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Generation of Huygens’ dipoles for
any spherical nanoparticle excited by
counter-propagating plane waves:
study of scattered helicity.

1. SCATTERED FIELD

Let we consider two counter-propagating plane waves along the Z axis (incident on a spherical
particle of radius a, located at the coordinates origin) whose electric and magnetic field are given
by:

E1 = E0exp(i k z)(x̂ + i ξ ŷ) (S1)

E2 = −E0qexp(−i k z)exp(i δ)(x̂ + i ξ ŷ) (S2)

H1 =
1

iωµ
∇× E1 (S3)

H2 =
1

iωµ
∇× E2 (S4)

being E0 the amplitude of the counter-propagating fields, q he beam ratio between amplitudes
of the counter-propagating waves, ξ ∈ [−1, 1] is a parameter that determines the polarization
state (we will study the cases ξ = 0 and ξ = 1 that describes linearly and circularly polarized
incident waves respectively), δ shows the dephase between the two plane waves and k2 = ω2εµ
is the wave number appropriate to the surrounding medium. According to Bohren [1] (and using
his notation), the scattered Es field by the spherical particle can be expanded in vector spherical
harmonics as:

Es = Es1 + Es2 (S5)

where

Es1 = E+
f (θ, φ) + i ξ R[E+

f (θ, φ)] (S6)

Es2 = E−f (θ, φ) + i ξ R[E−f (θ, φ))] (S7)

being R[X(θ, φ)] = X(θ, φ − π/2) (for any vectorial field X), the first term in equations S6-S7
corresponds to the scattered field generated by the x̂ component of the incident field and the
second term to the scattered field generated by the ŷ component of the incident wave [1]. The
fields E+

f and E−f are given by:

E+
f =

∞

∑
n=1

En

(
i an N(3)

e1n − bn M(3)
o1n

)
(S8)

E−f = qexp(iδ)
∞

∑
n=1

En

(
i an N(3)−

e1n − bn M(3)−
o1n

)
(S9)

where En = E0 in 2n+1
n(n+1) . Furthermore, N(3)

e,o1n, M(3)
e,o1n are the vector spherical harmonics and

an, bn are the Mie coefficients, all of them defined according to [1].

For next calculations it is interesting to introduce the explicit form of N(3)
e,o1n, M(3)

e,o1n that are given
by:

M(3)
e,o1n = ∇× [r ψe,o(r, θ, φ)ur] (S10)

N(3)
e,o1n = ∇× [M(3)

e,o1n]/k (S11)



where the curl operator is assumed in spherical coordinates, ur is the radial unitary vector and
the functions ψe,o(r, θ, φ) are given by:

ψe(r, θ, φ) = cos(φ)P1
n(cos(θ))Hn

1 (kr) (S12)

ψo(r, θ, φ) = sin(φ)P1
n(cos(θ))Hn

1 (kr) (S13)

being P1
n(cos(θ)) and Hn

1 (kr) the the associated Legendre polynomials and the spherical Hankel
function of first kind respectively.

N(3)−
e,o1n, M(3)−

e,o1n are also vector spherical harmonics that are obtained from N(3)
e,o1n, M(3)

e,o1n by applying
a rotation matrix My of an angle π about the Y axis.
If we consider a generic vectorial field U(r, θ, φ) in spherical coordinates given by:

U(r, θ, φ) = R(r, θ, φ)ûr + Θ(r, θ, φ)ûθ + Φ(r, θ, φ)ûφ (S14)

where R, Θ and Φ are arbitrary functions, the rotated field U−(r, θ, φ) is given by:

U−(r, θ, φ) = R(r, π − θ, π − φ)ûr −Θ(r, π − θ, π − φ)ûθ −Φ(r, π − θ, π − φ)ûφ (S15)

so according to equation S15 and taking into account equations S10-S13 it can be deduced that:

N(3)−
e1n = (−1)nN(3)

e1n (S16)

N(3)−
o1n = (−1)n+1N(3)

o1n (S17)

M(3)−
e1n = (−1)nM(3)

e1n (S18)

M(3)−
o1n = (−1)n+1M(3)

o1n (S19)

Taking into account that:

R[N(3)
e1n] = N(3)

o1n , R[N(3)
o1n] = −N(3)

e1n (S20)

R[M(3)
e1n] = M(3)

o1n , R[M(3)
o1n] = −M(3)

e1n (S21)

and introducing equations S6-S9 and S16-S21 into equation S5 and adequately regrouping the
terms, the scattered field field will be given by:

Es =
∞

∑
n=1

En

(
i An N(3)

e1n − Bn M(3)
o1n + iξ

(
i An N(3)

o1n + BnM(3)
e1n

))
(S22)

An and Bn being the parameters related to Mie coefficients an, bn by equations:

An =
(

1 + (−1)nq exp(iδ)
)

an (S23)

Bn =
(

1− (−1)nq exp(iδ)
)

bn (S24)

Taking into account the relations of vector spherical harmonic respect the operator ∇× given by

equation S11 and M(3)
e,o1n = ∇× [N(3)

e,o1n]/k [1], and using the Maxwell equation: Hs =
1

iωµ∇× Es,
we obtain:

Hs =
k

ωµ

∞

∑
n=1

En

(
An M(3)

e1n + i Bn N(3)
o1n + iξ

(
An M(3)

o1n − i BnN(3)
e1n

))
(S25)

2. HELICITY

The eigenstates of helicity operator Λ = ∇×
k are given by the Riemann-Silberstein linear combi-

nations as it was mentioned in the main text:

G± =
1√
2
(Es ± iηHs) (S26)

with η =
√

µ/ε the medium impedance, so that:

ΛG± = ±G± (S27)
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which implies that G± has a well defined helicity of ±1.
By introducing S22 and S25 into equation S26, we obtain:

Gs
+ =

1√
2

∞

∑
n=1

En
(
iAnF+e − BnF+o + ξ(iBnF+e − AnF+o )

)
(S28)

Gs
− =

1√
2

∞

∑
n=1

En
(
−iAnF−e − BnF−o + ξ(iBnF−e + AnF−o )

)
(S29)

where for simplicity we have used the functions F+e = M(3)
e1n + N(3)

e1n, F+o = M(3)
o1n + N(3)

o1n,

F−e = M(3)
e1n −N(3)

e1n and F−o = M(3)
o1n −N(3)

o1n.

A. Helicity of scattered fields for linearly polarized incident fields
If we assume that incident fields are linearly polarized (ξ = 0) equations S28 and S29 becomes:

Gs
+ =

1√
2

∞

∑
n=1

En
(
iAnF+e − BnF+o

)
(S30)

Gs
− =

1√
2

∞

∑
n=1

En
(
−iAnF−e − BnF−o

)
(S31)

It is evident from previous equations that Gs
± = 0 for any spatial position if and only if An =

Bn = 0 but then Gs
∓ = 0. Therefore, it is demonstrated that when the counterpropagating incident

fields are linearly polarized, the scattered field is not an eigenstate of the helicity.

B. Helicity of scattered fields for circularly polarized incident fields
If we assume that incident fields are circularly polarized (ξ = 1) equations S28 and S29 becomes:

Gs
+ =

1√
2

∞

∑
n=1

En
(
iAnF+e − BnF+o + (iBnF+e − AnF+o )

)
(S32)

Gs
− =

1√
2

∞

∑
n=1

En
(
−iAnF−e − BnF−o + (iBnF−e + AnF−o )

)
(S33)

this equations can be rewritten as:

Gs
+ =

1√
2

∞

∑
n=1

En
(

An + Bn)(iF+e − F+o )
)

(S34)

Gs
− =

1√
2

∞

∑
n=1

En
(

An − Bn)(−iF−e + F−o )
)

(S35)

From previous equations and, as it is discussed in the main text, it is possible to obtain a well
defined scattered helicity if An = Bn or An = −Bn.

3. DEDUCTION OF EQUATION 24

Using the well known trigonometric identity:

tan(2x) =
2tan(x)

1− tan(x)2 (S36)

it is easy to obtain from equation 24 (δ = arctan(±2 |b1|
|a1| )) that:

tan(δ) = tan(±2 arctan(|b1|/|a1|) = ±
2|a1||b1|
|a1|2 − |b1|2

(S37)

If ∆ = 0 then by equation (23) δ = arctan
(
± 2|a1||b1|
|a1|2−|b1|2

)
, then

tan(δ) = ± 2|a1||b1|
|a1|2 − |b1|2

(S38)
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so equations 23 and 24 are equivalent.
An alternative deduction is that equation 23:

δ = arg
[ (a1 ∓ b1)

(a1 ± b1)

]
(S39)

can be rewritten as:

δ = arg
[ (1∓ b1/a1)

(1± b1/a1)

]
= arg

[ (1∓ |b1|exp(−i∆)/|a1|)
(1± |b1|exp(−i∆)/|a1|)

]
(S40)

Being ∆ = φa − φb. If ∆ = ±π
2 then exp(−i∆) = ∓i and then:

δ = arg
[ (1± i|b1|/|a1|)
(1∓ i|b1|/|a1|)

]
(S41)

Taking into account that numerator and denominator are conjugate complex of each other, and
the fact that arg(Z/Z∗) = 2arg(Z) we finally obtain that:

δ± = ±2 arctan
( |b1|
|a1|

)
(S42)
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