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Abstract—Next generation wireless networks must sustain [3]. However, this approach may result in resource

deterministic service levels to support emerging time-sensitive
applications. The ability to guarantee bounded latencies
depends on the efficient management of radio resources. Several
studies propose leveraging the native intelligence of future
networks to develop predictive schedulers capable of efficiently
managing resources. However, existing proposals focus on semi-
static scheduling, where resources are reserved based on traffic
predictions, and these reservations are susceptible to
inefficiencies due to prediction inaccuracies. This study
advances the state of the art with a novel predictive dynamic
scheduling scheme that avoids such inefficiencies, and leverages
traffic predictions to allocate resources to incoming requests
that meet their latency requirements while avoiding resources
likely to be needed by future predicted packets. Our results
demonstrate that the proposed predictive dynamic scheduling
effectively supports deterministic communications in scenarios
with mixed traffic flows and varying QoS requirements.
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I. INTRODUCTION

Future networks must support emerging time-sensitive
and deterministic services driven by the digitalization of key
verticals such as connected and autonomous mobility and
Industry  4.0.  Delivering  deterministic ~ wireless
communications with bounded (and low) latency and high
reliability in beyond-5G networks remains a challenge due to
the inherently stochastic nature of wireless channels and
systems. This challenge becomes even more complex when
managing mixed traffic flows with diverse requirements,
including time-sensitive and deterministic traffic.

The ability to support deterministic services in mixed
traffic flows heavily depends on efficient radio resource
management and the design of scheduling mechanisms
capable of meeting diverse Quality of Service (QoS)
requirements. In 5G NR, scheduling can be either dynamic or
semi-static [1]. With dynamic scheduling, radio resources are
allocated on a per-packet basis upon receiving a scheduling
request. In contrast, semi-static scheduling - configured grants
for uplink and semi-persistent scheduling for downlink- pre-
allocates radio resources periodically to users. By eliminating
the need for scheduling requests (SRs) and subsequent grants
before data transmission, semi-static scheduling reduces
latency compared to dynamic scheduling. However, when the
packet arrival frequency does not align with the periodicity of
resource allocation, or when packet sizes vary, semi-static
scheduling can lead to inefficient resource utilization or
failure to meet latency and determinism requirements [2]. One
way to address this challenge is by assigning and managing
multiple configured grants per user with different periodicities
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overprovisioning to accommodate the most stringent QoS
requirements or increased signaling overhead to dynamically
activate the most suitable configured grant [4]. Other
alternatives to improve resource utilization and the likelihood
of meeting deterministic requirements include, for example,
the use of Satisfiability Modulo Theory (SMT) [5] to identify
feasible resource allocation configurations for 5G configured
grant scheduling of real-time industrial traffic. Preemption can
also be used to prioritize certain traffic (e.g., deterministic) but
this is done at the cost of interrupting lower-priority
transmissions (e.g., best-effort), which can lead to increased
latency and packet losses for the latter [6]. Despite these
advancements, the lack of knowledge about future network
conditions and upcoming traffic demands, combined with the
presence of mixed traffic with diverse communication
requirements, makes it challenging for 5G schedulers to
efficiently allocate resources while ensuring the deterministic
requirements of time-sensitive traffic [6].

Several studies propose leveraging the native AI/ML
capabilities of future networks to develop predictive
schedulers that efficiently manage radio resources and
improve the capacity to support services with stringent QoS
requirements using traffic demand forecasts ([7]-[10]).
However, existing proposals focus on semi-static scheduling,
where resources are pre-allocated or reserved based on traffic
predictions. Such pre-allocations are susceptible to resource
allocation inefficiencies due to inaccuracies in predictions or
the stochastic nature of wireless systems and traffic sources,
which may reduce the capacity to guarantee the determinism
required for time-sensitive communications [11]. In this
context, this paper advances the state-of-the-art with a novel
predictive dynamic scheduling scheme that avoids possible
inefficient resource reservations caused by inaccurate
predictions. Unlike semi-static schedulers, the proposed
predictive dynamic scheduling scheme allocates resources
only upon receiving a scheduling request. However, it
leverages traffic predictions to prioritize allocations that meet
the current transmission's requirements while avoiding
resources likely to be needed by future predicted packets. This
study demonstrates how the proposed predictive dynamic
scheduling scheme effectively utilizes traffic predictions and
varying QoS requirements in mixed traffic flows to enhance
support for deterministic communications in beyond-5G.

The rest of the paper is organized as follows. Section II
reviews the state-of-the-art, and Section III presents the
proposed predictive dynamic scheduling scheme. Section IV
details the traffic characterization and prediction processes
implemented in this study, and Section V compares the
performance of the predictive dynamic scheduler against
standard 5G dynamic scheduling. Finally, Section VI
summarizes the main conclusions of this study.



II. STATE OF THE ART

Predictive solutions will play a key role in next-generation
networks since they can improve radio resource utilization
efficiency and reduce excessive over-dimensioning when
supporting traffic with stringent requirements, including the
deterministic requirements of time-sensitive services [12].
Predictive schedulers have emerged as a key approach for
managing Time-Sensitive Networks (TSN). In [13], the
authors introduce an online traffic scheduler that leverages
deep reinforcement learning (DRL) and convolutional neural
networks (CNN) to extract flow features and optimize
scheduling and resource allocation in TSN. [14] proposes a
deterministic federated learning framework and a DRL-based
resource scheduling algorithm for managing time-sensitive
industrial IoT services. [15] expands the use of predictive
schedulers and explores their application to manage traffic
flows with different QoS profiles (or 5G QoS Identifiers,
5QIs) in a 5G asynchronous deterministic backhaul network.
The authors propose a reinforcement learning-based flow
scheduler that utilizes predictive data analytics — such as flow
lifetime duration, packet arrival rate, and delay budget
statistics- to increase the number of supported flows in
deterministic asynchronous networks. The study demonstrates
that predictive schedulers can better meet the requirements of
deterministic traffic by proactively managing resources based
on traffic predictions.

Several studies also propose predictive schedulers to
efficiently manage radio resources at the RAN (Radio Access
Networks) and better support services using traffic demand
forecasts. For example, [7] proposes a semi-persistent
downlink scheduler integrated with a short-term traffic
predictor. The authors show that the predictive scheduler
achieves performance comparable to traditional proportional-
fair dynamic scheduler while reducing computational
complexity in the presence of bursty video traffic. In [8], the
authors propose a DRL grant allocator combining offline and
online learning for supporting URLLC (Ultra-Reliable Low
Latency Communication) traffic with uplink semi-static grant-
free schedulers. Grant-free scheduling enables data
transmissions over pre-allocated resources, reducing signaling
overhead and communication latency. Additionally, [9]
develops a multi-objective DRL technique for priority-
enabled grant-free (GF) or configured grant (CG) scheduling
of uplink traffic in a massive Machine-Type Communication
(mMTC) scenario, where heterogenecous MTC devices
transmit small data packets and compete for shared GF
resources. The authors demonstrate that predictive schedulers
improve the probability of successful transmissions by
reducing collisions in shared resource access. [10] presents an
alternative to using traffic predictors in predictive schedulers.
The authors analyze correlations between process activations
in industrial environments and data generation patterns to
identify spatio-temporal traffic correlations. They then exploit
these correlations to optimize semi-static scheduling
configurations in beyond-5G networks.

Existing proposals highlight the potential of predictive
schedulers to support services with stringent QoS
requirements. However, all current approaches focus on
semi-static scheduling, where resources are reserved based
on traffic predictions, and these reservations remain
susceptible to resource management inefficiencies due to
inaccuracies in predictions or the stochastic nature of wireless
systems and traffic sources. To overcome these limitations,
we propose a predictive dynamic scheduler that leverages

traffic predictions to select resource allocations that can
satisfy the demand of current transmissions and increase the
likelihood of satisfying future transmissions.

III. PREDICTIVE DYNAMIC SCHEDULING

This study introduces the first Predictive Dynamic
Scheduling (PDS) scheme for Beyond 5G. PDS leverages
traffic predictions to prioritize resource allocations that meet
the requirements for transmissions that sent a Scheduling
Request (SR) while avoiding resources likely to be needed by
future predicted packets. Before presenting our PDS proposal,
we first highlight the potential of PDS in scenarios with mixed
traffic flows and varying QoS requirements.

A. On the potential for predictive dynamic scheduling

In 5G NR, dynamic scheduling allocates radio resources
on a per-packet basis upon receiving a SR. The scheduler can
implement various policies to select among the available radio
resources based on the SR. Fig. 1 illustrates an example where
anew SR for the transmission of packet pkty is generated at 7.
This packet must be transmitted within a maximum latency
deadline dj and requires R;=9 radio resources. In NR, a radio
resource is defined by a Resource Block (RB) in the frequency
domain and a slot in the time domain. The RBs must be
selected within the transmission window to meet the latency
deadline. The transmission window includes all available RBs
between 7y and dy. Fig. 1-left shows that two allocation options
within this window would meet the latency deadline. A
common policy is to minimize latency, selecting option 1 in
Fig. 1-left. Now, suppose that a new SR for packet pkt,
requiring R,=6 RBs with a latency deadline d;, arrives at ¢,
(Fig. 1-middle). The figure shows that it is not possible to meet
pkt;‘s latency deadline as the necessary RBs within its
transmission window were previously assigned to pkiy.
However, both packets could meet their latency requirements
if the scheduler had anticipated at ¢, that a new SR for pkt,
(demanding R;=6 RBs) would be received at ¢,;. In this case,
the scheduler could have assigned to pkty the RBs
corresponding to option 2 in Fig. 1-left, allowing pkt; to
receive the necessary RBs and meet its latency deadline d;
(Fig. 1-right). This example highlights the potential of
predictive dynamic scheduling, and the performance gains it
can achieve in scenarios with mixed traffic flows and varying
QoS requirements.
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Fig. 1. On the potential of predictive dynamic scheduling.

B. Predictive Dynamic Scheduler

Consider a 5G NR cell supporting N nodes generating data
for uplink transmission. Let pktzy be a packet of size s
generated by a node # at time ¢, with a latency requirement Lj.
The node n sends an SR to the gNB to request RBs for
transmitting this packet. The gNB determines the number of
RBs as Ry= f{s9, mcsy), where f{*) is a function that determines
the number of RBs needed to transmit a packet of size sy using
a Modulation and Coding Scheme (MCS) mcs, following [1].
A standard dynamic scheduler searches for Ry RBs available



in consecutive slots within its transmission window, i.e.,
between the packet’s generation time # and its deadline
di = t; + L. In contrast, the PDS proposal searches for the R
RBs considering not only the requirements of pkt, but also
those of future predicted packets p/k\ti. To this aim, a predictor
forecasts the generation time 7; and size §; of the next P
packets after pkty. The scheduler then estimates the number of
RBs required for each of these packets as R; = f(5; mcs;), with
each packet to be transmitted before d; =7, + L.

PDS avoids assigning pkty RBs that may be needed for
future packets, ensuring that latency requirements are met for
both current and upcoming packets. To this end, PDS
identifies first the transmission window of pkzy and the
available RBs within the window (Fig. 2.a). PDS then
identifies the set @ of predicted packets whose transmission
window may overlap with that of pkzy). Two packets pkt; and
pkt; have overlapping transmission windows if # < d; and
t; <d;. In Fig. 2.b, the transmission windows of p’k\t1 , p752, and
p753 overlap with that of pkty, while non-overlapping windows
(e.g. p7c?4) do not affect the transmission of pkty and are not
considered by PDS. PDS temporarily marks as RBs to avoid
the available RBs between 7; and d; for each predicted packet
p/k\tl. C @ as shown in Fig. 2.c. Even if the number of RBs
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Fig. 2. Illustration of the operation of the PDS proposal.

within 7 and d, exceeds the R, RBs required by p/k\tl.
(computed based on §;), PDS reserves them to be able to
accommodate upcoming packets even with inaccurate #; and
§; predictions. PDS tries to avoid allocating pkty any RBs
between 7; and d, for all p/k\tl. (i=1,2,..., P) to ensure pkt; will
have sufficient RBs available to meet its latency deadline.

PDS then searches for R, available RBs in consecutive
slots for the transmission of pkt;. These RBs must be within
the transmission window of pkt, to meet its latency deadline
(Fig. 2.d). If multiple options are available, PDS selects the
RBs that offer the lowest latency for pkty. If no viable options
exist, PDS must allocate to pkty RBs initially marked as RB to
avoid. This situation is illustrated in Fig. 2.e where the number
of unavailable RBs (allocated to previous transmissions) has
been modified. PDS identifies the predicted packet p/k\tl. cod
with the largest latency requirement ( p’k\t3 in Fig. 2) and
checks whether the number of available RBs within its
transmission window U, (between 7; and d;) is equal to or
greater than the sum of RBs required to transmit pk#y and p/I?tl,

i.e. U, > Ry+ R,. If this condition is satisfied, PDS allocates R
RBs for pkty in the first available slots after 7. Otherwise, PDS
evaluates the same condition for pktj C @ with the next largest

latency requirement L,. In the example in Fig. 2.e, we consider
Ry=6, R,=3, and R;=3. The transmission window of pkt, has
only 6 available RBs, which is insufficient to accommodate
both pkty and p7c?3. PDS then checks whether the available
RBs within the transmission window of p7c72 are sufficient to
accommodate pkty and p7c72. Since U,= 9 in Fig. 2.e, which
satisfies the condition U, > R¢+R,, PDS allocates RBs to pkt,
within the transmission window of p/k\tz. If the condition U, >

Ry + R; cannot be met for any predicted packets in @, PDS
allocates Ry RBs to pkt) from the available RBs within the
transmission window U, of the predicted packet pkt, € @ with

the largest latency requirement (17753 in Fig. 2).

IV. TRAFFIC CHARACTERIZATION AND PREDICTION

The proposed PDS scheme leverages predictive
knowledge of future traffic to schedule current transmissions
while accounting for upcoming traffic demands. To evaluate
our proposal, we consider a 6G-envisioned autonomous
driving scenario in which data collected or generated by an
autonomous vehicle is sent to the network for processing at
the edge [16]. Communications must meet a bounded latency
deadline to ensure that offloading processing workloads to the
network does not disrupt the vehicle’s operation. For our
evaluation, we use realistic sensor data generated by an
autonomous vehicle through the Connected and Automated
Mobility (CAM) platform presented in [17]. This platform
integrates realistic sensing and autonomous driving (AD)
capabilities using the open-source CARLA and AUTOWARE
softwares, interconnected via a Robot Operative System
(ROS) bridge. The platform generates sensor data from an
autonomous vehicle with a full suite of Level 3 (L3) AD
sensors, including five cameras and five radars mounted on
the top, front, rear and sides of the vehicle. These sensors
detect objects such as vehicles, obstacles and pedestrians,
which are then processed by the AD software to control the
vehicle. The sensors generate raw data at periodic intervals,
which is then processed by a perception module to extract
detected objects. The processed sensor data is transmitted to
the network for processing at the edge. We have collected



extensive datasets of the processed sensor packets -including
size, timestamp and sensor ID- from realistic urban
environments. Fig. 3 shows an example of processed sensor
data packets generated with the CAM platform. The packet
size varies over time based on the number of objects detected
by each sensor as the vehicle navigates an urban scenario.
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Fig. 3. Sample trace of processed sensor data packets.

Sensors (cameras and radars) generate packets at 50 ms
intervals, but the object detection algorithm introduces a
processing delay that depends on the driving scenario and the
number of detected objects. The sensor configuration follows
a cyclic pattern repeated every 50 ms, with packets from the
five cameras generated first, followed by packets from the five
radars. Table I reports the packet inter-arrival times between
the ten packets generated every 50 ms, where A#; represents
the time interval between packets i and j. The first row shows
the time interval between packets sequentially generated by
the five cameras, while the second row reports the interval
between the last camera packet and the first radar packet.
Similarly, the third row details the intervals between packets
from the five radars, and the fourth row shows the interval
between the last radar packet and the first camera packet in the
next 50 ms cycle. The table shows that the packet inter-arrival
times remain nearly constant within each category, as
reflected by the small standard deviation, with variations
primarily due to the object detection algorithm’s processing
time. Given this consistency, the timing of the next ten packets
can be directly estimated from the traffic characterization in
Table I using the mean inter-arrival time. Importantly, any
small inaccuracies in these estimations, as indicated by the
standard deviation, will not impact on our predictive scheduler
since it only allocates resources to the current packet. PDS
uses the estimated future packet arrivals to select the radio
resources for the current packet that satisfy its latency
requirements and increase the likelihood of meeting the
latency constraints of future packets upon their arrival.

TABLE I. PACKET INTER-ARRIVAL TIME

Parameter Mean (ms) Std. dev (ms)
A1, Aty3, Atsg, Atys 8.25 0.58
Ats6 3.91 0.62
At6,7, At7,g, Atg,g, Atg,l(] 0.25 0.37
Atyo.11 13.62 0.89

The size of processed sensor packets varies significantly
as shown in Fig. 3, since the size depends on the number of
objects detected in the driving scenario. To predict the size of
future packets, we implemented a predictor based on a Long
Short-Term Memory (LSTM) network. LSTM networks are
particularly suited for tasks involving sequential or time-series
data, where the order and context of input elements are
relevant [10]. This includes tasks where dependencies
between data points over time need to be learned, making it

suitable for predicting autonomous vehicle sensor data since
the size of each packet is tied to past packets and sensor
behaviors. The hyper-parameters used for the configuration of
the LSTM are summarized in Table II and were optimized to
minimize the Mean Absolute Error (MAE), which quantifies
the average magnitude of prediction errors. MAE is defined in
(1), where P represents the number of predicted packets, s; is
the actual packet size, and 5; is the predicted packet size. We
used a dataset containing 9780 samples, with 60% allocated
for training the LSTM, 20% for validation, and the remaining
20% for testing.

MAE:%ZIS,»—.’V} (D
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TABLE II. LSTM HYPER-PARAMETERS

Parameter Value Parameter Value
Sequence Length 150  [Number of layers 3 (units: 256,128,64)
Batch Size 32 [Features Per Sample 6
IDropout 0.1 Epochs 100
Optimizer Adam [Scaling Method Min-Max Scaling
[Learning rate 0.001  [Number of Outputs 10

The LSTM network employs a regression-based
supervised learning method and the predicted packet sizes can
take any real numerical value. However, our analysis of the
dataset revealed that packet sizes are limited to a discrete set
of values that depend on the number of objects detected by the
sensors and the specific sensor type. The output of the LSTM
is then discretized by adjusting the predicted packet size to the
nearest possible discrete packet size value.

The LSTM network is configured to predict the next ten
packets, considering the previously described cyclic pattern
generation. Fig. 4 illustrates the predictor’s performance using
the CDF of the relative absolute error for the prediction of the
first, fifth and tenth packet. As expected, the figure shows that
prediction accuracy decreases for later packets but remains
sufficient for the purpose of the PDS. The predictor accurately
forecasts 85% of the next packets without error, with this
percentage decreasing to 78% and 70% for the fifth and tenth
packets, respectively. The average relative error for the first
prediction is only 9%, increasing to 13% and 24% for the
prediction of the fifth and tenth packets. It is important to
highlight that the lower prediction accuracy for later packets
has a limited impact on the PDS. This is because the likelihood
that the transmission windows of these distant packets overlap
with the transmission window for the currently scheduled
packet is low. In contrast, the higher accuracy of predictions
for first packets has a more significant influence on the
scheduler’s performance, as their transmission windows are
more likely to overlap with that of the packet being scheduled
in dynamic scheduling.
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Fig. 4. CDF of the relative absolute error (|s; — §|/s,).



V. EVALUATION AND DISCUSSION

This section compares the performance of the proposed
PDS scheme against a reference 5G dynamic scheduling
scheme. Following [18], the reference scheme is configured to
minimize the latency of each packet requesting resources, and
allocates radio resources in the earliest available slot that
meets the packet’s transmission requirements. Unlike the PDS
scheme, the reference scheduler considers only the latency
requirements of the current packet and does not account for
future traffic demands in its resource allocation decisions.
Since each sensor generates packets every 50 ms, a packet is
dropped if it cannot be scheduled for transmission before the
next packet is generated 50 ms later.

Performance is evaluated in a 5G NR cell with 5 MHz
bandwidth and a subcarrier spacing (SCS) of 30 kHz with a
slot duration of 0.5 ms in accordance with [1]. Uplink sensor
data packets are generated based on the pattern described in
Section IV and transmitted using MCS6 (Modulation and
Coding Scheme) to ensure their robust and reliable
transmission. Each sensor data packet has a latency
requirement derived from 3GPP specifications for enhanced
V2X scenarios [19]. Camera-generated packets must be
transmitted within a maximum latency of 50 ms. To assess
different mixed traffic flow conditions, two configurations are
tested for radar packets. In the first configuration (C1), the
maximum latency for radar packets is randomly set to either
10 ms or 5 ms. In the second one (C2), the maximum latency
for radar packets is randomly set to either 10 ms or 3 ms. We
evaluate performance under different network loads,
considering a single autonomous vehicle per cell (scenario S1)
and two autonomous vehicles per cell (scenario S2).

Table III presents the percentage of transmissions that
meet latency requirements for both the PDS scheme and the
reference (Ref.) scheme across all scenarios and all latency
requirement configurations. The results show that in the low-
load scenario (S1) with configuration C1, the PDS scheme can
support deterministic service levels as it successfully supports
all transmissions within their latency deadline, whereas the
reference scheme meets latency requirements for only 85.7%
of them. The performance gains of the PDS scheme over
standard 5G dynamic scheduling stem from its ability to
anticipate short-term traffic demands and allocate current
transmissions the radio resources, from all possible options,
that satisfy their demand and are less likely needed by
upcoming packets to satisfy their demand. By leveraging
predictive knowledge of future traffic, the PDS scheme
flexibly utilizes the latency budgets of mixed traffic flows
with different QoS requirements to better support
deterministic communications and increase the percentage of
satisfied transmissions. This is visible in Fig. 5.a that plots the
cumulative distribution function (CDF) of the latency
experienced by packets from cameras and radars in scenario
S1 under configuration C1. Table III shows that both the PDS
and reference schemes satisfy all camera transmissions in S1-
C1. However, Fig. 5.a reveals that while the PDS scheme
ensures 100% of camera packets meet their 50 ms latency
requirement, it slightly increases the latency of approximately
10% of camera packets beyond 5 ms compared to the
reference scheme. This adjustment is intentional, as PDS
strategically utilizes the 50 ms latency budget of camera
packets to prioritize predicted radar transmissions with stricter

latency constraints. As a result, Fig. 5.a shows that the PDS
scheme reduces the latency of radar transmissions compared
to the reference scheme, with greater improvements observed
for packets with stricter latency requirements. The reference
scheme lacks this predictive knowledge and meets the latency
requirements for only 95% of radar transmissions with a 10
ms deadline and just 50% of radar transmissions with a 5 ms
deadline (Table III), whereas PDS ensures deterministic
service levels for 100% of radar transmissions.

The benefits of predictive knowledge in dynamic
scheduling augments as latency requirements become stricter
within mixed traffic flows. Under the C2 configuration, where
certain radar packets have a latency requirement of 3 ms,
Table III shows that the reference scheme satisfies only 78.6%
of transmissions in S1, with this percentage dropping to just
20% for radar packets with the strictest 3 ms deadline. This is
compared to 48% of satisfied radar transmissions with a 5 ms
latency deadline under the C1 configuration. In contrast, the
proposed PDS scheme can better support deterministic service
levels as it successfully satisfies 92.9% of all transmissions
and nearly 72% of radar packets with a 3 ms latency
requirement. The remaining 7.1% of transmissions that fail to
meet their latency constraints with PDS correspond to radar
packets with large sizes that exceed the transmission capacity
within the 3 ms deadline, given the available radio resources
in the cell. For instance, in a best-case scenario, 66 RBs are
available within a 3 ms window!. A radar packet containing
data from five detected objects has a size of 3780 bytes and
requires 67 RBs when transmitted using MCS6, making it
impossible to meet the 3 ms deadline regardless of the
scheduling scheme. This finding highlights that PSD
effectively guarantees latency requirements for all feasible
transmissions under S1-C2 considering the cell resources.

TABLE III. PERCENTAGE (%) OF TRANSMISSIONS MEETING THEIR

LATENCY REQUIREMENTS
Latency Transmissions S1 52

req. Ref. PDS Ref. PDS
Total 85.70 100 55.02 97.00

c1 Cameras (50 ms) 100 100 99.84 97.61
Radars (10 ms) 95.35 100 12.37 99.89

Radars (5 ms) 47.95 100 7.89 95.90

Total 78.60 92.90 53.95 87.80

- Cameras (50 ms) 100 100 99.84 96.00
Radars (10 ms) 95.35 100 12.37 93.66

Radars (3 ms) 20.08 71.93 3.69 68.95

When the traffic load increases (scenario S2), more
packets have overlapping transmission windows (as illustrated
in Fig. 2), leading to greater competition for the same radio
resources. In this case, careful allocation of radio resources
becomes even more critical. The gains achieved with the PDS
scheme, which leverages predicted traffic demands to
optimize resource allocation while accounting for both current
and future (potentially conflicting) transmissions, become
even more significant compared to standard 5G dynamic
scheduling. Table III shows that the percentage of
transmissions  meeting latency requirements  drops
significantly for the reference scheme in S2, with only 55.02%
and 53.95% of all transmissions satisfied under the C1 and C2
configurations, respectively. The performance deteriorates

"' With 5 MHz bandwidth and 30 kHz SCS, there are 11 radio resources or
RB per slot, totaling 66 RB within 3 ms. This is a best-case analysis assuming

that packet generation is synchronized with the start of the slot and that the
scheduling requests and response do not add any additional latency.



further for packets with the most stringent latency
requirements. Specifically, Table III shows that only 7.89% of
radar transmissions with a 5 ms deadline (C1) and just 3.69%
of those with a 3 ms deadline (C2) are successfully transmitted
with the reference scheme. In contrast, the proposed PDS
scheme successfully meets the latency requirements for 97%
and 87.8% of all transmissions under the higher-load scenario
with mixed traffic flows, underscoring its capacity to better
support deterministic service levels. Additionally, it ensures
that 95.9% and 68.9% of radar transmissions with 5 ms and 3
ms latency requirements under C1 and C2, respectively, meet
their deadlines. It is important to note that the PDS scheme
meets the latency requirements for 88.57% of transmissions in
S2-C2 using 89.8% of the available radio resources. In
contrast, the reference scheme, which consumes 97.6% of the
resources, manages to satisfy the latency requirements for
only 54.95% of transmissions. This clearly demonstrates the
most efficient resource utilization achieved by the PDS
scheme by leveraging predictive knowledge of future traffic.
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Fig. 5. CDF of the latency under C1 configuration.

The superior performance of the PDS scheme stems from
its ability to anticipate short-term traffic demands and allocate
radio resources to current transmissions in a way that
minimizes conflicts with upcoming packets. To achieve this,
the PDS scheme strategically utilizes the available latency
budget of camera packets to allocate resources that ensure the
timely delivery of radar packets with stricter latency
constraints without compromising camera traffic with more
relaxed requirements. This effect is evident in Fig. 5.b, where
10% of camera packets experience latencies exceeding 8 ms,
allowing most radar transmissions to meet their deadlines.
Compared to the lower-load scenario (Fig. 5.a), Fig. 5.b shows
that a wider portion of the 50 ms latency budget for camera
packets is leveraged to accommodate radar transmissions
when the load increases. These results highlight the
effectiveness of the predictive scheduler in optimizing
resource allocation for mixed traffic flows with diverse QoS
requirements.

VI. CONCLUSIONS

This study presents a novel predictive dynamic scheduling
scheme for beyond-5G communications. The proposed
scheme leverages traffic predictions to allocate resources to
incoming scheduling requests, ensuring they meet their
latency requirements while avoiding resources likely to be

needed by future predicted packets. Our evaluation
demonstrates that the proposed scheme outperforms standard
5G dynamic scheduling and significantly enhances the ability
to provide deterministic service levels with bounded latency
deadlines in scenarios with mixed traffic flows and varying
QoS requirements. By leveraging traffic predictions, the
scheme dynamically utilizes different latency budgets to
optimize resource allocations, increasing the percentage of
transmissions that meet their latency constraints.
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