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Abstract—Next generation wireless networks must sustain 
deterministic service levels to support emerging time-sensitive 
applications. The ability to guarantee bounded latencies 
depends on the efficient management of radio resources. Several 
studies propose leveraging the native intelligence of future 
networks to develop predictive schedulers capable of efficiently 
managing resources. However, existing proposals focus on semi-
static scheduling, where resources are reserved based on traffic 
predictions, and these reservations are susceptible to 
inefficiencies due to prediction inaccuracies. This study 
advances the state of the art with a novel predictive dynamic 
scheduling scheme that avoids such inefficiencies, and leverages 
traffic predictions to allocate resources to incoming requests 
that meet their latency requirements while avoiding resources 
likely to be needed by future predicted packets. Our results 
demonstrate that the proposed predictive dynamic scheduling 
effectively supports deterministic communications in scenarios 
with mixed traffic flows and varying QoS requirements.  
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I. INTRODUCTION 
Future networks must support emerging time-sensitive 

and deterministic services driven by the digitalization of key 
verticals such as connected and autonomous mobility and 
Industry 4.0. Delivering deterministic wireless 
communications with bounded (and low) latency and high 
reliability in beyond-5G networks remains a challenge due to 
the inherently stochastic nature of wireless channels and 
systems. This challenge becomes even more complex when 
managing mixed traffic flows with diverse requirements, 
including time-sensitive and deterministic traffic. 

The ability to support deterministic services in mixed 
traffic flows heavily depends on efficient radio resource 
management and the design of scheduling mechanisms 
capable of meeting diverse Quality of Service (QoS) 
requirements. In 5G NR, scheduling can be either dynamic or 
semi-static [1]. With dynamic scheduling, radio resources are 
allocated on a per-packet basis upon receiving a scheduling 
request. In contrast, semi-static scheduling - configured grants 
for uplink and semi-persistent scheduling for downlink- pre-
allocates radio resources periodically to users. By eliminating 
the need for scheduling requests (SRs) and subsequent grants 
before data transmission, semi-static scheduling reduces 
latency compared to dynamic scheduling. However, when the 
packet arrival frequency does not align with the periodicity of 
resource allocation, or when packet sizes vary, semi-static 
scheduling can lead to inefficient resource utilization or 
failure to meet latency and determinism requirements [2]. One 
way to address this challenge is by assigning and managing 
multiple configured grants per user with different periodicities 

[3]. However, this approach may result in resource 
overprovisioning to accommodate the most stringent QoS 
requirements or increased signaling overhead to dynamically 
activate the most suitable configured grant [4]. Other 
alternatives to improve resource utilization and the likelihood 
of meeting deterministic requirements include, for example, 
the use of Satisfiability Modulo Theory (SMT) [5] to identify 
feasible resource allocation configurations for 5G configured 
grant scheduling of real-time industrial traffic. Preemption can 
also be used to prioritize certain traffic (e.g., deterministic) but 
this is done at the cost of interrupting lower-priority 
transmissions (e.g., best-effort), which can lead to increased 
latency and packet losses for the latter [6]. Despite these 
advancements, the lack of knowledge about future network 
conditions and upcoming traffic demands, combined with the 
presence of mixed traffic with diverse communication 
requirements, makes it challenging for 5G schedulers to 
efficiently allocate resources while ensuring the deterministic 
requirements of time-sensitive traffic [6].  

Several studies propose leveraging the native AI/ML 
capabilities of future networks to develop predictive 
schedulers that efficiently manage radio resources and 
improve the capacity to support services with stringent QoS 
requirements using traffic demand forecasts ([7]-[10]). 
However, existing proposals focus on semi-static scheduling, 
where resources are pre-allocated or reserved based on traffic 
predictions. Such pre-allocations are susceptible to resource 
allocation inefficiencies due to inaccuracies in predictions or 
the stochastic nature of wireless systems and traffic sources, 
which may reduce the capacity to guarantee the determinism 
required for time-sensitive communications [11]. In this 
context, this paper advances the state-of-the-art with a novel 
predictive dynamic scheduling scheme that avoids possible 
inefficient resource reservations caused by inaccurate 
predictions. Unlike semi-static schedulers, the proposed 
predictive dynamic scheduling scheme allocates resources 
only upon receiving a scheduling request. However, it 
leverages traffic predictions to prioritize allocations that meet 
the current transmission's requirements while avoiding 
resources likely to be needed by future predicted packets. This 
study demonstrates how the proposed predictive dynamic 
scheduling scheme effectively utilizes traffic predictions and 
varying QoS requirements in mixed traffic flows to enhance 
support for deterministic communications in beyond-5G. 

The rest of the paper is organized as follows. Section II 
reviews the state-of-the-art, and Section III presents the 
proposed predictive dynamic scheduling scheme. Section IV 
details the traffic characterization and prediction processes 
implemented in this study, and Section V compares the 
performance of the predictive dynamic scheduler against 
standard 5G dynamic scheduling. Finally, Section VI 
summarizes the main conclusions of this study. This work has been partially funded by the European Commission Horizon 
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II. STATE OF THE ART 
Predictive solutions will play a key role in next-generation 

networks since they can improve radio resource utilization 
efficiency and reduce excessive over-dimensioning when 
supporting traffic with stringent requirements, including the 
deterministic requirements of time-sensitive services [12]. 
Predictive schedulers have emerged as a key approach for 
managing Time-Sensitive Networks (TSN). In [13], the 
authors introduce an online traffic scheduler that leverages 
deep reinforcement learning (DRL) and convolutional neural 
networks (CNN) to extract flow features and optimize 
scheduling and resource allocation in TSN. [14] proposes a 
deterministic federated learning framework and a DRL-based 
resource scheduling algorithm for managing time-sensitive 
industrial IoT services. [15] expands the use of predictive 
schedulers and explores their application to manage traffic 
flows with different QoS profiles (or 5G QoS Identifiers, 
5QIs) in a 5G asynchronous deterministic backhaul network. 
The authors propose a reinforcement learning-based flow 
scheduler that utilizes predictive data analytics – such as flow 
lifetime duration, packet arrival rate, and delay budget 
statistics- to increase the number of supported flows in 
deterministic asynchronous networks. The study demonstrates 
that predictive schedulers can better meet the requirements of 
deterministic traffic by proactively managing resources based 
on traffic predictions. 

Several studies also propose predictive schedulers to 
efficiently manage radio resources at the RAN (Radio Access 
Networks) and better support services using traffic demand 
forecasts. For example, [7] proposes a semi-persistent 
downlink scheduler integrated with a short-term traffic 
predictor. The authors show that the predictive scheduler 
achieves performance comparable to traditional proportional-
fair dynamic scheduler while reducing computational 
complexity in the presence of bursty video traffic. In [8], the 
authors propose a DRL grant allocator combining offline and 
online learning for supporting URLLC (Ultra-Reliable Low 
Latency Communication) traffic with uplink semi-static grant-
free schedulers. Grant-free scheduling enables data 
transmissions over pre-allocated resources, reducing signaling 
overhead and communication latency. Additionally, [9] 
develops a multi-objective DRL technique for priority-
enabled grant-free (GF) or configured grant (CG) scheduling 
of uplink traffic in a massive Machine-Type Communication 
(mMTC) scenario, where heterogeneous MTC devices 
transmit small data packets and compete for shared GF 
resources. The authors demonstrate that predictive schedulers 
improve the probability of successful transmissions by 
reducing collisions in shared resource access. [10] presents an 
alternative to using traffic predictors in predictive schedulers. 
The authors analyze correlations between process activations 
in industrial environments and data generation patterns to 
identify spatio-temporal traffic correlations. They then exploit 
these correlations to optimize semi-static scheduling 
configurations in beyond-5G networks.  

Existing proposals highlight the potential of predictive 
schedulers to support services with stringent QoS 
requirements. However, all current approaches focus on 
semi-static scheduling, where resources are reserved based 
on traffic predictions, and these reservations remain 
susceptible to resource management inefficiencies due to 
inaccuracies in predictions or the stochastic nature of wireless 
systems and traffic sources. To overcome these limitations, 
we propose a predictive dynamic scheduler that leverages 

traffic predictions to select resource allocations that can 
satisfy the demand of current transmissions and increase the 
likelihood of satisfying future transmissions. 

III. PREDICTIVE DYNAMIC SCHEDULING 
This study introduces the first Predictive Dynamic 

Scheduling (PDS) scheme for Beyond 5G. PDS leverages 
traffic predictions to prioritize resource allocations that meet 
the requirements for transmissions that sent a Scheduling 
Request (SR) while avoiding resources likely to be needed by 
future predicted packets. Before presenting our PDS proposal, 
we first highlight the potential of PDS in scenarios with mixed 
traffic flows and varying QoS requirements. 

A. On the potential for predictive dynamic scheduling 
In 5G NR, dynamic scheduling allocates radio resources 

on a per-packet basis upon receiving a SR. The scheduler can 
implement various policies to select among the available radio 
resources based on the SR. Fig. 1 illustrates an example where 
a new SR for the transmission of packet pkt0 is generated at t0. 
This packet must be transmitted within a maximum latency 
deadline d0 and requires R0=9 radio resources. In NR, a radio 
resource is defined by a Resource Block (RB) in the frequency 
domain and a slot in the time domain. The RBs must be 
selected within the transmission window to meet the latency 
deadline. The transmission window includes all available RBs 
between t0 and d0. Fig. 1-left shows that two allocation options 
within this window would meet the latency deadline. A 
common policy is to minimize latency, selecting option 1 in 
Fig. 1-left. Now, suppose that a new SR for packet pkt1, 
requiring R1=6 RBs with a latency deadline d1, arrives at t1 
(Fig. 1-middle). The figure shows that it is not possible to meet 
pkt1‘s latency deadline as the necessary RBs within its 
transmission window were previously assigned to pkt0. 
However, both packets could meet their latency requirements 
if the scheduler had anticipated at t0 that a new SR for pkt1 
(demanding R1=6 RBs) would be received at t1. In this case, 
the scheduler could have assigned to pkt0 the RBs 
corresponding to option 2 in Fig. 1-left, allowing pkt1 to 
receive the necessary RBs and meet its latency deadline d1 
(Fig. 1-right). This example highlights the potential of 
predictive dynamic scheduling, and the performance gains it 
can achieve in scenarios with mixed traffic flows and varying 
QoS requirements.  

 

 
  

Fig. 1. On the potential of predictive dynamic scheduling. 

 

B. Predictive Dynamic Scheduler 
Consider a 5G NR cell supporting N nodes generating data 

for uplink transmission. Let pkt0 be a packet of size s0 
generated by a node n at time t0 with a latency requirement L0. 
The node n sends an SR to the gNB to request RBs for 
transmitting this packet. The gNB determines the number of 
RBs as R0 = f(s0, mcs0), where f(∙) is a function that determines 
the number of RBs needed to transmit a packet of size s0 using 
a Modulation and Coding Scheme (MCS) mcs0 following [1]. 
A standard dynamic scheduler searches for R0 RBs available 
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in consecutive slots within its transmission window, i.e., 
between the packet’s generation time ti and its deadline  
di = ti + Li. In contrast, the PDS proposal searches for the R0 
RBs considering not only the requirements of pkt0 but also 
those of future predicted packets pkti෢ . To this aim, a predictor 
forecasts the generation time tiො  and size siෝ  of the next P 
packets after pkt0. The scheduler then estimates the number of 
RBs required for each of these packets as Ri෡  = f(siෝ, mcsi), with 
each packet to be transmitted before di෡  = tiෝ  + Li.  

PDS avoids assigning pkt0 RBs that may be needed for 
future packets, ensuring that latency requirements are met for 
both current and upcoming packets. To this end, PDS 
identifies first the transmission window of pkt0 and the 
available RBs within the window (Fig. 2.a). PDS then 
identifies the set Ф of predicted packets whose transmission 
window may overlap with that of pkt0. Two packets pkti and 
pktj have overlapping transmission windows if ti < dj and  
tj ≤ di. In Fig. 2.b, the transmission windows of pkt1෢ , pkt2෢ , and 
pkt3෢  overlap with that of pkt0, while non-overlapping windows 
(e.g. pkt4෢ ) do not affect the transmission of pkt0 and are not 
considered by PDS. PDS temporarily marks as RBs to avoid 
the available RBs between tiො and di෡  for each predicted packet 
pkti෢  ⊂ Ф as shown in Fig. 2.c. Even if the number of RBs 

within tiො  and di෡  exceeds the Ri෡  RBs required by pkti෢  
(computed based on siෝ ), PDS reserves them to be able to 
accommodate upcoming packets even with inaccurate tiො and 
siෝ  predictions. PDS tries to avoid allocating pkt0 any RBs 
between tiො and di෡  for all pkti෢  (i = 1, 2,…, P) to ensure pkti will 
have sufficient RBs available to meet its latency deadline.  

PDS then searches for R0 available RBs in consecutive 
slots for the transmission of pkt0. These RBs must be within 
the transmission window of pkt0 to meet its latency deadline 
(Fig. 2.d). If multiple options are available, PDS selects the 
RBs that offer the lowest latency for pkt0. If no viable options 
exist, PDS must allocate to pkt0 RBs initially marked as RB to 
avoid. This situation is illustrated in Fig. 2.e where the number 
of unavailable RBs (allocated to previous transmissions) has 
been modified. PDS identifies the predicted packet pkti෢  ⊂ Ф 
with the largest latency requirement ( pkt3෢  in Fig. 2) and 
checks whether the number of available RBs within its 
transmission window  Ui෢  (between tiො  and di෡ ) is equal to or 
greater than the sum of RBs required to transmit pkt0 and pkti෢ , 
i.e. Ui෢ ≥ R0 + Ri෡ . If this condition is satisfied, PDS allocates R0 
RBs for pkt0 in the first available slots after tiො. Otherwise, PDS 
evaluates the same condition for pktj෢  ⊂ Ф with the next largest 
latency requirement Li. In the example in Fig. 2.e, we consider 
R0=6, R2෢=3, and R3෢=3. The transmission window of pkt3෢  has 
only 6 available RBs, which is insufficient to accommodate 
both pkt0 and pkt3෢ . PDS then checks whether the available 
RBs within the transmission window of pkt2෢  are sufficient to 
accommodate pkt0 and pkt2෢ . Since U2෢= 9 in Fig. 2.e, which 
satisfies the condition U2෢ ≥ R0+R2෢, PDS allocates RBs to pkt0 
within the transmission window of pkt2෢ . If the condition Ui෢ ≥ 
R0 + Ri෡  cannot be met for any predicted packets in Ф, PDS 
allocates R0 RBs to pkt0 from the available RBs within the 
transmission window Ui෢ of the predicted packet pkti෢  ⊂ Ф with 
the largest latency requirement (pkt3෢  in Fig. 2).  

IV. TRAFFIC CHARACTERIZATION AND PREDICTION 
The proposed PDS scheme leverages predictive 

knowledge of future traffic to schedule current transmissions 
while accounting for upcoming traffic demands. To evaluate 
our proposal, we consider a 6G-envisioned autonomous 
driving scenario in which data collected or generated by an 
autonomous vehicle is sent to the network for processing at 
the edge [16]. Communications must meet a bounded latency 
deadline to ensure that offloading processing workloads to the 
network does not disrupt the vehicle’s operation. For our 
evaluation, we use realistic sensor data generated by an 
autonomous vehicle through the Connected and Automated 
Mobility (CAM) platform presented in [17]. This platform 
integrates realistic sensing and autonomous driving (AD) 
capabilities using the open-source CARLA and AUTOWARE 
softwares, interconnected via a Robot Operative System 
(ROS) bridge. The platform generates sensor data from an 
autonomous vehicle with a full suite of Level 3 (L3) AD 
sensors, including five cameras and five radars mounted on 
the top, front, rear and sides of the vehicle. These sensors 
detect objects such as vehicles, obstacles and pedestrians, 
which are then processed by the AD software to control the 
vehicle. The sensors generate raw data at periodic intervals, 
which is then processed by a perception module to extract 
detected objects. The processed sensor data is transmitted to 
the network for processing at the edge. We have collected 

 

 
a) New SR for pkt0. 

b) Identification of predicted packets whose transmission window overlaps 
with the transmission window of pkt0. 

c) Identification of RBs to avoid within the transmission window of 
predicted packets pkti෢  ⊂ Ф. 

d) PDS allocates to pkt0 available RBs not marked as  
RBs to avoid (R0=6 in the example). 

e) PDS allocates to pkt0 RBs initially marked as RBs to avoid within the 
transmission window of pkt2෢ . 

Fig. 2. Illustration of the operation of the PDS proposal.  
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extensive datasets of the processed sensor packets -including 
size, timestamp and sensor ID- from realistic urban 
environments. Fig. 3 shows an example of processed sensor 
data packets generated with the CAM platform. The packet 
size varies over time based on the number of objects detected 
by each sensor as the vehicle navigates an urban scenario. 

 

 
Fig. 3. Sample trace of processed sensor data packets. 

 
Sensors (cameras and radars) generate packets at 50 ms 

intervals, but the object detection algorithm introduces a 
processing delay that depends on the driving scenario and the 
number of detected objects. The sensor configuration follows 
a cyclic pattern repeated every 50 ms, with packets from the 
five cameras generated first, followed by packets from the five 
radars. Table I reports the packet inter-arrival times between 
the ten packets generated every 50 ms, where Δtij represents 
the time interval between packets i and j. The first row shows 
the time interval between packets sequentially generated by 
the five cameras, while the second row reports the interval 
between the last camera packet and the first radar packet. 
Similarly, the third row details the intervals between packets 
from the five radars, and the fourth row shows the interval 
between the last radar packet and the first camera packet in the 
next 50 ms cycle. The table shows that the packet inter-arrival 
times remain nearly constant within each category, as 
reflected by the small standard deviation, with variations 
primarily due to the object detection algorithm’s processing 
time. Given this consistency, the timing of the next ten packets 
can be directly estimated from the traffic characterization in 
Table I using the mean inter-arrival time. Importantly, any 
small inaccuracies in these estimations, as indicated by the 
standard deviation, will not impact on our predictive scheduler 
since it only allocates resources to the current packet. PDS 
uses the estimated future packet arrivals to select the radio 
resources for the current packet that satisfy its latency 
requirements and increase the likelihood of meeting the 
latency constraints of future packets upon their arrival. 

 

TABLE I. PACKET INTER-ARRIVAL TIME  
Parameter Mean (ms) Std. dev (ms) 

Δt1-2, Δt2-3, Δt3-4, Δt4-5 8.25 0.58 
Δt5-6  3.91 0.62 

Δt6-7, Δt7-8, Δt8-9, Δt9-10  0.25 0.37 
Δt10-11  13.62 0.89 

 

The size of processed sensor packets varies significantly 
as shown in Fig. 3, since the size depends on the number of 
objects detected in the driving scenario. To predict the size of 
future packets, we implemented a predictor based on a Long 
Short-Term Memory (LSTM) network. LSTM networks are 
particularly suited for tasks involving sequential or time-series 
data, where the order and context of input elements are 
relevant [10]. This includes tasks where dependencies 
between data points over time need to be learned, making it 

suitable for predicting autonomous vehicle sensor data since 
the size of each packet is tied to past packets and sensor 
behaviors. The hyper-parameters used for the configuration of 
the LSTM are summarized in Table II and were optimized to 
minimize the Mean Absolute Error (MAE), which quantifies 
the average magnitude of prediction errors. MAE is defined in 
(1), where P represents the number of predicted packets, si is 
the actual packet size, and siෝ is the predicted packet size. We 
used a dataset containing 9780 samples, with 60% allocated 
for training the LSTM, 20% for validation, and the remaining 
20% for testing.   

 MAE = 1
P
෍| si –  siෝ|P

i=1  (1) 

 
TABLE II. LSTM HYPER-PARAMETERS 

Parameter Value Parameter Value 
Sequence Length 150 Number of layers 3 (units: 256,128,64) 
Batch Size 32 Features Per Sample 6 
Dropout 0.1 Epochs 100 
Optimizer Adam Scaling Method Min-Max Scaling 
Learning rate 0.001 Number of Outputs 10 

 

The LSTM network employs a regression-based 
supervised learning method and the predicted packet sizes can 
take any real numerical value. However, our analysis of the 
dataset revealed that packet sizes are limited to a discrete set 
of values that depend on the number of objects detected by the 
sensors and the specific sensor type. The output of the LSTM 
is then discretized by adjusting the predicted packet size to the 
nearest possible discrete packet size value.  

The LSTM network is configured to predict the next ten 
packets, considering the previously described cyclic pattern 
generation. Fig. 4 illustrates the predictor’s performance using 
the CDF of the relative absolute error for the prediction of the 
first, fifth and tenth packet. As expected, the figure shows that 
prediction accuracy decreases for later packets but remains 
sufficient for the purpose of the PDS. The predictor accurately 
forecasts 85% of the next packets without error, with this 
percentage decreasing to 78% and 70% for the fifth and tenth 
packets, respectively. The average relative error for the first 
prediction is only 9%, increasing to 13% and 24% for the 
prediction of the fifth and tenth packets. It is important to 
highlight that the lower prediction accuracy for later packets 
has a limited impact on the PDS. This is because the likelihood 
that the transmission windows of these distant packets overlap 
with the transmission window for the currently scheduled 
packet is low. In contrast, the higher accuracy of predictions 
for first packets has a more significant influence on the 
scheduler’s performance, as their transmission windows are 
more likely to overlap with that of the packet being scheduled 
in dynamic scheduling. 

 

 

 
Fig. 4. CDF of the relative absolute error (|si –  siෝ|/si). 

 



V. EVALUATION AND DISCUSSION 
This section compares the performance of the proposed 

PDS scheme against a reference 5G dynamic scheduling 
scheme. Following [18], the reference scheme is configured to 
minimize the latency of each packet requesting resources, and 
allocates radio resources in the earliest available slot that 
meets the packet’s transmission requirements. Unlike the PDS 
scheme, the reference scheduler considers only the latency 
requirements of the current packet and does not account for 
future traffic demands in its resource allocation decisions. 
Since each sensor generates packets every 50 ms, a packet is 
dropped if it cannot be scheduled for transmission before the 
next packet is generated 50 ms later.  

Performance is evaluated in a 5G NR cell with 5 MHz 
bandwidth and a subcarrier spacing (SCS) of 30 kHz with a 
slot duration of 0.5 ms in accordance with [1]. Uplink sensor 
data packets are generated based on the pattern described in 
Section IV and transmitted using MCS6 (Modulation and 
Coding Scheme) to ensure their robust and reliable 
transmission. Each sensor data packet has a latency 
requirement derived from 3GPP specifications for enhanced 
V2X scenarios [19]. Camera-generated packets must be 
transmitted within a maximum latency of 50 ms. To assess 
different mixed traffic flow conditions, two configurations are 
tested for radar packets. In the first configuration (C1), the 
maximum latency for radar packets is randomly set to either 
10 ms or 5 ms. In the second one (C2), the maximum latency 
for radar packets is randomly set to either 10 ms or 3 ms. We 
evaluate performance under different network loads, 
considering a single autonomous vehicle per cell (scenario S1) 
and two autonomous vehicles per cell (scenario S2).   

Table III presents the percentage of transmissions that 
meet latency requirements for both the PDS scheme and the 
reference (Ref.) scheme across all scenarios and all latency 
requirement configurations. The results show that in the low-
load scenario (S1) with configuration C1, the PDS scheme can 
support deterministic service levels as it successfully supports 
all transmissions within their latency deadline, whereas the 
reference scheme meets latency requirements for only 85.7% 
of them. The performance gains of the PDS scheme over 
standard 5G dynamic scheduling stem from its ability to 
anticipate short-term traffic demands and allocate current 
transmissions the radio resources, from all possible options, 
that satisfy their demand and are less likely needed by 
upcoming packets to satisfy their demand. By leveraging 
predictive knowledge of future traffic, the PDS scheme 
flexibly utilizes the latency budgets of mixed traffic flows 
with different QoS requirements to better support 
deterministic communications and increase the percentage of 
satisfied transmissions. This is visible in Fig. 5.a that plots the 
cumulative distribution function (CDF) of the latency 
experienced by packets from cameras and radars in scenario 
S1 under configuration C1. Table III shows that both the PDS 
and reference schemes satisfy all camera transmissions in S1-
C1. However, Fig. 5.a reveals that while the PDS scheme 
ensures 100% of camera packets meet their 50 ms latency 
requirement, it slightly increases the latency of approximately 
10% of camera packets beyond 5 ms compared to the 
reference scheme. This adjustment is intentional, as PDS 
strategically utilizes the 50 ms latency budget of camera 
packets to prioritize predicted radar transmissions with stricter 

 
1 With 5 MHz bandwidth and 30 kHz SCS, there are 11 radio resources or 
RB per slot, totaling 66 RB within 3 ms. This is a best-case analysis assuming 

latency constraints. As a result, Fig. 5.a shows that the PDS 
scheme reduces the latency of radar transmissions compared 
to the reference scheme, with greater improvements observed 
for packets with stricter latency requirements. The reference 
scheme lacks this predictive knowledge and meets the latency 
requirements for only 95% of radar transmissions with a 10 
ms deadline and just 50% of radar transmissions with a 5 ms 
deadline (Table III), whereas PDS ensures deterministic 
service levels for 100% of radar transmissions. 

The benefits of predictive knowledge in dynamic 
scheduling augments as latency requirements become stricter 
within mixed traffic flows. Under the C2 configuration, where 
certain radar packets have a latency requirement of 3 ms,  
Table III shows that the reference scheme satisfies only 78.6% 
of transmissions in S1, with this percentage dropping to just 
20% for radar packets with the strictest 3 ms deadline. This is 
compared to 48% of satisfied radar transmissions with a 5 ms 
latency deadline under the C1 configuration. In contrast, the 
proposed PDS scheme can better support deterministic service 
levels as it successfully satisfies 92.9% of all transmissions 
and nearly 72% of radar packets with a 3 ms latency 
requirement. The remaining 7.1% of transmissions that fail to 
meet their latency constraints with PDS correspond to radar 
packets with large sizes that exceed the transmission capacity 
within the 3 ms deadline, given the available radio resources 
in the cell. For instance, in a best-case scenario, 66 RBs are 
available within a 3 ms window1. A radar packet containing 
data from five detected objects has a size of 3780 bytes and 
requires 67 RBs when transmitted using MCS6, making it 
impossible to meet the 3 ms deadline regardless of the 
scheduling scheme. This finding highlights that PSD 
effectively guarantees latency requirements for all feasible 
transmissions under S1-C2 considering the cell resources.  

 

TABLE III. PERCENTAGE (%) OF TRANSMISSIONS MEETING THEIR 
LATENCY REQUIREMENTS 

Latency 
req. Transmissions S1 S2 

Ref. PDS Ref. PDS 

C1 

Total 85.70 100 55.02 97.00 
Cameras (50 ms) 100 100 99.84 97.61 
Radars (10 ms) 95.35 100 12.37 99.89 
Radars (5 ms) 47.95 100 7.89 95.90 

C2 

Total 78.60 92.90 53.95 87.80 
Cameras (50 ms) 100 100 99.84 96.00 
Radars (10 ms) 95.35 100 12.37 93.66 
Radars (3 ms) 20.08 71.93 3.69 68.95 

 
 

When the traffic load increases (scenario S2), more 
packets have overlapping transmission windows (as illustrated 
in Fig. 2), leading to greater competition for the same radio 
resources. In this case, careful allocation of radio resources 
becomes even more critical. The gains achieved with the PDS 
scheme, which leverages predicted traffic demands to 
optimize resource allocation while accounting for both current 
and future (potentially conflicting) transmissions, become 
even more significant compared to standard 5G dynamic 
scheduling. Table III shows that the percentage of 
transmissions meeting latency requirements drops 
significantly for the reference scheme in S2, with only 55.02% 
and 53.95% of all transmissions satisfied under the C1 and C2 
configurations, respectively. The performance deteriorates 

that packet generation is synchronized with the start of the slot and that the 
scheduling requests and response do not add any additional latency.  



further for packets with the most stringent latency 
requirements. Specifically, Table III shows that only 7.89% of 
radar transmissions with a 5 ms deadline (C1) and just 3.69% 
of those with a 3 ms deadline (C2) are successfully transmitted 
with the reference scheme. In contrast, the proposed PDS 
scheme successfully meets the latency requirements for 97% 
and 87.8% of all transmissions under the higher-load scenario 
with mixed traffic flows, underscoring its capacity to better 
support deterministic service levels. Additionally, it ensures 
that 95.9% and 68.9% of radar transmissions with 5 ms and 3 
ms latency requirements under C1 and C2, respectively, meet 
their deadlines. It is important to note that the PDS scheme 
meets the latency requirements for 88.57% of transmissions in 
S2-C2 using 89.8% of the available radio resources. In 
contrast, the reference scheme, which consumes 97.6% of the 
resources, manages to satisfy the latency requirements for 
only 54.95% of transmissions. This clearly demonstrates the 
most efficient resource utilization achieved by the PDS 
scheme by leveraging predictive knowledge of future traffic. 

 

a) S1. 
 

b) S2. 
Fig. 5. CDF of the latency under C1 configuration. 

 

The superior performance of the PDS scheme stems from 
its ability to anticipate short-term traffic demands and allocate 
radio resources to current transmissions in a way that 
minimizes conflicts with upcoming packets. To achieve this, 
the PDS scheme strategically utilizes the available latency 
budget of camera packets to allocate resources that ensure the 
timely delivery of radar packets with stricter latency 
constraints without compromising camera traffic with more 
relaxed requirements. This effect is evident in Fig. 5.b, where 
10% of camera packets experience latencies exceeding 8 ms, 
allowing most radar transmissions to meet their deadlines. 
Compared to the lower-load scenario (Fig. 5.a), Fig. 5.b shows 
that a wider portion of the 50 ms latency budget for camera 
packets is leveraged to accommodate radar transmissions 
when the load increases. These results highlight the 
effectiveness of the predictive scheduler in optimizing 
resource allocation for mixed traffic flows with diverse QoS 
requirements.  

VI. CONCLUSIONS 
This study presents a novel predictive dynamic scheduling 

scheme for beyond-5G communications. The proposed 
scheme leverages traffic predictions to allocate resources to 
incoming scheduling requests, ensuring they meet their 
latency requirements while avoiding resources likely to be 

needed by future predicted packets. Our evaluation 
demonstrates that the proposed scheme outperforms standard 
5G dynamic scheduling and significantly enhances the ability 
to provide deterministic service levels with bounded latency 
deadlines in scenarios with mixed traffic flows and varying 
QoS requirements. By leveraging traffic predictions, the 
scheme dynamically utilizes different latency budgets to 
optimize resource allocations, increasing the percentage of 
transmissions that meet their latency constraints.  
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