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Electromagnetic Pulses: A Novel Framework for
Helicity, Chirality, and Their Flows

Pablo Acebal , Luis Carretero , and Salvador Blaya

Abstract— This article delves into conserved quantities of
electromagnetic pulses, which are crucial for understanding
their behavior. We introduce a precise framework for computing
scalar properties (energy, helicity, and chirality) and vector
properties (Poynting vector, spin, and chirality flux) of
electromagnetic pulses with gauge-invariant equations. Based on
the far-field behavior of radiated electric field, our methodology
offers accurate results akin to traditional volume integrals but
at a lower computational cost. In addition, our findings enable
a reinterpretation of these properties as statistical average
parameters of the pulse. This innovative approach not only
simplifies calculations but also enhances their accuracy, making
it useful for studying the main conserved quantities for complex
electromagnetic field structures, as those formed by multiple
interference of pulses.

Index Terms— Chirality, electromagnetic pulses, helicity,
Poynting vector, spin.

I. INTRODUCTION

IN THE vast domain of electromagnetic waves,
understanding the underlying principles that govern their

behavior is crucial for advancements in various scientific and
technological fields. This article delves into the intricacies of
electromagnetic pulses, focusing on several of the conserved
quantities that define their fundamental properties. Our
comprehensive analysis explores the conservation of a set of
scalar properties, namely, energy, helicity, and chirality, which
are of profound interest in both monochromatic and pulsed
electromagnetic fields [1], [2], [3], [4], [5], [6], [7]. Moreover,
the analysis extends to the vector properties associated with
the flows of such scalar properties, the so-called Poynting
vector (energy flow), spin (helicity flow), and chirality flow,
which illuminates the directional aspects of these essential
quantities, and also has been extensively studied [1], [2], [3],
[4], [5], [6]. Together, these magnitudes form a comprehensive
framework vital for studying light–matter interactions, offering
novel insights into the intricate dynamics of electromagnetic
pulses and enabling a complete characterization of their
behavior in diverse contexts.

In this way, we are going to introduce an efficient and
precise framework for the calculation of the main scalar
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(energy, helicity, and chirality) and vectorial (Poynting vector,
total spin, and chirality flux) properties of electromagnetic
pulses. This innovative method, based on the far-field behavior
of the electric field in the frequency domain, offers results that
align precisely with those obtained through volume integrals of
local properties, but with significantly reduced computational
cost. Furthermore, it is important to emphasize the gauge
invariance of the proposed framework. This is due to the
fact that the final expressions depend solely on electric and
magnetic fields, enabling application to all radiated fields
irrespective of gauge considerations. Gauge-related aspects
will be accounted for using the standard method based on
the volume integral of properties density [15]. In addition,
the results presented in this article offer a profound insight
into the interconnections among these properties, enabling
a reinterpretation of their relationships as statistical average
parameters of the pulse.

This article is organized into different sections. In Section II,
we define the conserved quantities. This section lays the
theoretical foundation, establishing the fundamental principles
that guide our analysis. Moving forward, Section II-A delves
into the deduction of expressions for scalar properties utilizing
the far-field approximation. In Section II-B, our focus shifts
to the deduction of expressions for vector properties, shedding
light on the directional aspects of energy, helicity, and chirality
flow through the examination of the Poynting vector, spin,
and chirality flux. Finally, Section III presents a compelling
demonstration of the validity of our methodology through an
example. This practical application showcases the precision
and efficacy of our approach, highlighting its potential for
diverse scenarios.

II. THEORY

The propagation of electromagnetic pulses in vacuum is
described by the electric E and magnetic H fields, which obey
the following source-free Maxwell equations [8]:

∇ · E = 0, ∇ · H = 0 (1)

∇ × E = −µ0Ḣ, ∇ × H = ϵ0Ė. (2)

Here, µ0 and ϵ0 are the magnetic permeability and the
electric permittivity of vacuum, respectively, while the dot
denotes the temporal derivative. In this article, the spatial
and temporal dependency on magnitudes has been omitted
for simplicity, while the vectors are denoted by bold letters.
These fields (E and H) can also be expressed as a function of
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two potential vectors C and A, such that the electric field and
the magnetic field can be written as follows:

E = −(∇ × C)/ϵ0, H = (∇ × A)/µ0. (3)

Thus, with the help of these four fields (E, H, C, and A),
which are real quantities, a set of both scalar and vector
properties that characterize the electromagnetic pulses can be
defined. In this way, there are three main scalar properties,
energy (U), helicity (H), and chirality (X ), which are given
by [2], [8]

U =

∫
�

u dr3
=

∫
�

1
2
(ϵ0|E|

2
+ µ0|H|

2) dr3 (4)

H =

∫
�

h dr3
=

∫
�

1
2c
(A · H − C · E) dr3 (5)

X =

∫
�

χ dr3
=

∫
�

1
2c2 (H · Ė − E · Ḣ) dr3. (6)

Here, u, χ , and h are the energy, chirality, and helicity
densities, respectively, while � denotes that the integration
must be made over the entire volume. In the same way, there
are also three main vectorial properties, associated with the
fluxes of energy (Poynting vector P), helicity (total spin S),
and chirality (Y), which can be expressed as follows [2], [6],
[8], [9]:

P =

∫
�

p dr3
=

∫
�

E × H dr3 (7)

S =

∫
�

8h

c
dr3

=
1
2

∫
�

(ϵ0Ȧ × A + µ0Ċ × C)dr3 (8)

Y =

∫
�

8X dr3
=

1
2

∫
�

(ϵ0E × Ė + µ0H × Ḣ)dr3 (9)

where p, 8h , and 8X denote the respective fluxes of energy,
helicity, and chirality densities. Thus, the calculation of the
scalar and vector properties of electromagnetic pulses involves
the knowledge of the fields over all of space and time, and
the integration of the corresponding densities over the entire
volume. In this sense, in many cases, it will be difficult
to find analytical solutions for the properties (especially in
systems with pulse superposition), and even the numerical
calculation will be very extensive. We propose an alternative
for the calculation of all the properties that only involves
knowing the electric field in the far-field. For this, we have
to take into account that the main scalar (energy, helicity, and
chirality) and vectorial (energy flux, helicity flux, and chirality
flux) properties of an electromagnetic field are subject to the
following local conservation theorem [2], [6], [10], [11], [12]:

α̇ + ∇ · 8α = 0 (10)

where α denotes a scalar property density or the different
components of vector properties, while 8α is the flux of the
property. Therefore, integration of (10) over all the space �
(which denotes the total volume, covering the interval [0,∞]
for radial distance in spherical coordinates ρ) yields for all
the scalar and vector properties analyzed to the conservation
relation d3/dt = 0 [2], [6], since the flux is null to infinity,

Fig. 1. Schematic of the large sphere considered for the calculation of
electromagnetic properties of light pulses, where α denotes the property
density defined in all the points of the volume and 8 is the flux of the
property that crosses the surface of the sphere.

being 3 the different properties defined as the volume integral
of the respective densities as follows:

3 =

∫
�

αdr3. (11)

Let us now consider a large sphere with radius R as that
shown in Fig. 1, which encompasses a very large but finite
volume �′ (where ρ pertains to the interval [0, R]) in which
there are defined the property density α and the flux of the
property 8α that crosses the surface 6 of the sphere (being
the surface differential d6 = d6ρuρ = ρ2sin(θ )dθdφuρ).
Therefore, the integration of (10) over all the time and the
volume �′ gives the following equation using the divergence
theorem:[
3�′

]t=∞

t=−∞

=

[ ∫
�′

αdr3
]t=∞

t=−∞

= −

∫
∞

−∞

( ∫
6

8α · d6

)
dt

(12)

where 3�′ denotes the integral of the density α over the
volume �′. Let us now analyze the physical meaning of
3�′ (t = ∞) and 3�′ (t = −∞) for the problem considered.
Thus, at the beginning of time (t = −∞ in this case, but
similar discussion can be made for t = 0), the electromagnetic
pulse will be localized in a limited region of space, so integrat-
ing the density of the different properties over a volume �′

with a sufficiently large R is equal to the integration over
the entire volume, i.e., all the fields vanish outside the large
sphere at the initial time, and therefore, 3 = 3�′ (t = −∞).
On the other hand, at the end of the time (t = ∞), we can
consider that all the fields have propagated outside the finite
sphere, so that the fields inside the volume �′ vanish, and as a
consequence the density of the different properties within it is
zero, and therefore,3�′ (t = ∞) = 0. This assumption is in line
with the Sommerfeld radiation condition [13], which is used to
ensure that the radiated fields from localized sources propagate
outward in a physically reasonable manner. Therefore, the
electromagnetic properties of the light pulses can also be
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defined as follows:

3 = 3�′(t = −∞) =

∫
∞

−∞

( ∫
6

8α · d6

)
dt. (13)

Here, 6 denotes a surface that encloses the volume
of integration of the electromagnetic properties densities.
In Sections II-A and II-B, we are going to demonstrate that all
the electromagnetic properties of the pulse can be expressed as
a function of statistical parameters of the spectrum distribution
of the beam using the last term of (13), which only implies
the knowledge of the electric field and magnetic fields in the
far-field.

A. Energy, Helicity, and Chirality

First, we are going to analyze the three main scalar proper-
ties of electromagnetic pulses: energy, helicity, and chirality.
The flux of these properties takes the same form, given by the
cross product of two vector fields

8α = M × N (14)

where, for each property, we have to take the appropriate
vector fields (for example, M = E and N = H for the
energy [8]). Therefore, introducing this equation into (13) and
switching the order of integration, we obtain

3 =

∫
6

( ∫
∞

−∞

(
M × N

)
· uρdt

)
d6ρ . (15)

Now, we apply the Phancherel’s theorem to the temporal
integral given by∫

∞

−∞

(
M × N

)
· uρdt =

1
π

∫
∞

0

(
M̃ × Ñ∗)

· uρdω (16)

where M̃ and Ñ∗
denote the Fourier transforms of the cor-

responding vector fields M and N, while the asterisk implies
the complex conjugate. Using (16) in (15) and switching the
order of integration, we have

3 =

∫
∞

0
V3
ω dω =

1
π

∫
∞

0

(∫
6

(
M̃ × Ñ∗

)
· uρd6ρ

)
dω

(17)

where V3
ω denotes the spectral density of the property 3.

Let us now analyze the particular cases of the different
scalar magnitudes. Regarding the energy, its flux is given by
Poynting vector 8U = E × H, so it is easy to see that the
energy spectral density can be written as follows:

V U
ω =

1
π

∫
6

(
Ẽ × H̃∗

)
· uρd6ρ . (18)

In the case of the helicity, the flux is 8H =

1/2(ϵ0cA × Ȧ + 1/(ϵ0c)C × Ċ), so the spectral density
has two contributions, and taking into account the relations
E = −Ȧ and H = −Ċ (in the Coulomb gauge), which
implies that Ã = jẼ/(ω) and C̃ = jH̃/(ω), and therefore,
the spectral density can be written as follows:

VHω =
1

2πω

∫
6

ℑ

[(
ϵ0cẼ × Ẽ∗

+
1
ϵ0c

H̃ × H̃∗

)]
· uρd6ρ

(19)

where ℑ[] denotes that the imaginary part must be taken.
Finally, the chirality flux is 8X = 1/2(ϵ0E × Ė+µ0H × Ḣ),
and therefore, its corresponding spectral density is given by

VXω =
1

2π
ω

c

∫
6

ℑ

[(
ϵ0cẼ × Ẽ∗

+
1
ϵ0c

H̃ × H̃∗

)]
· uρd6ρ .

(20)

Equations (18)–(20) provide the spectral density of the three
scalar properties for any type of electromagnetic pulse as a
function of the asymptotic behavior of the electric field and
the magnetic field, in such a way that the property can be
obtained by means of the integral over all frequencies of the
respective spectral density according to (17). It is noteworthy
that the sole distinction between the spectral density of helicity
and chirality lies in a scaling factor applied to the power of ω
and a constant c.

Polarization State Effect on Scalar Properties: While
(18)–(20) remain applicable to any electromagnetic field when
the asymptotic behavior of both the electric and magnetic
fields is known, delving into the polarization state of the
field reveals intriguing connections among various properties.
To elaborate, we will consider the decomposition of any
field into a superposition of a left-handed circularly polarized
field and its right-handed counterpart. This analysis yields a
representation, wherein the electric and magnetic fields in the
far-field are expressed as follows:

Ẽ = Exp
[
− j

ω

c
ρ
] F(θ, φ, ω)

ρ

(
Ad ud + Al Exp[ jδ]ul

)
(21)

H̃ = Exp
[
− j

ω

c
ρ
] j F(θ, φ, ω)

cµ0ρ

(
− Ad ud + Al Exp[ jδ]ul

)
.

(22)

Here, we define ud as (uθ − juφ)/
√

2 and ul as (uθ +

juφ)/
√

2, representing the unitary vectors of right-handed
and left-handed fields, respectively. AD and AL correspond to
the fractions of right-handed and left-handed photons, subject
to the condition A2

d + A2
l = 1. In addition, δ introduces

a phase shift to account for all possible polarization states.
This behavior conforms to the standard characteristics of
radiated fields in the far-field, where there is an absence of
a radial component, the field amplitude follows a decay pro-
portional to 1/ρ, and F(θ, φ, ω) denotes a function describing
the directionality and spectral distribution of the field. Thus,
substituting (21) and (22) into expressions (18)–(20), we can
obtain the following spectral densities for the different scalar
properties:

V U
ω =

(
A2

d + A2
l

)ϵ0c
π

∫
6

|F |
2

ρ2 d6ρ =
ϵ0c
π

∫
6

|Ẽ|
2d6ρ (23)

VHω =
1l

d

ω

ϵ0c
π

∫
6

|F |
2

ρ2 d6ρ =
1l

d

ω

ϵ0c
π

∫
6

|Ẽ|
2d6ρ (24)

VXω = 1l
d
ϵ0

π
ω

∫
6

|F |
2

ρ2 d6ρ = 1l
d
ϵ0

π
ω

∫
6

|Ẽ|
2d6ρ (25)

where we have taken into account that |Ẽ| = |F |/ρ and
1l

d = (A2
d -A2

l ). Examining (23)–(25), it becomes apparent that
a direct relationship exists among the three spectral densities.
Consequently, the estimation of the three scalar properties
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can be accomplished through the energy spectral density,
representing the expected value of various powers of the
frequency, expressed as follows:

U =

∫
∞

0
V U
ω dω (26)

H = 1l
d

∫
∞

0

1
ω

V U
ω dω (27)

X =
1l

d

c

∫
∞

0
ωV U

ω dω. (28)

Equation (26) is well known and was previously used
by Hellwarth and Nouchi [14] to calculate the energy of
electromagnetic pulses; however, (27) and (28) show that the
energy spectral density can be used to calculate helicity and
chirality of an electromagnetic pulse, taking into account the
fraction of right-handed and left-handed photons.

Otherwise, from energy spectral density, we can define the
continuous probability density function (pdf) V̂ ω of poly-
chromatic beam as V̂ ω = VU

ω /U, so the expected value for
different powers of the frequency are given by

⟨ωn
⟩ =

∫
∞

0
ωn V̂ ωdω =

∫
∞

0
ωn Vωdω∫

∞

0
Vωdω

. (29)

This allow us to analyze the connection between helicity
and chirality for electromagnetic pulses, which has been
extensively analyzed for circularly polarized monochromatic
fields [1], [2], [5]. In the case of such fields, the helicity and
chirality densities have the following relations with the energy
density χ /u = ±ω/c and h/u = ±1/ω, so the relation between
both magnitudes is χ = ω2h/c [1], [2], but this proportionality
only holds for the special case of monochromatic fields
[1], [2]. Thus, from (26)–(29), we can express the ratios
between helicity and chirality with the energy for circu-
larly polarized polychromatic beams as H/U = ±⟨ω−1

⟩ and
X /U = ±⟨ω⟩/c (the sign depends on the circularly polarization
considered), where ⟨ω⟩ = ω̄ represents the mean frequency of
the distribution and ⟨ω−1

⟩ = 1/ω2 is related to the number
of photons N by N = U⟨ω−1

⟩/h̄ = U/(h̄ω2) (h̄ denotes the
Planck constant divided by 2π ). Therefore, for electromagnetic
pulses, the relation between chirality and helicity is given by

X =
1
c

⟨ω⟩

⟨ω−1⟩
H =

1
c
ω̄ω2H. (30)

This result implies that for polychromatic beams, the
proportionality between chirality and helicity depends on
two different frequencies, one related to the average energy
per photon (h̄ω̄) and the other to the energy per photon
(h̄ω2 = U/N).

B. Energy Flux, Helicity Flux, and Chirality Flux

In the same way as for the scalar properties analyzed in
Section II-A, the components of vector properties associated
with the energy flux (Poynting vector P), helicity flux (total
spin S), and chirality flux also obey the local conservation

equation given by (10), where the corresponding flux for i
component takes the general form [2], [6], [8]

8αi =
1
2

(
− δi j M · N + M j Ni + Mi N j

)
. (31)

Therefore, the scalar product of the flux (31) and the surface
differential of the sphere is given by

8αi · d6 =
1
2

(
M · N

)
ui d6ρ (32)

where the values of ui are the components of the unitary vec-
tors in the propagation direction of the flux, for example, for
Cartesian components ux = cos(φ)sin(θ ), uy = sin(φ)sin(θ ),
and uz = cos(θ ), while for the radial component of spherical
coordinates, uρ = 1. In this point, following similar proce-
dure as explained for scalar properties with the help of the
Plancherel’s theorem, the components of vector properties can
be expressed as follows:

3i =

∫
∞

0
V3i
ω dω =

1
2π

∫
∞

0

( ∫
6

(
M̃ · Ñ∗)

ui d6ρ
)

dω (33)

where V3i
ω denotes the spectral density for the ith component

of vector property 3. Therefore, similar to the previous
section, the spectral densities of the different components of
the vector properties can be obtained. Let us start with the
energy flux, so taking into account that the flux of Poynting
vector is given by the Maxwell stress tensor [6]

8Pi =
1

2µ0

(
− δi j E · E + 2E j Ei

)
+

1
2ϵ0

(
− δi j H · H + 2H j Hi

)
. (34)

The spectral density of the components of Poynting vector
is given by the following expression:

V Pi
ω =

1
2π

∫
6

( 1
µ0

|Ẽ|
2
+

1
ϵ0

|H̃|
2
)

ui d6ρ . (35)

In the case of the other two vector properties studied, the
corresponding fluxes can be written as follows [2]:

8Si =
c
2

(
δi j A · H− A j Hi − Ai H j − δi j C · E + C j Ei + Ci E j

)
(36)

8Yi =
1
2

(
δi j H · Ė−H j Ė i −Hi Ė j − δi j E · Ḣ+E j Ḣ i +Ei Ḣ j

)
.

(37)

With these definitions and taking into account (33), the
spectral densities for the components of the spin Si and
chirality flux (Yi ) can be written as follows:

V Si
ω =

1
π

c
ω

∫
6

ℑ

[
Ẽ · H̃∗

]
ui d6ρ (38)

V Yi
ω =

1
π
ω

∫
6

ℑ

[
Ẽ · H̃∗

]
ui d6ρ (39)

where we have used the relations between the electric and
magnetic fields Fourier transforms and the potentials Ã and C̃
exposed in the previous section and the properties of the
Fourier transform of temporal derivatives. Therefore, (35),
(38), and (39) offer the spectral density for the different
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components of the vector properties applicable to any kind
of electromagnetic pulse, where we only need to know the
far-field behavior of the Fourier transform of electric and
magnetic fields (Ẽ and H̃). Recently, the gauge invariance
of helicity continuity equation has been studied [15]. In this
way, it is important to note that (35), (38), and (39), together
with (18)–(20), are gauge-invariant, since they solely depend
on magnitudes that are gauge-invariant, despite of that in the
deduction procedure the Coulomb gauge has been used.

Polarization State Effect on Vector Properties: In the same
way of the scalar properties, interesting relationships between
vector properties can be obtained if we express the electric
and magnetic fields in the far-field as the superposition of
right-handed and left-handed fields given by (21) and (22).
Therefore, substituting such equations into (35), (38), and (39)
gives the following expressions for the spectral densities of
vector components:

V Pi
ω =

ϵ0c2

π

∫
6

|Ẽ|
2ui d6ρ (40)

V Si
ω = 1l

d
1
ω

ϵ0c2

π

∫
6

|Ẽ|
2ui d6ρ (41)

V Yi
ω = 1l

d
ϵ0c
π
ω

∫
6

|Ẽ|
2ui d6ρ . (42)

Now, as in the case of the scalar properties, it is easy to
see that there is a direct relationship between the spectral
densities of the three vector properties, so VSi

ω = 1l
d V Pi

ω /ω

and VYi
ω = 1l

d V Pi
ω ω/c, and therefore, the different components

of these vector properties can be obtained from the following
expressions:

Pi =

∫
∞

0
V Pi
ω dω (43)

Si = 1l
d

∫
∞

0

1
ω

V Pi
ω dω (44)

Yi =
1l

d

c

∫
∞

0
ωV Pi

ω dω. (45)

In the case of the spherical coordinates, uρ = 1, so
VPρ
ω = cVU

ω , and therefore, Pρ = cU, Sρ = cH, and
Yρ = cX , which means that the radial component of the fluxes
of each scalar property is basically the property multiplied by
the speed of the light. In the case of Cartesian components,
there is not a direct relationship between the spectral densities
of scalar and vector properties, so, for example, if we are
interested in the flux in z-direction, we need to calculate the
V Pi
ω for uz = cos(θ ), given by

V Pz
ω =

ϵ0c2

π

∫
6

|Ẽ|
2cos(θ)d6ρ . (46)

From such definition, and taking into account the results
for radial component of Poynting vector, it can be deduced
from VPz

ω < VPρ
ω that the z component of Poynting vector is

bounded by Pz < cU, as has been pointed out by Lekner [6]
as a consequence of the Maxwell equations.

III. RESULTS AND DISCUSSION

Finally, we will verify that the main results of this work,
described in (26), (27), (28), (43), (44), and (45), exactly

estimate the electromagnetic properties of the pulses, so that
they provide the same results as through the volume integrals
of the corresponding densities [see (4)–(9)]. To do this, we are
going to use the electromagnetic pulses with finite energy
and momentum generated through the potential proposed
by Ziolkowsky et al. [16] with the parameters analyzed by
Hellwarth and Nouchi [14], which have analytical solutions
for the volume integrals [14], [17]. The starting point is the
following scalar potential, which is a solution to the wave
equation:

ψ =
f0

(s + q2)( jτ + q1)
, s =

r2

jτ + q1
− j (ct + z) (47)

where r and z are the radial and axial coordinates in the
cylindrical system; q1 and q2 are parameters that characterize
the pulse, which are defined strictly positive; f0 is a constant;
and τ = z-ct. Since ψ is a complex function, we can define
its real and imaginary parts as ψR = ℜ(ψ) and ψI = ℑ(ψ),
which allows us to construct the following Hertz potentials in
cylindrical coordinates:

5e = ψR uz (48)

5m = −
ψI

µ0c
uz (49)

where 5e and 5m denote the electric and magnetic Hertz
potential, respectively. These Hertz potentials are a solu-
tion to the vector wave equation and generate a circularly
polarized electromagnetic field in the far-field. The electric
field, magnetic field, and their corresponding potential vectors
(C and A) can be obtained by the expressions

E = ∇ × ∇ × 5e − µ0∇ × 5̇m (50)

H = ∇ × ∇ × 5m + ϵ0∇ × 5̇e (51)

A =
1
c2 5̇e + µ0∇ × 5m (52)

C =
1
c2 5̇m − ϵ0∇ × 5e. (53)

Therefore, these fields can be estimated for the defined
potentials [see (47)–(49)] and later introduced in (4)–(6) to
calculate the scalar properties. The results obtained after the
relatively high time-consuming calculation are the following:

U = β
q1 + q2

q3
1 q3

2
(54)

H = β
1

cq2
1 q2

2
(55)

X = β
1
2

(
3q2

1 + 4q1q2 + 3q2
2

)
(56)

where β is a constant defined as β = f0ϵ0π
2/2. In the

same way as the scalar properties, the vectorial properties can
be obtained from the volume integrals of (7)–(9). For these
beams, the fluxes of the energy, helicity, and chirality only
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have z component, which can be written as follows:

Pz = β
q2 − q1

q3
1 q3

2
c (57)

Sz = β 2 F1

[
1
2
; 1;

7
2
;
(q2 − q1)

2

(q2 + q1)2

]
4(q2 − q1)

5(q2 + q1)q2
1 q2

2
(58)

Yz = β
3
2

(
q2

2 − q2
1

)
q4

1 q4
2

c (59)

where 2 F1 indicates the hypergeometric function. On the other
hand, these properties can also be estimated with the respective
spectral densities for scalar [see (23)] and vectorial [see (40)]
properties, which are generated from the Fourier transform
of the electric field in the far-field approximation. Thus, the
starting point to calculate such spectral densities is the far-field
approximation for the potential (47) in spherical coordinates
(ρ, θ , and φ). This far-field expansion involves various steps.
First, the time variable must be defined as t = t′-ρ/c, since
we must take into account the retarded time that the pulse
needs to arrive to the far-field. Second, the radial coordinate
must be replaced by ρ = 1/ϱ. The last step involves the series
expansion around ϱ = 0 truncated in the first term, and finally,
undoing the variable changes, so the final expression is given
by

ψa =
f0

2ρ(ρ + ct + j Q)
, Q =

1
2
(q1+q2+(q2 − q1)cosθ).

(60)

Fourier transforms of the real and imaginary parts of this
far-field approximation are given by

ψ̃a,R =
j
c
π

2
Exp

[
−
ω

c
Q

]
Exp

[
− j

ω

c
ρ
]
, ψ̃a,I = jψ̃a,R .

(61)

Therefore, the far-field approximation of the Fourier
transform for Hertz potentials (48) and (49) is 5̃e =

ψ̃a,R(cosθuρ − sinθuθ ) and 5̃m = −ψ̃a,I /(µ0c)(cosθuρ −

sinθuθ ) in spherical coordinates, so taking into account
that Fourier transform of (50) is Ẽ = ∇ × ∇ × 5̃e −

jµ0ω∇ × 5̃m , the corresponding electric field in the fre-
quency domain for the far-field is given by

Ẽa = f0
π

2
ω2

c3

sinθ
ρ

Exp
[
−
ω

c
Q

]
Exp

[
− j

ω

c
ρ
](

uθ + juφ
)
.

(62)

In this case, electric field is purely right-handed circularly
polarized, so Ad = 1 and Al = 0. Finally, the respective
spectral densities are calculated by introducing expression (62)
into (23) and (40), can be written as follows:

V U
ω =

8β
c5 Exp[σ ]

ω4

κ3

(
κ cosh(κ)− sinh(κ)

)
(63)

V Pz
ω =

8β
c4 Exp[σ ]

ω4

κ4

(
− 3κ cosh(κ)+ (3 + κ2)sinh(κ)

)
(64)

where σ = −(q1 + q2)ω/c and κ = (q1 − q2)ω/c. Thus,
using this expression of VωU in (26)–(28), and integrat-
ing over all the frequencies, the values of energy, helicity,

and chirality are calculated, which are exactly the same as
those provided by (54)–(56) obtained by the volume inte-
grals of the properties densities. In the same way, using this
expression of VPi

ω in (43)–(45), we obtain the corresponding z
components of the energy, helicity, and chirality fluxes, which
again exactly correspond to those obtained through the volume
integrals, the results of which are shown in (57)–(59). We must
note that, using this second procedure, the calculation time is
much less expensive than the classical one, since only implies
the integration over the spatial angular distribution of the elec-
tric field modulus in the far-field, which has a smooth behavior
in the form of trigonometric functions that are usually easily
integrable. Specifically, the calculation of the volume integral
at t = 0 for energy, helicity, and chirality takes 52.78, 27.98,
and 16.22 s, respectively, while the calculation times using
the proposed method are 3.58, 2.51, and 2.34 s, an order of
magnitude lower (Mathematica program was used to perform
all the calculations). Therefore, this methodology allows the
calculation of the scalar and vector properties of electromag-
netic pulses in a simple and fast way through expressions that
are gauge-invariant, even in pulses in which their calculation
through volume integrals will be very complicated, such as
the fields generated by the interference of multiple pulses.

IV. CONCLUSION

In conclusion, we have established a novel framework for
calculating the main scalar (energy, helicity, and chirality)
and vectorial (Poynting vector, total spin, and chirality flux)
properties of electromagnetic pulses. This achievement is
realized through gauge-invariant expressions derived from the
far-field behavior of electric and magnetic fields, independent
of polarization state, ensuring robustness, and consistency.
Furthermore, by decomposing the fields into a superposition
of a left-handed circularly polarized part and its right-handed
counterpart, we have demonstrated that all properties can be
obtained through the spectral density of the energy and the
spectral densities of the Poynting vector components. These
quantities can be calculated by considering only the modulus
of the electric field in the frequency domain for the far-field.
We have validated our methodology with a simple pulse, show-
ing that the results align exactly with those obtained through
corresponding volume integrals of local properties in all cases,
and at a significantly lower computational cost. The simplicity,
precision, and computational efficiency make this method
particularly advantageous for studying the electromagnetic
properties of complex field structures, including interference
from multiple pulses or scattered fields due to interactions with
matter. In addition, as a consequence of our developed method,
we have established the proportionality between helicity and
chirality for electromagnetic pulses, dependent on statistical
average parameters, such as the mean frequency of the pulse
and the energy per photon.
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