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We investigate the dynamics of Si spherical nanoparticles for different infrared wavelengths in a system based
on two circularly polarized counter-propagating Gaussian beams. Through the analysis of the dipolar and
quadrupolar forces, we obtain several conditions under which these nanoparticles describe different types of
attractive or repulsive spirals at focus plane depending on the efficiency of the quadrupole trap obtained. We
demonstrate that these spirals are generated by the angular momentum transfer from the electromagnetic field

to the particles, and this is mainly due to the interference forces dipole-dipole and quadrupole-dipole. Through
the adequate selection of the wavelength, angular momentum transfer can only take place with quadrupolar—
dipolar interference forces. We study particle dynamics by solving the deterministic and non-deterministic
over-damped Langevin equation.

1. Introduction

The study of silicon nanoparticles is an important topic in the field
of photonics and optics because such particles present high resonances
with low dissipation levels, are biologically compatible and can be
produced at low cost [1]. Moreover, silicon nanoparticles have been
used in different fields [1] such as wavefront control, optical switching,
harmonic generation or for increasing solar cells efficiency [2]. The
changes in spin and orbital momentum when an electromagnetic field
is scattered by a Si particle result in a radiation force on it [3].
In the case of nanoparticles, these optical forces have been studied
in depth [4-6]; spin and orbital momentum have a very important
role in this, which has also been widely studied. Specifically, in the
review of Ref. [7], optical angular momentum is analyzed from the
perspective of canonical angular momentum, which makes it possible
to describe the main theoretical and experimental results in this field.
Thus, the transference of spin or orbital angular momentum from
the electromagnetic field to the particles is one of the main research
interest in this field. For example, it has been demonstrated that
spin angular momentum can accelerate and decelerate the orbital mo-
tion of nanoparticles by using circularly polarized Laguerre-Gaussian
beams [8]. Vortex beams with circular or radial polarization have
also been used for spinning and orbiting micro-sized particles [9],
whereas Laguerre-Gaussian beams have been employed to analyze the
scattering conversion between spin and orbital angular momentum to
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induced torques on microparticles [10]. Orbital angular momentum can
be efficiently transferred between electron Gaussian beams and chiral
plasmon-supporting thin films [11]. Moreover, the mechanical action
of the spin part of internal energy flow and its ability to cause trans-
lational (orbital) motion was experimentally demonstrated in [12-14]
and prior to this it was theoretically described in [6,15]. Using strongly
focused LG10 optical beams, Zhao et al. [16] have demonstrated spin
to orbital momentum conversion on gold particles by analyzing the
resulting rotation of the trapped nanoparticles. Furthermore, previous
angular momentum transfer studies were analyzed in a framework
where the interaction of dipole with electromagnetic field explained
the theoretical and experimental results. Another very important and
deeper review that covers the majority of optical force mechanisms
from a theoretical and experimental point of view can be found in [17].
On the other hand, particle dynamics due to optical force inside optical
traps have been studied by different authors. For example, a study has
been carried out of the transversal trajectories of Si micro-particles
in Bessel beam traps [18], Lissajous-like trajectories have also been
described in [19]. Furthermore, particle dynamics as a function of the
topological charge of Laguerre-Gaussian beams are studied in [20]
in order to demonstrate the transfer of angular momentum to micro-
particles in vacuum. The different dynamics of particles in optical
vortices have been theoretically analyzed in [21], whereas, the stability
of trajectories inside a Bessel beam depending on ambient damping
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has been studied in Ref. [22]. Particle dynamics have also been stud-
ied in a courter-propagating system since the earliest studies in this
field [23], and recently, this configuration [24] has been used to
study the dynamics of silicon nanowires. In Ref. [25], a 4Pi focusing
system has been used to obtain (among other results) spiral trajectories
by switching an adequate phase modulation of the incident beams.
Recently, the importance of multipole excitations [26] has been pointed
out in different papers, where the following have been analyzed: the
optical pulling force produced by the interference of the radiation
multipoles [27], resonant electromagnetic dipole-quadrupole coupling
in nanoparticle arrays [28] or the angular momentum transfer between
a quadrupole emitter and a dipole acceptor [29]. Finally Refs. [30]
and [1] have proposed different optical sorting techniques which in-
clude the quadrupolar forces. In this paper, we study the dynamics of
Si nanoparticles inside an infrared quadrupolar optical trap by solving
the Langevin equation. We also analyze the angular momentum transfer
from the electromagnetic field to mechanical angular momentum of Si
nanoparticles mainly via the interference forces of dipole-dipole and
quadrupole-dipole radiation.

2. Theory

Let us assume two circularly polarized counter-propagating Gaus-
sian beams given by [31]:

SN | N
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and u, is the fundamental gaussian mode given by:
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A, is the amplitude of potential vector [31] and zy is the confocal
parameter whose relation with the beam waist w is zz = kwé /2, k
being the wave number in water (with refractive index n) and V; =
9, +io,.

Under these conditions, we are going to analytically demonstrate
that Si particles at the focus plane describe different types of spirals,
circles or straight lines, which implies that they have acquired orbital
angular momentum from the electromagnetic field except when the
trajectory is a straight line. Particle dynamics and the angular moment
acquired by them are strongly determined by the balance of dipolar and
quadrupolar forces, so this dynamic can be used to determine which
type of forces are dominant. In order to demonstrate this, we have used
the time-average optical forces obtained in Ref. [27] including high
order forces [27,30] related to multipolar expansion; i.e. by taking into
account electric and magnetic quadrupoles. The total force F; can be
expressed as the sum of dipolar forces F, and quadrupole forces F:

Fr=F, +F, 5)
where
F, =F,+F,+F,, (6)
F,=Fy+Fy +Fy, +Fy, @
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where E and B = yyH are given by Egs. (1)-(2), p,Q, m and M
are the electric dipole, electric quadrupole, magnetic dipole and the
magnetic quadrupole respectively, given by: p = ¢, E.m = «,B,Q =
%Q(VE +(VE)"),M = ZL(VB + (VB)") [27], a, = 6incga;n*/K°, a,, =
6irby [k py), ag = 40izegayn® /k> and ay, = 40ixb, / (kS uy), ay, by, ay and
b, being the Mie coefficients [4]. Finally n is the water refractive index,
and R[], S[] denote real and imaginary part respectively.

By introducing Egs. (1)-(2) into (8)-(11), and evaluating them at
the focus plane (z = 0) we obtain in cylindrical coordinates that:

F, = F(r) (A4 + By r)P + C40) = Fi(n)i + FJ (0 12)

F,

F(r) ((Ag + B, r)F + C,0) = F(r)F + FJ (nf (13)

where we have defined the radial function:

2 —kr?\ 2
F(r)= Agexp | —— | k°r (14)
ZR

and the coefficients are given by:
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where suffixes refer to the contribution to dipolar and quadrupolar
coefficients (A, B, C) of electric dipolar force (p), magnetic dipolar force
(m), interference electric-magnetic dipolar force (pm), quadrupolar
electric force (Q), quadrupolar magnetic force (M), interference of
dipole-dipole and quadrupole-dipole forces quadrupolar-dipolar elec-
tric force (Qp) and interference quadrupolar-dipolar magnetic force
(Mm). Their values are:
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s = zgzk being an adimensional parameter. To obtain Egs. (12)-(13)
from the exact ones, we have neglected the terms dependent on r?
in the azimuthal forces and higher than * in the radial quadrupolar
forces Fo and F,,. It is important to note that Egs. (12) and (13) have
neither axial component nor dependence on the azimuthal coordinate
0, so the particles will be trapped at focus plane (z = 0) for any radial
and azimuthal position.

Azimuthal forces ng = C,; F(r) and Fq9 = C, F(r) transfer an-
gular momentum from the electromagnetic field to the particles, so,
taking into account that C,, = C, = 0, we can affirm that dipolar
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magnetic forces and quadrupolar electric forces do not contribute to
the angular momentum transfer when counter-propagating circularly
polarized gaussian beams are used. Magnetic dipolar forces do not
transfer angular momentum because the magnetic orbital angular mo-
mentum associated to the magnetic field given by Eq. (2) is null [6].
Furthermore, the radial dependence in both cases is the same (F(r)),
but the coefficients C;, and C, depend on dipolar and quadrupolar
polarizabilities respectively, then, the total azimuthal force Fﬁ = ng +
F: = F(r)(Cy + Cp), could be positive, negative or null according to
the values of (C; + C,). Therefore, the angular momentum transfer
from the electromagnetic field to the particles could be controlled by
balancing the dipolar and quadrupolar forces. To do this, for a fixed
particle radius, balance between dipolar and quadrupolar forces could
be obtained by varying the wavelength of the incident electromagnetic
field.

In the same way as azimuthal forces, radial forces F) and F;
also show the same radial dependence that can be controlled by the
radiation wavelength for obtaining attractive, repulsive or null forces.

In the next section we are going to analyze the influence of
quadrupolar interaction on particle dynamics.

2.1. Particle dynamics

As it is widely used, we will assume that the viscous forces in water
dominate the inertia forces thus, the dynamics of Si nanoparticles can
be described by the overdamped Langevin equation [32,33] given by:

rIX = FrR)+ W) 30)
where R is the position vector of a particle, y% is the frictional force of
a particle, (y = 6zvr,, r, is the particle radius and v = 8.9 10™* Pa s is the
water viscosity), Fy(R) is the optical force given by Egs. (5)-(13) and
W(r) is a time dependent random force that causes Brownian motion.

By introducing Egs. (12)-(13) into (30), we can obtain the deter-
ministic overdamped Langevin equation (W(¢) = 0):

dr

= = B =Ar+Br)f( (€29
do
o = FO=Ccf0 (32)

where f(r) = F(r)/(yr), A= Ay + Ay, B=B, + B, and C =C, +C,.

Eq. (31) presents two critical points, r,, = 0 and r., = (~A/B)'/2.
If a particle is located at critical point r,;, it will remain trapped at
origin. If a particle is located at r,, it will describe a circular motion
(provided that A/B < 0) of radius r., and angular velocity C f(r.,).
Therefore, this result implies that the electromagnetic field given by
Egs. (1), (2) transfers angular momentum to particles that describe a
circular motion whose angular velocity is determined by the adequate
selection of dipolar and quadrupolar forces.

If parameter C= 0 then Ff,(r) is zero, so in this case, the force acting
on the particle will be central, conservative, and its resulting angular
momentum will be null.

We are interested in analyzing the case where C # 0, which implies
that d0/dt # 0 and, as a result, the particle will acquire angular
momentum from the electromagnetic field. In this sense, to find the
differential equation that describes the path of the Si particle, we use
the relation dr/d6 = 1/(d0/dt)dr/dt; so, taking into account Egs.
(31)—(32), the trajectory of the particle can be obtained by solving:

dr _ B0

— = =Ar+Br 33)
49 FTg(r) t t

being A, = A/C and B, = B/C.
It is easy to check that Eq. (33) admits four solutions, r,(8) = 0;
r(0) = r., is related to the initial condition r,(0) = r,,

0 34)
(1-2B,r20)

r3(0) =

=
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for the initial condition r(0) = r( if 4, =0, and:

1 35)

ry(0) = I
B 1 , B 2
(—A—‘l + (r—S + A—:)exp(—ZA,H)>

for the initial condition +(0) = r, and A, # 0.

Solution r; implies that particles located at origin remain trapped
and solution r,, as we have mentioned, implies that the particle de-
scribes a circular trajectory. On the other hand, solution r;, represents
a quasi Lituus spiral, r, is a logarithmic spiral if B, = 0 and a quasi loga-
rithmic spiral if B, # 0. In this sense, there are different possibilities for
spiral trajectories as a function of dipolar and quadrupolar coefficients:

1. If A, =0 and B, < 0, Eq. (34) describes an attractive Lituus spiral
towards the origin.

2. If A, =0 and B, > 0, Eq. (34) describes a repulsive Lituus spiral,
with an asymptote at 6,, = 1/(2 B2 r3).

3.If A, <0, A <0and C > 0, Eq. (35) describes an attractive
logarithmic spiral towards the origin.

4. If A, > 0, and B < 0 Eq. (35) describes a repulsive spiral
that degenerates into a circular trajectory of radius equal to the
previously described r., = (—4/B)'/?

5. If A, > 0, and B > 0 Eq. (35) describes a repulsive spiral, with
an asymptote at §; = —1/(2A,)log(r§/(r(2) + A/B)).

In cases 1 and 3, particles are trapped at origin, but the convergence
dynamic to this point is different, being a function of the balance
of dipole and quadrupole coefficients. In case 4, particles describe
a final circular movement with angular velocity Cf(r.); this radius
and angular velocity can be modified by the adequate selection of
wavelength, which also balances the quadrupolar and dipolar forces.
Finally, in cases 2 and 5, particles are repelled towards the outer area
of the focal plane.

3. Numerical examples

In this section, we are going to numerically analyze the dynamics
of Si nanoparticles immersed in water when two counter-propagating
Gaussian beams, with a beam waist radius w, = 2 pm, are propagating
at different wavelengths and with total incident power of 100 mW. We
solve the Langevin equation analyzing orbital stability under Brownian
forces.

Fig. 1 shows the quadrupolar F, and dipolar radial forces F, for a
Si particle located at r = wy/2. As can be observed, quadrupolar forces
open a narrow window (this window is narrower and less effective for
shorter wavelengths), and for infrared wavelengths, there are attractive
interactions that correspond to dipolar repulsive forces resulting in a
quadrupolar trap, this being independent from the azimuthal coordi-
nate of particles, as can be deduced from Egs. (12)-(13). This result
was obtained in Ref. [30] for the visible region only using a unique
linearly polarized Gaussian beam. We are interested in the analysis
of the previously described particle dynamics with strong resonances
at infrared region. In this sense, we have fixed the particle radius to
204 nm, which according to Fig. 2(a) shows strong dipolar—-quadrupolar
magnetic resonance at 1064 nm wavelength, which it is the most
common wavelength used in optical traps, as indicated in a recent study
of Si nanoparticles forces in the infrared region [34]. Fig. 2(b) shows
the coefficients A, B, C for a Si particle of radius 204 nm immersed
in water. As can be observed, coefficient A is non null at nearly all
the wavelengths of the studied region except for 1,; = 1046.1 nm and
Aqo = 1097.9 nm. Moreover, A < 0 if 2 € [A4, 44,1 and is positive for
the rest of the wavelengths. In addition, B > 0 if A < Az and B < 0
for A > Ag Ap = 1063 nm being the wavelength for which parameter
B is null. Finally, C is positive in the wavelength region 1 > i, where
Ac = 858.27 nm and corresponds to the wavelength at which C = 0.



L. Carretero et al.

250 E
F_

200} 1

©

150} 1

Particle radius (nm)

100} 1

w

50t . : i r i . .
900 950 1000 1050 1100 1150 1200

A (nm)

(b)
250F - - - : - : £

200} 1 N

150} 1

=]

Particle radius (nm)

100} 1

50 : n : ) n r .
900 950 1000 1050 1100 1150 1200
A (nm)

Fig. 1. Quadrupolar (a) and dipolar (b) forces for a Si particle located at r = w/2.
Scale colors are given in pN. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Taking into account Egs. (21)-(29), Fig. 3 shows the different mul-
tipolar contributions given to the quadrupolar and dipolar coefficients
A, B and C depicted in Fig. 2(b). As can be observed in Fig. 3(a),
the contribution of the electric dipolar force to A, is negligible and
the main contributions are due to the dipolar magnetic force A,,, and
for high wavelength values, the magnetic—electric dipolar interference
force A,,. On the other hand, the major contributions to A, arise
from quadrupolar electric forces A, and magnetic quadrupole-dipole
interference force A,;,, the influence of electric quadrupole-dipole
interference A,, and magnetic quadrupole A,, being negligible. Thus,
taking into account these considerations, A ~ A,, + A, + Ag + Ay
In the same way, B, is equal to B, being B, = B,, = 0. As for the
quadrupolar coefficient B, it can be observed in Fig. 3(b) that the
main contributions are given by the magnetic quadrupole force B,
and electric quadrupolar force B, whereas the values of B, are less
significant, and hence B ~ B, + By, + By. Finally, it can be deduced
from Fig. 3(c) that C; = C,,, and there is no contribution of dielectric
forces because C, ~ 0. The quadrupolar coefficient C, is practically
equal to Cy, with little corrections due to Cg,. The contribution of
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Fig. 2. (a) Total electric (Q¢, ) and magnetic (Q™ ) scattering efficiency including
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dipolar and quadrupolar terms and dipolar electric (0%¢) and magnetic (Q™¢) scattering
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efficiency. (b) Coefficients A, B, C for a Si particle of 204 nm radius immersed in water.

magnetic quadrupolar forces (Cy,) is negligible, so C = C,,,+Cy,,+Cg,
and thus the parameter C mainly depends on the interference forces
of dipole-dipole and dipole-quadrupole; i.e. the angular momentum
transfer from the electromagnetic field to the particle will be given by
interference forces F,,,Fy, and F,,.

Assuming that the initial position of particle is at r = w,/2, Fig. 4,
shows the radial and azimuthal forces for a Si nanoparticle of radius
204 nm. As can be seen in Fig. 4(a), the dipolar force is always
positive and the quadrupolar force is negative, the resulting total force
being repulsive in all the analyzed wavelength spectrum except for the
spectral interval that coincides with 4 € [14;, 44,] (with an error below
0.5 nm, in this zone the parameter A < 0 is accomplished, see Fig. 2(b)),
where quadrupolar force dominates and an optical trap is obtained.
This result is similar to the one obtained by Xu et al. [30], although
they studied the particle dynamic of Si by sorting them by means of
Kerker forces using only one linearly polarized Gaussian beam. In our
case, Kerker forces (F,,) are included in the dipolar forces, and are
not null, unlike with a single circularly polarized Gaussian beam. In
one beam configuration, as pointed out in Ref. [30], radiation pressure
dominates in the axial direction and thus the particles are not confined
at the focus plane. In our configuration, particles are trapped at plane
z = 0, where we are going to analyze their dynamic behavior.

Fig. 4(b), shows the azimuthal forces, and as can be observed, the
total force is positive for wavelengths 4 > A nm.

When dipolar and quadrupolar azimuthal forces have the same
value but with opposite sign 4 = A, there is no angular momen-
tum transfer from the electromagnetic field to particles and they will
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Fig. 3. (a) Contributions to A, (dashed) and A, (continuous), (b) contributions to B,
(dashed) and B, (continuous) and (c) contributions to C, (dashed) and C, (continuous).

describe a rectilinear motion at focus plane. The transfer of angular
momentum will be maximum at 4,,, = 1057 nm which corresponds
to the wavelength where C and F, reach the maximum value, the
contribution of quadrupolar forces to momentum being nearly 40%
of the total. At wavelength 4,,; = 922.1 nm, the angular momentum
that a particle acquires is only produced by quadrupolar forces, and for
wavelength 4,,; = 1083 nm, the angular momentum transfer to particle
is only generated by dipolar forces. Moreover, if the angular momentum
of particles is only given by the quadrupolar forces at wavelength 4,,,,
then C; = 0, and according to the previous discussion that C,, = 0;
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Fig. 4. (a) Total radial force (red color), dipolar force (green color) and quadrupolar
force (magenta color). (b) Total azimuthal force (red color), dipolar force (green color)
and quadrupolar force (magenta color). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

hence, the particle angular momentum is obtained from the interfer-
ence of quadrupole-dipole forces. On the other hand, when dipolar
forces dominate, the main contribution to the angular momentum
transfer at wavelength 4,3, is given by the interaction dipole-dipole
C,y» since, in this case, the interference forces of quadrupole-dipole
cancel each other as Cy,, = —Cp,,.

Fig. 5 shows the trajectories of different particles located at different
radial and angular positions at focus plane for wavelengths A (a), 4,/
(b), Ap2 (¢) and Ayy3 (d). As can be observed, when A = A, (Fig. 5(a)),
the trajectories are repulsive straight lines, which confirms that there
is no transfer of angular momentum from the electromagnetic field to
particles. As the wavelength increases, C increases too and particles
describe different types of spirals. These trajectories are repulsive for
A= Ay, at which the transfer of angular momentum is only produced
by quadrupolar forces, because A, > 0 and B > 0 (previously described
case 5). Furthermore, attractive quasi logarithmic spirals towards the
origin with counter-clockwise rotation direction are obtained at A =
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Fig. 5. Trajectories described by Si nanoparticles with 203 nm radius for (a) 4 = 4,
() 4 = 4y, (© A= 4, and (d) 4 = 4,3. Red dots indicate the initial position of
particle at focus plane. The inset figure shows the deterministic solution of the Langevin
equation obtained in Section 2. The simulation time in Figs. 5(a) and (b) is 10 ms,
whereas in Figs. 5 (c¢) and (d) is 100 ms with a time step of 1 ps.

Ao = App3, Which corresponds to case 3 analyzed in Section 2. As can
be seen, the deterministic solutions of the Langevin equation (straight
lines or spirals) are also observed when the Brownian movement is
included. It is interesting to note that trajectories have been represented
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Fig. 6. Trajectories described by Si nanoparticles with 203 nm radius for (a) 1= 4,,
(b) 4 =24, () 2= 12, and (d) 4 = 1099 nm. Red dots indicate the initial position of
particle at focus plane. The inset figure shows the deterministic solution of the Langevin
equation obtained in Section 2. The simulation time in figures is 100 ms with a time
step of 1 ps, except figure d, for which it has a duration of 1 s.

on the electromagnetic density energy, which shows an optical vortex
at origin.

Fig. 6 shows attractive and repulsive Lituus spirals Figs. 6(a) and
6(b) by using illumination wavelengths 1,; and 1,,, respectively. In
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both cases, particle radial velocity is much lower than that obtained
with the logarithmic spiral shown in Fig. 6(c) corresponding to a
wavelength 15, because, as can be observed in Fig. 4, the radial force
is nearly null in Figs. 6(a) and 6(b). Finally, Fig. 6(d) shows the
trajectories that correspond to an illumination with a wavelength of
1099 nm. In this case, according to Figs. 4 and 2 we are under the
conditions of case 4, so deterministic orbits converge to a limit cycle
that describes a circular movement of radius r,, = (-A/B)!/? and
angular velocity C f (re,)- As can be observed, when the Brownian
movement is included the circular trajectory (magenta circle) is not
stable, but all particles are confined in a region close to this limit cycle,
describing spirals around it.

4. Conclusion

The dynamic of Si nanoparticles in a quadrupolar optical trap have
been analyzed for different wavelengths in the infrared region. For this
purpose, we have obtained the optical forces (characterized by a set of
parameters) generated by two counterpropagating circularly polarized
Gaussian beams. By solving the deterministic over-damped Langevin
equation, we have analytically demonstrated that particles inside the
trap describe different types of spirals (attractive or repulsive to the
center of the focus), straight lines or circles that are observable with
Brownian motion. Through the analysis of the parameters and trajec-
tories, we have demonstrated that the angular momentum transfer is
mainly due to the interference forces of dipole-dipole and quadrupole-
dipole. In the counter-propagation configuration used particles are
trapped at focus plane, so this system could be used in devices to repel
or trap particles as a function of wavelength; i.e. it can act as a filter
or a purification procedure.
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