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Resumen
El presente trabajo de fin de grado trata sobre el módulo y la constante de
Lipschitz así como su aplicación al análisis de sensibilidad y estabilidad en el
campo de la optimización o programación lineal paramétrica. Se estructura
en tres capítulos principales abarcando desde el contexto histórico hasta la
implementación computacional y finalizando con un ejemplo de aplicación
práctica. En el primer capítulo, se presenta el contexto histórico necesario,
destacando la relevancia de la continuidad de Lipschitz en el campo de la
optimización matemática, presentando conceptos fundamentales como el
conjunto factible, soluciones óptimas y se muestra un clásico problema de la
programación lineal a modo de ejemplo. En el segundo capítulo se profundiza
en la propiedad de Aubin y en la definición del módulo de Lipschitz en
multifunciones, donde se evalúa como varía el conjunto factible ante pequeñas
perturbaciones en los parámetros del problema. Además, se presenta una
fórmula operativa y su implementación en MATLAB. Finalmente, en el tercer
capítulo se presenta un ejemplo práctico real en el que se plantea y formula
el problema para finalmente obtener el módulo de Lipschitz correspondiente
e ilustrar el significado dentro del ámbito empresarial.
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Capítulo 1: Introducción
El presente trabajo de fin de grado se centra en el módulo y la constante
de Lipschitz, así como su cálculo y aplicación en el ámbito del análisis de
sensibilidad y estabilidad en el campo de la optimización.

Para contextualizar adecuadamente el trabajo, se proporcionará unos
breves antecedentes históricos, además de definiciones y notaciones sobre
conceptos clave requeridos para una correcta comprensión. A lo largo del
trabajo se verán también términos referentes a la programación lineal (PL
para abreviar), teoría de números, álgebra lineal y análisis.

1.1 Antecedentes históricos
Rudolph Otto Sigismund Lipschitz (1832-1903) fue un matemático reconocido
en el siglo XIX y no tuvo la oportunidad de contribuir directamente a los
problemas de PL. Sin embargo, su trabajo en la condición de continuidad de
Lipschitz es aplicable en el marco del análisis de sensibilidad y estabilidad de
sistemas de desigualidades lineales parametrizados. Sus principales campos
de trabajo fueron el análisis, geometría diferencial, física matemática y otros
campos como la teoría de números y el álgebra lineal. Concretamente, el
módulo y la constante de Lipschitz surgen de su trabajo en los campos de
análisis y teoría de números. Además, realizó sus estudios en Königsberg y
Berlín, donde consiguió sorprender al matemático Dirichlet (director de su
tesis) gracias a su razonamiento y perspectiva que poseía sobre las matemáti-
cas. Finalmente, fue habilitado como profesor en la universidad de Bonn y
trabajaría allí el resto de su vida.

Por otra parte, en lo que a la programación lineal se refiere, surgió
como uno de los avances matemáticos ocasionados por la Segunda Guerra
Mundial, donde investigadores de diferentes ramas de la ciencia, incluyendo
las matemáticas, la desarrollaron con el fin de planificar y optimizar los
recursos. Años más tarde, en 1947, el matemático estadounidense George B.
Dantzig daría con un método de resolución exacta para los problemas de PL,
denominado como método SIMPLEX, el cual fue seleccionado como uno de
los algoritmos más importantes del siglo XX.
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1.2 Contexto
En la actualidad tanto las empresas como el público en general debemos
tomar decisiones acerca de cómo gestionar nuestros propios recursos. En el
caso del público, la mayoría de las decisiones son triviales y no requieren
de mucho esfuerzo o cálculo. Sin embargo, en el caso de las empresas nos
encontramos ante otro tipo de tesitura. En las empresas gestionar los recursos
es algo fundamental para la eficiencia y correcto funcionamiento y progreso
de la entidad, es por esto que cobra importancia la investigación operativa,
ya que proporciona un método científico sobre el que respaldar sólidamente
la toma de decisiones. En los problemas de PL se busca hallar aquellas solu-
ciones óptimas para un problema en cuestión, minimizando o maximizando el
objetivo principal, como puede ser maximizar beneficios o minimizar costes,
atendiendo a una serie de criterios o condiciones como pueden ser costes
variables, riesgo o volatiliad (en el caso de inversión en bolsa), tiempos de
producción, etc. Es por esto que los problemas de PL tienen tanto valor en
la industria, puede tener en cuenta infinidades de condiciones y variables y
proporcionar las mejores opciones a tener en cuenta (aunque en el caso de
este trabajo nos centraremos en la programación finita), lo que se traduce en
una ventaja estratégica.

A lo largo de la historia de la programación matemática, han existido
varios problemas de PL conocidos que sirven como ejemplo en la docencia
actual para ilustrar los distintos tipos de problemas de optimización, como
puede ser el problema de la dieta, el cual consiste en minimizar el coste de la
dieta teniendo en cuenta una cantidad equilibrada de nutrientes que requiere
el cuerpo humano. Otro ejemplo que se emplea bastante es el problema del
viajero (Programación Binaria), el cual trata de minimizar la distancia a
recorrer entre distintas ciudades, pasando una sola vez por cada una de ellas
y volver a la ciudad de origen. A simple vista puede parecer un problema
no muy complejo, pero cuando el número de ciudades aumenta, el número
de combinaciones posibles hace que sea complejo en numerosas ocasiones la
obtención de las soluciones óptimas.

Como se ha mencionado anteriormente, el actual trabajo se centrará en la
programación lineal finita parametrizada, por lo que los problemas serán de
la forma
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π(c, b) minimizar c′x
sujeto a: Ax ≤ b

donde x ∈ Rn es el vector de variables de decisión del problema, c ∈ Rn

es el vector de coeficientes de la función objetivo, A ∈ Rm×n es la matriz
de coeficientes de las restricciones, y b ∈ Rm es el vector que limita las
restricciones.Véase la monografía de Bertismas y Tsitsiklis [1] para detalles
sobre la teoría y los métodos de programación lineal. En caso de necesitar
representar independientemente las desigualdades lineales parametrizadas, se
empleará

σ(b) := {a′
ix ≤ bi, i = 1, . . . , m},

donde a′
i representa la i-ésima fila de A, y bi la i-ésima coordenada del vector

b, para i = 1, . . . , m.

Continuando con la notación, en lo relacionado con b ∈ Rm se tiene el conjunto
factible

F(b) := {x ∈ Rn : Ax ≤ b},

que representa el conjunto de soluciones que cumplen con las desigualdades
definidas en σ(b). Además cuando F(b) ̸= ∅ se dice que σ(b) es consistente.
Para (c, b) ∈ Rn × Rm, se define el valor óptimo de π(c, b) como

ϑ(c, b) := inf{c′x : x ∈ F(b)},

Además se dice que π(c, b) es acotado cuando ϑ(c, b) es finito. Por último,
también cabe definir el conjunto de soluciones óptimas o conjunto óptimo de
π(c, b), definido como

S(c, b) := {x ∈ F(b) : c′x = ϑ(c, b)}.

Diremos que el problema π(c, b) es resoluble cuando su conjunto es no vacío,
esto es S(c, b) ̸= ∅. De lo que se deduce que un problema resoluble debe estar
acotado.

A continuación se presentará un problema de PL básico como ejemplo.

5



Ejemplo: Problema de producción de PL

Una empresa que produce dos tipos de productos quiere maximizar sus
beneficios teniendo en cuenta que la unidad de cada producto requiere una
cantidad de tiempo y genera una ganancia diferente. Además, también se
sabe que la cantidad de horas de producción no pueden sobrepasar las 100
horas.

Producto Ganancia(€) Tiempo producción (horas) Máxima producción (uds)
P1 3 1 70
P2 5 2 50

Table 1: Datos de los productos y sus restricciones.

Para maximizar las ganancias de la producción de dos productos P1 y P2
bajo las condiciones dadas, se deberá plantear el problema de la siguiente
forma:

Función Objetivo:

Maximizar c = 3x1 + 5x2

sujeto a:

x1 + 2x2 ≤ 100 (Tiempo máximo de producción) (1)
x1 ≤ 70 (Producción máxima de P1) (2)
x2 ≤ 50 (Producción máxima de P2) (3)
xi ≥ 0 , i ∈ {1, 2} (No negatividad) (4)

donde:

• x1 = número de unidades producidas de P1

• x2 = número de unidades producidas de P2

Que representando gráficamente las restricciones, se obtiene:
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Figure 1: Gráfica de las restricciones y puntos del conjunto factible.

Observando la gráfica, el área sombreada corresponde al conjunto de
soluciones que cumplen con las restricciones, es decir, el conjunto factible.
Mientras que las intersecciones de las rectas muestran las soluciones poten-
ciales.

Para la obtención de la solución se procederá al cálculo del valor óptimo
en dichos puntos.

Cálculo del Valor Óptimo:

Los puntos extremos del conjunto factible (candidatos a óptimos) son:
(0, 0), (0, 50), (70, 0) y (70, 15).

Evaluamos la función objetivo c = 3x1 + 5x2 en cada uno de estos puntos:

• En (0, 0): 3(0) + 5(0) = 0

• En (0, 50): 3(0) + 5(50) = 250

• En (70, 0): 3(70) + 5(0) = 210
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• En (70, 15): 3(70) + 5(15) = 210 + 75 = 285

Valor Óptimo: Al tratarse de un problema de maximización, el valor
óptimo será el máximo valor que se obtenga con los puntos considerados. Por
tanto, la máxima ganancia se obtiene en el punto (70, 15) con un valor óptimo
de:

vóptimo = 285 €.

Por tanto, el conjunto óptimo estaría formado únicamente por el punto
(70,15).

Finalmente se obtiene que la combinación óptima de productos a producir
sería: 70 productos tipo 1 y 15 productos tipo 2. Obteniendo así una ganancia
de 285€.

Una vez visualizado un problema de PL e introducidas las premisas nece-
sarias para el contenido que acontece, podemos empezar a plantearnos cues-
tiones de interés. Como por ejemplo, ¿Cómo varía nuestro problema cuando
realizamos una perturbación parcial en el vector b del miembro derecho de
las restricciones (RHS, del inglés right-hand side)?¿Y en A? Para responder
a estas cuestiones nos deberemos preguntar primero si existe algún modo
de cuantificar dicha perturbación es decir, ¿cuánto varía nuestro problema
cuando provocamos un cambio en el RHS o en A? Y lo que es más importante
¿Qué utilidad puede llegar a tener en un caso real?

1.3 Constante de Lipschitz
Con la finalidad de poder contestar dichas cuestiones surge la constante de
Lipschitz, la cual encuentra su utilidad cuantificando la tasa de variación de
una función en respuesta a cambios en su entrada (perturbaciones en b, en el
caso de este trabajo). En términos generales, una función Lipschitz continua
no varía abruptamente, esto es que existe límite superior para la tasa de
variación de la función. Para mayor formalidad, se tiene que la definición de
constante de Lipschitz es la siguiente:

Sea f : Rn → R una función continua definida en un conjunto convexo
S ⊂ Rn. Decimos que f es Lipschitz continua en S si existe una constante
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L ≥ 0 tal que para todos los puntos x, y ∈ S se cumple:

|f(x) − f(y)| ≤ L∥x − y∥,

donde L es la constante de Lipschitz de la función f , y ∥x − y∥ es una norma
(en este caso se empleará la norma ecuclídea) que mide la distancia entre los
puntos x y y en el espacio Rn.

Para ilustrar el concepto de constante de Lipschitz, consideremos una
función lineal f(x) = 1.5x + 2 y varios puntos de ejemplo en el dominio.
Usaremos esta función para calcular la constante de Lipschitz y mostrar cómo
se verifica la condición de continuidad Lipschitz.

−1 1 2 3 4 5 6

2

4

6

8

10

f(x1) = 5

f(x2) = 8

x

f(x)

Ejemplo de Continuidad Lipschitz

f(x) = 1.5x + 2
Segmento entre f(x1) y f(x2)

Cálculo de la Constante de Lipschitz:
Para verificar la condición de Lipschitz, calculamos la constante L de la

siguiente forma:

L = |f(x2) − f(x1)|
|x2 − x1|

= |1.5x1 + 2 − 1.5x2 − 2|
|x1 − x2|

= 1.5 · |x1 − x2|
x1 − x2

= 1.5. ∀x1 ̸= x2
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Esto indica que la función f(x) es Lipschitz continua y por tanto se puede
calcular la constante o cota superior de variación, que en este caso es L = 1.5.
Por tanto, la variación de la función está acotada por 1.5 · |x2 − x1| para
cualquier par de puntos en el intervalo observado. O en otras palabras, por
cada unidad que aumente el parámetro x, el valor de la función aumentará
en 1,5.

En resumen, la constante de Lipschitz nos permite evaluar cómo varía una
función al realizar cambios en su entrada. Sin embargo, para el contexto en
el que estamos trabajando, es necesario poder aplicarla también a conjuntos
de soluciones. Es por esto que más adelante extenderemos el concepto
de continuidad controlada a las multifunciones o mappings multivaluados
mediante la propiedad de Aubin-Lipschitz, la cual garantiza que ante pequeñas
perturbaciones en el parámetro, el conjunto de soluciones no se disperse
abruptamente. Esta propiedad es de vital importancia para el análisis de
estabilidad ya que asegura la robustez de las soluciones factibles u óptimas.
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Capítulo 2: Propiedad de Aubin y Módulo de
Lipschitz del Conjunto Factible

2.1 Introducción
Consideramos la multifunción conjunto factible F : Rm ⇒ Rn dada por:

F(b) = {x ∈ Rn | Ax ≤ b},

donde A es una matriz fija de tamaño m × n y b ∈ Rm es considerado como
parámetro.

Obsérvese que, en este contexto, estamos trabajando con perturbaciones
del miembro derecho de la restricción.

En cuanto a la topología de Rm, lo suponemos dotado de la norma del
supremo, ∥ · ∥∞, dada por:

∥b∥∞ = max{|bi| | i = 1, . . . , m},

y el espacio de la variable Rn, de la norma euclidiana, que denotamos simple-
mente por ∥ · ∥.

2.2 Módulo de Lipschitz
El objetivo de esta sección es, en términos informales, analizar la variación
de soluciones factibles respecto de perturbaciones de los parámetros. Esta
idea se formaliza a través de la propiedad de Aubin (también llamada
pseudo-Lipschitz), que definimos a continuación:

Definición. Sea b̄ ∈ Rm y sea x̄ ∈ F(b̄). Se dice que F(b) tiene la
propiedad de Aubin en (b̄, x̄) si existen una constante K ≥ 0 y entornos U y
V de x̄ y b̄, respectivamente, tal que:

d(x2, F(b1)) ≤ K∥b2 − b1∥∞, ∀b1, b2 ∈ V, x2 ∈ F(b2) ∩ W. (1)

Nota: d(x, F(b)) denota la distancia de x al conjunto F(b), definida como:

d(x, F(b)) = inf
y∈F(b)

∥x − y∥.
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El módulo de Lipschitz que denotamos por lip F(b̄, x̄), es el ínfimo de las
constantes K ≥ 0 que verifican la desigualdad (1) para determinados entornos.
Alternativamente, este módulo se puede escribir como sigue:

lip F(b̄, x̄) = lim sup
b1,b2→b̄
x2→x̄

x2∈F(b2)

d(x2, F(b1))
∥b2 − b1∥∞

. (2)

2.3 Fórmula Operativa para el Módulo de Lipschitz
Para culminar el capítulo, tan solo habría que implementar en MATLAB
la fórmula del módulo de Lipschitz. Sin embargo, nos encontramos ante la
tesitura de que aplicarla supone un coste computacional alto. La fórmula (2)
es difícilmente implementable en la práctica, dado que involucra a elementos
(parámetros y puntos) en un entorno del parámetro b̄ y el punto x̄. Es por
ello que la obtención de fórmulas más operativas, basadas exclusivamente en
los elementos nominales (b̄ y x̄) tiene un notable interés. En relación con
este comentario, el siguiente teorema proporciona una fórmula exacta para el
cálculo del módulo de Lipschitz basada únicamente en los datos nominales.

Por tanto buscamos una fórmula operativa que permita calcular el módulo
de Lipschitz y el siguiente teorema proporciona dicha fórmula que puede
encontrarse en M.J.Cánovas, A.L.Dontchev, M.A.López y J.Parra [2]:

Teorema. Sea b̄ ∈ Rm, x̄ ∈ F (b̄), se tiene que:

lip F (b̄, x̄) = 1
d(0, Cb(x̄)) ,

donde d(0, Cb(x̄)) representa la distancia del origen al conjunto convexo
Cb(x̄)

En lo que sigue, empleamos la siguiente notación:
Ib(x̄) = {i ∈ {1, . . . , m} | a′

ix̄ = bi},

es el llamado conjunto de índices activos y Cb(x̄) denota la envoltura convexa
de {ai | i ∈ Ib(x̄)}, esto es:

Cb(x̄) = conv{ai | i ∈ Ib(x̄)}.
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Recuérdese que para un conjunto C ⊂ Rn, conv C es el conjunto de todas
las combinaciones convexas de elementos de C, esto es:

conv C =
{

k∑
i=1

λix
i

∣∣∣∣∣λi ≥ 0,
k∑

i=1
λi = 1, xi ∈ C, i = 1, . . . , k, k ∈ N

}
.

Dirigimos al lector al libro clásico de Rockafellar [3] para un tratamiento
exhaustivo de la teoría y diferentes aplicaciones del análisis convexo.

Al representar gráficamente se observaría que los índices activos son aque-
llos índices de las restricciones que cumplen la igualdad en dicho punto.
Asimismo, el conjunto factible es un conjunto convexo (en el siguiente ejem-
plo), dado que está acotado. Gráficamente:

2 4 6 8 10 12 14 16 18 20 22 24

5

10

15

20

(6.19, 5.95)

(7.87, 14.35)
(16.88, 15.6)

(19.47, 2.63) x1

x2

x2 ≤ (30−x1)
4

x2 ≤ (5−x1)
−0.2

x2 ≤ (20+0.2∗x1)
1.5

x2 ≤ (20−x1)
0.2

Una vez explicados todos los conceptos y premisas anteriores, se puede
dar pie a la explicación del código de la fórmula operativa del módulo de
Lipschitz. Código en el cuál se utilizará como ejemplo el mismo sistema de
inecuaciones que en el ejemplo previo de la envoltura convexa.

Para su mejor comprensión, se reescribirá el sistema de ecuaciones de la
siguiente forma, asimismo se incluirá la función objetivo a minimizar además
de las cotas de no negatividad:
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Minimizar x1 + x2

sujeto a − x1 − 4x2 ≤ −30
− x1 + 0.2x2 ≤ −5
− 0.2x1 + 1.5x2 ≤ 20
x1 + 0.2x2 ≤ 20

De esta forma queda representada la matriz de coeficientes y el vector de
términos independientes.

A continuación se presenta el código MATLAB que proporciona el cálculo
del módulo de Lipschitz. Nuestro código calcula el módulo de Lispchitz
del conjunto factible en un punto fijo que seleccionamos previamente. Para
seleccionar dicho, incorporamos al modelo una función objetivo y obtenemos
una solución óptima del problema correspondiente. Así pues, el módulo de
Lipschitz obtenido nos medirá la variación local del conjunto factible alrededor
del punto óptimo elegido. Así pues, el cógigo consta de tres partes:

1. Parte 1: Cálculo de una solución optima, donde se determina una
solución del problema de PL y se obtienen los índices activos correspon-
dientes.

2. Parte 2: calculo de la distancia del origen al conjunto Cb(x)

3. Parte 3: obtención del módulo de Lipschitz como inverso de la medida
obtenida en el paso 2

Para la resolución del problema primal hay que definir el vector c a min-
mizar, la matriz de coeficientes A y el vector de términos independientes b,
además de indicar las cotas de no negatividad que en este caso no hay. Por lo
que atendiendo al sistema descrito anteriormente se tiene
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c =
[
−1
−1

]
,

A =


−1 −4
−1 0.2

−0.2 1.5
1 0.2

 ,

b =


−30
−5
20
20

 ,

lb = [ ], ub = [ ].

Por lo que se emplearía la función linprog() de MATLAB donde los parámet-
ros son los definidos anteriormente. La función linprog permite resolver proble-
mas de optimización empleando el método SIMPLEX, sirve tanto para sistema
de desigualdades (A y b) como de igualdades (Aeq y beq). Los parámetros
de la función son los siguientes linprog(c, A, b, Aeq, beq, lb, ub) donde lb y
ub son las cotas de no negatividad. Por lo que, una vez obtenida la salida
de la primera parte, habremos obtenido los índices activos necesarios para la
resolución del sistema dual, dado que si se sutituyen los valores óptimos en el
sistema, aquellas inecuaciones que más se aproximen al término independiente
serán los índices activos, para ello se calculará la diferencia entre el valor
de la restricción y el término independiente. Esta diferencia deberá ser muy
próxima a cero por lo que para el cálculo se empleará un epsilon de ε = 10−6.
Por tanto se tiene:
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Código MATLAB

c = [-1 -1]’;
A = [-1 -4; -1 0.2; -0.2 1.5; 1 0.2];
b = [ -30; -5;20;20];
lb = [];
ub = [];
[x,v,e,o,l] = linprog (c,A,b ,[] ,[] ,lb ,ub);

disp(’------ 1. Primal ------’);
x
disp(’valor ’)
v

epsilon = 1e -6;
residuo = b - A*x; % residuos de las restricciones
indices_activos = find( residuo < epsilon ); % encontrar

restricciones activas

disp(’Las restricciones activas son: ’);
disp( indices_activos );

Y como salida o resultado se obtendría
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Salida del código

------ 1. Primal ------

x =

16.8831
15.5844

valor

v =

-32.4675

Las restricciones activas son:
3
4

Como se muestra en la salida, el punto óptimo que minimiza la función
objetivo es el punto (16.8831; 15.5844), el cual corresponde con un valor
óptimo de -32.4875. Punto en el cuál se encuentra la intersección de la tercera
y cuarta restricción (restricciones activas).

Una vez obtenidas las restricciones activas necesarias para definir los puntos
de la envoltura convexa, se procede a calcular la distancia mínima del orígen
de ordenadas al conjunto convexo. Para calcular dicha distancia se empleará
la norma euclídea, por lo que el problema de minimización será cuadrático.

Cálculo de la distancia mínima al conjunto convexo

En este caso se requiere resolver

min
x

d(0, x) = ∥x∥2 s.a. x ∈ conv{a1, . . . , ak}.

Como

d(0, x) =
√√√√ n∑

i=1
x2

i =
√

x′x,
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es equivalente a

min x′x s.a. x =
k∑

i=1
λi ai,

k∑
i=1

λi = 1, λi ≥ 0.

Se define el problema cuadrático

min 1
2 z′H z + fT z s.a.

Aeq z = beq,

z ≥ ℓ.

Que atendiendo a f = 0n+k, se tiene

f ′z = 0,

por lo que la función objetivo quedaría como

min 1
2 z′H z

Se divide la variable z =
(

x
λ

)
con x ∈ Rn y λ ∈ Rk.

Matrices y vectores del sistema

H =
(

In 0
0 0k×k

)
, f = 0n+k,

Aeq =
− In Adual

01×n 11×k

 , beq =
(

0n

1

)
,

ℓ =
(

−∞ 1n

0k

)
.

En el ejemplo se tiene n = 2 y k = 2,

Adual =
(

−0.2 1.5
1 0.2

)
,

luego

H =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , f =


0
0
0
0

 ,
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Aeq =

−1 0 −0.2 1
0 −1 1.5 0.2
0 0 1 1

 , beq =

0
0
1

 , ℓ =


−∞
−∞

0
0

 .

Finalmente, en MATLAB se llama a la función

z = quadprog(H, f, [], [], Aeq, beq, lb, []);
x_opt = z(1:n);

y la solución buscada es xopt. Por lo que si transcribimos todo a MATLAB,
se tendría lo siguiente:

Código MATLAB (Minimizacón de la distancia a la envoltura convexa)

% Calculo de la distancia del origen a la envoltura
convexa de los a_i asociados a los indices activos

A_dual = A( indices_activos , :);
b_dual = b( indices_activos );
n = size(A, 2);
k = size( indices_activos , 1);
k = k(1);
H = [eye(n), zeros(n, k);zeros(k, n), zeros(k, k)]; %

matriz identidad para el dual
f = zeros(n+k, 1); % vector cero
A_eq = [-eye(n), A_dual ’; zeros (1, n), ones (1, k)];
b_eq = [zeros(n, 1); 1];
lb_dual = [-inf*ones (1, n), zeros (1, k)];
z = quadprog (H, f, [], [], A_eq , b_eq , lb_dual , []); %

solucion dual
Solucion = z(1:n);
disp(’Solucion optima :’)
disp( Solucion )
disp(’Distancia :’)
% norm( Solucion ) es la distancia desde el eje de

ordenadas hasta el punto
% que esta mas cerca del eje.
norm( Solucion )

Código del cual daría como resultado la siguiente salida
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Salida MATLAB

A_dual =
-0.2000 1.5000
1.0000 0.2000

b_dual =
20
20

n = 2
k = 2
H =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

f =
0
0
0
0

A_eq =
-1.0000 0 -0.2000 1.0000

0 -1.0000 1.5000 0.2000
0 0 1.0000 1.0000

b_eq =
0
0
1

lb_dual =
-Inf -Inf 0 0

Minimum found that satisfies the constraints .
Optimization completed because the objective function is

non - decreasing in
feasible directions , to within the value of the

optimality tolerance ,
and constraints are satisfied to within the value of the

constraint tolerance .

<stopping criteria details >
solucion optima

0.6396
0.5904

Distancia
ans = 0.8705
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De lo que finalmente, al obtener la distancia se puede proceder al cálculo
del módulo de Lipschitz dado que atendiendo a la fórmula

lip F (b̄, x̄) = 1
d(0, Cb(x̄))

daría como resultado el siguiente código

Cálculo del módulo de Lipschitz

disp(’------ 4. Calculo del Modulo de Lipschitz ------’)
;

disp (1/ norm( Solucion ));

código al que corresponde la siguiente salida

Salida MATLAB (Módulo de Lipschitz)

------ 4. Calculo del Modulo de Lipschitz ------
1.1488

Por lo que finalmente se obtiene que el módulo de Lipschitz para el problema
del ejemplo sería de 1.1488, indicando que tras una perturbación de magnitud
δ el valor objetivo variaría como máximo en 1.1488 · δ.
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Capítulo 3: Ejemplo académico
Una vez dado el contexto, esquematizado y explicado el cálculo y resolución
del módulo de Lipschitz, es posible que surjan cuestiones como cuál es la
finalidad de uso, en qué campos aplicar, etc. En este último capítulo se
procederá a mostrar un ejemplo práctico de aplicación real. Para dicho caso
emplearemos el contexto de producción empresarial con el fin de mostrar una
perspectiva empresarial, distinta de lo matemático como se venía viendo. El
ejemplo dice así:

Una empresa fabrica dos productos, P1 y P2, cuyos costos unitarios de
producción son 5€ y 4€ respectivamente. Según está definido el proceso de
producción, es de vital importancia cumplir los siguientes requisitos:

• Materiales: Cada unidad de P1 consume 2 kg de materia prima, y
cada unidad de P2 consume 1 kg. Además, se dispone de máximos 100
kg por día.

• Capacidad de producción: Por limitaciones técnicas, no se pueden
fabricar más de 40 unidades de P1, ni más de 60 unidades de P2 diarias.

• Demanda mínima: La producción total diaria (P1 + P2) debe ser al
menos de 30 unidades para cumplir con contratos establecidos.

Se pide determinar cuántas unidades de P1 y P2 deben producirse diari-
amente para minimizar el costo total de producción, garantizando que se
satisfagan todos los requisitos.

Solución:

Para la resolución del problema planteado primero habrá que definir el
sistema de inecuaciones junto con el objetivo a minimizar. Por lo que la
formulación del problema sería la siguiente:
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min 5x1 + 4x2

sujeto a 2x1 + x2 ≤ 100
x1 ≤ 40
x2 ≤ 60
− x1 − x2 ≤ −30
x1, x2 ≥ 0

Formulación en Matlab

% Definicion de parametros para linprog
c = [5; 4]; % Vector de costos
A = [2, 1; -1, -1]; % Restricciones :

% [2x1 + x2 <= 100]
% [-x1 -x2 <= -30] ( equivale a x1

+x2 >=30)
b = [100; -30]; % Limites de las restricciones
lb = [0; 0]; % Cotas inferiores (no negatividad )
ub = [40; 60]; % Cotas superiores ( maximos por

producto )

Una vez formulado e introducido los parámetros en MATLAB, la solución
obtenida sería la siguiente:
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Solución obtenida

Optimal solution found .

------ 1. Solucion Primal ------

x =
0

30.0000

valor

v = 120.0000

Las restricciones activas son: 2

Y sus valores lambda correspondientes : 4

A_dual = -1 -1

b_dual = -30

n = 2

k = 1

H =
1 0 0
0 1 0
0 0 0

f =
0
0
0

A_eq =
-1 0 -1

0 -1 -1
0 0 1

b_eq =
0
0
1

lb_dual =
-Inf -Inf 0 24



Solución obtenida

Solution found during presolve .

Some combination of the bounds , linear constraints , and
linear terms

in the objective function immediately lead to the
solution .

solucion optima
-1
-1

Distancia
ans =1.4142

------ 4. Calculo del modulo de Lipschitz ------
0.7071

De lo que se concluye que el número de unidades fabricadas de los productos
P1 y P2 que minimizan los costes de producción son 0 unidades fabricadas
de P1 y 30 unidades de P2, de lo que resulta un valor óptimo de 120 euros.
Correspondiendo con un módulo de Lipschitz de 0.7071, lo que indica que
la tasa máxima de variación de las soluciones factibles alrededor de (0,30),
con respecto a perturbaciones del miembro derecho de las restricciones es de
0.7071.
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