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Abstract: Helicity and directionality control of scattered light by nanoparticles is an important
task in different photonic fields. In this paper, we theoretically demonstrate that scattered light of
lossy spherical nanoparticles excited by using two counter-propagating dephased plane waves
with opposite helicity ±1 and the adequate selection of dephase and intensity shows a well
defined helicity and a controllable scattering directivity. Numerical examples of Si nanospheres
are studied showing their potential application to directional nanoantennas with a well defined
helicity. The proposed method is valid for any type of nanoparticle, not only lossy ones.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The directionality control of scattered light by spherical nanoparticles and specially the intensity
suppression at given directions were studied in an initial stage by Kerker and co-workers for
non active particles [1], presenting Kerker’s famous conditions and also those by Alexopoulos
[2] and Kerker [3] for active objects. This directionality control of scattered light by spherical
nanoparticles could have important applications, for example, in the field of nano-antennas [4,5]
where generalization of Kerker’s conditions have also been developed for nano-rings antennas
[6]. Structured light beams have been used to obtain transverse Kerker scattering [7], which
have been used to analyze nanoantenna displacements resolved with sub-angstrom precision and
to achieve high scattering directivities in nanoantennas with radial and azimuthal polarization
modes [8].

Kerker’s conditions are related to duality symmetry of Maxwell equations [9], and consequently
to conservation of electromagnetic helicity [10] that it is intimately linked with Noether’s theorem
[11,12].

When only one plane wave is used for illumination, second Kerker condition is precluded
by the optical theorem for high refractive index particles in the absence of gain, while, as
shown Olmos-Trigo et al. [13], the generalized second Kerker condition generates optimal
backward scattering, but do not assures nearly-zero forward light scattering. Recently, it has
been demonstrated by the same authors that nanoparticles with absorption or optical gain (active
particles) preclude the first Kerker condition, and consequently, it is not possible to obtain zero
backscattered radiation [14] and the scattered field don’t have a well defined helicity when
nanoparticles are illuminated by only one circularly polarized plane wave, so helicity is not
preserved. This impossibility is due to the strict requirements that Mie coefficients must fulfil. In
this sense, it has recently been demonstrated that control of light scattering can be obtained by
means of the interference from multiple coherent waves for excitation of nanoparticles [15], where
a TM mode is decomposed as a sum of different cylindrical waves. The simplest interference
system can be obtained by using dephased counter-propagating linearly polarized plane waves,
and these interference phenomena have been used to control the Mie scattering resonances [16],
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which can be reduced or enhanced as a function of the relative phase of the waves. The approach
used in this paper allows us to demonstrate that using dephased counter-propagating plane waves
circularly polarized to excite nanoparticles (see Fig. 1) makes it possible for electric and magnetic
modes simultaneously oscillate in-phase with equal amplitude, obtaining scattered fields with
well defined helicity ±1 and enabling us to control the directionality of the scattering differential
cross section by an adequate selection of dephase and amplitude ratio of counter-propagating
plane waves.

Fig. 1. (a) Non directional scattered field with helicityΛs ≠ ±1 by an spherical nanoparticle
excited by an incident plane wave with helicity 1. b) Backward scattered field with helicity
Λs = −1 by an spherical nanoparticle excited by an two counter-propagating incident plane
waves with helicities ±1 respectively.

2. Theoretical background

Let’s consider two circularly polarized counter-propagating plane waves (see Fig. 1) along the
Z axis (incident on a spherical particle of radius a, located at the coordinates’ origin) whose
electric and magnetic fields are given by:

E1 = E0exp(i k z)(x̂ + i ξ ŷ) (1)

E2 = −E0 q exp (−i( k z − δ))) (x̂ + i ξ ŷ) (2)

H1 =
1

iωµ
∇ × E1 (3)

H2 =
1

iωµ
∇ × E2 (4)

resulting in a total electromagnetic incident field:

Ei = E1 + E2 (5)

Hi = H1 +H2 (6)

where E0 is the amplitude of the incident electric field, q the beam ratio between amplitudes
of the counter-propagating waves, δ is the dephase of counter-propagating plane waves and
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k2 = ω2ϵ µ is the appropriate wave number to the surrounding medium. A time dependence of
exp(−iω t) is assumed for all fields ω being the angular frequency. Using the Bohren notation
[17], and generalizing (see Supplement 1) the results obtained by Li [16] for linearly polarized
counter-propagating plane waves to circularly polarized counter-propagating plane waves given
by Eqs. (1)–(4), we obtain scattered electric Es and magnetic Hs fields induced by the spherical
particle that can be expanded in vector spherical harmonics as:

Es =

∞∑︂
n=1

En

(︂
i An N(3)

e1n − Bn M(3)
o1n + i

(︂
i An N(3)

o1n + BnM(3)
e1n

)︂)︂
(7)

Hs =
k
ωµ

∞∑︂
n=1

En

(︂
An M(3)

e1n + i Bn N(3)
o1n + i

(︂
An M(3)

o1n − i BnN(3)
e1n

)︂)︂
(8)

where En = E0 in 2n+1
n(n+1) , N(3)

e,o1n, M(3)
e,o1n are the vector spherical harmonics [17], An and Bn being

the parameters related to Mie coefficients an, bn [17] by equations (see Supplement 1):

An =
(︂
1 + (−1)nq exp(iδ)

)︂
an (9)

Bn =
(︂
1 − (−1)nq exp(iδ)

)︂
bn (10)

Note that if q = 0 =⇒ An = an, Bn = bn, then Eqs. (7)–(10) represent the scattered field
by a spherical particle generated by a circularly polarized incident plane wave, so An and Bn
can be considered a generalization of Mie coefficients of the scattered field generated by two
counter-propagating plane waves described by E1 and E2. These generalized Mie coefficients
depend on the particles’ geometry, refractive index, beam ratio, and the relative phase of the
incident fields.

2.1. Directionality of scattered fields

In order to analyze the scattering directionality, we introduce the differential scattering cross
sections that can be obtained as [14,17]:

dσs

dΩ
(θ, ϕ) = lim

r→∞

r2Sr

Si
(11)

where Sr is the radial component of the Poynting vector S = 1
2ℜ[Es × H∗

s ] and Si = |S1 | + |S2 |,
S1 and S2 being the Poynting vectors associated to the counter-propagating incident plane waves.

Thus, by using Eqs. (7) and (8), we introduce the directional scattering cross sections σb and
σf as the differential scattering cross sections obtained at directions θ = 0 and θ = π:

σb =
dσs

dΩ
(π, ϕ) =

1
4k2

|︁|︁|︁ ∞∑︂
n=1

(−1)n(2n + 1)(An − Bn)
|︁|︁|︁2 (12)

σf =
dσs

dΩ
(0, ϕ) =

1
4k2

|︁|︁|︁ ∞∑︂
n=1

(2n + 1)(An + Bn)
|︁|︁|︁2 (13)

It is important to note that σb and σf coincides to the backward and forward differential
scattering cross sections when there is only one plane wave (q = 0) and then An = an and Bn = bn.
It can be deduced that σb = 0 if An = Bn whereas σf = 0 condition is accomplished when
An = −Bn.
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2.2. Helicity of scattered fields

On the other hand, the eigenstates of helicity operator Λ = ∇×
k are given by the Riemann-

Silberstein linear combination [18]:

G± =
1
√

2
(Es ± iηHs) (14)

with η =
√︁
µ/ϵ the medium impedance, so that:

ΛG± = ±G± (15)

which implies that G± has a well defined helicity of ±1.
By introducing (7) and (8) into Eq. (14), we obtain:

Gs
+ =

i
√

2

∞∑︂
n=1

En(An + Bn)
(︂
M(3)

e1n + iM(3)
o1n + N(3)

e1n + iN(3)
o1n

)︂
(16)

Gs
− =

1
√

2

∞∑︂
n=1

En(An − Bn)
(︂
−iM(3)

e1n +M(3)
o1n + iN(3)

e1n − N(3)
o1n

)︂
(17)

By analyzing Eqs. (12), (13), (16) and (17) it can be deduced that if helicity of scattered fields
is well defined with value +1, Gs

− = 0 then σb = 0, and consequently, there is no scattering in the
region z<-a; on the other hand, if the scattered helicity value is −1 then Gs

+ = 0, σf = 0 and there
is no scattering in the region z>a. It is important to remark that it is not possible to obtain this
result if linearly polarized incident waves are used, as we have demonstrated in Supplement 1.

Taking into account Eqs. (9) and (10), it can be deduced that if q=0, (no counter-propagating
wave), the conditions An = ±Bn =⇒ an = ±bn corresponding to the well-known result whereby,
at first and second Kerker conditions, the scattered field of a circularly polarized plane wave by a
spherical nanoparticle shows a well defined helicity [19].

In this sense, an important result has recently been demonstrated affirming that either losses
or optical gain inhibit the appearance of the first Kerker condition with one plane wave, so,
an ≠ bn ,∀n. This result is due to the fact that the electric and magnetic modes cannot
simultaneously oscillate in-phase with equal amplitude [14]. Furthermore, the authors have also
shown that when the first Kerker condition is obtainable the second one is unreachable, so in real
conditions, which generally imply losses, it is not possible to obtain the scattered field with a well
defined helicity using only one incident beam, thus, zero optical backward or forward scattering
is not reachable.

However, when counter propagating plane waves are used, the conditions necessary to obtain a
well defined helicity in the scattered field is An = ±Bn, and according to Eqs. (12) and (13), the
scattered field will possess a directive radiation pattern with σf = 0 or σb = 0. It is important to
note that the condition An = ±Bn implies that using suitable counterpropagating plane waves it is
possible to achieve that electric and magnetic modes oscillate in phase or with a dephase π with
equal amplitude, resulting a scattered field with well defined helicity and null scattering at the
regions z>a or z< − a, this result resembles the first and second Kerker conditions when there is
only one plane wave.

If equation An = ±Bn is solved by taking into account Eqs. (9)– (10), thus we obtain the
dephase parameter which is:

δ = −i Log
[︂
(−1)1−n(an ∓ bn)

(an ± bn)q

]︂
(18)

https://doi.org/10.6084/m9.figshare.17185877
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so by definition, δ is a real number, then, the argument of the previous Log function must have
module 1, so, the beam ratio q must be:

q =
|︁|︁|︁ (an ∓ bn)

(an ± bn)

|︁|︁|︁ (19)

Introducing Eq. (18) into Eqs. (9)–(10) we obtain:

An =
±2anbn

an ± bn
; Bn =

2anbn

an ± bn
(20)

so although condition an = ±bn is forbidden for real conditions, which generally imply losses
and no gain [14], it is possible to obtain An = ±Bn by using an adequate dephase and beam ratio
between counter-propagating plane waves

2.3. Dipolar approximation

With respect to the dipolar case (n = 1), Eq. (18) becomes:

δ = −i Log
[︂
(a1 ∓ b1)

(a1 ± b1)q

]︂
(21)

and Eq. (19) can be written as:

q =
|︁|︁|︁ a1 ∓ b1
(a1 ± b1)

|︁|︁|︁ = √︁
|a1 |2 + |b1 |2 ∓ 2|a1 | |b1 |cos(∆)√︁
|a1 |2 + |b1 |2 ± 2|a1 | |b1 |cos(∆)

(22)

Introducing Eq. (22) into (21), we obtain:

δ = arg
[︂
(a1 ∓ b1)

(a1 ± b1)

]︂
= arctan

(︂
±

2|a1 | |b1 |sin(∆)
|a1 |2 − |b1 |2

)︂
(23)

where ∆ = ϕa−ϕb being ϕa = arg(a1) and ϕb = arg(b1). Equations (22)–(23) constitute the main
results of this paper, because they establish the relation between the nanoparticle’s properties and
the dephase and beam ratio parameter of the second plane wave that permits obtaining a scattered
field with well defined helicity ±1 and σf = 0 or σb = 0 for any kind of material and wavelength.

An interesting result is the one obtained by taking the beam ratio q = 1 at Eq. (22), which
results in cos(∆) = 0. This relation implies that ∆ = ±π/2, a condition which would correspond
to a Janus dipole [20], [21] when one plane wave illuminates the nanoparticle. Thus, these
dipoles, illuminated by means of two counter-propagating plane waves given by Eq. (5), generate
a scattered field that shows a well defined helicity ±1 if dephase parameter δ is adequately
selected according to Eqs. (22)–(23), δ being in that case (see Supplement 1):

δ± = ±2 arctan
(︂
|b1 |

|a1 |

)︂
(24)

Let us assume the particular dipole obtained by taking q = 1 and ∆ = −π/2. In this case, σf
and σb cross section can be obtained by introducing the dephase (24) into Eqs. (9),(10),(12) and
(13), which results in:

σ1 = σf (δ−) = σb(δ+) =
18|a1 |

2 |b1 |
2

(|a1 |2 + |b1 |2)k2 (25)

When the same nanoparticle (∆ = −π/2) is excited by using only one plane wave (q = 0), we
have:

σ0 = σf = σb =
9(|a1 |

2 + |b1 |
2)

4k2 (26)

From the last equations, it is clear that the directional scattering cross section obtained by
using two plane waves is greater than that obtained using only a plane wave (σ1>σ0), if the

https://doi.org/10.6084/m9.figshare.17185877
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following condition is accomplished:

8|a1 |
2 |b1 |

2

(|a1 |2 + |b1 |2)2
>1 =⇒ (

√
2 − 1)<

|a1 |

|b1 |
<(
√

2 + 1) (27)

Taking into account Eq. (11), the differential scattering cross section for these analyzed cases
when q = 1 is given by:

dσs1
dΩ

(δ−) = σ1cos(θ/2)4 (28)

dσs1
dΩ

(δ+) = σ1sin(θ/2)4 (29)

and when q = 0:
dσs0
dΩ
=

1
4
σ0

(︂
3 + sin(2θ)

)︂
(30)

2.4. Numerical results

In order to analyze the theoretical results shown above, Fig. 2 (a) illustrates the contour plot
curves of Si spherical nanoparticles that present a phase difference between a1 and b1 of −π/2.
As can be observed, there are many different sizes and wavelengths where nanoparticles show
significant values of the imaginary part of the refractive index (absorption) where the first Kerker
condition will be inhibited due to losses and the second Kerker condition will only be possible if
the particle is pumped in order to obtain optical gain [14].

Fig. 2. (a) Contour plot curves showing the condition (ϕa − ϕb) = −π/2 as a function of
particle radius a and wavelength λ for and Si nanoparticles, the inset graphics show the
refractive index [22] Si nanoparticles (continuous red line corresponds to the real part and
dashed to the imaginary part). Green plot region shows the radius and wavelengths that
fullfill the inequality (27) for Si nanospheres. (b) Differential scattering cross section given
by Eqs. (28)–(30) for Si nanoparticles illuminated by counterpropagating plane waves of
beam ratio q = 1 (blue (δ = −1.658) , magenta (δ = 1.658)) and only one plane wave q = 0
(green).

In order to analyze the far-field radiation pattern behaviour of these dipoles, Fig. 2(b) shows
the polar-plot of the differential scattering cross section given by Eqs. (28)–(30), which have
azimuthal symmetry. To do this, by using the results shown in Fig. 2 (a), we studied the case
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Si when nanoparticle has a radius a = 30 nm and it is illuminated by using a wavelength of
385.5 nm at which the refractive index is 6.28 + i0.65. For this refractive index values, first
and second Kerker conditions are forbidden [14], but in Fig. 2(b), it can be observed that null
values of directional scattering cross sections σf and σb can be obtained for Si nanoparticles
if the dephase parameter is selected according to Eq. (24). In the example, the dephase it is
δ = ±1.658. It is important to note that the directional scattering cross section is greater for the
dipoles when two counter-propagating waves are used (q = 1) than when only one wave is used
(q = 0) since the selected examples fulfil condition (27) an it is located in the green region of
Fig. 2(a). Furthermore, the scattered field in Fig. 2(b) has a well defined helicity of ±1 which
can never be obtained by using only one illuminating plane wave. These results are essentially
possible because of the adequate parameter’s selection of the second illuminating plane wave,
which permits obtaining electromagnetic modes that simultaneously oscillate in-phase with equal
amplitude.

3. Conclusion

We have theoretically and numerically demonstrated that by exciting spherical nanoparticles with
two circularly polarized counter-propagating plane waves, it is possible to obtain well defined
helicity ±1 for the scattered fields selecting the adequate dephase and beam ratio between incident
fields. This is possible because by using the proposed method, electric and magnetic modes of
nanoparticle simultaneously oscillate in-phase with equal amplitude obtaining a Huygens’ dipole
for any kind of material and wavelength. We have also shown that the scattered directivity of the
particles illuminated by means of two plane waves can be higher that that obtained by using only
one. The interferometric method proposed for lossy nanospheres can also be applied to active
and non absorptive nanoparticles namely any type of material. These results can be applied to
the design of directional nano-antennas.
Disclosures. The authors declare no conflicts of interest.
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