14 1.00439888 3.13874650 64.87243
## comp 15 1.00288571 3.13401784 68.00645
## comp 16 1.00259693 3.13311540 71.13957
## comp 17 1.00245519 3.13267245 74.27224
## comp 18 1.00202792 3.13133724 77.40358
## comp 19 1.00132527 3.12914147 80.53272
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## comp 20 1.00106724 3.12833513 83.66105
## comp 21 1.00078643 3.12745760 86.78851
## comp 22 1.00048747 3.12652336 89.91503
## comp 23 1.00040438 3.12626368 93.04130
## comp 24 1.00032843 3.12602634 96.16732
## comp 25 0.39834403 1.24482510 97.41215
## comp 26 0.35610868 1.11283961 98.52499
## comp 27 0.18335509 0.57298465 99.09797
## comp 28 0.10156016 0.31737552 99.41535
## comp 29 0.07146214 0.22331919 99.63867
## comp 30 0.04620136 0.14437924 99.78305
## comp 31 0.04385966 0.13706145 99.92011
## comp 32 0.02556555 0.07989233 100.00000

Vemos que con 19 componentes principales explicamos el 80% de la varianza total. Como queremos obtener el menor
número de componentes principales que expliquen el 80% de la varianza total, vamos a intentar agrupar los tipos de
memoria menos comunes en una sola categoría llamada “Otros”.

4.3.2.4 Agrupación de tipos de memoria y aplicación del PCA

Como habíamos hecho en el apartado 2.4.2, vamos a filtrar los tipos de memoria, pero esta vez vamos a filtrar los
menos comunes. Luego vamos a agrupas estas tarjetas gráficas en una sola categoría llamada “Otros”. Vamos a llamarla
datos2 para diferenciarla con la base de datos original.

Además, vamos a agrupar HBM, HBM2, HBM2e y HBM3 en una sola categoría llamada “HBM”

# Crear una copia de los datos originales para trabajar con ella
datos2 <- datos

# Filtrar los tipos de memoria menos comunes
tipos_memoria_no_comunes <- datos2 %>%
count(Memory_Type, sort = TRUE) %>%
filter(n < 15) %>%
pull(Memory_Type)

# Agrupar los tipos de memoria menos comunes en una sola categoría llamada "Otros"

datos2$Memory_Type <- ifelse(datos2$Memory_Type %in% tipos_memoria_no_comunes, "Otros",
datos2$Memory_Type)

# Agrupar HBM, HBM2 y HBM2e en una sola categoría llamada "HBM"

datos2$Memory_Type <- ifelse(datos2$Memory_Type %in% c("HBM", "HBM2", "HBM2e", "HBM3"), "HBM",
datos2$Memory_Type)
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Ahora que hemos agrupado los tipos de memoria menos comunes, vamos a volver a crear las variables dummy y aplicar
el PCA.

# Transformar la variable memory_type a factor
datos2$Memory_Type <- as.factor(datos2$Memory_Type)

# Crear variables dummy para las variables categóricas seleccionadas
datos_dummy2 <- datos2 %>%
dummy_cols(select_columns = c("Memory_Type"), remove_first_dummy = TRUE)

# Combinar numéricas y categóricas
datos_combinados2 <- datos2 %>%
select(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`) %>%
cbind(datos_dummy2 %>% select(starts_with("Memory_Type_")))

# Escalar los datos para normalizar las variables

datos_combinados_scaled2 <- scale(datos_combinados2)

# Ver cuántas variables nuevas se han creado al hacer dummies
nvariables2 <- ncol(datos_combinados_scaled2)
nvariables2

## [1] 19

Ahora que hemos agrupado los tipos de memoria menos comunes, el número total de variables ha descendido a 19
variables.

Vamos a aplicar de nuevo el PCA con la nueva base de datos reducida para ver cuántos componentes principales
necesitamos para poder realizar el clustering.

# Realizar PCA
pca_result2 <- PCA(datos_combinados_scaled2, graph = FALSE)

# Ver la varianza explicada por cada componente principal

pca_var2 <- pca_result2$eig
pca_var2

## eigenvalue percentage of variance cumulative percentage of variance
## comp 1 5.23247717 27.5393535 27.53935
## comp 2 2.20352143 11.5974812 39.13683
## comp 3 1.38728320 7.3014905 46.43833
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## comp 4 1.22149152 6.4289027 52.86723
## comp 5 1.16513867 6.1323088 58.99954
## comp 6 1.06365013 5.5981586 64.59770
## comp 7 1.05243183 5.5391149 70.13681
## comp 8 1.03011566 5.4216614 75.55847
## comp 9 1.02250842 5.3816233 80.94009
## comp 10 1.01130568 5.3226615 86.26276
## comp 11 1.00887570 5.3098721 91.57263
## comp 12 0.51775051 2.7250027 94.29763
## comp 13 0.41195491 2.1681837 96.46581
## comp 14 0.30355378 1.5976515 98.06347
## comp 15 0.11690998 0.6153157 98.67878
## comp 16 0.09556421 0.5029695 99.18175
## comp 17 0.07010610 0.3689795 99.55073
## comp 18 0.04938565 0.2599245 99.81066
## comp 19 0.03597546 0.1893445 100.00000

Aquí vemos que con 9 componentes principales explicamos el 80% de la varianza total, pero nos interesa más tener el
menor número posible de componentes principales, por lo que vamos a quedarnos con 8 componentes principales, que
explican el 75% de la varianza total.

4.3.2.5 Método del codo con PCA

Vamos a aplicar el método del codo con 8 componentes principales para determinar el número óptimo de clústeres
(𝐾). Para ello, vamos a aplicar de nuevo la función PCA, donde podremos seleccionar 8 componentes principales
introduciendo el argumento ncp = 9 seguido de $𝑖𝑛𝑑coord, que nos devolverá las coordenadas de los individuos en
el espacio de las componentes principales. Con estas coordenadas, vamos a aplicar el método del codo para determinar
el número óptimo de clústeres (𝐾).
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# Seleccionar las primeras 9 componentes principales
pca_data <- PCA(datos_combinados_scaled2, ncp = 8, graph = FALSE)$ind$coord

# Hacer el método del codo

fviz_nbclust(pca_data, kmeans, method = "wss") +
labs(title = "Método del Codo para Determinar K",

x = "Número de Clústeres (K)",
y = "Suma de Distancias al Cuadrado (WCSS)")
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Figura 20: Método del Codo para Determinar K con PCA

Vemos un ligero codo en k=8, por lo que vamos a aplicar el método k-means con k=8.

4.3.2.6 Aplicación del método K-means con PCA

En este apartado, vamos a aplicar el método k-means con k=8. Para ello, similar a lo que hicimos en el apartado
3.3.1.3, vamos a usar la función kmeans de R.

Esta vez vamos a usar el argumento centers = 8 para indicar que queremos 8 clústeres. También vamos a usar el
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argumento nstart = 25 para evitar que el algoritmo se quede atrapado en un mínimo local. Luego vamos a calcular
la variación intra-clúster total y graficar los clústeres obtenidos. Para ello, vamos a usar la función fviz_cluster de
la librería factoextra, que permite visualizar los resultados del clustering de manera intuitiva.

# Aplicar K-means con K=8
kmeans_result_8 <- kmeans(pca_data, centers = 8, nstart = 25)

# Calcular la variación intra-clúster
intra_cluster_variation_8 <- sum(kmeans_result_8$withinss)
intra_cluster_variation_8

## [1] 9501.153
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# Graficar los clústeres obtenidos con K=8
fviz_cluster(kmeans_result_8, data = pca_data) +
labs(title = "Clústeres de Tarjetas Gráficas (K=8)",

x = "Componente 1",
y = "Componente 2")
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Figura 21: Clústeres de Tarjetas Gráficas (K=8)

Resultados:

• La variación intra-clúster total es de 9501.1530549.

• El gráfico de la Figura 21muestra la distribución de los clústeres obtenidos con K=8. Se observa que los grupos
1 y 2 tienen cierta superposición, igual que los grupos 3 y 6.

• Los grupos 7 y 8 son los que mejor definidos están, pues muestran muy poca variación interna y están bien
separados entre sí.

• El grupo 5 es el que más disperso está, lo que sugiere que este grupo puede contener tarjetas gráficas de diferentes
generaciones o arquitecturas.
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4.3.2.7 Análisis de los grupos obtenidos en el clustering

Vamos a analizar los grupos obtenidos en el clustering para ver si podemos identificar patrones o características comu-
nes entre las tarjetas gráficas de cada grupo.

Para ello, primero calcularemos la media y la varianza de cada variable por clúster. Para facilitar la visualización de
los resultados, generaremos tablas con kable para mostrar las medias y varianzas de cada variable por clúster.

Resumen por clúster con medias:

# Añadir la variable de clúster al conjunto de datos original
datos2$cluster_8 <- kmeans_result_8$cluster

# Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media8 <- datos2 %>%
group_by(cluster_8) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

# Generar una tabla con kable
kable(resumen_por_cluster_media8,

caption = "\\label{tab:resumen_por_cluster_media8} Resumen de las medias por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 5: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 27.9250000 4249.60000 5185.600000 315.5000000 89.100000 944.7125 1075.6625
2 1.4474910 364.30769 237.538462 11.5128205 7.282051 387.6154 279.2051
3 0.0196149 91.07692 1.615385 0.9807692 1.634615 114.2500 109.8269
4 0.4341728 194.48471 95.876471 16.8858824 10.109412 558.4812 462.8282
5 11.9962406 221.23308 4032.962406 174.0150376 72.541353 1666.2632 1397.7932

6 3.3391608 209.87413 1111.342657 75.1923077 26.870629 1274.4231 890.5140
7 0.3263393 105.60000 37.307143 7.2428571 5.085714 403.4786 496.8071
8 1.9559257 93.88679 342.971698 23.8726415 10.033019 905.2099 821.5212

Resumen por varianzas de cada grupo:

# Agrupar los datos por clúster y calcular la varianza
resumen_por_cluster_varianza8 <- datos2 %>%
group_by(cluster_8) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), var,
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.names = "var_{.col}"))
# Generar una tabla con kable
kable(resumen_por_cluster_varianza8,

caption = "\\label{tab:resumen_por_cluster_varianza8} Resumen de las varianzas por clúster",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 6: Resumen de las varianzas por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 976.8550633 1356512.243 5.271498e+06 20086.025316 2023.2810127 147042.840 26835.543
2 12.7982443 576167.903 9.809682e+05 1022.887989 190.4183536 370341.559 216202.115
3 0.0003874 1605.975 6.467513e-01 3.397685 0.8166542 3493.451 3974.824
4 0.2792182 11811.430 2.631748e+04 361.302627 51.6122788 82301.089 28289.146
5 88.7358349 11264.044 1.247734e+07 12335.728075 1390.8001702 108285.221 216185.667

6 7.5704555 11775.620 4.438798e+05 2127.039101 257.2010964 74074.159 30369.897
7 0.0505883 3163.350 4.568315e+03 54.242754 10.4961973 11348.194 12172.013
8 1.5803612 1757.869 2.924894e+04 102.120857 19.8097819 10845.258 28051.253

Observaciones:

• El grupo 1 tiene con diferencia la media más alta de ancho de bus, lo que podría sugerir que está formado
principalmente por tarjetas gráficas de memoria HBM. También tiene la media más alta de memoria, que indica
que este grupo también está formado por tarjetas gráficas de gama alta a parte de las tarjetas gráficas conmemoria
HBM.

• El grupo 2 no destaca en ninguna variable, lo que podría sugerir que estaría formado por tarjetas con el tipo de
memoria Otros o por tarjetas de gama media.

• El grupo 3 tiene la media y varianza más baja en la mayoría de las variables, lo que sugiere que este grupo está
formado por tarjetas gráficas de gama baja.

• Aún con estas tablas, no podemos concluir por qué hay cierta superposición entre los grupos 1 y 2, y entre los
grupos 3 y 6. Para ello, vamos a ver si podemos encontrar alguna relación entre los grupos obtenidos y el tipo
de memoria de las tarjetas gráficas.

Vamos a ver si podemos encontrar alguna relación entre los grupos obtenidos y el tipo de memoria de las tarjetas
gráficas. Para ello, vamos a contar el número de tarjetas gráficas por tipo de memoria en cada clúster y también el
número total de tarjetas gráficas por tipo de memoria en la base de datos. Esto nos permitirá ver si hay algún tipo de
memoria que esté más presente en un clúster que en otro.

# Combinar las tablas de resumen por clúster y resumen total
resumen_comparacion <- resumen_por_cluster_memoria %>%
left_join(resumen_total_memoria, by = "Memory_Type", suffix = c("_cluster", "_total")) %>%
mutate(porcentaje_cluster = n_cluster / n_total * 100)
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# Generar una tabla con kable
tabla_comparacion <- kable(resumen_comparacion,

caption = "\\label{tab:comparacion_memoria} Comparación del número de tarjetas gráficas por tipo de memoria",
col.names = c("Clúster", "Tipo de Memoria", "Número en Clúster",
"Número Total", "Porcentaje en Clúster"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

tabla_comparacion

Tabla 7: Comparación del número de tarjetas gráficas por tipo de memoria

Clúster Tipo de Memoria Número en Clúster Número Total Porcentaje en Clúster

1 HBM 76 81 93.8271605
1 Otros 4 45 8.8888889
2 Otros 39 45 86.6666667
3 SDR 87 87 100.0000000
3 DRAM 17 17 100.0000000

4 GDDR3 508 508 100.0000000
4 DDR 314 314 100.0000000
4 GDDR4 25 25 100.0000000
4 GDDR6 2 211 0.9478673
4 HBM 1 81 1.2345679

5 GDDR6 209 211 99.0521327
5 GDDR5X 30 30 100.0000000
5 GDDR6X 20 20 100.0000000
5 GDDR5 5 1145 0.4366812
5 Otros 2 45 4.4444444

6 GDDR5 1140 1145 99.5633188
6 HBM 4 81 4.9382716
7 DDR2 140 140 100.0000000
8 DDR3 424 424 100.0000000

Observaciones:

• El grupo 1 está formado principalmente por las tarjetas gráficas con memoria HBM, lo que quiere decir que este
grupo debería tener un ancho de bus más alto que el resto de grupos. Esto se puede ver en la Tabla 1 de resumen
de medias, donde el grupo 1 tiene la media más alta de ancho de bus.

• El grupo 2 está formado principalmente por las tarjetas gráficas con “Otros” tipos de memoria, lo que podría
explicar la superposición con el grupo 1, ya que este grupo tiene una media de ancho de bus más baja que el
grupo 1, pero ligeramente más alta que el resto de grupos. Además, el tipo de memoria Otros sólamente está
presente en estos dos grupos.

• El grupo 3 está predominado por las tarjetas gráficas con memoria SDR y DRAM, lo que podría sugerir que estas
dos arquitecturas son muy similares entre sí. Como habíamos visto en la Tabla 1, el grupo 3 tiene las medias
más bajas en todas las variables, lo que seguramente se podría deber a que estas tecnologías son más antiguas.
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• El grupo 4 está formado por 5 tipos de memoria diferentes, siendo la mayoría GDDR3, DDR y GDDR6, donde
la totalidad de estos tipos de memoria están en este grupo. En la Tabla 1 vemos que el grupo 4 no tiene ninguna
variable que destaque sobre el resto, esto quiere decir que este grupo está formado por tarjetas gráficas de gama
media-baja.

• El grupo 5 está formado por básicamente todas las tarjetas gráficas conmemoria GDDR6, GDDR5X yGDDR6X,
que son memorias de gama alta, lo que se puede observar también en la Tabla 1, donde el grupo 5 presenta las
medias más altas, sólamente superadas por el grupo 1, aunque en reloj de memoria y reloj de GPU, el grupo 5
tiene las medias más altas. Esto tiene sentido, ya que, como habíamos mencionado anteriormente, las tarjetas
gráficas con memoria HBM están especializadas en tareas que requieren un alto ancho de banda, mientras que las
tarjetas gráficas con memoria GDDR6, GDDR5X y GDDR6X están diseñadas para ofrecer un alto rendimiento
en juegos y aplicaciones gráficas.

• El grupo 6 está formado mayoritariamente por tarjetas gráficas con memoria GDDR5, que es una memoria de
gama media-alta.

• Los grupos 7 y 8 están formados únicamente por una memoria cada uno, siendo la memoria DDR2 y DDR3
respectivamente, donde ambos tienen el 100% de las tarjetas gráficas con ese tipo de memoria. Esto podría
explicar por qué estos grupos están tan bien definidos, ya que al ser un único tipo de memoria, no hay variación
interna entre las tarjetas gráficas de estos grupos.

Guardamos los resultados obtenidos en una variable para poder compararlos con los resultados obtenidos con el modelo
conjunto de variables numéricas y categóricas.

# Crear un vector de conclusiones
conclusiones_k8 <- c(
"Se tuvo que hacer un PCA para reducir la dimensionalidad de los datos.",
"Después de aplicar el PCA y realizar el clustering,",
"se observó que los grupos 1 y 2 tienen cierta superposición,",
"igual que los grupos 3 y 6.",
"Había un par de grupos bien definidos y otros que estaban más dispersos.",
"Luego se concluyó que los grupos estaban principalmente definidos",
"por el tipo de memoria de las tarjetas gráficas."

)
# Crear un data frame resumen para el modelo k=5
tabla_resultados_kmeans_8 <- data.frame(
Modelo = "Numéricas y categóricas",
Numero_Clusters = length(unique(kmeans_result_8$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_8,
Conclusiones = paste(conclusiones_k8, collapse = " ")

)

4.3.3 Comparación de los dos modelos

En este apartado, vamos a comparar los resultados obtenidos con el modelo de sólo variables numéricas y el modelo de
variables numéricas y categóricas. Para ello, vamos a crear una tabla con los resultados obtenidos en ambos modelos,
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donde incluiremos el número de clústeres, la variación intra-clúster total y las conclusiones obtenidas en cada modelo.

# Unimos los resultados de ambos modelos en una sola tabla
tabla_resultados_kmeans <- rbind(tabla_resultados_kmeans_5, tabla_resultados_kmeans_8)

# Generar una tabla con kable
kable(tabla_resultados_kmeans,

caption = "\\label{tab:comparacion_modelos} Comparación de los resultados de los modelos K-means",
col.names = c("Modelo", "Número de Clústeres",
"Variación Intra-Cluster", "Conclusiones"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position")) %>%
column_spec(4, width = "8cm")

Tabla 8: Comparación de los resultados de los modelos K-means

Modelo Número de Clústeres Variación Intra-Cluster Conclusiones

Solo numéricas 5 6157.303 El grupo 3 se caracteriza por tener un ancho de banda
alto, lo que podría indicar que está formado por tarjetas
gráficas de tipo HBM. Los grupos 1, 2 y 4 tienen una
varianza baja en todas las variables, lo que sugiere que
estos grupos están muy homogéneos y bien definidos.

Numéricas y categóricas 8 9501.153 Se tuvo que hacer un PCA para reducir la
dimensionalidad de los datos. Después de aplicar el PCA
y realizar el clustering, se observó que los grupos 1 y 2
tienen cierta superposición, igual que los grupos 3 y 6.
Había un par de grupos bien definidos y otros que
estaban más dispersos. Luego se concluyó que los
grupos estaban principalmente definidos por el tipo de
memoria de las tarjetas gráficas.

Frente a los resultados obtenidos, el modelo con sólo variables numéricas resulta ser más sencillo de interpretar, con
una variación intra-clúster total más baja, grupos mejor definidos y menos dispersos. Además, este modelo tiene en
cuenta más las especificaciones técnicas de las tarjetas gráficas que el modelo con el tipo de memoria, donde este
clasificaba las tarjetas gráficas principalmente por el tipo de memoria.

4.4 Implementación manual del algoritmo K-means

En este apartado, vamos a implementar el algoritmo k-means de manera manual, lo que nos permitirá utilizar distintas
medidas de distancia y analizar si los grupos resultantes difieren en función de la métrica empleada.

En el análisis anterior, hemos utilizado la función kmeans de R, que implementa el algoritmo k-means clásico utilizando
la distancia euclidiana como medida de proximidad entre observaciones y centroides. Sin embargo, como se mencionó
en el apartado 3.2.1, existen otras medidas de distancia que pueden ser útiles en función de la naturaleza de los datos
y de los objetivos del análisis, como la distancia de Manhattan, la distancia de Chebyshev o la distancia
de Minkowski. Esta última es especialmente interesante, ya que generaliza tanto la distancia euclidiana (cuando ( p
= 2 )) como la de Manhattan (cuando ( p = 1 )), permitiendo ajustar el parámetro ( p ) para controlar la sensibilidad a
valores extremos.
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En nuestro caso, el análisis exploratorio ha mostrado la presencia de valores atípicos, especialmente en las tarjetas
gráficas más modernas (apartado 2.3.3). En estos escenarios, la distancia euclidiana puede verse muy influida por
estos valores extremos, lo que podría afectar a la formación de los clústeres. Por el contrario, la distancia de Manhattan
y, en general, la distancia de Minkowski con ( p < 2 ), son menos sensibles a los valores atípicos, lo que podría dar
lugar a agrupamientos más robustos.

Por lo tanto, la estrategia será la siguiente:

1. Implementaremos el algoritmo k-means manualmente utilizando la distancia euclidiana. Esto nos permitirá com-
parar directamente los resultados con los obtenidos previamente mediante la función kmeans de R y validar que
la implementación es correcta.

2. Aplicaremos el algoritmo utilizando la distancia de Minkowski, ajustando el parámetro ( p ) para explorar si se
obtienen agrupamientos diferentes o incluso mejores, especialmente en presencia de valores atípicos. De este
modo, podremos evaluar si la elección de la métrica de distancia influye en la calidad y la interpretación de los
clústeres obtenidos.

4.4.1 Repaso teórico del algoritmo K-means

En el apartado 3.2.1 se ha explicado el algoritmo k-means, pero aquí vamos a profundizar un poco más en su expresión
matemática y los pasos que sigue el algoritmo.

Como bien habíamos mencionado, el algoritmo k-means, para minimizar la suma total de distancias al cuadrado entre
los puntos y los centroides sigue los siguientes pasos:

1. Inicialización: Se seleccionan aleatoriamente ( k ) puntos del conjunto de datos como centroides iniciales.

Matemáticamente, esto se puede expresar como:

𝐶1, 𝐶2, … , 𝐶𝑘 ∈ ℝ𝑝

donde 𝐶𝑖 es el i-ésimo centroide y 𝑝 es el número de variables.

Esto en R, podemos hacerlo con la función sample, que selecciona aleatoriamente ( k ) puntos del conjunto de datos.
En este caso, sólo queremos las variables numéricas.

# Centroides iniciales aleatorios de las variables numéricas
centroides_iniciales <- datos_num[sample(1:nrow(datos_num), k), ]

2. Encontrar la distancia entre cada punto y cada centroide.

Primero tendremos que inicializar una matriz para las distancias, donde cada fila representa un punto y cada columna
representa un centroide.
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# Inicializar una matriz para las distancias
distancias <- matrix(0, nrow = nrow(datos_num), ncol = k)

Una vez tenemos la matriz de distancias, tendremos que, en cada iteración, calcular la distancia de cada punto a cada
centroide. En nuestro caso, como habíamos mencionado, vamos a usar la distancia euclidiana y la distancia de Min-
kowski. Para diferenciar si estamos usando la distancia euclidiana o la de Minkowski, vamos a usar un argumento
method que nos permita elegir entre ambas, y luego en el bucle for que calcula las distancias, vamos a usar un if
para elegir la distancia a calcular.

• Fórmula para la distancia euclidiana:

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥𝑖, 𝐶𝑗) =
√√√
⎷

𝑝
∑
𝑙=1

(𝑥𝑖𝑙 − 𝐶𝑗𝑙)2

• Fórmula para la distancia de Minkowski:

𝑑𝑚𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖(𝑥𝑖, 𝐶𝑗) = (
𝑝

∑
𝑙=1

|𝑥𝑖𝑙 − 𝐶𝑗𝑙|𝑝)
1
𝑝

La única diferencia entre ambas fórmulas es la potencia a la que elevamos las diferencias entre los puntos y los centroi-
des. En el caso de la distancia euclidiana, elevamos al cuadrado, y en el caso de Minkowski, elevamos a ( p ), donde el
valor de ( p ) lo elegimos nosotros. En este caso, vamos a usar el valor de ( p = 1.5 ), que es un valor intermedio entre
la distancia euclidiana y la de Manhattan.

for (iter in 1:max_iter) {
# Calcular las distancias euclidianas
if (method == "euclidean") {
for (j in 1:k) {
distancias[, j] <- sqrt(rowSums((as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j, ]),
nrow(datos_num)),
ncol = p, byrow = TRUE))^2))

}
# Calcular las distancias de Minkowski
} else if (method == "minkowski") {
for (j in 1:k) {
distancias[, j] <- (rowSums(abs(as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j, ]),
nrow(datos_num)),
ncol = p,
byrow = TRUE))^p_minkowski))^(1/p_minkowski)
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}
}
}

3. Asignar cada punto al clúster correspondiente al centroide más cercano. Esto se puede hacer utilizando la función
apply de R, que aplica una función a cada fila o columna de un data frame.

# Asignar cada punto al clúster correspondiente al centroide más cercano
nueva_asignacion <- apply(distancias, 1, which.min)

Además queremos que el bucle pare si la asignación de clústeres no cambia, es decir, si la nueva asignación es igual a
la anterior. Para ello, vamos a usar un if que compare ambas asignaciones.

# Si la asignación no cambia, salir del bucle
if (all(nueva_asignacion == asignacion_clusters)) break

4. Actualizar los centroides de cada clúster. Para ello, vamos a calcular la media de cada clúster y asignarla al nuevo
centroide. Esto se puede hacer utilizando la función colMeans de R, que calcula la media de cada columna de
un data frame.

# Actualizar los centroides de cada clúster
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {
centroides[idx, ] <- colMeans(puntos_cluster)

}
}

Esta parte del algoritmo funciona de la siguiente manera:

• Para cada clúster, seleccionamos los puntos que pertenecen a ese clúster (asignacion_clusters == idx).
• Si hay puntos en ese clúster (nrow(puntos_cluster) > 0), calculamos la media de cada variable y la asignamos al
nuevo centroide.

• Si no hay puntos en ese clúster, no hacemos nada y el centroide se queda como estaba.

4.4.2 Creación del algoritmo K-means manual

Ahora que hemos explicado el algoritmo k-means, vamos a implementarlo manualmente en R. Para ello, vamos a crear
una función kmeans_manual que implemente el algoritmo k-means siguiendo los pasos descritos anteriormente.

kmeans_manual <- function(datos, k = 5, max_iter = 100, method = "euclidean",
p_minkowski = 2, seed = 123) {
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set.seed(seed)

# Seleccionar solo variables numéricas menos las variables cluster_5, cluster_6 y
#cluster_8 y estandarizar
datos_num <- datos %>%
select(-c(cluster_5, cluster_6)) %>%
select(where(is.numeric)) %>%
scale() %>%
as.data.frame()

n <- nrow(datos_num)
p <- ncol(datos_num)

# Inicializar centroides aleatorios
centroides <- as.matrix(datos_num[sample(1:n, k), ])
asignacion_clusters <- rep(0, n)
distancias <- matrix(0, nrow = n, ncol = k)

for (iter in 1:max_iter) {
# Calcular las distancias euclidianas
if (method == "euclidean") {
for (j in 1:k) {
distancias[, j] <- sqrt(rowSums((as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j, ]),
nrow(datos_num)),
ncol = p, byrow = TRUE))^2))

}
# Calcular las distancias de Minkowski
} else if (method == "minkowski") {
for (j in 1:k) {
distancias[, j] <- (rowSums(abs(as.matrix(datos_num) -

matrix(rep(as.numeric(centroides[j, ]),
nrow(datos_num)),
ncol = p,
byrow = TRUE))^p_minkowski))^(1/p_minkowski)

}
}
nueva_asignacion <- apply(distancias, 1, which.min)
if (all(nueva_asignacion == asignacion_clusters)) break
asignacion_clusters <- nueva_asignacion
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {
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centroides[idx, ] <- colMeans(puntos_cluster)
}

}
}
withinss <- numeric(k)
for (idx in 1:k) {
puntos_cluster <- datos_num[asignacion_clusters == idx, , drop = FALSE]
if (nrow(puntos_cluster) > 0) {
withinss[idx] <- sum(rowSums((as.matrix(puntos_cluster) -

matrix(rep(as.numeric(centroides[idx, ]),
nrow(puntos_cluster)),
ncol = p, byrow = TRUE))^2))

}
}
list(cluster = asignacion_clusters,

centers = centroides,
withinss = withinss,
tot.withinss = sum(withinss),
iter = iter,
datos_num = datos_num)

}

Con la función kmeans_manual implementada, ahora podemos aplicarla a nuestro conjunto de datos. Vamos a aplicar
el algoritmo k-means manualmente utilizando la distancia euclidiana y la distancia de Minkowski.

4.4.2.1 Uso de la función kmeans_manual con distancia euclidiana

Uso de la función para distancia euclidiana:

# Aplicar el algoritmo k-means manual
kmeans_result_manual <- kmeans_manual(datos, k = 5)
table(kmeans_result_manual$cluster)

##
## 1 2 3 4 5
## 778 1231 82 208 748

# variación intra-clúster total
intra_cluster_variation_euclidiana <- kmeans_result_manual$tot.withinss
cat("Variación intra-clúster total (Euclidiana):",
intra_cluster_variation_euclidiana, "\n")

## Variación intra-clúster total (Euclidiana): 6160.19
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# Graficar los clústeres obtenidos
fviz_cluster(list(data = kmeans_result_manual$datos_num,

cluster = kmeans_result_manual$cluster))
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Figura 22: Clústeres de Tarjetas Gráficas (Euclidiana)

Resumen por cluster con medias:

# Añadir la variable de clúster al conjunto de datos original
datos$cluster_manual <- kmeans_result_manual$cluster

# Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media_manual <- datos %>%
group_by(cluster_manual) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

# Generar una tabla con kable
kable(resumen_por_cluster_media_manual,
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caption = "\\label{tab:resumen_por_cluster_media_manual} Resumen de las medias por clúster (Euclidiana)",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 9: Resumen de las medias por clúster (Euclidiana)

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 4.0086761 223.6298 1407.32134 89.789203 31.300771 1429.3946 971.9460
2 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991
3 30.1707317 4035.1220 6623.21951 349.365854 100.585366 1035.7317 1143.5732
4 13.8750000 322.3077 4261.23077 204.692308 84.115385 1683.2548 1403.5433
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

Tabla comparativa de las medias de kmeans manual con Euclidiana y el kmeans de R:

Tabla 10: Resumen de las medias por clúster

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 1.6396161 163.2756 394.39685 32.11417 14.102362 939.9283 758.9039
2 4.4273585 223.1950 1521.00629 96.32201 34.193711 1468.6025 1013.4201
3 56.4444444 3921.7778 10115.55556 485.55556 125.333333 1449.5000 1248.6389
4 0.1772596 146.3586 13.40505 5.36919 5.337317 307.7397 328.9588
5 14.4041451 1276.1865 4747.27461 231.62694 90.943005 1417.5596 1285.3523

Tabla 11: Resumen de las medias por clúster (Euclidiana)

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 4.0086761 223.6298 1407.32134 89.789203 31.300771 1429.3946 971.9460
2 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991
3 30.1707317 4035.1220 6623.21951 349.365854 100.585366 1035.7317 1143.5732
4 13.8750000 322.3077 4261.23077 204.692308 84.115385 1683.2548 1403.5433
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

Si nos fijamos bien en las tablas de medias, vemos que los resultados son muy similares entre el k-means de R y
el k-means manual con distancia euclidiana. Podemes identificar las siguientes relaciones entre los grupos de ambos
modelos:

• El grupo 1 del k-means de R corresponde al grupo 2 del k-means manual con distancia euclidiana,

• el grupo 2 corresponde al grupo 1 del k-means manual con distancia euclidiana,

• el grupo 3 corresponde al grupo 3 del k-means manual con distancia euclidiana,

• el grupo 4 corresponde al grupo 5 del k-means manual con distancia euclidiana y,

• el grupo 5 corresponde al grupo 4 del k-means manual con distancia euclidiana.
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Esto indica que la implementación del algoritmo k-means manual es correcta y que los resultados obtenidos son con-
sistentes con los obtenidos con la función kmeans de R. Este resultado es esperado, ya que la función kmeans de R
utiliza la distancia euclidiana por defecto para calcular las distancias entre los puntos y los centroides.

Para una visualización más clara, vamos a crear una tabla que muestre la correspondencia entre los grupos del k-means
de R y los grupos del k-means manual con distancia euclidiana.

# Crear una tabla de correspondencia entre los grupos del k-means de R y
#los grupos del k-means manual con distancia euclidiana
tabla_correspondencia <- data.frame(
Grupo_kmeans_R = 1:5,
Grupo_kmeans_manual = c(2, 1, 3, 5, 4)

)

# Unir la tabla de correspondencia con las medias de ambos modelos
tabla_correspondencia_medias <- tabla_correspondencia %>%
left_join(resumen_por_cluster_media5, by = c("Grupo_kmeans_R" = "cluster_5")) %>%
left_join(resumen_por_cluster_media_manual, by = c("Grupo_kmeans_manual" = "cluster_manual"),

suffix = c("_R", "_Manual"))

# Seleccionar y renombrar columnas para mayor claridad
tabla_correspondencia_medias <- tabla_correspondencia_medias %>%
select(
Grupo_kmeans_R, Grupo_kmeans_manual,
starts_with("media_")

)

# Cambia los nombres de las columnas para que sean más descriptivos
colnames(tabla_correspondencia_medias) <- c(
"Grupo K-means R", "Grupo K-means Manual",
"Memoria (GB) R", "Bus (bits) R", "Shaders R", "TMUs R", "ROPs R",
"Reloj Memoria (MHz) R", "Reloj GPU (MHz) R",
"Memoria (GB) Manual", "Bus (bits) Manual", "Shaders Manual",
"TMUs Manual", "ROPs Manual", "Reloj Memoria (MHz) Manual", "Reloj GPU (MHz) Manual"

)

# Poner la tabla en formato largo
tabla_vertical <- tabla_correspondencia_medias %>%
pivot_longer(
cols = -c(`Grupo K-means R`, `Grupo K-means Manual`),
names_to = c("Variable", "Modelo"),
names_pattern = "(.*) (R|Manual)",
values_to = "Media"

) %>%
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pivot_wider(
names_from = Modelo,
values_from = Media

)

# Opcional: ordenar por grupo y variable
tabla_vertical <- tabla_vertical %>%
arrange(`Grupo K-means R`, Variable) %>%
mutate(
`R` = round(`R`, 2),
`Manual` = round(`Manual`, 2)

)

# Mostrar la tabla en vertical con kable
kable(tabla_vertical,

caption = "\\label{tab:comparacion_medias_vert} Comparación de medias por grupo
y variable: K-means R vs K-means manual",

col.names = c("Grupo K-means R", "Grupo K-means Manual", "Variable", "Media R", "Media Manual"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))
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Tabla 12: Comparación de medias por grupo y variable: K-means R vs K-means manual

Grupo K-means R Grupo K-means Manual Variable Media R Media Manual

1 2 Bus (bits) 163.28 163.51
1 2 Memoria (GB) 1.64 1.58
1 2 ROPs 14.10 13.91
1 2 Reloj GPU (MHz) 758.90 750.10
1 2 Reloj Memoria (MHz) 939.93 928.46

1 2 Shaders 394.40 379.08
1 2 TMUs 32.11 31.31
2 1 Bus (bits) 223.19 223.63
2 1 Memoria (GB) 4.43 4.01
2 1 ROPs 34.19 31.30

2 1 Reloj GPU (MHz) 1013.42 971.95
2 1 Reloj Memoria (MHz) 1468.60 1429.39
2 1 Shaders 1521.01 1407.32
2 1 TMUs 96.32 89.79
3 3 Bus (bits) 3921.78 4035.12

3 3 Memoria (GB) 56.44 30.17
3 3 ROPs 125.33 100.59
3 3 Reloj GPU (MHz) 1248.64 1143.57
3 3 Reloj Memoria (MHz) 1449.50 1035.73
3 3 Shaders 10115.56 6623.22

3 3 TMUs 485.56 349.37
4 5 Bus (bits) 146.36 146.14
4 5 Memoria (GB) 0.18 0.17
4 5 ROPs 5.34 5.29
4 5 Reloj GPU (MHz) 328.96 327.47

4 5 Reloj Memoria (MHz) 307.74 305.74
4 5 Shaders 13.41 12.81
4 5 TMUs 5.37 5.31
5 4 Bus (bits) 1276.19 322.31
5 4 Memoria (GB) 14.40 13.88

5 4 ROPs 90.94 84.12
5 4 Reloj GPU (MHz) 1285.35 1403.54
5 4 Reloj Memoria (MHz) 1417.56 1683.25
5 4 Shaders 4747.27 4261.23
5 4 TMUs 231.63 204.69

Vemos que las medias son muy similares entre ambos modelos, lo que confirma que la implementación del algoritmo
k-means manual es correcta y que los resultados obtenidos son consistentes con los obtenidos con la función kmeans
de R.

# Crear un vector de conclusiones
conclusiones_manual_euclidiana <- c(
"La implementación manual del algoritmo k-means con distancia euclidiana",
"ha dado resultados muy similares a los obtenidos con la función kmeans de R.",
"Los grupos obtenidos son consistentes y las medias de las variables son muy parecidas.",
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"Esto indica que la implementación es correcta y que los resultados son válidos."
)
# Crear un data frame resumen para el modelo k=5
tabla_resultados_manual_euclidiana <- data.frame(
Modelo = "K-means manual (Euclidiana)",
Numero_Clusters = length(unique(kmeans_result_manual$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_euclidiana,
Conclusiones = paste(conclusiones_manual_euclidiana, collapse = " ")

)

4.4.2.2 Uso de la función kmeans_manual con distancia de Minkowski

Ahora que hemos establecido que la implementación manual del algoritmo k-means otorga resultados muy parecidos
a los obtenidos con la función kmeans de R, vamos a ver si usando la distancia de Minkowski obtenemos resultados
diferentes o mejores, especialmente en presencia de valores atípicos.

Uso de la función para Minkowski:

# Aplicar el algoritmo k-means manual con Minkowski
kmeans_result_minkowski <- kmeans_manual(datos, k = 5, method = "minkowski",

p_minkowski = 1.5)
table(kmeans_result_minkowski$cluster)

##
## 1 2 3 4 5
## 778 1231 74 216 748

# variación intra-clúster total
intra_cluster_variation_minkowski <- kmeans_result_minkowski$tot.withinss
cat("Variación intra-clúster total (Minkowski):", intra_cluster_variation_minkowski, "\n")

## Variación intra-clúster total (Minkowski): 6155.124
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# Graficar los clústeres obtenidos
fviz_cluster(list(data = kmeans_result_minkowski$datos_num,

cluster = kmeans_result_minkowski$cluster))
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Figura 23: Clústeres de Tarjetas Gráficas (K=5) con K-means Manual (Minkowski)

Como podemos ver en el gráfico, los clústeres obtenidos son también muy similares a los obtenidos con la función
kmeans de R y con la implementación manual del algoritmo k-means con distancia euclidiana. Sin embargo, la varia-
ción intra-clúster total es ligeramente más baja, lo que sugiere que los clústeres son un poco más compactos.

Aquí también vemos que el grupo 3 está más disperso que el resto de grupos. En el análisis de los grupos obtenidos con
la función de R, habíamos concluido que se debía a que este grupo estaba principalmente formado por tarjetas gráficas
de tipo de memoria HBM y de gama alta, pero con arquitecturas diferentes. Vamos a ver si esto se repite en el análisis
de los grupos obtenidos con la distancia de Minkowski. Para ello, vamos a ver contar el número de tarjetas que hay por
tipo de memoria en cada clúster, igual que hicimos en el apartado 3.3.1.4.

# Contar el número de tarjetas gráficas por tipo de memoria en cada clúster
resumen_por_cluster_memoria_minkowski <- datos %>%
group_by(cluster_manual = kmeans_result_minkowski$cluster, Memory_Type) %>%
summarise(n = n()) %>%
ungroup() %>%
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arrange(cluster_manual, desc(n))
# Contar el número total de tarjetas gráficas por tipo de memoria
resumen_total_memoria_minkowski <- datos %>%
group_by(Memory_Type) %>%
summarise(n = n()) %>%
ungroup() %>%
arrange(desc(n))

# Mostrar una tabla con kable
tabla_comparacion_minkowski <- resumen_por_cluster_memoria_minkowski %>%
left_join(resumen_total_memoria_minkowski, by = "Memory_Type", suffix = c("_cluster", "_total")) %>%
mutate(porcentaje_cluster = n_cluster / n_total * 100)

# Generar una tabla con kable
tabla_comparacion_minkowski <- kable(tabla_comparacion_minkowski,

caption = "\\label{tab:comparacion_memoria_minkowski} Comparación del número de
tarjetas gráficas por tipo de memoria (Minkowski)",

col.names = c("Clúster", "Tipo de Memoria", "Número en Clúster",
"Número Total", "Porcentaje en Clúster"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))
tabla_comparacion_minkowski
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Tabla 13: Comparación del número de tarjetas gráficas por tipo de memoria (Minkowski)

Clúster Tipo de Memoria Número en Clúster Número Total Porcentaje en Clúster

1 GDDR5 672 1145 58.6899563
1 GDDR6 96 211 45.4976303
1 HBM2 4 36 11.1111111
1 GDDR5X 2 30 6.6666667
1 LPDDR4X 2 2 100.0000000

1 DDR3 1 424 0.2358491
1 LPDDR5 1 1 100.0000000
2 GDDR5 423 1145 36.9432314
2 DDR3 414 424 97.6415094
2 GDDR3 352 508 69.2913386

2 GDDR4 25 25 100.0000000
2 DDR2 7 140 5.0000000
2 DDR4 4 4 100.0000000
2 GDDR6 3 211 1.4218009
2 HBM2 3 36 8.3333333

3 HBM2 25 36 69.4444444
3 HBM 23 23 100.0000000
3 HBM2e 22 22 100.0000000
3 HBM3 4 4 100.0000000
4 GDDR6 112 211 53.0805687

4 GDDR5 49 1145 4.2794760
4 GDDR5X 28 30 93.3333333
4 GDDR6X 20 20 100.0000000
4 HBM2 4 36 11.1111111
4 GDDR7 3 3 100.0000000

5 DDR 314 314 100.0000000
5 GDDR3 156 508 30.7086614
5 DDR2 133 140 95.0000000
5 SDR 87 87 100.0000000
5 DRAM 17 17 100.0000000

5 EDO 11 11 100.0000000
5 DDR3 9 424 2.1226415
5 VRAM 7 7 100.0000000
5 eDRAM 6 6 100.0000000
5 GDDR2 3 3 100.0000000

5 SGR 2 2 100.0000000
5 FPM 1 1 100.0000000
5 GDDR5 1 1145 0.0873362
5 SGRAM 1 1 100.0000000

Observaciones

• Se observa claramente que el grupo 3 agrupa la mayoría de las tarjetas gráficas conmemoria HBM. Esto contrasta
con los resultados obtenidos anteriormente (Tabla 3 del apartado 3.3.1.4), donde las tarjetas con memoria HBM
estaban repartidas en varios grupos. La utilización de la distancia de Minkowski ha permitido que estas tarjetas
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se agrupen de forma más coherente, lo que indica que esta métrica es más robusta frente a valores atípicos.

• La mayor dispersión observada en el grupo 3 puede explicarse porque, aunque todas las tarjetas comparten la
característica de un ancho de bus elevado (propio de la memoria HBM), pueden diferir en otras especificaciones
técnicas debido a pertenecer a distintas generaciones o arquitecturas. Por ello, dentro del grupo existe una mayor
variabilidad en el resto de variables.

• El grupo 4 también está más disperso que el resto de grupos. Vemos que en general está formado por tarjetas de
gama alta, pero no podemos explicar con estos datos por qué hay cierta dispersión entre las tarjetas gráficas. Por
ello, vamos a analizar más a fondo este grupo.

Resumen por cluster con medias:

# Añadir la variable de clúster al conjunto de datos original
datos$cluster_minkowski <- kmeans_result_minkowski$cluster
# Agrupar los datos por clúster y calcular la media
resumen_por_cluster_media_minkowski <- datos %>%
group_by(cluster_minkowski) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), mean,
.names = "media_{.col}"))

# Generar una tabla con kable
kable(resumen_por_cluster_media_minkowski,

caption = "\\label{tab:resumen_por_cluster_media_minkowski} Resumen de las medias por clúster (Minkowski)",
col.names = c("Clúster", "Memoria (GB)", "Bus (bits)",
"Shaders", "TMUs", "ROPs", "Reloj Memoria (MHz)", "Reloj GPU (MHz)"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position"))

Tabla 14: Resumen de las medias por clúster (Minkowski)

Clúster Memoria (GB) Bus (bits) Shaders TMUs ROPs Reloj Memoria (MHz) Reloj GPU (MHz)

1 4.0086761 223.6298 1407.32134 89.789203 31.300771 1429.3946 971.9460
2 1.5751929 163.5093 379.07717 31.305443 13.912266 928.4614 750.0991
3 29.4324324 4428.1081 5346.59459 324.864865 91.135135 947.5270 1081.2297
4 14.7314815 325.1852 4786.07407 218.444444 87.962963 1689.4907 1415.2731
5 0.1734311 146.1390 12.81016 5.308823 5.287433 305.7420 327.4746

# Gráfico de barras de medias de cada variable por clúster
resumen_por_cluster_media_minkowski %>%
pivot_longer(cols = -cluster_minkowski, names_to = "Variable", values_to = "Media") %>%
ggplot(aes(x = factor(cluster_minkowski), y = Media, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Medias de cada variable por clúster (Minkowski)",

x = "Clúster", y = "Media") +
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theme_minimal() +
scale_fill_brewer(palette = "Set3")
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Figura 24: Medias de cada variable por clúster (Minkowski)

Viendo las medias, en efecto podemos observar que el grupo 3 tiene la media más alta de ancho de bus, y que junto
con el grupo 4 presentan en general las medias más altas de todas las variables, lo que indica que estos grupos están
formados por tarjetas gráficas de gama alta.

Vamos a ver en qué fechas se lanzaron las tarjetas gráficas del grupo 4, para ver si podemos entender mejor por qué
hay cierta dispersión entre las tarjetas gráficas de este grupo. Para ello, vamos a crear una tabla con las fechas de
lanzamiento de las tarjetas gráficas del grupo 4.

Tabla 15: Tarjetas gráficas del grupo 4 por fecha de lanzamiento

Fecha de lanzamiento Número de tarjetas gráficas

Después de 2020 104
2016-2020 84
2010-2015 28

Aquí podemos ver que la gran mayoría de las tarjetas gráficas del grupo 4 fueron lanzadas después de 2020 y entre
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2016 y 2020, con unas pocas lanzadas entre 2015 y 2015. Esto indica que el grupo 4 está formado por tarjetas gráficas
de gama alta, pero de distintas generaciones, lo que podría explicar la dispersión observada, ya que entre 2010-2015
y la actualidad ha habido un gran avance en la tecnología de las tarjetas gráficas, lo que ha permitido mejorar las
especificaciones técnicas de las mismas.

Entonces la dispersión podría estar causada por las tarjetas gráficas lanzadas entre 2010 y 2015, que son de generaciones
más antiguas y por tanto tienen especificaciones técnicas más bajas que las tarjetas gráficas lanzadas después de 2020.

Dicho esto, parece interesante ver cómo se comportan los demás grupos en cuanto a fechas de lanzamiento. Para
ello, vamos a crear un gráfico de barras agrupadas que muestre el número de tarjetas gráficas por grupo y fecha de
lanzamiento, donde además añadiremos una etiqueta con el porcentaje del total de tarjetas gráficas por grupo y fecha
de lanzamiento, pero sólo en el menor valor de cada grupo.

Con esto, podremos ver cómo se distribuyen las tarjetas gráficas por grupo y fecha de lanzamiento, y si hay una relación
entre la dispersión de los grupos y la fecha de lanzamiento de las tarjetas gráficas.

# Calcular el total y el porcentaje por grupo
tarjetas_por_fecha <- datos %>%
group_by(cluster_minkowski, Released) %>%
summarise(n = n(), .groups = "drop") %>%
group_by(cluster_minkowski) %>%
mutate(total_grupo = sum(n),

porcentaje = round(100 * n / total_grupo, 1),
min_n = min(n),
label = ifelse(n == min_n, paste0(porcentaje, "%"), NA))
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# Gráfico de barras agrupadas con etiqueta solo en el menor valor
ggplot(tarjetas_por_fecha, aes(x = factor(cluster_minkowski), y = n, fill = Released)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.8)) +
geom_text(aes(label = label),

position = position_dodge(width = 0.8),
vjust = -0.5,
color = "black",
size = 3,
na.rm = TRUE) +

labs(
title = "Tarjetas gráficas por grupo y fecha de lanzamiento",
x = "Grupo",
y = "Número de tarjetas gráficas",
fill = "Fecha de lanzamiento"

) +
theme_minimal() +
scale_fill_brewer(palette = "Set2")
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Figura 25: Tarjetas gráficas por grupo y fecha de lanzamiento
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Según el gráfico de la Figura 25, podemos ver que en los grupos 3 y 4, que eran los que más dispersos estaban, tienen
los porcentajes más altos del periodo de fecha de lanzamiento que menor número de tarjetas gráficas tienen en sus
respectivos grupos. Además, en estos dos grupos, la mayoría de las tarjetas gráficas son de entre 2016 y después de
2020, lo que podría explicar la dispersión observada en estos grupos, ya que las tarjetas gráficas de estas fechas son de
gama alta y tienen especificaciones técnicas más altas que las tarjetas gráficas de generaciones anteriores.

Para confirmar esta hipótesis, vamos a ver si los grupos 3 y 4 tienen una mayor variabilidad en las especificaciones
técnicas de las tarjetas gráficas. Para ello, vamos a calcular la desviación estándar de cada variable por grupo y ver si
hay una mayor variabilidad en los grupos 3 y 4.

# Calcular la desviación estándar de cada variable por grupo
desviacion_estandar_por_grupo <- datos %>%
group_by(cluster_minkowski) %>%
summarise(across(c(`Memory_Size (GB)`, `Memory_Bus (bits)`, Shaders, TMUs, ROPs,

`Memory_clock (MHz)`, `GPU_clock (MHz)`), sd,
.names = "sd_{.col}"))
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# Gráfico de barras de desviación estándar de cada variable por clúster
ggplot(desviacion_estandar_por_grupo %>%

pivot_longer(cols = -cluster_minkowski, names_to = "Variable",
values_to = "Desviación Estándar"),

aes(x = factor(cluster_minkowski), y = `Desviación Estándar`, fill = Variable)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "Desviación estándar de cada variable por clúster (Minkowski)",

x = "Clúster", y = "Desviación Estándar") +
theme_minimal() +
scale_fill_brewer(palette = "Set3")
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Figura 26: Desviación estándar de cada variable por clúster (Minkowski)

Vemos que efectivamente los grupos 3 y 4 tienen una mayor variabilidad en las especificaciones técnicas de las tarjetas
gráficas, lo que confirma nuestra hipótesis de que la dispersión observada en estos grupos se debe a la presencia de
tarjetas gráficas de distintas generaciones y arquitecturas.

# Crear un vector de conclusiones
conclusiones_manual_minkowski <- c(
"La implementación manual del algoritmo k-means con distancia de Minkowski",
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"ha dado resultados muy similares a los obtenidos con la función kmeans de R.",
"Los grupos obtenidos son consistentes y las medias de las variables son muy parecidas.",
"La variación intra-clúster total es ligeramente más baja que con la distancia euclidiana,",
"lo que sugiere que los clústeres son un poco más compactos.",
"El grupo 3 agrupa la mayoría de las tarjetas gráficas con memoria HBM,",
"mientras que el grupo 4 está formado por tarjetas gráficas de gama alta, pero de distintas generaciones.",
"La dispersión observada en estos grupos se debe a la presencia de tarjetas gráficas de distintas generaciones y arquitecturas."

)
# Crear un data frame resumen para el modelo k=5
tabla_resultados_manual_minkowski <- data.frame(
Modelo = "K-means manual (Minkowski)",
Numero_Clusters = length(unique(kmeans_result_manual$cluster)),
Variacion_Intra_Cluster = intra_cluster_variation_minkowski,
Conclusiones = paste(conclusiones_manual_minkowski, collapse = " ")

)

5 Conclusiones

5.1 Valoración del cumplimiento de los objetivos

A lo largo de este trabajo se han cumplido los objetivos planteados al inicio del estudio:

1. Describir y preparar la base de datos: Se realizó una exhaustiva limpieza y transformación de los datos, iden-
tificando y tratando valores atípicos, variables irrelevantes y datos faltantes. Esto permitió obtener un conjunto
de datos adecuado y fiable para el análisis posterior.

2. Explorar y analizar las variables clave: Se llevó a cabo un análisis exploratorio detallado de las variables
numéricas y categóricas, identificando patrones, tendencias y relaciones relevantes entre las diferentes carac-
terísticas de las tarjetas gráficas. Este análisis facilitó la interpretación de los resultados obtenidos en las fases
posteriores.

3. Implementar y comparar métodos de agrupamiento: Se aplicó el algoritmo K-means en diferentes escena-
rios: utilizando únicamente variables numéricas, combinando variables numéricas y categóricas, y mediante una
implementación manual que permitió experimentar con distintas métricas de distancia (euclidiana y Minkows-
ki). Además, para poder reducir la dimensionalidad del conjunto de datos en el caso del modelo combinado
de variables numéricas y categóricas, se empleó el análisis de componentes principales (PCA), lo que permitió
sintetizar la información y facilitar la interpretación de los resultados.

4. Interpretar y validar los grupos obtenidos: Se analizaron en profundidad las características de los clústeres
resultantes, identificando patrones comunes y diferencias entre los grupos. Además, se evaluó la robustez y
coherencia de los agrupamientos en función de las especificaciones técnicas y la evolución tecnológica de las
tarjetas gráficas.
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5. Extraer conclusiones relevantes: Finalmente, se sintetizaron los hallazgos obtenidos, destacando las implica-
ciones prácticas y teóricas del agrupamiento de tarjetas gráficas.

En definitiva, el trabajo ha permitido alcanzar todos los objetivos propuestos, proporcionando una visión integral y
objetiva sobre la clasificación y segmentación de tarjetas gráficas en función de sus características técnicas, y demos-
trando la utilidad del PCA como herramienta para el análisis y reducción de la dimensionalidad en conjuntos de datos
complejos. Además, la implementación manual del algoritmo K-means ha permitido profundizar en el entendimiento
del funcionamiento de este método de agrupamiento y su aplicación en el contexto de las tarjetas gráficas.

5.2 Conclusiones finales

En primer lugar, se presenta una tabla con los resultados obtenidos en cada uno de los modelos:

# Combinar todos los data frames de resultados
tabla_resultados_comparativa <- rbind(
tabla_resultados_kmeans,
tabla_resultados_manual_euclidiana,
tabla_resultados_manual_minkowski

)

# Generar una tabla con kable
kable(tabla_resultados_comparativa,

caption = "\\label{tab:comparacion_modelos_todos} Comparación de los resultados de los modelos K-means",
col.names = c("Modelo", "Número de Clústeres",
"Variación Intra-Cluster", "Conclusiones"),
format = "latex", booktabs = TRUE) %>%

kable_styling(latex_options = c("!H", "striped", "scale_down", "hold_position")) %>%
column_spec(4, width = "8cm")
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Tabla 16: Comparación de los resultados de los modelos K-means

Modelo Número de Clústeres Variación Intra-Cluster Conclusiones

Solo numéricas 5 6157.303 El grupo 3 se caracteriza por tener un ancho de banda
alto, lo que podría indicar que está formado por tarjetas
gráficas de tipo HBM. Los grupos 1, 2 y 4 tienen una
varianza baja en todas las variables, lo que sugiere que
estos grupos están muy homogéneos y bien definidos.

Numéricas y categóricas 8 9501.153 Se tuvo que hacer un PCA para reducir la
dimensionalidad de los datos. Después de aplicar el PCA
y realizar el clustering, se observó que los grupos 1 y 2
tienen cierta superposición, igual que los grupos 3 y 6.
Había un par de grupos bien definidos y otros que
estaban más dispersos. Luego se concluyó que los
grupos estaban principalmente definidos por el tipo de
memoria de las tarjetas gráficas.

K-means manual (Euclidiana) 5 6160.190 La implementación manual del algoritmo k-means con
distancia euclidiana ha dado resultados muy similares a
los obtenidos con la función kmeans de R. Los grupos
obtenidos son consistentes y las medias de las variables
son muy parecidas. Esto indica que la implementación es
correcta y que los resultados son válidos.

K-means manual (Minkowski) 5 6155.124 La implementación manual del algoritmo k-means con
distancia de Minkowski ha dado resultados muy
similares a los obtenidos con la función kmeans de R.
Los grupos obtenidos son consistentes y las medias de
las variables son muy parecidas. La variación
intra-clúster total es ligeramente más baja que con la
distancia euclidiana, lo que sugiere que los clústeres son
un poco más compactos. El grupo 3 agrupa la mayoría de
las tarjetas gráficas con memoria HBM, mientras que el
grupo 4 está formado por tarjetas gráficas de gama alta,
pero de distintas generaciones. La dispersión observada
en estos grupos se debe a la presencia de tarjetas gráficas
de distintas generaciones y arquitecturas.

En laTabla 16 podemos observar que el únicomodelo que incluía variables categóricas (modelo combinado) no ha sido
capaz de encontrar una estructura clara en los datos, lo que indica que las variables categóricas no aportan información
relevante para el agrupamiento de tarjetas gráficas para nuestro caso. Por tanto, los modelos que únicamente utilizan
variables numéricas (tanto el K-means de R como la implementaciónmanual) han sido losmás efectivos para identificar
patrones y segmentar las tarjetas gráficas en clústeres coherentes, donde los tres modelos han obtenido resultados muy
similares en cuanto al número de clústeres y la variación intra-clúster, así como la clasificación de las tarjetas gráficas.
No obstante, cabe destacar que el modelo con la distancia de Minkowski, ha presentado una variación intra-cluster
ligeramente menor, lo que sugiere que los clústeres son un poco más compactos y homogéneos, especialmente en el
caso de las tarjetas gráficas con memoria HBM.

Hablando de las tarjetas gráficas con memoria HBM, durante todo el trabajo hemos visto que estas tarjetas gráficas
se diferencian mucho más de las demás, ya que tienen un uso muy especial comparado con el uso habitual de las
tarjetas gráficas, que es el gaming. Este uso especial se resume en que las tarjetas gráficas con memoria HBM están
diseñadas para tareas que requieren un alto rendimiento en el procesamiento de datos, como la inteligencia artificial,
el aprendizaje automático, la computación científica y el procesamiento de datos biomédicos. Esto lo consiguen con
un ancho de bus elevado, que se ha podido observar a lo largo del análisis, tanto en el análisis exploratorio de datos
como en los modelos de agrupamiento, donde hemos visto que las tarjetas gráficas con memoria HBM se agrupan en
un clúster propio, lo que indica que estas tarjetas gráficas tienen unas especificaciones técnicas muy diferentes al resto
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de tarjetas gráficas.

5.3 Reflexión personal

La realización de este Trabajo de Fin de Grado ha supuesto un importante proceso de aprendizaje y desarrollo personal
en varios ámbitos. En primer lugar, he adquirido una mayor destreza en el uso de R Markdown como herramienta
integral para la elaboración de documentos científicos y técnicos. Gracias a este proyecto, he aprendido a gestionar
referencias bibliográficas mediante archivos .bib, a utilizar el sistema de índices y referencias cruzadas de manera
automática, y a estructurar un documento extenso de forma clara y profesional. Considero que estas competencias
serán muy valiosas tanto en futuros estudios como en el ámbito laboral, donde la capacidad de documentar y presentar
resultados de manera formal y reproducible es cada vez más demandada.

Otro aspecto fundamental ha sido la mejora en la presentación y comunicación de resultados. El hecho de tener que
exponer los análisis y conclusiones de forma coherente, estructurada y comprensible me ha obligado a reflexionar
sobre la mejor manera de transmitir la información, adaptando el lenguaje y los recursos gráficos al público objetivo.
Esta habilidad es esencial en cualquier entorno profesional, ya que la claridad en la comunicación de resultados puede
marcar la diferencia en la toma de decisiones.

Asimismo, este trabajo me ha permitido desarrollar la capacidad de investigar a fondo, enfrentándome a problemas nue-
vos y buscando soluciones de manera autónoma. He aprendido a consultar fuentes especializadas, comparar enfoques
y adaptar las metodologías a las características concretas de los datos y los objetivos del análisis.

En el plano técnico, la implementación manual del algoritmo K-means ha sido especialmente enriquecedora. No solo
me ha permitido comprender en profundidad el funcionamiento interno del método, sino también experimentar con
diferentes métricas de distancia y valorar su impacto en los resultados. Esta experiencia me ha dado una visión más
crítica y flexible sobre el uso de algoritmos de agrupamiento en la práctica.

Por último, he ampliado notablemente mis conocimientos sobre tarjetas gráficas y sus aplicaciones, descubriendo que
su utilidad va mucho más allá del ámbito de los videojuegos. Ahora comprendo mejor su papel en áreas como la
inteligencia artificial, la computación científica o el procesamiento de datos biomédicos, lo que me ha permitido valorar
la importancia de la tecnología en contextos muy diversos.

En definitiva, este TFG ha supuesto un reto que me ha permitido crecer tanto a nivel técnico como personal, y me ha
motivado a seguir aprendiendo y profundizando en el análisis de datos y sus aplicaciones reales.

6 Líneas futuras

A partir de los resultados obtenidos en este trabajo, se abren varias líneas interesantes para continuar y profundizar en
el análisis:

• Optimización de los modelos de agrupamiento: Sería interesante explorar técnicas avanzadas de optimiza-
ción de agrupamiento para la selección automática del número óptimo de clústeres y la mejora de la robustez
de los resultados. Además, se podrían comparar otros algoritmos de clustering, como DBSCAN que se había
mencionado en el apartado 4.1, para evaluar su desempeño frente a K-means en este contexto.
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• Exploración de nuevos ámbitos de aplicación:
Los resultados del clustering han puesto de manifiesto la existencia de grupos de tarjetas gráficas con caracterís-
ticas técnicas diferenciadas, especialmente aquellas con memoria HBM. En el futuro, me gustaría profundizar
en el análisis de otros segmentos identificados por los modelos de agrupamiento, investigando sus aplicaciones
específicas en ámbitos como el gaming, la computación científica, el procesamiento de datos biomédicos o in-
cluso el renderizado profesional. Esto permitiría comprender mejor el impacto de la evolución tecnológica de
las GPUs en diferentes sectores y orientar el análisis hacia casos de uso concretos.

Estas líneas futuras permitirían enriquecer el estudio, aportar una visión más completa sobre la segmentación tecnoló-
gica de las tarjetas gráficas y abrir nuevas oportunidades de investigación aplicada en el ámbito del análisis de datos.

Referencias

Cui, Mengyao, et al. “Introduction to the k-Means Clustering Algorithm Based on the Elbow Method.” Accounting,
Auditing and Finance, vol. 1, no. 1, 2020, pp. 5–8.

Eklund, Anders, et al. “fMRI Analysis on the GPU—Possibilities and Challenges.” Computer Methods and Programs
in Biomedicine, vol. 105, no. 2, 2012, pp. 145–61.

Kalaiselvi, T., et al. “Survey of Using GPU CUDA Programming Model in Medical Image Analysis.” Informatics in
Medicine Unlocked, vol. 9, 2017, pp. 133–44.

Manual, A. Beginner’s. An Introduction to Statistical Learning with Applications in r. 2013.
Neshat, Mehdi, et al. “Wind Turbine Power Output Prediction Using a New Hybrid Neuro-Evolutionary Method.”

Energy, vol. 229, 2021, p. 120617.
Oyelade, Olanrewaju Jelili, et al. “Application of k Means Clustering Algorithm for Prediction of Students Academic

Performance.” arXiv Preprint arXiv:1002.2425, 2010.
Saxena, Amit, et al. “A Review of Clustering Techniques and Developments.” Neurocomputing, vol. 267, 2017, pp.

664–81.
Singh, Archana, et al. “K-Means with Three Different Distance Metrics.” International Journal of Computer Applica-

tions, vol. 67, no. 10, 2013.
Zhang, Yichen, et al. “A GPU-Based Computational Framework That Bridges Neuron Simulation and Artificial Inte-

lligence.” Nature Communications, vol. 14, no. 1, 2023, p. 5798.
Zhao, Ying, et al. “Hierarchical Clustering Algorithms for Document Datasets.” Data Mining and Knowledge Disco-

very, vol. 10, 2005, pp. 141–68.

97


	Resumen
	Introducción
	Contexto histórico y motivación
	Objetivos
	Herramientas
	Fundamentos académicos y aportación novedosa

	Base de datos: descripción, preparación y análisis.
	Descripción de los datos
	Preparación y procesamiento de los datos
	Limpieza y transformación de variables
	Descripción de las variables transformadas

	Análisis exploratorio de datos
	Estadísticas descriptivas
	Tratamiento de valores perdidos
	Tratamiento de valores atípicos
	Conclusiones del análisis exploratorio

	Relaciones entre variables clave
	Correlación entre variables numéricas
	Visualización de relaciones clave
	Conclusiones del análisis de relaciones


	Clustering
	Fundamentos teóricos del método
	Clustering con K-means
	Algoritmo K-means

	Aplicación del método K-means
	Clustering con variables numéricas
	Estandardización de los datos
	Determinación del número óptimo de clústeres (K)
	Aplicación del método K-means
	Análisis de los grupos obtenidos en el clustering

	Clustering con variables numéricas y categóricas
	Preparación de los datos
	Fundamento teórico del análisis de componentes principales (PCA)
	Aplicación del PCA
	Agrupación de tipos de memoria y aplicación del PCA
	Método del codo con PCA
	Aplicación del método K-means con PCA
	Análisis de los grupos obtenidos en el clustering

	Comparación de los dos modelos

	Implementación manual del algoritmo K-means
	Repaso teórico del algoritmo K-means
	Creación del algoritmo K-means manual
	Uso de la función kmeans_manual con distancia euclidiana
	Uso de la función kmeans_manual con distancia de Minkowski



	Conclusiones
	Valoración del cumplimiento de los objetivos
	Conclusiones finales
	Reflexión personal

	Líneas futuras
	Referencias

