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Abstract: Background/Objective: There are several questionnaires for the challenge of anticipating
opioid use disorder (OUD). However, many are not specific for chronic non-cancer pain (CNCP)
or have been developed in the American population, whose sociodemographic factors are very
different from the Spanish population, leading to scarce translation into clinical practice. Thus,
the aim of this study is to prospectively validate a predictive model for OUD in Spanish patients
under long-term opioids. Methods: An innovative two-stage predictive model was developed from
retrospective (n = 129) and non-overlapping prospective (n = 100) cohorts of real-world CNCP
outpatients. All subjects used prescribed opioids for 6 or more months. Sociodemographic, clinical
and pharmacological covariates were registered. Mu-opioid receptor 1 (OPRM1, A118G, rs1799971)
and catechol-O-methyltransferase (COMT, G472A, rs4680) genetic variants plus cytochrome P450
2D6 (CYP2D6) liver enzyme phenotypes were also analyzed. The model performance and diagnostic
accuracy were calculated. Results: The two-stage model comprised risk factors related to OUD
(younger age, work disability and high daily opioid dose) and provided new useful information
about other risk factors (low quality of life, OPRM-G allele and CYP2D6 extreme phenotypes). The
validation showed a satisfactory accuracy (70% specificity and 75% sensitivity) for our predictive
model with acceptable discrimination and goodness of fit. Conclusions: Our study presents the
results of an innovative model for predicting OUD in our setting. After external validation, it could
represent a change in the paradigm of opioid treatment, helping clinicians to better identify and
manage the risks and reduce the side effects and complications.

Keywords: opioid use disorder; predictive model; chronic non-cancer pain; chronic opioid use;
ambulatory follow-up; prevention

1. Introduction

Opioid analgesics are recognized as a legitimate medical therapy for selected patients
with severe chronic non-cancer pain (CNCP) that does not respond to other therapies [1]. In
Spain, the use of opioid analgesics has increased by almost 54% overall from 2013 to 2019.
However, opioids are associated with risks that include aberrant drug-related behaviors
and opioid use disorder (OUD) in up to 20% of regular opioid prescriptions [2]. OUD is
detailed in DSM-5 as an unsuccessful effort to cut down or control use, social problems
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and a failure to fulfill major role obligations [3]. Thus, clinical tools, greater understanding
and better assessment are needed to properly screen and monitor patients under long-term
opioid prescriptions.

There is not enough understanding of the inter-individual variability in analgesic
administration and aberrant opioid-related behaviors [4]. The scientific literature has indi-
cated that some genetic polymorphisms (mu-opioid receptor 1-OPRM1 (A118G, rs1799971),
CYP2D6 (10 single nucleotide polymorphisms and copy number variation) and cathecol-
O-methyltransferase-COMT (G472A, rs4680), among others) may as well contribute to
inter-individual differences in morphine consumption [5,6].

In our Pain Unit (PU), a predictive model for OUD [7] was developed from a ret-
rospective cohort of patients under chronic use of opioids [8–11]. This model included
these actionable pharmacogenetic markers and other covariates such as age, employment
status and equivalent morphine daily dose (MEDD). In this way, the aim of this study
was to internally validate the model, in real-world CNCP outpatients, for future clinical
translation. We also examined the characteristics of routinely ambulatory CNCP patients
under long-term use of opioids.

2. Materials and Methods
2.1. Patients

An observational cross-sectional study was conducted on patients who routinely
attended the PU of Dr. Balmis General University Hospital. This study was approved
on 15 May 2020, by the Institutional Review Board (code PI2020-047) where procedures
were carried out in accordance with the Declaration of Helsinki. Enrolment began in
September 2021 and ended in July 2022. All patients included were ≥18 years old with
CNCP (moderate or severe pain lasting for six or more months) under long-term opioids
(≥6 months). The exclusion criteria were oncologic pain, opioid prescription <6 months
and prior inclusion in the retrospective cohort (model development). Informed consent was
obtained from all subjects involved in this study. This manuscript adheres to the applicable
STROBE guidelines.

2.2. Procedure and Variables

All subjects enrolled were attended by the research staff for data and saliva sample
collection. The variables were collected, in both groups (retrospective and prospective), at
the time of the enrolment. They were collected through patient self-report, validated scales
and questionnaires (described below) and completed through Electronic Health Records
(EHRs). After data collection, patients followed their routine clinical visit. Here, a medical
doctor (anaesthesiologist or clinical pharmacologist expert on pain) assessed the OUD
diagnosis based on DSM-5 criteria [12].

Sex (female/male), age, employment status (yes/no: active, retired, with work
disability-permanent or temporary, unemployed or homemaker) were registered. The
cut-off points for monthly incomes were established according to the Spanish minimum
interprofessional wage (EUR 1000) and the minimum vital income (EUR 500) to facilitate
the translation to other countries. Thus, data were categorized into low incomes—less
than EUR 500, middle incomes—between EUR 500–1000 or upper incomes—more than
EUR 1000.

The presence/absence of current and/or previous substance use disorders (SUDs)
(except opioid use) related to tobacco, alcohol or other illicit drugs were collected through
the review of medical diagnoses, narratives or any visit to the Addictive Behavior Unit.

Pain intensity and relief and quality of life were measured using the Visual Analogue
Scale (VAS) [13] included in the Global Pain State questionnaire [14], already validated.
The VAS for each indicator consists of a 100 mm horizontal line ranging from 0 (lowest) to
100 mm (highest). Specifically, quality of life was measured with the validated EuroQol-5D-
3L scale (registration number: 48802, available at https://euroqol.org/, accessed on 30 May
2021), which also includes a Health Utility Score [15] (five dimensions: mobility, self-care,
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usual activities, pain/discomfort and anxiety/depression; scores from 0 for death to 1 for
perfect health). In addition, the health resources use (any recent emergency department
(ED) visit, hospitalization or drug changes due to pain and other causes) was registered.

All and only prescribed drug use was registered and contrasted with EHRs, which
allows for reviewing drug prescriptions. Non-opioid analgesics (i.e., paracetamol and
metamizole), non-steroidal anti-inflammatory drugs (NSAIDs), weak (i.e., tramadol and
codeine) and strong opioids use (i.e., fentanyl, oxycodone, tapentadol, buprenorphine,
morphine, hydromorphone and methadone) and immediate release opioids were registered.
Buprenorphine, in our clinical setting, is also used for CNCP patients due to its versatility
in administration and its manageable side effects. In different opioid combinations, oral
MEDD was estimated using available references [16]. The prescription of antidepressants
(i.e., amitriptyline, duloxetine and escitalopram), benzodiazepines and neuromodulators
(i.e., pregabalin, lacosamide, gabapentin) were also collected.

What is more, patients’ reports of adverse events (AEs) were collected through a
list with the most frequent adverse drug reactions (ADRs, selected according to opioid
Summary of Product Characteristics frequency as “very common” and “common”) [17]
and a blank space to collect any other adverse event presented. In addition, patients were
asked about any depression or anxiety symptoms. They were also grouped by systems
according to the Medical Dictionary for Regulatory Activities Terminology—MedDRA
(available at https://www.meddra.org, accessed on 14 June 2022) [18,19].

2.3. Pharmacogenetic Analysis

Approximately 2 mL of saliva was collected in tubes containing 6 mL of PBS. Once
the saliva sample was taken, it was stored at −80 ◦C until its processing. Genomic DNA
was extracted using E.N.Z.A. forensic DNA kit (Omega Bio-Tek Inc., Norcross, GA, USA)
following the manufacturer’s instructions. The following gene variants were genotyped:
OPRM1 (rs1799971, A118G), COMT (rs4680, G472A) and CYP2D6*2, *3, *4, *5, *6, *10, *17,
*29, *35, *41, xN using the real-time PCR rotor gene Q system (Qiagen, Hilden, Germany),
through the use of specific TaqMan MGB® probes (Applied Biosystems, Waltham, MA,
USA). Amplification parameters were as follows: pre-PCR section 10 min at 95 ◦C, 40 cycles
for 15 seconds of denaturation at 92 ◦C and 1-min final extension at 60 ◦C. The specifications
regarding conversion from genotype to phenotype are in Appendix A.

2.4. Statistical Methods

It was expected to have 20 cases and 100 controls from the PU for 11 months based on
the inclusion rate of cases in the previous study [8]. We anticipated withdrawals, incomplete
data or losses to teleassistance instead of PU visits, shrinking the targeted enrolment to
100 patients.

We compared all the variables between the retrospective cohort (Sample 1) and the
new cohort (prospective cohort, Sample 2) using χ2 or Fisher’s exact test for categorical
variables and t-test or U Mann–Whitney test for continuous variables, depending upon
their distribution. Here, data distribution was analyzed with the Kolmogorov–Smirnov
test using the Lilliefors correction method. Quantitative parametric data (pain intensity,
relief and quality of life) are presented as mean and standard deviation (SD), whilst the
median and interquartile range (IQR) were used for not parametric data (age, quality of
life—Health Utility Score, MEDD, AEs). Categorical data (sex, employment status, income,
prior SUD, health resource use, drug use, AEs and genotypes) are expressed as percentages
(%). Gene frequencies were compared using the chi-squared χ2 goodness-of-fit test. For the
OPRM1 genotype, the G-carriers (subjects with AG or GG genotypes) were grouped due to
the limited G allelic frequency.

We applied the logistic regression model previously developed from Sample 1 (Table S1)
to calculate the risk of each individual as follows: eζ/(1 + eζ), where the linear predictor
ζ = b0 + b1x1 + b2x2 + . . . + bpxp contains five independent risk factors. In other words,
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ζ = 1.633 − 0.072 age + 2.012 work disability + 0.006 MEDD − 1.424 OPRM1 genotype
(AG/GG) + 0.075 PM CYP2D6 phenotype + 3.172 UM CYP2D6 phenotype.

The methodology proposed for the fitting and internal validation of the model was
as follows: First, the total sample was randomly divided into two parts: 80% (for model
fitting) and 20% (for validation). From here, a two-stage model was proposed for the model
adjustment due to the differences observed for (1) classifying patients in Sample 1 or 2 and
(2) predicting OUD risk in each Sample (1 and 2). Here, variables were selected for the
model on the basis of the investigators’ consensus on relevant measurable variables, the
results of previous studies [8,9] and the univariate analysis (p < 0.05). Three logistic regres-
sion models were constructed based on the standards for the model-building process [20].
The model selection followed two criteria: (1) small Akaike information criterion—AIC
and (2) significance of the variables. Non-significant variables were considered if their
coefficients were interpretable. On the other hand, the validation was performed on the
observations not used (20%) in fitting the model. This percentage was considered in order
to more accurately estimate the clinical usefulness (sensitivity and specificity). Calibration
(Hosmer–Lemeshow goodness-of-fit statistic) and discrimination (C-statistic, area under
the receiver operating curve) were measured to assess the model performance. All statis-
tical analyses were carried out using R (Version 3.2.0; the GNU project, Cambridge, MA,
USA) and GraphPad Prism (Version 5.0, Dotmatics, Boston, MA, USA).

3. Results
3.1. Participants and Variables

Sample 1 (n = 129) corresponds to the retrospective cohort of patients used originally
for the model development (7). Sample 2 (n = 100) corresponds to the new prospective
cohort of patients recruited, following the detailed inclusion criteria. Three subjects were
missing due to insufficient samples for the pharmacogenetic analysis (two for full analysis
and one for CYP2D6 analysis) (Figure 1). All patients enrolled attended our PU for regular
CNCP management due to lumbalgia (67%, mostly for disc disease pain from spinal canal
stenosis with or without a radicular or myofascial pain component), knee pain (gonalgia)
and other musculoskeletal pain (i.e., arthralgia and cervical joint dysfunctions).
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Figure 1. Flow chart of the patients included in a real-world Pain Unit setting.

Middle-aged (63–65 years old), predominantly female (67–70%), retired (50–40%)
with 18–25% of a previous SUD (mostly tobacco 71–96%) were the main characteristics
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of the population included. Half (53–67%) presented middle incomes; however, a higher
prevalence of upper incomes (42% vs. 13%, p = 0.04) and lower tobacco use (71% vs. 96%,
p = 0.03) was evidenced in Sample 2, as seen in Table 1.

Table 1. Sociodemographic, clinical and pharmacological characteristics of Samples 1 and 2.

Retrospective
Sample 1
(n = 129)

Prospective
Sample 2
(n = 100)

Sex (% female) 67 70

Age (years old) (median (IQR)) 63 (52–72) 65 (52–73)

Employment status (%)

Active 15 13

Retired 50 40

Work disability 21 26

Unemployed 7 6

Homemaker 7 15

Previous SUD (%) 18 25

Tobacco 96 * 71

Alcohol 4 25

Illicit substances 0 4

Incomes (%)

Less than EUR 500 20 5

Between EUR 500 to 1000 67 53

More than EUR 1000 13 42 *

Clinical outcomes (mean (SD))

Pain intensity (VAS, mm) 61 (28) 70 (26) *

Pain relief (VAS, mm) 38 (31) 41 (31)

Quality of life (VAS, mm) 46 (24) 46 (28)

Health Utility (0–1 score) (median (IQR)) 0.514 (0.113–0.732) 0.252 (0.051–0.648)

Health resource use (%)

Emergency room visits 30 42

Hospitalizations 14 25

Medication changes 50 51

Drug prescription (%)

Non-opioid analgesics 34 63 *

NSAIDs 17 22

Tramadol 22 45 *

MEDD (mg/day) (median (IQR)) 80 (40–160) * 60 (33–108)

Oxycodone 67 * 14

Fentanyl 15 24

Tapentadol 11 37 *

Buprenorphine 3 22 *

Morphine 3 3

Hydromorphone 1 0
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Table 1. Cont.

Retrospective
Sample 1
(n = 129)

Prospective
Sample 2
(n = 100)

Immediate release opioids 24 * 10

Neuromodulators 52 60

Antidepressants 50 46

Benzodiazepines 35 54 *
NSAIDs: non-steroidal anti-inflammatory drugs; MEDD: morphine equivalent daily dose, VAS: visual analog
scale, SUD: substance use disorder. * p-value < 0.05 comparing Sample 1 vs. Sample 2.

Patients of the prospective cohort (Sample 2) suffered higher pain intensity (70 (26)
vs. 61 (28) mm, p = 0.02) with the near double use of non-opioid analgesics (63% vs. 34%,
p < 0.001) and tramadol (45% vs. 22%, p < 0.001). However, less MEDD (median (IQR), 60
(33–108) vs. 80 (40–160) mg/day, p < 0.01) and immediate-release opioids prescription (10%
vs. 24%, p < 0.01) but higher benzodiazepines use (54% vs. 35%, p < 0.01) was observed
in front of the retrospective cohort (Sample 1). A different oxycodone, tapentadol and
buprenorphine use was also observed between Samples. In addition, the number of AEs
reported (2 (1–3) vs. 6 (3–8), p < 0.001) were significantly lower in Sample 2 (Table S3).

3.2. Model Performance

Due to the differences observed between Sample 1 and 2, the logistic regression model
previously developed from Sample 1 did not present good sensitivity (fewer false negatives,
14%) in the new cohort of patients (Sample 2). In this way, a two-stage model was proposed
for the adjustment of the developed model.

A total of nineteen variables were selected according to the established criteria (see
in statistical analysis) and entered in the logistic regression models as candidate predic-
tors: age, employment status (active, work disability and unemployed), prior SUD, pain
intensity, quality of life, tramadol use, MEDD, strong opioids use, fentanyl use, benzodi-
azepines use, ED visits, vomiting, sleep disturbance, psychiatric AEs, OPRM1 genotype
(AA, AG/GG), COMT genotype (GG, GA and AA) and CYP2D6 phenotypes (PM, EM and
UM) (Table S2)) [9,21–25].

Firstly, a logistic regression model was developed to classify patients in Sample 1 or 2
(Table 2). This model included nine independent factors: ζ = 0.242 − 1.950 active − 1.740
work disability − 3.976 unemployed + 0.004 MEDD + 3.493 strong opioid use − 2.626
benzodiazepines use − 1.496 ED visits + 2.289 psychiatric AEs − 2.159 COMT genotype
(GA) − 0.901 COMT genotype (GG). Here, the cut-off point (c = 0.57) presented the optimal
values for specificity (0.86) and sensitivity (0.85).

Secondly, two logistic regression models were developed to estimate OUD risk in each
Sample. The newly developed model for Sample 1 (Table 3) included four independent
factors: ζ = −0.622 − 0.057 age + 2.859 work disability + 0.006 MEDD + 1.191 PM CYP2D6
phenotype + 3.299 UM CYP2D6 phenotype. Here, the optimal values of specificity (0.82)
and sensitivity (0.94) were obtained with a cut-off point of 0.18. The C-statistic indicated
a satisfactory model discrimination (0.86). The model’s ability to accurately predict the
likelihood of developing OUD was measured with the test Hosmer–Lemeshow (p = 0.26),
which indicated a limited model fit.

The predictive model for Sample 2 (Table 4) included three independent factors:
ζ = −1.713 − 0.032 quality of life + 0.006 MEDD + 1.017 OPRM1 genotype (AG/GG) with
an optimal cut-off point of 0.19 for satisfactory specificity (0.78) and sensitivity (0.73). The
C-statistic indicated a satisfactory model discrimination (0.86). The Hosmer–Lemeshow
(p = 0.36) showed a limited model fit.
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Table 2. The logistic regression model chosen to classify patients in Sample 1 or 2.

β-Coefficients 95% CI Std. Error z-Value Pr (>|z|) a

Intercept 0.242 −1.53 to 1.95 0.873 0.277 0.78

Active −1.950 −3.65 to −0.35 0.831 −2.347 0.02

Work disability −1.740 −3.05 to −0.54 0.633 −2.750 0.006

Unemployed −3.976 −5.71 to −2.51 0.809 −4.914 <0.001

MEDD 0.004 −0.00 to 0.01 0.003 1.515 0.13

Strong opioids 3.493 2.05 to 5.24 0.803 4.349 <0.001

Benzodiazepines −2.626 −3.94 to −1.50 0.617 −4.254 <0.001

ED visits −1.496 −2.64 to −0.45 0.552 −2.707 0.007

Psychiatric AEs 2.289 1.21 to 3.52 0.583 3.929 <0.001

COMT
GA −2.159 −3.60 to −0.89 0.686 −3.147 0.002

GG −0.901 −2.56 to 0.70 0.824 −1.094 0.27
AEs, adverse events, ED: emergency department, MEDD: morphine equivalent daily dose, a p-value associated
with the z-value.

Table 3. Independent opioid use disorder risk predictors selected in Sample 1.

β-Coefficients 95% CI Std. Error z-Value Pr (>|z|) a

Intercept −0.622 −4.77 to 2.99 1.933 −0.322 0.75

Age −0.057 −0.12 to 0.00 0.032 −1.798 0.07

Work disability 2.860 1.33 to 4.78 0.848 3.373 <0.001

MEDD 0.006 0.00 to 0.01 0.003 2.444 0.02

CYP2D6
PM 1.191 −2.19 to 3.90 1.442 0.826 0.41

UM 3.299 0.82 to 5.97 1.255 2.628 0.009
MEDD: morphine equivalent daily dose, PM: poor metabolizer; UM: ultra-rapid metabolizer. a p-value associated
with the z-value.

Table 4. Independent opioid use disorder risk predictors selected in Sample 2.

β-Coefficients 95% CI Std. Error z-Value Pr (>|z|) a

Intercept −1.713 −3.35 to −0.31 0.759 −2.256 0.02

Quality of life −0.032 −0.06 to −0.01 0.014 −2.302 0.02

MEDD 0.005 −0.00 to 0.01 0.004 1.394 0.16

OPRM1 (AG/GG) 1.017 −0.36 to 2.56 0.727 1.400 0.16
MEDD: morphine equivalent daily dose, a p-value associated with the z-value.

3.3. Model Validation

The model developed for classifying patients in Sample 1 or 2 had a satisfactory
sensitivity and specificity (0.78 and 0.68, respectively) with a cut-off point of 0.35. On the
other hand, the models for predicting OUD risk presented adequate sensitivities (0.75 both
Samples) and specificities (0.81 and 0.57, Sample 1 and Sample 2) for a cut-off point of 0.08
and 0.10, respectively. Thus, the two-stage model presented on average 70% specificity and
75% sensitivity.

4. Discussion

We have developed and internally validated a predictive model as a screening tool
that can classify CNCP patients at risk for OUD when they are under long-term opioids.
This tool consisted of a two-stage model that comprised well-documented risk factors
related to OUD (younger age, work disability and high MEDD) and provided more useful



Biomedicines 2024, 12, 2056 8 of 11

information about other less-explored risk factors (low quality of life, OPRM-G allele and
CYP2D6 extreme phenotypes).

One of the novel features of this study is the inclusion of genetic variables in the
predictive model, which is lacking in many prior tools, including the Opioid Risk Tool. In
this era of precision medicine and artificial intelligence, healthcare could benefit from such
studies that utilize genetic predictors to stratify patients into risk categories for OUD [26].
What is more, while previous studies have developed predictive models with databases
from specific populations (e.g., a veterans’ health administration database) [21,27], our
model used regular CNCP patients from ambulatory PU data.

Clinical guidelines have been established and recommend CYP2D6 genotype testing
prior to prescription of tramadol or codeine, as it has been associated with failure of pain
treatment in PM (limited conversion to active metabolites) and a higher risk of AEs in
UM [22]. In the case of OPRM1, numerous studies have associated the mutant variant (118G)
with OUD risk, as they have observed a lower receptor expression in the membrane [23].
In this way, pharmacogenetic testing would allow healthcare providers to individualize
prevention strategies [24]

It is well-recognized that MEDD is a major determinant for developing an OUD [25].
Experts have agreed that lower doses of opioids could reduce the risk of opioid use disorder
and overdose [3]. Here, daily doses close to or greater than 100 mg/day are at higher risk
than dosages < 50 mg/day. Yang S. Liu et al. [28] developed and validated an OUD risk
predictive model in 316,039 patients from a national healthcare database, where MEDD
was one of the ten top-ranked predictors. Nevertheless, they lacked a clear indicator for
treated OUD, and the model interpretability needed further validation.

Data reveal that the opioid crisis disproportionately impacts some specific populations,
such as people with low incomes, with past or current substance abuse and untreated
psychiatric disorders [1]. Our data reveal that younger ages with a more vulnerable work
status can condition OUD, together with a low quality of life. The latter has been previously
linked with SUDs [29]. Thus, recognizing and measuring it in clinical practice should also
improve the outcomes in patients with OUD.

These results need to be interpreted with caution due to their limitations. Firstly, the
relatively poor incidence of OUD in our setting, being the result of clinical practice, could
have prevented us from detecting the causality and other potential risk factors. Here, it is
relevant to mention that patients came from a PU, where the prevalence of OUD is not even
described. However, based on the sensitivity and specificity results observed, we could
conclude that the predictive capacity of the model is adequate. In this study, we proposed
a decision tree, which can be very useful in subpopulations with differences.

Among other limitations, it is not clear how strong the influence of genetic factors is
compared to other factors in predicting OUD. Moreover, the allele frequency of CYP2D6
extreme phenotypes could have limited the detection of OUD risk with more accuracy,
although the results showed an adequate sample size. In addition, we should have consid-
ered the different metabolism ways related to each opioid drug used and coadjuvants with
potential inhibitory or enhancing effects, as they can have different addiction potentials
and a different affinity to opioid receptors and therefore different behavioral effects. Prior
SUDs were registered from the EHRs, which is limited by the missing information reported
by clinicians. However, it has been reported that the prevalence of this variable is lower
in prescribed opioid users [30]. Additionally, we only focused on musculoskeletal pain,
avoiding other types of pain. In addition, the family history of substance use disorder
together with the personality traits could have provided more comprehensive information
regarding the risk profile, improving the model accuracy.

Finally, the three genes studied have biologically plausible mechanisms for affecting
opioid response (CYP2D6—drug metabolism, OPRM1—drug target, COMT—pain percep-
tion). However, additional drug–gene associations have preliminary evidence (ABCB1-
morphine, CYP3A4-fentanyl, CYP2B6-methadone) [31] and should be explored in the next
study. Here, it is important to highlight that pharmacogenomic screening is not part of
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routine clinical care yet, but the increasing ease of the availability of genetic data due to
the improvement and reduction in the cost of the techniques available for its analysis is
progressively helping its implementation [32]. In addition, on 23 June 2023, the National
Health Services proposed the inclusion of pharmacogenomic testing in the genetic services.
The proposal included a minimum of 12 genes to cover a total of 65 drugs—23 for primary
use and 42 for secondary use. In this way, with a blood or saliva sample, we can obtain
information for more than 70% of the most common drugs, obtaining a high level of cost-
effectiveness. The rest of the variables (clinical and pharmacological) included in the model
are easily accessible and captured in clinical care. Thus, it must also be taken into account
that there are other factors that influence the variability of the response to drugs, such as
some environmental determinants. It is important to standardize the pharmacogenetic
report so that it is incorporated together with the rest of the variables. In this way, the
implementation of pharmacogenetics must involve multidisciplinary collaboration between
health professionals, which allows the assessment of the response to the treatment of each
patient taking into account their context, and other clinical variables.

The ultimate purpose of this model is to help identify patients who are prone to de-
velop OUD and who therefore should be closely monitored or may benefit from preventive
interventions. This model could only be applied in our center, where it has been developed,
and for a certain time. As a future research line for external validation, it is needed to carry
out a cross-validation procedure to obtain prediction intervals. At this point, it is crucial
to study a generalization of the model in other patient populations and clinical settings,
minimizing model overfitting.

5. Conclusions

We have developed an innovative predictive model based on real-world data from the
Pain Unit routine clinical care in Spain. This model could help to focus on patients requiring
monitoring or preventive interventions, optimizing medical resources and improving
patients’ quality of life. In this way, external validation is crucial to ensure the clinical
usefulness of the model in diverse patient populations and clinical settings.
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Appendix A

Regarding the CYP2D6 genotype, genetic analysis was based on the usual PCR meth-
ods following the instructions of Consortium of the Pharmacogenetics and Pharmacoge-
nomics Ibero-American network 21. These amplifications were carried out in a Mastercycler
384 (Eppendorf, Hamburg, Germany).

The combination of CYP2D6 alleles is used to determine a patient’s diplotype. Each
allele is assigned an activity score (AS) ranging from 0 to 1 (e.g., 0 for no function, 0.25
or 0.5 for decreased function and 1 for normal function) 22. Alleles *3, *4, *5, *6 (AS = 0)
have null function, while *10 (AS = 0.25) and *17, *29, *41 (AS = 0.5) a reduced function.
Alleles *1, *2, *35 (AS = 1) and duplications *1xN, *2xN, *35xN (AS = 2) have normal and
greater function, respectively. If an allele contains multiple copies of a functional gene, the
value is multiplied by the number of copies present. Thus, the CYP2D6 activity score is
the sum of the values assigned to each allele. The CYP2D6 activity score can be translated
into a standardized phenotype classification: null function (poor metabolizer, PM), normal
function (extensive metabolizer, EM) and increased function (ultra-rapid metabolizers,
UM) [22].
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