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Abstract

The genetic control of phenological traits in Japanese plum (Prunus salicina Lindl.) was investigated through quantitative trait
loci (QTL) analysis in three segregating F; populations: ‘Black Splendor’ x ‘Pioneer’ (BS xP10), ‘Red Beaut’ x ‘Black Splendor’
(RBxBS), and ‘Red Beaut’ x ‘Santa Rosa Precoz’ (RBxSRP), comprising 121, 103, and 103 seedlings, respectively. Whole-
genome sequencing (~80x) was conducted for the four parents, and progenies were genotyped using a cost-efficient reduced-
representation sequencing strategy. SNPs heterozygous in one parent and homozygous in the other were used to build six
parental linkage maps. Phenological traits, including beginning, full, and end of flowering (BF, FF, EF), flowering intensity (FI),
ripening date (RD), fruit development period (FDP), and productivity (P), were evaluated over three years. A total of 53 QTLs
were identified for flowering stages, 16 for RD, 18 for FDP, 10 for Fl, and 16 for P. Many QTLs were stable across years. Major QTLs
for flowering traits were mapped to LG1, LG2, LG4, and LG6, with a strong QTL for FF on LG6 of ‘Black Splendor’. In BSxPI0O,
BF was uncorrelated with FF and EF, indicating distinct genetic control likely inherited from ‘P10’, a low-chill cultivar. RD and
FDP were consistently associated with LG4, while productivity QTLs were detected on LG1, LG2, and LG4, often overlapping,
suggesting pleiotropic or tightly linked loci. In addition, candidate genes within stable QTLs were detected, providing imme-
diate targets for functional studies. This study provides one of the first genome-wide QTL analyses of phenology in Japanese
plum using low-coverage whole genome sequencing and offers valuable tools for marker-assisted breeding in this species.

Introduction

The Prunus genus encompasses economically significant species
in global agriculture, including P. persica (peach), P. avium (sweet
cherry), P dulcis (almond), P. armeniaca (apricot) and plum
species. The plum species, Japanese plum (Prunus salicina Lindl.)
and European plum (P. domestica L.), rank as the second most
important stone fruit crop following peaches, with a worldwide
production of around 12 million tons [1]. Unlike the hexaploid
European plum (6n=2x=48), the Japanese plum has a diploid
genome (2n=2x=16). It originated in China, but its modern
breeding history began in California by Luther Burbank, who
introduced interspecific crosses with several diploid plums,
such as P. americana Marshall, P. hortulana L. H. Bailey, P.
munsoniana W. Wight & Hedrick, or P. simonii Carriére, to enhance
its adaptation to local environments. Consequently, the term
‘Japanese plum’ refers to a diverse group of hybrids derived from
crosses involving up to 15 different Prunus species rather than a
single pure species [2].

Similar to other Prunus species and woody crops, plums typi-
cally have long breeding cycles due to extended juvenile periods,
complex reproductive biology, and a high degree of heterozygosity
[3]. The development of new cultivars is particularly needed in
plums, as global production largely depends on a limited number
of heirloom cultivars [4]. The improved cultivars can compen-
sate for the shortcomings of these heirloom cultivars. While the
most advanced plum breeding programs are primarily based in
California [2], significant efforts are also underway in countries
such as China, Japan, Chile, and Spain [5, 6]. The improvement
of phenological traits, such as flowering time or ripening date,
remains one of the main breeding objectives [2, 7], but these traits
are also increasingly affected by climate change [8, 9]. In regions
such as Badajoz, Spain, reduced winter chill threatens dormancy
release and flowering stability [10, 11].

The use of biotechnological approaches, such as marker-
assisted selection (MAS) or genomics, can help accelerate the
highly time-consuming breeding process in plum to develop
climate-resilient cultivars. The availability of molecular markers
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in Japanese plum remains limited, with initial efforts focused
primarily on self-incompatibility markers, which support the
evaluation of inter-compatibility among genotypes and aid
in crossbreeding strategies [12]. More recently, markers asso-
ciated with skin color [13] and flesh color [14] have been
developed, enabling precise prediction of red pigmentation
in both tissues.

Compared to other Prunus species, only a few studies have
focused on the identification of quantitative trait loci (QTLs)
linked to phenological and fruit quality traits in Japanese plum
[15, 16]. These studies have identified QTLs for traits such as
flowering time, ripening date, and flavonoid content, primarily
using linkage mapping based on genotyping-by-sequencing
(GBS). The main drawback of these studies is that they relied
on the peach genome [17] as a reference for read mapping, relying
on the high synteny between Prunus species [18].

More recently, the release of a new reference genome for P.
salicina has allowed the improvement of these previous results
[19]. These authors employed the genome of cv. ‘Sanyueli’
[20] to improve previous linkage maps and to elucidate QTLs
associated with phenolic compound content, specifically flavan-
3-ols. Although, GBS is a relatively inexpensive method for
genotyping large numbers of samples and provides more SNPs
than SNP arrays [21], new applications, also based on the reduced
representation of the genome, have been developed in the last
ten years, which greatly reduce the cost of sequencing [22].
Another cost-effective solution for F; populations typically used
in fruit tree breeding was recently proposed [23]. These authors
suggested that the use of the Smooth Descent (SD) algorithm, with
long-read sequencing of the parents and low-depth sequencing
with short reads of the descendants would reduce genotyping
costs. However, the application of these new approaches
is clearly scarce in Japanese plum and in Prunus species
in general.

The main goal of this study was to investigate the genetic con-
trol of key phenological traits in Japanese plum through QTL anal-
ysis of three F; populations. We aimed to construct linkage maps
and identify stable QTLs and candidate genes using an integrated
whole-genome sequencing strategy.

Results
Genome sequencing and assembly

The total number of raw reads was 720391 200, with the highest
number obtained for ‘SRP’ (193383502) and the lowest for ‘Black
Splendor’ (174744788). The total data output from the sequencer
was 108.1 Gb. After trimming the raw reads, more than 89% of the
raw data were retained. The highest number of retained reads was
observed for BS, with 90.03% (157 321 936) (Table S2).

The lengths of the assembled genomes ranged from 256.42 Mb
for SRP to 239.11 Mb for BS. Overall, a relatively small N50 value
was observed for all genomes, with BS exhibiting the highest N50,
indicating a higher proportion of longer contigs. The GC content
was consistent across all genomes, averaging approximately 37%.
The SRP genome had the highest number of contigs (97 639),
reflecting greater fragmentation, while the BS genome contained
the fewest (81968). However, BS also had the largest contig,
suggesting better representation of long continuous sequences.
Furthermore, BS exhibited a greater total length of long contigs

(>10000bp and > 25 000 bp), indicating that despite having fewer
contigs, they are substantially longer. All assemblies showed zero
ambiguous sequences, indicating a high level of precision in the
genome assembly process (Table S3).

After quality control, reads were realigned to the genome
assemblies to assess similarity. All reads from the four parental
assemblies were paired, with SRP showing the highest number
of paired reads (96.7 million), followed by PIO (88.5 million), RB
(87.6 million), and BS (87.4 million). The assemblies exhibited
high alignment quality, with approximately 50% of reads aligning
consistently at the correct distance and orientation to the
MaSuRCA assemblies. Notably, the PIO and BS assemblies had
the highest exact alignment rates (P10: 51.61%; BS: 52.06%) and
the highest overall alignment rate (94.34%) (Table S4).

The BUSCO analysis, based on the set of single-copy orthologs,
showed that more than 80% of the expected genes were identified
as complete (81.9% in SRP, 84.5% in PIO, 83.6% in RB, and 84.9%
in BS) for the MASURCA assembly (Table S5).

Genetic variation analysis in the parental
genotypes

Regarding small genetic variation, a total of 9223636 genetic
variants were identified using the analytical pipeline employed
in this study. This dataset included 276491 deletions, 284 641
small insertions, and 8662504 SNPs (Table S6). To refine the
dataset, SNPs with two or more alternative alleles in the VCF
file were excluded, resulting in a final set of 8616 483 SNPs. This
filtered set was subsequently used to calculate the number of
transitions and transversions. Within this final SNP dataset, 59%
were transitions (5067800 loci) and 41% were transversions
(3548683 loci), yielding a transition/transversion (Ts/Tv) ratio
of 1.44 for SRP, 1.43 for PIO, 1.43 for RB, and 1.41 for BS. Among
the transition variants, A/G and C/T substitutions were the most
frequent and occurred at similar rates. Among transversions,
A/T substitutions exhibited the highest frequency (~32%),
whereas C/G substitutions were the least frequent (~16%)
(Table S7).

Genotypic characterization of the
offspring

Two independent reduced representation libraries were prepared
for each DNA sample using two different restriction enzymes,
HindIll and Pstl. The average number of barcoded reads per
sample was similar between both restriction enzymes, with a
mean of 339194 for Hindlll and 329254 for Pstl. Likewise, the
proportion of barcoded reads that successfully aligned to the plum
reference genome was comparable, reaching 87.4% for Hindlll and
89.5% for Pstl.

Of the 384 DNA samples analyzed, 11 (2.9%) had fewer than
10000 reads in both libraries, indicating low DNA quality. Addi-
tionally, seven samples (1.8%) had fewer than 10 000 reads only in
the Pstl library, whereas 24 samples (6.3%) had fewer than 10 000
reads exclusively in the Hindlll library. These findings suggest that
the Pstl library preparation protocol may be slightly more robust
than Hindlll. The number of raw SNPs identified per haplotype of
each population was at least twice as high in the HindlIl library
compared to the Pstl library (Table S8).
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‘Red Beaut’

Figure 1 Illustrative images of several fruits of each parental genotype and fruits of each population evaluated in this study.

SNPs from both libraries were pooled and depth-filtered
(genotypes with depth less than 5 were set to missing) before
imputation with FSFHap. This process led to the loss of a sub-
stantial number of low-coverage SNPs. Of the 48 chromosomes
targeted for imputation (8 plum chromosomes x 3 populations x
2 parents), two failed: chromosome 8 of ‘Black Splendor’ could not
be imputed in either the BS x PIO or RB x BS populations, likely
due to the low number of raw SNPs in these regions. We infer
that the ‘Black Splendor’ cultivar may be identical-by-descent for
portions of chr8.

‘Santa Rosa Precoz’

Transmission and correlations of
phenological traits

The results showed that none of the traits followed a normal distri-
bution pattern within any of the three families (Table S9). Notably,
a significant proportion of seedlings across the three progenies
exhibited transgressive values beyond those of their parents for
the most of traits (Figs S1-S3).

The BS x PIO progeny exhibited the earliest flowering among
the studied populations, with a considerable number of
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Gaviota Santa Rosa | Queen Ann

Nubiana

Laroda Queen Rosa Burbank Formosa

Pioneer Black Amberjl Eldorado Burmosa

Black Santa Rosa
Red Beaut
Splendor Precoz

BSxPIO RBxSRP

Figure 2 The complete pedigree for each parental genotype. Magenta
circle highlights ‘Santa Rosa’ and its spontaneous mutant ‘Santa Rosa
Precoz’, identified by CSIC technician A. Molina [24]. In blue are the three
F1 Japanese plum populations.

individuals flowering earlier than both parental genotypes, BS
and PI0. Depending on the year, full flowering in some seedlings
occurred between January 20 and February 5 (Julian days 20 to 36)
(Fig. S1, Fig. S4A, Table S9). In contrast, the progenies of RB x BS
and RB x SRPinitiated flowering in mid-February, between Julian
days 41 and 47. The majority of individuals in both populations
exhibited delayed flowering compared to their respective parental
genotypes (Fig. S2, Fig. S4A, Table S9). Notably, the RB x SRP
progeny exhibited the latest flowering time among the studied
populations. Most genotypes within this progeny reached full
flowering starting from February 25 (Julian day 55) and extending
into the first or second week of March, depending on the year
(Fig. S3, Fig. S4A, Table S9).

Regarding flowering intensity and productivity, most indi-
viduals from the three progenies exhibited lower values than
their respective parents, indicating the presence of hybrid
weakness for these traits. This is consistent with the fact that the
parental genotypes of all three families displayed high flowering
intensity and productivity (Figs S1-S3, Table S9). Nevertheless,
the BS x PIO population showed higher flowering intensity and
productivity compared to the other two progenies, while RB x SRP
exhibited the lowest values overall. In addition, the BS x PIO
progeny exhibited a markedly extended fruit development period,
lasting approximately five months (Fig. S1, Fig. S4A, Table S9).

The Kruskal-Wallis test revealed significant differences among
years for all evaluated traits, except for productivity and flowering
intensity, which did not show significant differences in any of

the populations (Table S10). Flowering dates differed significantly
between years in all progenies, except for flowering onset in the
BS x P10 population. According to the pairwise comparison anal-
ysis (Table S11), significant differences were found for flowering
dates, except between 2019 and 2021 for full bloom and end of
flowering in the BS x PIO progeny.

Significant correlations among phenological traits were
observed across all three progenies over the three-year study
(Fig. S5). In RB x BS and RB x SRP populations, flowering dates
(BF, FF, EF) showed strong correlations (r > 0.74***), whereas in
BS x P10, only FF and EF were strongly correlated (r > 0.93***).
Flowering intensity (FI) and productivity (P) were positively
correlated in RB x BS (r=0.62***) and RB x SRP (r=0.59%**),
High correlations (r > 0.90***) were also found between FM and
FDP in both populations. Notably, inverse correlations between
FM/FDP and P, and between flowering dates and FDP, were
observed in RB x BS, with FF in 2021 showing the strongest
correlation (r=—0.47*). In RB x SRP, flowering dates and FM were
significantly correlated, especially in 2019 and 2020. Interannual
trait consistency was also high (Table S12).

The strongest year-to-year correlations for flowering dates were
seen in BS x PIO (r > 0.77***), followed by RB x BS (r > 0.65***)
and RB x SRP (r > 0.51***). FI showed high interannual stability
in RB x BS (r=0.99***), RB x SRP (r> 0.86™**), and to a lesser
extent in BS x PIO (r > 0.41***). RD, FDP, and P exhibited consis-
tently high correlations across years in all progenies (r > 0.81***)
(Table S12).

Principal component analysis (PCA) of phenological traits
(Fig. S4A) revealed key patterns of variation among the plum
progenies. The first two components, PC1 and PC2, explained
37.8% and 22.4% of the total variance, respectively. The scree
plot (Fig. S4B) showed that the first four components together
accounted for over 80% of the observed variance. Flowering traits
(BF, FF, EF) were the main contributors to PC1, while RD and
FDP predominantly influenced PC2. PC3 was primarily shaped
by Fl and P, highlighting their distinct contribution to phenotypic
variation.

Linkage mapping

Genetic linkage maps were independently constructed for each
parent across the three F; Japanese plum populations using SNP
markers filtered for quality (biallelic, MAF > 0.05, and less than
40% missing data) (Table S13).

In the BS x PIO population, 252 SNPs were mapped for the
Black Splendor (BS) parent and 519 for the PIO parent, resulting
in 9 linkage groups (LGs) for BS and 13 for PIO (Fig. 3). The BS
map spanned 707.78 centimorgans (cM), with LG2 as the longest
(175.08 cM), while PIO had a shorter map (417.64 cM) with higher
marker density (0.71 cM per SNP) and fragmentation in LG1, LG7,
and LG8 (Table 1).

For the RB x BS population, 441 SNPs were mapped for the
RB parent and 334 for BS (Fig. 4). The RB map comprised 15 LGs
with multiple unlinked segments in LG1, LG4, and LG8, covering
494.79 cM. In contrast, BS displayed 9 LGs spanning 769.81 cM,
with lower marker density (2.17 cM per SNP) (Table 2).

In the RB x SRP population, 428 SNPs were mapped for RB and
305 for SRP (Fig. 5). The RB map had 11 LGs, including segmented
LG2,LG5,and LG6, and spanned 646.26 cM. The SRP map extended
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Figure 3 Genetic linkage maps for each genitor in the F; Japanese plum population ‘Black Splendor’ x ‘Pioneer’. Markers positions are represented by
black lines. The linkage groups of the female progenitor ‘Black Splendor’ (BS) are indicated in light blue, and those of the male progenitor ‘Pioneer’ (PIO)
are indicated in green.
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Table 1 Description of each linkage group (LG) for each genitor in the F; Japanese plum population ‘Black

Splendor’ x ‘Pioneer’.

LG SNPs Total distance SNP density Maximum gap
(cM) (cM/SNP) (cM)
BS 1 39 87.71 2.25 8.01
2 26 175.08 6.73 17.38
3.1 23 33.17 1.44 15.05
3.2 19 9.67 0.51 3.72
30 132.61 4.42 9.07
5 54 137.75 2.55 13.83
6 38 45.56 1.20 7.95
7.1 13 14.18 1.09 4.11
7.2 10 72.05 7.20 33.93
8 0
Total 252 707.78 3.04
PIO 11 64 40.08 0.63 11.37
1.2 38 24.36 0.64 6.71
2 82 94.32 1.15 10.41
3 45 34.06 0.76 6.30
4 69 81.11 1.18 10.00
5 46 34.47 0.75 3.15
6 7 4.29 0.61 2.86
7.1 12 8.08 0.67 5.62
7.2 33 34.78 1.05 14.01
7.3 15 0.85 0.06 0.42
8.1 10 4.84 0.48 3.44
8.2 43 23.69 0.55 5.29
8.3 55 32.73 0.60 2.92
Total 519 417.64 0.71

to 909.23 cM with lower marker density (4.37 cM per SNP) and a
large gap in LG4 (20.08 cM) (Table 3).

Identification of QTLs linked to
phenological traits

Using the Kruskal-Wallis test, a total of 113 QTLs were identified
across the three F; families for the phenological traits evaluated,
of which 60 were considered stable.

Flowering phases (BF, FF, EF)

A total of 53 QTLs were detected—22 for full flowering (FF), 17
for end of flowering (EF), and 14 for beginning of flowering (BF),
with 18 classified as stable (Tables S14-S16). The RB x BS pop-
ulation contributed the most QTLs (32 total, 12 stable), followed
by RB x SRP (15 total, 3 stable) and BS x PIO (6 total, 3 stable).
Stable QTLs were mainly located on LG6 (5 QTLs), LG4 (4), LG3
(3), and LG2 (2) (Figs 6-8). Most SNPs associated with stable QTLs
linked to different flowering dates exhibited a significant allelic
effect over the three years of study, predominantly associated with
a delayed flowering time (Tables S17, S18 and S19). Notably, SNP
$6_32102679 on LG6 (in BS, RB x BS family) was highly associated
with FF (KW =24.05, p < 0.0001) (Table S18). Individuals carrying
the ‘T’ allele showed delayed FF compared to those with ‘CC’
genotype (Fig. S6). In contrast, for SNP S3_22540873 (LG3.3, BS in
RB x BS), the ‘G’ allele was linked to earlier BF (Fig. S7).

Flowering intensity

Ten QTLs were associated with flowering intensity (FI), of which
nine were stable. RB x BS and BS x PIO each contributed 5
and 3 stable QTLs, respectively, while RB x SRP contributed
two (one stable). Stable QTLs were distributed across most LGs
except LG3 and LG8 (Tables S14-S16). In RB x BS, the most
significant QTL was on LG2 (RB), with SNP S2_1349597 showing
that the ‘C’ allele increased flowering intensity (Fig. S8). For PIO
(BS x Pl0), stable QTLs were found on LG4 and LG7. SNPs such
as S4_26258734 and S7_10737280 were associated with higher
FI, while S7_20461521 showed a negative effect of the ‘A’ allele
(Table S17).

Ripening date and fruit development period

Sixteen QTLs were identified for ripening date (RD) (11 stable), and
18 for fruit development period (FDP) (12 stable). BS x PIO and
RB x BS contributed the most stable QTLs. Stable RD QTLs were
mostly located on LG1 and LG4.The most significant RD QTL was
found on LG4.2 of RB (RB x BS) (Table S15), with SNP S4_25017134
showing earlier ripening in ‘A’ allele carriers (Table S18). Another
RD QTL on LG4 in RB (RB x SRP) involved SNP S4_19494943,
where the ‘T’ allele delayed ripening (Fig. S9, Table S19). For
FDP, LG4 showed the highest number of stable QTLs. The most
significant FDP QTL overlapped with the RD QTL above, with
the ‘T’ allele of S4_19494943 linked to longer development
(Table S19).
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Figure 4 Genetic linkage maps for each genitor in the F; Japanese plum population ‘ Beaut’ x ‘Black Splendor’. Markers positions are represented by

black lines. The linkage groups of the female progenitor ‘Red Beaut’ (RB) are indicated in light blue, and those of the male progenitor ‘Black Splendor’

(BS) are indicated in green.

Productivity

Sixteen QTLs were detected for productivity, 10 of which were
stable. BS x PIO contributed the most (9 QTLs, 6 stable), followed
by RB x BS (4 stable QTLs). No stable QTLs were found in RB x SRP.
Stable QTLs were distributed across LG1 to LG7 (except LG8), with

LG2, LG4, and LG5 contributing the highest numbers (Tables S14-
S16). The most significant productivity QTL was located on LG1
of BS (BS x PIO), where SNP S1_21058354 showed that the ‘G’
allele conferred higher productivity compared to the ‘AA’ genotype
(Table S17).
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Table 2 Description of each linkage group (LG) for each genitor in the F; Japanese plum population ‘Red

Beaut’ x ‘Black Splendor’.

LG SNPs Total distance SNP density Maximum gap
(cM) (cM/SNP) (cM)
RB 11 24 18.02 0.75 3.85
1.2 6 2.14 0.36 0.63
13 44 35.09 0.80 23.06
2 33 65.54 1.99 8.12
3 55 88.92 1.62 24.80
4.1 35 19.24 0.55 5.98
4.2 23 17.50 0.76 2.99
5.1 17 8.52 0.50 8.40
5.2 8 0.99 0.12 0.59
5.3 24 15.17 0.63 1.58
6 25 23.98 0.96 3.50
7 63 118.35 1.88 17.28
8.1 19 6.99 0.37 2.71
8.3 57 73.34 1.29 29.70
8.2 8 1.00 0.12 0.55
Total 441 494.79 0.85
BS 11 11 20.88 1.90 4.55
1.2 25 55.83 2.23 5.43
2 64 103.24 1.61 9.69
3.1 22 6.00 0.27 1.94
3.2 29 76.20 2.63 26.49
3.3 28 42.53 1.52 22,77
4 0
5 58 103.94 1.79 10.65
6 47 168.80 6.26 21.80
7 50 67.04 1.34 12.56
8 0
Total 334 769.81 2.17

Discussion

This study presents one of the first comprehensive genome-
wide analyses of phenological traits in Japanese plum (P
salicina), integrating high-coverage WGS of parents and low-
coverage WGS (lcWGS) of progenies to construct linkage maps
and identify QTLs associated with key traits. This hybrid strategy
can help reduce some challenges associated with lc-WGS
such as genotype misclassification or sequencing errors being
erroneously classified as genetic variants [46]. In addition, this
strategy proved to be highly cost-effective and well suited for
implementation in new breeding programs. The total genotyping
costs for the progeny were maintained below $6 per individual.
These costs are consistent with other cost-efficient methods, such
as Skim-seq, which reports per-sample genotyping costs below
$3 [47]. In terms of cost per sample, and for the construction of
genetic maps in medium-size breeding populations, this strategy
is considerably cheaper than traditional SNP arrays; for example,
the 60 K array developed for almond costs approximately 33 €
per sample, even for consortium members (H. Duval pers. comm).
Other strategies such as GBS typically around $30 per sample
depending on depth and multiplexing level [34].

In this study, we present, for the first time, genetic linkage maps
for Japanese plum constructed using the P. salicina ‘Sanyueli’

reference genome. A limited number of genetic linkage maps
have been published for Japanese plum, all derived from F; pop-
ulations (Table S20). Among the maps generated, ‘SRP’ yielded the
longest (909.23 cM) with a marker density of 4.37 cM per marker,
except for the ‘SR’ male parent in [48], which reached 1349.6 ctM
albeit with lower marker resolution (16.1 cM/marker). However,
all these previous maps were aligned to the peach reference
genome. More recently, Battistoni et al. [19] enhanced the maps of
‘98-99’ and ‘Angeleno’ by aligning them to the P. salicina ‘Sanyueli’
v2.0 reference genome. Overall, the genetic maps developed
in this study demonstrate high quality and resolution, while
being generated through a cost-effective approach, making them
valuable resources for Japanese plum breeding programs.
Phenological evaluation across the three progenies revealed
broad variability, with many seedlings displaying transgressive
values beyond parental ranges. This reflects the impact of genetic
background, hybridization, and self-incompatibility in enhancing
heterozygosity and generating phenotypic extremes in Japanese
plum [51, 52]. Such diversity also explains the negative heterosis
observed for flowering intensity and productivity, where most off-
spring underperformed compared to parents—a trend consistent
with other Prunus species like sweet cherry and almond [53, 54].
Additionally, productivity may have been influenced by the use
of commercial rootstocks in parental trees, known to affect vigor
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Table 3 Description of each linkage group (LG) for each genitor in the F; Japanese plum population ‘Red

Beaut’ x ‘Santa Rosa Precoz’.

LG SNPs Total distance SNP density Maximum gap (cM)
(cM) (cM/SNP)

RB 1 66 89.47 1.36 16.98
2.1 31 47.19 1.52 10.35
2.2 7 24.54 3.51 12.95

3 61 152.27 2.50 16.00
4 52 116.35 2.24 10.37
5.1 45 62.60 1.39 15.60
5.2 12 10.08 0.84 3.01
5.3 14 5.99 0.43 1.11
6.1 44 64.25 1.46 20.15
6.2 33 24.22 0.73 3.07
7 0

8 63 49.29 0.78 4.05

Total 428 646.26 1.52

SRP 1.1 13 82.40 6.34 17.63
1.2 17 77.11 4.54 12.03
2.1 14 11.40 0.81 2.51
2.2 19 25.52 1.34 7.02
2.3 17 12.34 0.73 2.11

3 94 158.35 1.68 12.45

4 13 149.37 11.49 20.08

5 53 139.37 2.63 16.01

6 42 57.85 1.38 14.87

7 13 105.98 8.15 13.49

8 10 89.54 8.95 16.29
Total 305 909.23 4.37

and yield [55]. Similar transgressive patterns have been reported
in apricot for phenology and fruit quality traits [56], highlighting
the complex inheritance and influence of genetic diversity.
Although most phenological traits showed significant differ-
ences across years, the correlation coefficients between years
were consistently high. This suggests that, while environmental
conditions influence phenology, as previously reported for
Japanese plum [11], the strong interannual correlations point
to a substantial genetic effect governing the expression of
these phenological traits, despite the significant environmental
influence. Salazar et al. [11] observed interannual correlations
for bloom date in Japanese plum that were lower than those
found in the present study, with Pearson correlation coefficients
ranging from 0.49 to 0.59 (P < 0.0001). Additionally, for ripening
date, the highest interannual correlation they reported ranged
between 0.69 and 0.78, values that are lower than those
observed in our three populations (0.959, P-value <0.001). This
interannual variability in phenological traits is influenced by
varying climatic conditions each year, particularly temperature,
which affects winter chilling accumulation. The differences in
chilling accumulation and its dynamic variation between years
contribute to the observed phenological differences, as noted by
other researchers [54, 57]. Moreover, many of the evaluated traits
exhibited substantial and significant interannual correlations,
further supporting the idea that genetic factors play a significant
role in phenological expression, despite environmental effects.

Additionally, high correlation coefficients were observed
between RD and FDP, with coefficients exceeding 0.90*** in
the RB x BS and RB x SRP populations over the three years
of evaluation. Similar correlations were reported by [14] in
Japanese plum, with RD and FDP showing correlation coefficients
greater than 0.75. In the RB x SRP population, flowering date
(FD) was significantly correlated with RD throughout the three
years. Specifically, the years 2019 and 2020 showed the highest
correlations, with values of 0.44*** in 2019 and 0.47*** in 2020,
suggesting that later flowering in the genotypes results in delayed
ripening. This correlation has also been reported in Japanese
plum by [15] in the ‘98-99’ x ‘Angeleno’ population.

To date, research on QTLs linked to phenological traits in
Japanese plum species has been limited, as most studies have
focused on fruit quality traits [15]. As a result, information on
the genetic architecture of these phenological traits is scarce,
highlighting the importance of the present study. In this study,
we successfully identified a large number of QTLs associated
with phenology and investigated the allelic effects of significant
markers. This analysis enabled the identification of significant
SNPs linked to regions associated with phenological traits, which
could be used in marker-assisted selection.

The results obtained regarding the QTLs associated with flow-
ering dates (BF, FF, and EF) across the three populations high-
light the considerable complexity of this trait. In the BS x PIO
population, the most statistically significant QTLs associated with
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BF were located in the LG3.1 of BS, as well as in LG3 and LG4
of PIO. These two candidate regions in PIO may contribute to
the unique lack of correlation between BF and both FF and EF,
suggesting a distinct genetic architecture underlying BF in this
population. This is likely attributable to alleles inherited from PIO,
which is characterized by a notably low chilling requirement—
approximately 334 chill units or 22 chill portions [58]. Conversely,
within the RB x BS population, the most notable QTLs for FF were
identified in the LG1.3 of RB and LG6 of BS. The comparison of
the QTLs identified in the four progenitors further emphasizes the
diverse genetic regions involved, reinforcing the hypothesis that
the expression of flowering time is influenced by multiple genes.
This finding is consistent with previous studies on species such
as peach, sweet cherry, and apricot [59], which also suggest that
flowering time is a polygenic trait with complex genetic control.
One previous study focused on identifying flowering-related QTLs
in Japanese plum and successfully detected QTLson LG1, LG6, and
LGT7 [15]. Furthermore, Salazar et al. [60] used SNP-based genome-
wide association studies (GWAS) with GBS to identify markers
associated with flowering date in Japanese plum. Additionally,
Branchereau et al. [61] evaluated the traits of flowering onset,
full bloom, and end of flowering in two populations of sweet
cherry, detecting QTLs for these traits in nearly all linkage groups
across both populations. The complex genetic control of flowering
has also been clearly confirmed here, with the most significant
markers located in the terminal region of LG1 and the middle
region of LG7, while LG4, LG6, and LG8 also showed correlations
with flowering date. Through the detection of candidate genes,
this study confirms and expands previous knowledge in Japanese
plum about flowering.

Regarding flowering intensity, studies identifying QTLs in
Prunus species have been limited to date. In the present study,
we have revealed the presence of QTLs associated with flowering
intensity in various genomic regions, depending on the population
under investigation. In the BS x PIO population, significant
QTLs were identified in the PIO parent on LG4, associated with
flowering onset, as well as in two segments of LG7. In the
‘RB x BS’ population, QTLs were located on LG1.1, LG2, LG4.2,
LG6, and LG8.2, with the most significant QTL found on LG2 of
the RB parent, overlapping with both flowering and productivity
traits. The most important QTLs for BS were found on LG1.2,
associated with productivity, and on LG6, linked to flowering.
A previous study by Sanchez-Pérez et al. [54] identified a QTL
for flowering intensity in almond, specifically on LG4; however,
this QTL exhibited very low significance, explaining less than 12%
of the phenotypic variance, and was therefore not considered a
major QTL.

Concerning the identification of QTLs associated with RD and
FDP, significant findings were observed across the three popula-
tions. The female parental lines—BS in BS x PIO, RB in RB x BS,
and RB in RB x SRP—all exhibited highly significant QTLs for both
RD and FDP on LG4. These results align with previous studies on
Japanese plum [4, 15] and other Prunus species such as peach,
apricot, and sweet cherry [59, 62], where LG4 has consistently
been identified as a crucial genomic region regulating these traits.
In contrast, the male parental lines displayed a greater diversity
of linkage groups with significant QTLs, with the most notable
being two segments of LG1 (LG1.1and LG1.2) and LG2in PIO, LG3.3
and LG5 in BS, and LG1.1 in SRP. Furthermore, it is noteworthy
that, across most linkage groups, the QTLs associated with RD

and FDP often exhibit spatial overlap, as indicated by their shared
confidence intervals.

Regarding productivity, QTLs were identified in different
genomic regions, depending on the specific population. In the
BS x PIO population, the most significant QTL was located on LG1,
while in the PIO parent, QTLs associated with productivity were
found on LG5. In the RB x BS population, the most significant
QTLs were located on LG2 and LG4.1 in RB, while in BS, the second
segment of LG1 showed the most notable QTLs, similar to the
findings in the first population. The RB x SRP population was the
only one where no consistent QTLs were detected across the three
years, perhaps due to some limitation in the genetic architecture
caused by the genetic origin of both parents. Variability in the
localization of QTLs across linkage groups has also been reported
in other studies. Sanchez-Pérez et al. [54] identified a QTL for
productivity on LG4 in almond, though its significance was highly
irregular, explaining a very low percentage of the phenotypic
variance. In peach, QTLs related to productivity have been
identified in various linkage groups, such as LG8 [63] and LG6
[64]. These findings, therefore, underscore the complexity and
variability of the genetic factors influencing productivity in Prunus
species.

The prediction of the effects of all significant SNPs associated
with the most conserved QTLs (present in at least two years) was
performed using SnpEff [65]. The 95 unique SNPs produced a
total of 236 predicted effects. Of these, 212 (89.83%) had mod-
ifier impact, 11 (4.66%) had moderate impact, and 13 (5.51%)
had low impact (Table S21). The largest number of effects was
detected for full flowering (FF) time, with 62 effects. A list of candi-
date genes associated with our target traits was identified. Some
can be considered priority candidates for marker development,
such as ethylene receptors, heat shock transcription factors, and
shikimate hydroxycinnamoyl transferase (HCT). The enzyme shiki-
mate O-hydroxycinnamoyl transferase [EC:2.3.1.133] was affected
by an SNP located in a stable QTL for BF and plays a critical
role in the phenylpropanoid pathway during seed-plant devel-
opment [66]. In transgenic alfalfa lines in which HCT levels were
severely down-regulated, significant stunting, reduced biomass,
and delayed flowering were observed [67].

For FF, significant SNPs affected several ethylene receptors, for
example ethylene receptor [EC:2.7.13.-], and EREBP-like factors.
EREBPs, together with AP2 (APETALA2), compose the AP2/EREBP
superfamily, one of the largest groups of plant-specific transcrip-
tion factors. They play vital roles in plant growth and development
and in responses to diverse stresses including extreme tempera-
tures, drought, high salinity, and pathogen infection [68]. Other
enzymes affected by significant SNPs were methionine-cycle or
MTA (Yang cycle) enzymes, specifically 5-methylthioribose kinase
and methionine synthase, which supply ethylene precursors
[69, 70]. In addition, Rab11A-dependent tip-focused trafficking
and acyl-CoA synthetase functions provision sporopollenin
and lipid-derived aroma and support pollination and volatile
emission [71, 72].

For EF, the same significant SNP S8_27668999 detected for FF
affected the ethylene receptor or EREBP-like factor. In addition,
another significant SNP affected the regulator of nonsense tran-
scripts 3 (UPF3). In Arabidopsis, loss of the core NMD proteins
UPF1 and UPF3 leads to late flowering, which suggests that the
nonsense-mediated mRNA decay surveillance system can epige-
netically modulate flowering time [73].
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Figure 6 Consistent QTLs across the three years of phenotyping for phenological traits in the parents of the ‘Black Splendor’ (BS) x ‘Pioneer’ (PIO)
population. The first number indicates the scaffold it represents, while the second number indicates the subgroup when multiple linkage groups are
involved. The markers are listed on the right side of each LG, and the QTLs are depicted on the left side of their corresponding LGs. The representation of
the QTLs includes a thick line indicating the most significant part of the QTL and a thin line indicating the entire significant interval (*P < 0.01; **P < 0.005;
P < 0.001; ****P < 0.0005; *****P < 0.0001). The most significant markers of each QTL are shown in bold and in the color assigned to the trait.
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Figure 7 Consistent QTLs across the three years of phenotyping for phenological traits in the parents of the ‘Red Beaut’ (RB) x ‘Black Splendor’

(BS) population. The first number indicates the scaffold it represents, while the second number indicates the subgroup when multiple linkage groups are
involved. The markers are listed on the right side of each LG, and the QTLs are depicted on the left side of their corresponding LGs. The representation of
the QTLs includes a thick line indicating the most significant part of the QTL and a thin line indicating the entire significant interval (*P < 0.01; **P < 0.005;
%P < 0.001; ****P < 0.0005; *****P < 0.0001). The most significant markers of each QTL are shown in bold and in the color assigned to the trait.
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Figure 8 Consistent QTLs across the three years of phenotyping for phenological traits in the parents of the ‘Red Beaut’ (RB) x ‘Santa Rosa Precoz’ (SRP)
population. The first number indicates the scaffold it represents, while the second number indicates the subgroup when multiple linkage groups are
involved. The markers are listed on the right side of each LG, and the QTLs are depicted on the left side of their corresponding LGs. The representation of
the QTLs includes a thick line indicating the most significant part of the QTL and a thin line indicating the entire significant interval (*P < 0.01;

**P < 0.005; ***P < 0.001; ****P < 0.0005; *****P < 0.0001). The most significant markers of each QTL are shown in bold and in the color assigned to the

trait.

A common significant SNP across all flowering dates,
S4_28542930, located in a stable QTL on chromosome 4,
had a modifier effect on carboxy-terminal domain (CTD) RNA
polymerase Il polypeptide A small phosphatase [EC:3.1.3.16]. This
CTD small phosphatase dephosphorylates the RNA polymerase
Il C-terminal domain. CTD small phosphatases, such as CPL1
and CPL3, act as regulatory switches in flowering control by
modulating CTD phosphorylation and by interacting with key
flowering repressors such as FLOWERING LOCUS C (FLC) [74-
76]. Through these actions, CTD small phosphatases integrate
signals that finely regulate flowering time and ensure flowering
at appropriate developmental stages and under suitable environ-
mental conditions [74-76]. In Prunus species, especially Japanese
plum (P, salicina), there is no previous evidence that specifically
links CTD phosphatases to flowering regulation as described in
Arabidopsis.

For Productivity, the significant SNP S1_27714189 showed an
effect on urease [EC:3.5.1.5], a nickel enzyme that hydrolyzes
urea into ammonia and carbamate, which then forms car-
bonic acid and ammonia. In perennial fruit trees such as
apple and peach, urease activity hydrolyzes foliar-applied
urea into usable nitrogen. This enhances nitrogen remobiliza-
tion, vegetative growth, and ultimately fruit yield efficiency
[77,78].

For ripening date, the significant SNP S1_39702792 affected a
heat shock transcription factor. Heat shock transcription factors
regulate the expression of heat shock proteins in response
to diverse stimuli [79], including cold, drought, and salinity,
and during developmental processes such as embryogenesis,
germination, and fruit development [80-82]. Same significant
SNP affected an carlactone C-19 oxidase [EC:1.14.-.-] enzyme.
This enzyme belongs to the cytochrome P450 family, specifically
a MAX1 homolog, that oxidizes carlactone (CL) to carlactonoic
acid, a key step in strigolactone biosynthesis. In woodland
strawberry (a non-climacteric fruit), strigolactone biosynthetic
and signaling genes—including MAX1 homologs—are highly
expressed during early fruit development but decline sharply at
ripening onset, and low or no expression was detected in ripening
fruits [83].

Another significant SNP for RD, S1_53963445, affected chloride
channel 7 (CLCN7). The CLC family is expressed on internal mem-
branes of plant cells and functions as essential chloride exchang-
ers or channels. Although no studies in Japanese plum or other
fruit species currently implicate CLCN7 directly in ripening, CLCs
play key roles in ion homeostasis, osmotic regulation, and vac-
uolar storage. Moreover, chloride can enhance sugar metabolism
and fruit sweetness in tomato by stimulating specific metabolic
enzymes during fruit development and ripening [84].
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Finally, although additional studies are required to rigorously
demonstrate SNP-trait associations in Japanese plum, the
candidate-gene information reported here provides a useful
resource for the P. salicina research community and may guide
future research in this species. In the case of flowering intensity or
fruit development period (FDP) the candidates seems of lower-
priority and additional studies must be completed to better
understand the genetic complexity of these traits.

Materials and methods
Plant material

The plant material assayed included three F; progenies from
intraspecific crosses of four Japanese plum cultivars: ‘Black
Splendor’ x ‘Pioneer’ (BS x P10); ‘Red Beaut’ x ‘Black Splendor’
(RB x BS) and ‘Red Beaut’ x ‘Santa Rosa Precoz’ (RB x SRP)
with 121, 103, and 103 seedlings, respectively (Fig.1). All
parental trees were grafted onto the commercial rootstock
Mariana 2624, whereas the progenies were grown on their
own root. Pedigrees of the parental genotypes are shown in
Fig.2, and their main agronomic traits are summarized in
Table S1. The crosses followed the standard methodology of
a classical breeding program, including controlled pollination
under mesh in the field, embryo rescue, greenhouse acclimation,
and subsequent field plantation. Crosses were performed as
part of the Japanese plum breeding program developed jointly
by CEBAS-CSIC and IMIDA of Murcia (Spain). The RB x BS and
RB x SRP seedlings were planted on field conditionsin 2013, while
BS x PIO progeny was planted two years later. All seedlings were
cultivated in the same experimental orchard located in Calas-
parra (Murcia, southeastern Spain; lat. 38°16’N, long. 1°35'W;
350 m altitude) according to standard Japanese plum orchard
management.

DNA extraction

Young leaves were sampled during the spring season and pre-
served at —80°C until DNA extraction. The DNA isolation process
was conducted following a modified version of the CTAB method
initially outlined by [26]. The DNA concentration was precisely
quantified by Qubit 2.0.

Whole genome sequencing and assembly of parental
genomes

Parental genomes were sequenced at ~80x coverage by
Novogene using Illumina paired-end technology. Libraries were
prepared via fragmentation, adapter ligation, PCR amplification,
and quality-checked using a Bioanalyzer and gPCR. De novo
assembly was performed with MaSuRCA [27], and assembly qual-
ity was evaluated with QUAST [28]. Read alignment back to the
assemblies was done using Bowtie2 [29], and genome complete-
ness was assessed using BUSCO v5 with the embryophyta_odb10
dataset [30].

Variant calling was performed by aligning trimmed reads to the
P. salicina cv. Sanyueli v2.0. genome using BWA-MEM [31]. SAM
files were converted to BAM, sorted, and indexed with SAMtools
[32] and Picard tools [33]. Variants were called using BCFtools
v1.1356 [32] and filtered with the following thresholds: QUAL > 19
&& DP > 2% && (AC/AN) > 0.05 && MQ > 20.

Calling SNPs on progeny from
reduced-representation Illumina data

Genotyping-by-sequencing (GBS) libraries were prepared in 96-
well plates using simultaneous restriction-ligation with either
HindIll-HF or Pstl-HF in combination with Msel and T4 DNA
Ligase (New England Biolabs, Frankfurt) [34]. Individual barcoded
libraries were pooled by 96-well plate, cleaned using Ampure
XP beads, PCR amplified, and then cleaned again with Ampure
XP beads before loading onto an Agilent Bioanalyzer 2100 in
a DNAT7500 chip. Libraries were adjusted to 10 nmol before
submission to the UC Davis Genome Center for SR100 sequencing
on a HiSeq4000 instrument. All the data were in a single Illumina
HiSeq lane. The TASSEL GBS pipeline [35] and BWA [31] were
used to align 64 bp tags to the P, salicina cv. ‘Sanyueli’ assembly
[20], retaining only tags with a BWA MAPQ score of at least 20.
Subsequently, SNPs were filtered separately for each parent in
each population using the corresponding genome assembly. Only
assembly SNPs supported with a depth of at least 8X in both
parents were considered, and only SNPs heterozygous in the focal
parent and homozygous in the other parent were included in the
filtered SNP list for each parent of each population. The filtered
SNP lists (eight in total) were used as input for FSFHap (Full-Sib
Family Haplotype Imputation) [36] to correct for under-calling of
heterozygous genotypes, and FSFHap output was used for linkage
map construction.

Evaluation of phenological traits and data
analysis

The phenological traits of interest, including the beginning of flow-
ering (BF), full flowering (FF), end of flowering (EF), flowering
intensity (Fl), ripening date (RD), fruit development period (FDP)
and productivity (P), were evaluated for three consecutive years
(2019, 2020, and 2021) in the offspring and their respective par-
ents. The assessment of flowering time was conducted periodi-
cally in the orchard at 3-4 day intervals, with results expressed
in Julian days. BF was determined when 5% of the flowers had
opened, FF was recorded at stage 65 according to the BBCH scale
[37] when 50% of the flowers had opened, and EF was recorded
when 90% of the flowers had opened. FI was quantified on a
scale from 0 to 3. Additionally, RD was determined at physiological
maturity, characterized by appropriate fruit firmness and color,
while P was visually scored on a scale from 0 (null) to 5 (maximum).
Finally, FDP was calculated as the number of days between FF
and RD.

Statistical analyses were performed using IBM SPSS (v27) [38].
Frequency histograms were generated to show the distribution of
seedlings for each trait, year, and population. The normality of all
phenotypic datasets was tested using the Kolmogorov-Smirnov
test with Lilliefors correction, considering genotype and year as
independent factors. Traits that did not meet the normality crite-
ria were analyzed using the non-parametric Kruskal-Wallis test.
Additionally, Spearman correlation coefficients were calculated
to assess the relationships between traits within the same year
and the interannual correlations for each trait, using raw data and
a significance level of P <0.05 for the three populations. Prin-
cipal components analysis (PCA) was performed on the pheno-
logical data to facilitate visualization of the complete dataset in
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a reduced-dimensional plot, thereby identifying related groups,
trends, or outliers. Spearman correlations, PCA calculations, and
plotting were carried out using the R packages ‘corrplot’ [39],
‘factoextra’ [40], and ‘FactoMineR’ [41].

Linkage map construction and
quantitative trait loci analysis

Genetic linkage maps were constructed for each parent in the
BS x PIO,RB x BS,and RB x SRP populations using JoinMap® 4.1
[42]. SNP markers heterozygous in one parent and homozygous in
the other (<Imxll> or < nnxnp>) were used. Markers with >40%
missing data, significant segregation distortion (x2, P < 0.001),
or complete redundancy (Similarity of Loci=1) were excluded.
Mapping employed the Maximum Likelihood algorithm with
Haldane’s function, a recombination frequency threshold of
0.4, and LOD scores between 6 and 10. SNP positions were
based on the P, salicina ‘Sanyueli’ v2.0 genome [16]. Six parental
maps were generated independently, with no consensus map
constructed. QTL analysis was performed in MapQTL® 6 [43] using
the Kruskal-Wallis non-parametric test and 1000 permutations
to define trait-specific significance thresholds (¢ <0.05, 0.01,
0.001). Stable QTLs were defined as those consistently detected
with P < 0.05 across all three years. The most significant markers
within these QTLs were further analyzed for genotype-phenotype
associations, assessed by Kruskal-Wallis tests and visualized with
the R packages ‘LinkageMapView’ [44] and ‘ggplot2’ [45].

Conclusions

These findings provide valuable genetic and genomic resources
for Japanese plum and identify strong candidate markers for
the future application of marker-assisted selection in breeding
programs. This study presents an innovative and cost-effective
strategy for QTL identification related to phenological traits in
Prunus, based on the integration of high-coverage and low-
coverage whole-genome sequencing (lcWGS) in both parental
and progeny populations. Trait correlations, together with
principal component analysis, offered meaningful insights into
the relationships among phenological traits and the genetic
mechanisms underlying their expression. Genetic linkage maps
were successfully developed for all parental lines across three
populations, enabling efficient QTL detection at a significantly
lower cost than traditional approaches such as AFLP, GBS, or SLAF-
seq. Notably, the most significant SNPs showed consistent and
stable allelic effects across three years, reinforcing their potential
as molecular markers to support future breeding in Japanese
plum. In addition, we nominate a biologically plausible set of
candidate genes within stable QTLs as testable hypotheses. These
candidates require genetic and functional validation in P. salicina,
but they provide immediate targets for functional studies and
future marker development for Japanese plum breeding.
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