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Regression-based normative data for neuropsychological variables are increasing in popularity over the
last years. However, some use raw data while others use transformation when the observed response
variable is skewed. This work analyzes how well the linear models fit for each type of variable. We used
real data from a sample of n = 163 cognitively healthy individuals and compared the fit of linear
regression models for raw scores and for corrected scaled scores. We then simulated a population of
1,000,000 individuals and drew 1,000 random samples of different sizes (n = 100, 200, 5,000, 1,000,
10,000) for seven different scenarios, analyzed the percentage of individuals scoring in the lowest 5%,
and analyzed the agreement between models with the Cohen’s κ statistic. Linear models for raw scores
and for scaled scores were similar when the model included all the covariates, but barely identified low
scores when scaled scores were corrected with covariates taken from different regressions (κ = 0.58).
Models with raw scores showed that the expected number of individuals scoring low was close to the
expected 5%, whereas models with scaled scores with covariates taken from different regressions were
close to 0%. The two models agreed only when the response variable was random symmetrical and
uncorrelated with the covariates. When calculating normative data using linear regressions, raw scores
should be the preferred choice. If residuals analysis shows that the model does not fit the data well,
researchers should consider using nonlinear models. Transforming data for normality of the observed
response is discouraged.

Public Significance Statement
If the linear model assumptions hold, linear or binomial models with skew raw scores as response
variable fit the best. Models that transform raw data to scaled scores through percentiles do not fit the
data well, identifying a lower-than-expected percentage of individuals scoring low. If the model
assumptions do not hold, generalized linear models might be a good alternative to linear models with
transformed response variable.

Keywords: generalized linear model, linear regression, neuropsychological assessment, normative data,
residuals

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Mauricio A. Garcia-Barrera served as action editor.
Javier Oltra-Cucarella https://orcid.org/0000-0001-5966-8556
Rubén Pérez-Elvira https://orcid.org/0000-0001-9606-3791
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Normative data play a crucial role in detecting cognitive im-
pairments during neuropsychological assessments (Strauss et al.,
2006). By utilizing data derived from population-based samples,
clinicians can pinpoint cognitive impairments at an individual level
for patients with confirmed or suspected brain injuries. Normative
data are particularly essential for identifying memory impairments
in older adults with suspected mild cognitive impairment, Alzheimer’s
disease (AD), or other dementias, as the diagnostic criteria necessitate
objective cognitive impairment (McKhann et al., 2011; Petersen,
2004; Winblad et al., 2004).
Various methods exist for computing normative data (Strauss

et al., 2006), with increasing popularity observed in the use of
normative data based on linear regression equations. Unlike tra-
ditional normative data, which compute means and standard de-
viations for a sample or specific subgroups within a sample (e.g., age
ranges or sex), regression-based normative data (RBND) use linear
regression to predict a test score based on the performance from a
reference sample. The individual’s actual score is then compared to
the expected score of people of the same age, sex, or educational
level. RBND from different countries are available (delCacho-Tena
et al., 2024), with some providing online calculators to facilitate use
by clinicians (Calderón-Rubio et al., 2021; Iñesta et al., 2021, 2022;
Shirk et al., 2011). However, some RBND apply the same meth-
odology to different types of variables. While the predominant
approach involves regressing raw scores on demographic variables
such as age, sex, and level of education, alternative methodologies
have been employed. In these RBND approaches, raw scores are
first converted to percentiles and then further transformed into
scaled scores (SS) using percentile ranges. Subsequently, SS are
regressed on demographic variables. For instance, this methodology
was employed in developing normative data at the Mayo Clinic for
various tests, including theWechsler Adult Intelligence Test–Revised
(Ivnik et al., 1992b), the Free and Cued Selective Reminding Test
(FCSRT; Ivnik et al., 1997), and the Auditory Verbal Learning Test
(Ivnik et al., 1992a), among other tests (Ivnik et al., 1996) and updates
thereafter (Lucas et al., 2005; Steinberg et al., 2005; Stricker et al.,
2021). In Spain, different research groups have adopted these
methodologies for deriving normative data (Campos-Magdaleno
et al., 2024; García-Herranz et al., 2022; Peña-Casanova, Blesa,
et al., 2009), while others have utilized means and standard de-
viations (Campo &Morales, 2004) or applied RBND to raw scores
(Alviarez-Schulze et al., 2022; Calderón-Rubio et al., 2021; Guàrdia-
Olmos et al., 2015; Iñesta et al., 2021, 2022; Rivera & Arango-
Lasprilla, 2017).
Nevertheless, upon closer scrutiny of the RBND applied to SS,

concerns arise regarding the usability of these normative data. Such
concerns encompass both theoretical and practical implications. The
objective of this study is to assess the accuracy of RBND on SS and
analyze its psychometric properties.

Linear Regression: Brief Description

The general linear model (LM) refers to conventional linear
regression models in which a continuous response variable is
predicted using continuous or categorical predictors, as shown
below:

yi = β0 + β1x1i + β2x2i + · · ·+ βpxp + εi, εi ∼Nð0, σ2Þ, (1)

where yi is the score for individual i, β0 is the intercept, x1i, x2i, : : : , xpi
are predictor variables, β1, β2, : : : , βp are the unstandardized coef-
ficients for each predictor, and εi is a normally distributed error term. In
linear regression, the intercept is the mean value of the observed
response variable when all the predictors are equal to zero, and the
predictor’s coefficient is the mean change in the observed response
variable for each 1-unit increase in the predictor while holding the
remaining predictors constant. Different statistical tests and proce-
dures under the LMcan be performed, such as the analysis of variance
to decompose variation or t tests to assess whether a specific coef-
ficient is different from zero. For instance, the value of the t-statistic
and its associated p value are the same for a t test and for a univariate
linear regression with a dummy predictor. After having summarized
briefly the LM, we will now develop in detail our reasons to believe
that the use of linear regression on SS is incorrect.

Normality in Linear Regressions

The rationale behind the use of SS as the response variable in
regression analyses is that they are linear transformations of the raw
scores through percentile ranks, and thus nonnormal variables are
accommodated to a normal distribution. For instance, Karstens et al.
(2024) argued that “Standardized scores were used to minimize
skewness for tests that are not normally distributed” (p. 391), which
was argued by Peña-Casanova, Quiñones-Ubeda, et al. (2009) and
then replicated by others (Campos-Magdaleno et al., 2024; García-
Herranz et al., 2022) who argue that transforming raw scores to SS
through percentile ranks “produced a normalized distribution (M =
10; SD = 3) on which linear regressions could be applied.”

According to the literature cited in the work by Peña-Casanova,
Quiñones-Ubeda, et al. (2009), the rationale behind this claim is
rooted in the methodology outlined by Ivnik et al. (1992b). We
contend that this assertion likely reveals an unintentional mis-
understanding of the general LM, primarily due to two essential
reasons. First, Ivnik et al. (1992b) demonstrated that transforming
raw scores on the Digit Symbol subtest from the Wechsler Adult
Intelligence Scale–Revised to percentiles and then back to SS resulted
in an approximately normal distribution. This is likely because the
nature of the Digit Symbol subtest allows for a broad range of scores,
resulting in multiple scores falling within each percentile rank.
Consequently, although raw scores may not follow a normal distri-
bution, SS might exhibit an approximate normal distribution as they
are derived from percentiles rather than raw scores. However, this is
not applicable to skewed data such as raw scores on verbal memory
tests. For instance, raw total delayed recall scores from the Spanish
version of the FCSRT used in the work by Peña-Casanova, Quiñones-
Ubeda, et al. (2009) are bounded between 0 and 16, with most of the
normative sample scoring in the upper limit or showing ceiling
effects. This leads to a negatively skewed distribution of raw scores, a
common occurrence in the analysis of data from cognitively normal
individuals undergoing tests of verbal memory (Girtler et al., 2015;
Harrington et al., 2017; Uttl, 2005).

As an example, Figure 1 shows the distribution of raw scores and
the distribution of SS obtained through percentile ranks for the Total
Delayed Recall variable from the FCSRT taken from 163 cognitively
healthy participants (Calderón-Rubio et al., 2021). The lower bound
of scores is nine, with 48.47% of the sample scoring 16 and around
70% of the sample scoring 15 or higher. Taking the definition of
percentiles as the percentage of people in the sample showing a score
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equal to or lower than a given score (Crawford et al., 2009), per-
centiles assigned to scores 9–16 are 0.6%, 2.5%, 4.3%, 6.1%, 12.9%,
28.8%, 51.5%, and 100%, respectively. Consequently, around half of
the sample is assigned percentile = 100, resulting in the highest SS,
clearly indicating a nonnormal distribution of SS. This is consistent
with tables of normative data for memory tests in the work by Peña-
Casanova, Quiñones-Ubeda, et al. (2009), where a score of 15
corresponds to a SS of 13 and a score of 16 corresponds to a SS of 18.
Similarly, in the work by Campos-Magdaleno et al. (2024), the upper
raw scores on the delayed free recall from the California Verbal
Learning Test correspond to SS of 15 and the lowest scores corre-
spond to a SS of three, spanning more than 2 SD below the mean to
less than 2 SD above the mean. All these data show that, for skewed
data, transforming raw scores to percentile ranges and these per-
centiles to SS do not ensure an approximately normal distribution of
SS, rendering the first assumption incorrect.
However, the assumption that the observed response variable (i.e., a

factor of independent scores) must follow an approximately normal
distribution for the linear regression to be applied is not correct. As
shown in Equation 1, in the LM it is the residuals (i.e., the difference
between observed and predicted scores) and neither the observed
response variable nor the predictors which have to follow an
approximately normal distribution (Tabachnick & Fidell, 2013),
especially in small samples (Williams et al., 2013) for the inferential
results to be trustworthy. In fact, it has been argued that normality of
residuals does not significantly impact bias and outcome transformation
is unnecessary and even worse than normality assumption violation
(Schmidt & Finan, 2018). However, additional concerns arise when it
comes to the use of SS as response variables in the regression equation.

Predictors in the Regression Equation With SS as
Response Variable

Besides the distributional assumption of the observed response
variable mentioned in the previous section, the most significant

concerns are related to the use of SS, rather than raw scores, as
response variable in the model, and to the way previous research has
dealt with the predictors in the regression equation.

As was said in the preceding sections, the intercept is the mean
value of the response variable when all the predictors are zero. In
neuropsychology, most of the variables used as predictors in linear
regression analyses are continuous and positive, with no zero values.
For instance, raw age does not have zero values in data sets that
include people aged 50 or older. This implies that the intercept loses
its meaning and no longer reflects the mean value of the response
variable when all the predictors are zero, as there are no zeros in
the predictor variable. To address this issue, each predictor can be
centered around an arbitrary value, transforming each predictor to
have a value of zero. One common method of centering the pre-
dictors is using the mean of each predictor (Arango-Lasprilla et al.,
2017; Campos-Magdaleno et al., 2024; Peña-Casanova, Blesa, et al.,
2009), although the lowest value in the distribution can also be used
as reference (Calderón-Rubio et al., 2021; Iñesta et al., 2021, 2022).
In the absence of interactions, centering the predictors does not affect
either the predictor’s coefficient or its associated p value (Tabachnick&
Fidell, 2013; Williams et al., 2013), but makes the intercept
interpretable. When all the variables in the regression model are
interpretable, the regression equation provides a predicted score
that must be compared against observed scores (i.e., residuals) in
order to analyze the model assumptions of normality, indepen-
dency, and homoscedasticity of the residuals.

In neuropsychology, in order to test the accuracy of the regression
model, predicted scores must be calculated using the intercept and
the predictors’ coefficients as shown in Equation 1. The predicted
values are then subtracted from the observed values (y − ŷ), and the
difference is divided by the standard deviation of the equation. The
standardized difference between observed and predicted scores
provides a z-score that can be interpreted using tables of cumulative
probability, assuming that the residuals follow an approximate
normal distribution or the sample size is large enough. When using
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Figure 1
Histograms for Free and Cued Selective Reminding Test—Delayed Recall Raw Scores and Scaled Scores
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test scores to predict retest scores, this procedure is referred to as the
regression-based Reliable Change Index (Crawford et al., 2012;
Crawford & Garthwaite, 2007) and has proven effective to identify
individuals with mild cognitive impairment at a higher level of
progressing to AD (Duff et al., 2017; Oltra-Cucarella et al., 2022).
Recently, De Andrade Moral et al. (2022) showed that the accuracy
of the regression-based Reliable Change Index to identify in-
dividuals with cognitive decline approaches 95% for samples of size
200 or larger. These data suggest that linear regression is accurate to
identify cognitive impairment using a cutoff based on z-scores from
standardized residuals.
The accuracy of the methodology reported in previous works to

adjust SS using linear regression is unclear. Several works built the
regression equation using the uncorrected SS and a linear com-
bination of each predictor multiplied by its coefficient taken from
univariate regression models, without including the intercept
(Campos-Magdaleno et al., 2024; Delgado-Losada et al., 2021).
This raises several concerns. First, the lack of the intercept pro-
vides no reference of the mean value of the response variable when
all the predictors are zero. And second, as coefficients from separate
univariate regression equations are used, there is no possibility of
calculating the error of the equation. And, if residuals cannot be
calculated, then the model assumptions related to independence of
errors, homoscedasticity, and absence of outliers or leverage cannot
be tested. The rationale for using this methodology seems to be the
work by Mungas et al. (1996), where adjusted scores on the Mini-
Mental State Examination (Folstein et al., 1975) were calculated
without the intercept from a regression equation according to the
formula provided.
In summary, previous works aimed at developing normative

data using regression equations with SS as response variable raise
several doubts about the efficacy of their methodology: (a) They
rely on the assumption of normality of the observed response
variable by calculating SS for extremely skewed data, (b) they
generate separate univariate regressions for each predictor, and
(c) they combine coefficients from each separate univariate
regression into the same equation without considering the effects
of the intercepts. All these misunderstandings raise serious
concerns about the utility of that methodology for the calculation
of normative data. If the variables do not behave as expected based
on the statistical assumptions of the LM, the utility of the
regression model is unknown. Not only does this mean that RBND
have a high risk of both false negatives and false positives in the
identification of cognitive impairment, but also that other situa-
tions using standard scores in this manner might be unreliable. In
neuropsychology, as in other areas of psychology (e.g., intelli-
gence or depressive symptoms), LMs can be used to test the
effects of categorical variables (e.g., sex) on a continuous out-
come, and some use standard scores to interpret the model (i.e., the
regression-based Reliable Change Index). The aim of the present
work is to analyze how well RBND with SS as response variables
behave compared to RBND with raw scores as response variable
for extremely skewed data, because if there are significant dif-
ferences between methods, many areas in psychology and other
health sciences can benefit from our results by developing more
robust models. Our hypothesis is that the regression models with
SS as response variable will not fit the data as expected from
the LM.

Method

Transparency and Openness

This study’s design and its analysis were not preregistered, but
all code, scripts, and data are available at the first author’s website
(Oltra-Cucarella, 2025) and upon reasonable request.

We begin by analyzing the Delayed Recall scores from the
FCSRT observed in real data collected from 163 participants from
the Sabiduría y Experiencia program at the Universidad Miguel
Hernández de Elche (Bonete-López et al., 2021; Calderón-Rubio
et al., 2021; Iñesta et al., 2021, 2022), a study on aging and cognition
in highly cognitively active Spanish people aged 55 years or older.
These analyses are carried out to exemplify how to analyze and
interpret the residuals from the LMs, one with raw scores as the
response variable and one with SS as the response variable. The
Sabiduría y Experiencia study was approved by the Ethical
Committee at the Universidad Miguel Hernández de Elche.

The FCSRT is widely used to assess verbal memory through 16
items, which are presented in printed letters in four cards each with
four items. Examinees are requested to read the words out loud, and
a semantic cue is provided for each item for deep encoding of the
learning material (e.g., which one is a tool?). Examinees are required
to remember as many items as they can through three learning series
(free recall), and the semantic cues are provided for items not
recalled during learning (cued recall). Delayed recall is requested
(both free and cued recall) after 30 min. The Spanish version of the
FCSRT was used (Peña-Casanova, Gramunt-Fombuena, et al.,
2009) along with an additional recognition task (Bonete-López
et al., 2021). The present work focused on the Delayed Recall Total
score (FCSRT-DR), which ranges from 0 to 16 and includes both
free and cued recall. The FCSRT helps to differentiate between
storage and retrieval impairments and has been suggested as a
reference tool for the identification of memory impairments in AD
(Dubois et al., 2014).

A linear regression of FCSRT-DR raw scores on age, sex, and
education (as continuous) was run, and the regression assumptions
were statistically tested. Normality of residuals was tested with the
Shapiro–Wilk test. Independence of residuals and homoscedasticity
were tested with the Durbin–Watson (DW) test and the Breusch–
Pagan (BP) test, respectively, from the lmtest package. Leverage
was analyzed with the augment() function from the broom package,
with values ≥1 suggesting high leverage (Weisberg, 2014).

After analyzing the raw scores, we replicated the Mayo proce-
dure and transformed raw scores into SS through the percentile
range, and these SS were regressed on age, sex, and education
(continuous), and the same statistical tests were used to analyze the
residuals.

Simulating a Fictitious Population

Then, we simulated a population of 1 million individuals and their
associated age, sex, and education levels using the same data from
Sabiduría y Experiencia. The age variable was simulated from a β
distribution with shape parameters equal to 1.57 and 2.86, multi-
plied by 32 (the age range in the real data) and added to 55 (the
minimum age in the real data), to ensure simulated ages are between
55 and 87 (which is the range observed in the real data). The sex
variable was simulated from a Bernoulli distribution with a
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probability of success of 66.26%, which is the proportion of females
in the real data. Finally, the education variable was simulated from a
uniform distribution ranging from 3 to 22, which is the range of
years of education in the real data.
We simulated the individual scores considering seven main

scenarios. These included symmetric, left- and right-skewed score
distributions based on a normal (Scenarios 1–3) or binomial dis-
tribution (Scenarios 4–6) whose means depended on the age, sex,
and education covariates, plus a purely random symmetric score
distribution that was unrelated to the covariates, originating from a
normal distribution with a mean of 10 and a standard deviation of 3
(Scenario 7). We selected these seven scenarios to cover different
situations that can be found in real-world settings: Although the first
six scenarios simulate skewed data, the first three scenarios simulate
data from a normal distribution, whereas Scenarios 4–6 simulate
data from binomial distributions for discrete bounded data, which
are common in neuropsychological assessment and have proven
useful in previous research (De Andrade Moral et al., 2022).
Scenario 7 was proposed to understand how the two approaches
would behave when the data were generated from a normal dis-
tribution in the absence of the effects of covariates.
We now present the simulation setups for each of the first six

scenarios, starting with Scenarios 1–3 which involve simulating
from normal distributions. These equations follow from the for-
mulation of generalized linear models (McCullagh &Nelder, 1989).
Let Yi be the random variable representing the score for indi-

vidual i. For the scores simulated form a normal distribution
(Scenarios 1–3), we assume

Yi ∼Nðμi, σ2Þ: (2)

The left-skewed scores (Scenario 1) were obtained by specifying

μi = 15.1221 − 0.0325 × agei + 0.4699 × sexðfemaleÞi
+ 0.1364 × educationi, (3)

and σ2 = 1.7824. These parameter values were calculated by fitting
a linear regression model to the real data scores. For the right-
skewed scores (Scenario 2), the specification was

μi = 0.8779 + 0.0325 × agei − 0.4699 × sexðfemaleÞi
− 0.1364 × educationi, (4)

with the same value for the variance as before, which is simply
taking the complement of the intercept from 16 (which is the max-
imum score in the real data), and flipping the signs of the regression
coefficients. This is equivalent to fitting a linear regressionmodel to 16
minus the real data scores. For the symmetric scores (Scenario 3), first,
new scores were simulated to replace the scores in the real data, by
calculating

p*i =
expf1−0.03× agei+0.5× sexðfemaleÞi+0.1×educationig

1+expf1−0.03×agei+0.5× sexðfemaleÞi+0.1×educationig
,

(5)

then simulating from a normal distribution with mean 16 × p*i and
variance 16 × p*i × ð1 − p*i Þ. After that, a linear regression was fitted

using these newly simulated scores using the real data covariates,
allowing us to specify

μi = 9.5096 − 0.0802 × agei + 1.5911 × sexðfemaleÞi
+ 0.3501 × educationi, (6)

and σ2 = 3.6856.
We now present the simulation setups for Scenarios 4–6, which

involve simulating from binomial distributions. For this, we
assume

Yi ∼Binomialðm = 16, πiÞ: (7)

The left-skewed scores (Scenario 4) were obtained by specifying

log

�
πi

1 − πi

�
= 2.5779 − 0.0275 × agei

+ 0.4688 × sexðfemaleÞi
+ 0.1411 × educationi: (8)

These parameter values were obtained by fitting a logistic
regression to the real data. For the right-skewed scores (Scenario 5),
we used

log

�
πi

1 − πi

�
= −2.5779 + 0.0275 × agei

− 0.4688 × sexðfemaleÞi
− 0.1411 × educationi, (9)

which are obtained by simply flipping the signs in the logit scale;
this is equivalent to fitting a logistic regression model to 16 minus
the real data scores. For the symmetric scores (Scenario 6), a logistic
regression model was fitted to the simulated scores obtained in
Scenario 3 above, yielding

log

�
πi

1 − πi

�
= 0.3762 − 0.0212 × agei

+ 0.4217 × sexðfemaleÞi
+ 0.0940 × educationi: (10)

Simulation Studies

After simulating this population of 1 million individuals, the
simulation study consisted in drawing 1,000 samples of sizes 100,
200, 500, 1,000, 2,000, and 10,000 without replacement from this
population and then calculating (a) raw regression scores based on
the linear and logistic reliable change indices (“Raw Score Regression”
approach; RSR), (b) the SS which use the normal distribution quantile
function and covariate-based corrections (“Scaled Score Regression”
approach; SSR), (c) the percentage of the RSR scores that are equal to
or less than −1.64, which would indicate reliable decline, (d) the
percentage of the SSR scores that are equal to or less than five, which
would indicate reliable decline, and (e) Cohen’s κ agreement index
between the dummy variables which indicate reliable decline based on
either RSR and SSR.
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Calculating Scores Using the RSR Approach

To calculate the RSR scores, first a linear regression model is
fitted to the data using all available covariates (in this case, age, sex,
and education level). Then, a subsequent model is fitted using only
the covariates that were found to be significant at a 5% level, if there
was at least one nonsignificant covariate. After that, the linear
regression-based reliable change index is calculated using the up-
dated model. This is done by scaling the residuals by the estimated
regression standard deviation. We then expect that approximately
5% of patients should have an RSR z-score equal to or lower than
−1.64, which is the 5% percentile of the standard normal distri-
bution. We selected an RSR z-score below −1.64 for comparison
purposes with the SSR SS ≤ 5, as both correspond approximately to
5th percentile. We are aware that this cutoff is arbitrary, but it has
been suggested as a cutoff for identifying cognitive impairment in
single-case research when linear regression is used (Crawford &
Garthwaite, 2012).

Calculating Scores Using the SSR Approach

Here we are replicating what was done by the Mayo and
NEURONORMA methods. To calculate the SSR scores, first, we
calculated the empirical cumulative distribution function of the
observed scores. We then computed standard normal quantiles
based on the empirical cumulative distribution function values,
multiplied them by 3, added 10, and calculated their ceiling (i.e.,
the next closest integer; Peña-Casanova, Blesa, et al., 2009).
Values greater than 19 were replaced with the value 19, whereas
values less than 1 were replaced with the value 1. We call this
variable “uncorrected SSR,” or “uSSR.”After that, and as reported
in previous works (Campos-Magdaleno et al., 2024; Delgado-
Losada et al., 2021), separate linear regressions were fitted to these
scaled indices, one per covariate (in our case, three regressions,
one for age, one for sex, and one for education level), with the
regression for education level using a categorical variable equal to
1 if education level is between 0 and 5, equal to 2 if it is between 6
and 11, equal to 3 if it is between 12 and 15, and equal to 4 if it is
greater than 16, which we call SSR. The significance of each
predictor is assessed, and we calculate the following correction
components:

(see Equation 11 below)
where β̂age, β̂sex, β̂ed are the regression coefficients estimated by the
three separate linear regression model fits for age, sex, and education,
respectively. Finally, and following previous works (Campos-
Magdaleno et al., 2024; Delgado-Losada et al., 2021), the SSR for
individual i is obtained by calculating

SSRi = uSSRi − ðage*i + sex*i

+ education*i Þ, with low scores defined as SSR ≤ 5: (12)

We compared the frequency of each uncorrected SS with that of
the SSRi calculated as detailed above using the two-way random
intraclass correlation coefficient (ICC) as a measure of interrater
agreement with the icc() function in R. According to Koo and Li
(2016), values of ICC less than 0.50 are interpreted as poor, values
between 0.50 and 0.75 as moderate, between 0.75 and 0.90 as good,
and 0.90 or above as excellent agreement. Additionally, we calcu-
lated the agreement in the number of individuals showing a low score
(i.e., SS ≤ 5) for both the uSSRi and the SSRi with the Cohen’s κ
statistic (Cohen, 1960) using the kappa2() function from package irr
(Gamer et al., 2019), with values below 0.40, between 0.40 and 0.75,
and higher than 0.75 indicating no agreement, fair to good agree-
ment, and excellent agreement, respectively (Fleiss et al., 2003).

Implementation

All simulation studies, analyses, and graphs were generated using
R (R Core Team, 2024). The LM for the raw scores as the outcome
was calculated using package “LogisticRCI” (De Andrade Moral
et al., 2022).

Results

Regressions With the Real Sample

For the LMwith raw scores as the response variable, the Shapiro–
Wilks test showed nonnormality of residuals (W = 0.87, p < .001)
likely due to the relatively high sample size, the BP test showed no
heteroskedasticity in the residuals (BP = 5.81, p = .121), and the
DW test suggested independence of errors (DW = 1.99, p = .97).
There were no observations with high leverage. The percentage of
residual z-scores ≤ −1.64 was 7.3%, close to the expected 5%. All
these analyses suggest that the LM with raw scores as the outcome
holds reasonably well.

For the LM with SS as the response variable, the Shapiro–Wilks
test showed nonnormality of residuals (W = 0.94, p < .001), again
likely due to the relatively high sample size, the BP test showed no
heteroskedasticity (BP = 1.69, p = .640), and the DW test suggested
independence of errors (DW = 2.12, p = .396). There were no
observations with high leverage. The percentage of SS ≤ 6 was
4.2%, close to the expected 5%. All these analyses suggest that the
LM might hold reasonably well.

Last, the agreement on the SS assigned to each individual using
the Mayo procedure (one single regression with all covariates) and
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age*i =

(
fagei −meanðageÞg × β̂age, if age is significant

0, otherwise

sex*i =
�
sexi × β̂sex, if sex is significant

0, otherwise

education*i =

(
feducationi −medianðeducationÞg × β̂ed, if education is significant

0, otherwise,

(11)
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the SSR procedure (one regression for each covariate) was poor,
ICC = 0.19, F(162, 163) = 1.49, p = .005, 95% confidence interval
[0.04, 0.34], with fair to good agreement in the number of in-
dividuals obtaining a low score (Mayo = 4.2%, SSR = 1.8%; κ =
0.59, z = 8.25, p < .001), which implies that adding the effects of
covariates taken from separate regressions substantially changes the
SS obtained by including all the predictors in the same model.

Data From the Simulated Models

The results for the 1,000,000 left-skewed, right-skewed, and
symmetrical populations are depicted in Figure 2. The results for the
simulations of the seven different scenarios are depicted in Figure 3.
The results will be presented for each method separately.

Raw Score Regressions

When regressions were run using raw scores as the response
variable, the skewed models showed that the proportion of in-
dividuals showing a low score was close to the expected 5% for the
logistic models (Scenarios 4–6) and slightly lower than the expected
5% for the LMs (Scenarios 1–3). The symmetric model (Scenario 7)

showed that the proportion of individuals showing a low score was
close to the expected 5%.

Scaled Scores Regressions

When regressions were run using SS as response variable (three
separate regressions for predictors), the skewed models showed
that the proportion of individuals showing a low score was close to
0% both for the linear (Scenarios 1–3) and the logistic models
(Scenarios 4–6). Contrary to what was found for raw scores, the
symmetric model (Scenario 7) showed that the proportion of
individuals showing a low score was slightly lower than the ex-
pected 5%.

The discrepancy between the RSR and the SSR on the proportion
of individuals showing a low score is observed in the κ agreement
statistic, with values close to 0 for models with highly skewed
scores, either for the linear or the logistic models. However, when
the response variable was symmetrically distributed, the agreement
between the RSR and the SSR was excellent.

Discussion

The aim of the present work was to analyze whether regression
models of normative data using SS as the response variables would
behave similarly to regression models using raw scores as the
response variable, both for highly skewed data and for symmetric
data. Our hypothesis was that the regression models with SS as
response variable would not fit the data as expected according to the
LM. After simulating two skewed populations and one symmetric
population and applying seven different scenarios, our results
showed that the proportion of individuals obtaining a z-score for the
discrepancy between the obtained and the expected score was close
to the expected 5% for models using raw scores as the response
variable, but close to 0% for models using SS as the response
variables when covariates were obtained from different regression
models. Conversely, the symmetric models showed a proportion
close to the 5% both for raw scores and for SS as the response
variable, with the RSR performing better than the SSR.

Selecting the right model to develop normative data is important,
as normative data are used to diagnose neuropsychological im-
pairments that ultimately lead to neurological diagnoses such as AD
(Strauss et al., 2006). Although normative data have been calculated
traditionally using means and standard deviations for groups, linear
regression is becoming the preferred technique in the last years. For
example, previous works on normative data have used linear re-
gressions, with different response variables selected for the analyses.
Although using raw scores is the most common approach (Calderón-
Rubio et al., 2021; Iñesta et al., 2021, 2022; Kiselica et al., 2020;
Rivera & Arango-Lasprilla, 2017; Shirk et al., 2011), others have
opted to transform raw scores to percentiles, then percentiles to SS,
and finally use these SS as response variable (Campos-Magdaleno
et al., 2024; Karstens et al., 2024; Peña-Casanova, Blesa, et al., 2009).
The rationale for this methodology is that converting raw scores to
SS helps to normalize variables that do not follow a normal distri-
bution (Campos-Magdaleno et al., 2024; Karstens et al., 2024; Peña-
Casanova, Blesa, et al., 2009). However, as we have shown, this
rationale might be true for variables that deviate only slightly from
normality or have a wide range of scores (e.g., the Symbol Digit
Modalities Test) but is not true for variables that are highly skewed
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Figure 2
Histograms for Simulated FCSRT—Delayed Recall Raw Scores

Note. FCSRT = Free and Cued Selective Reminding Test. See the online
article for the color version of this figure.
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such as delayed recall scores from verbal memory tests such as the
FCSRT (Campo & Morales, 2004; Ehrenreich, 1995; Grau-Guinea
et al., 2021; Larrabee et al., 2000).
The first misconception is testing normality for the observed

response variable in the LM. Several works have emphasized that it
is the residuals which must follow an approximate normal dis-
tribution in linear regression (Kéry & Hatfield, 2003; Schmidt &
Finan, 2018; Williams et al., 2013), and even the normality of
residuals is the least important for the LM to fit if the sample size is
large enough (Schmidt & Finan, 2018). How large is large is a
matter of debate, but some authors argue that even samples with
two subjects per variable are large enough to estimate unbiased
coefficients and unbiased standard errors and confidence intervals
(Austin & Steyerberg, 2015).
The second concern was related to the use of SS as the outcome

variable in the linear regression model. Our results showed that
transforming highly skewed scores does not guarantee an approximate

normal distribution, and using SS as the outcomewas associatedwith a
very low proportion of individuals scoring SS ≤ 5 except when the
outcome followed an approximate normal distribution. These results
are in line with the example provided by Ivnik et al. (1992b) for the
Digit Symbol test, a test whose score distribution follows an
approximate normal distribution (Morlett Paredes et al., 2024;
Williamson et al., 2022). The assumption of normality in linear
regression must be checked on the residuals, and as Pek et al.
(2017) showed nonnormality of residuals is not a concern for large
samples and transformation are unnecessary as they might produce
more damage than maintaining raw scores. Our results are in line
with this suggestion, because although residuals did not follow an
approximate normal distribution, the model fitted the data well and
provided the expected number of low scores.

The third concern reported in the present work was the meth-
odology used to correct the SS according to a set of predictors
obtained in separate linear regression models. The model where SS
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Figure 3
Percentage of Low Scores for Each of the Seven Scenarios by Type of Regression

Note. Scenarios 1–3: symmetric, left- and right-skewed score distributions based on a normal distribution. Scenarios 4–6: symmetric, left- and right-skewed
score distributions based on a binomial distribution. Scenario 7: a purely random symmetric score distribution unrelated to the covariates, originating from a
normal distribution with a mean of 10 and a standard deviation of 3. RSR = raw score regression; SSR = scaled score regression.
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were regressed on age, sex, and education as predictors in one
regression model proved to be almost as reliable as the model using
raw scores as the outcome but computationally more complicated.
However, the model used to correct SS using the coefficients of
age, sex, and education from separate regressions was found to
identify a lower number of individuals as showing a low score,
with only fair to good agreement with the model including all the
predictors in one regression. These results suggest that converting
raw scores of highly skewed scores to SS through percentile ranges
and with coefficients for predictors taken from different regres-
sions is likely to bias the normative data toward higher SS, ren-
dering the ability of the normative data to identify impairment
more difficult. To avoid these issues, we recommend checking
carefully for the regression assumptions and also use the most
suited method for analysis. For example, if linearity does not hold,
predictors can be transformed in order to find an association
between predictors and outcome other than linear, as curvilinear
relationships have been reported in previous studies providing
normative data for the FCSRT when the quadratic effect of age and
education has been added into the model (Calderón-Rubio et al.,
2021; Iñesta et al., 2021, 2022). Additionally, a logistic model for
discrete outcome variables could be applied as it has been shown to
perform well compared to the LM even in small samples, since
the scores are discrete and bounded, and such type of response
variable can be modeled using a binomial distribution (De Andrade
Moral et al., 2022).
Finally, our simulation studies are not without limitations. First, it

is very common for discrete proportion data (discrete scores bounded
between 0 and a maximum) to present variability that is either lower
or greater than the expected by the binomial model (phenomena
referred to as under- and overdispersion, respectively). There are
extended models that can accommodate such features (Demétrio
et al., 2014), and future studies would benefit from taking these into
account to better understand how under- or overdispersion affects the
results. Second, although in the present study this did not seem to be
an issue, there are ways to accommodate heterogeneity of variances
within the LM framework. One suchway is to allow the variance to be
modeledwith predictors, within a distributional regression framework
(Klein, 2024). Third, the focus of this work was to analyze the
goodness of fit of linear regression models for different response
variables, and thus we used a group of cognitively healthy in-
dividuals to simulate data. This implies that there is no external
validator variable (e.g., disability) that might provide evidence of
the superiority of one model over the other, which warrants further
research in future studies.

Constraints on Generality

We used education, sex, and age to establish the “true” relation-
ships in the simulated population. However, there could be many
other, omitted predictors that can bear influence in the observed
scores. Future studies considering the inclusion of other predictors, or
even a latent variable approach, would be useful to understand how
the methodologies explored here perform when used to identify
individuals that show reliable decline. Relatedly, although out of the
scope of this work, we are aware that modifying the number of
covariates might have an impact on the results reported here. We
included in our models the most commonly demographic variables
used to predict scores on neuropsychological tests, but their specific

influence on different cognitive variables differs. For example, Peña-
Casanova, Quiñones-Ubeda, et al. (2009) showed that sex had almost
no effect on the FCSRT-DR score, whereas age had a very low effect
on the Boston Naming Test (Peña-Casanova, Quiñones-Ubeda, et al.,
2009). Future works will unravel whether modifying the number of
covariates has any effect on the regression model used to develop
normative data.

In summary, the present work has shown that when RBND are to
be calculated, the best approach seems to be using raw scores as
observed response variables and check the regression assumptions
to make sure that the model fits the data well. Conversely, using
transformed scores corrected using coefficients from different re-
gressions is associated with an upward bias and amarked decrease in
the number of individuals scoring in the expected lower tail of the
distribution, rendering that methodology prone to diagnostic errors.
In case that the model does not fit the data well, there are several
methods in the generalized LM that allow researchers to analyze the
association between a set of predictors and an observed response
variable that has a nonnormal distribution (Akram et al., 2023).
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