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A B S T R A C T

We investigate the dynamics of Si spherical nanoparticles for different infrared wavelengths in a system based
on two circularly polarized counter-propagating Gaussian beams. Through the analysis of the dipolar and
quadrupolar forces, we obtain several conditions under which these nanoparticles describe different types of
attractive or repulsive spirals at focus plane depending on the efficiency of the quadrupole trap obtained. We
demonstrate that these spirals are generated by the angular momentum transfer from the electromagnetic field
to the particles, and this is mainly due to the interference forces dipole–dipole and quadrupole–dipole. Through
the adequate selection of the wavelength, angular momentum transfer can only take place with quadrupolar–
dipolar interference forces. We study particle dynamics by solving the deterministic and non-deterministic
over-damped Langevin equation.
1. Introduction

The study of silicon nanoparticles is an important topic in the field
of photonics and optics because such particles present high resonances
with low dissipation levels, are biologically compatible and can be
produced at low cost [1]. Moreover, silicon nanoparticles have been
used in different fields [1] such as wavefront control, optical switching,
harmonic generation or for increasing solar cells efficiency [2]. The
changes in spin and orbital momentum when an electromagnetic field
is scattered by a Si particle result in a radiation force on it [3].
In the case of nanoparticles, these optical forces have been studied
in depth [4–6]; spin and orbital momentum have a very important
role in this, which has also been widely studied. Specifically, in the
review of Ref. [7], optical angular momentum is analyzed from the
perspective of canonical angular momentum, which makes it possible
to describe the main theoretical and experimental results in this field.
Thus, the transference of spin or orbital angular momentum from
the electromagnetic field to the particles is one of the main research
interest in this field. For example, it has been demonstrated that
spin angular momentum can accelerate and decelerate the orbital mo-
tion of nanoparticles by using circularly polarized Laguerre–Gaussian
beams [8]. Vortex beams with circular or radial polarization have
also been used for spinning and orbiting micro-sized particles [9],
whereas Laguerre–Gaussian beams have been employed to analyze the
scattering conversion between spin and orbital angular momentum to
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induced torques on microparticles [10]. Orbital angular momentum can
be efficiently transferred between electron Gaussian beams and chiral
plasmon-supporting thin films [11]. Moreover, the mechanical action
of the spin part of internal energy flow and its ability to cause trans-
lational (orbital) motion was experimentally demonstrated in [12–14]
and prior to this it was theoretically described in [6,15]. Using strongly
focused LG10 optical beams, Zhao et al. [16] have demonstrated spin
to orbital momentum conversion on gold particles by analyzing the
resulting rotation of the trapped nanoparticles. Furthermore, previous
angular momentum transfer studies were analyzed in a framework
where the interaction of dipole with electromagnetic field explained
the theoretical and experimental results. Another very important and
deeper review that covers the majority of optical force mechanisms
from a theoretical and experimental point of view can be found in [17].
On the other hand, particle dynamics due to optical force inside optical
traps have been studied by different authors. For example, a study has
been carried out of the transversal trajectories of Si micro-particles
in Bessel beam traps [18], Lissajous-like trajectories have also been
described in [19]. Furthermore, particle dynamics as a function of the
topological charge of Laguerre–Gaussian beams are studied in [20]
in order to demonstrate the transfer of angular momentum to micro-
particles in vacuum. The different dynamics of particles in optical
vortices have been theoretically analyzed in [21], whereas, the stability
of trajectories inside a Bessel beam depending on ambient damping
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has been studied in Ref. [22]. Particle dynamics have also been stud-
ied in a courter-propagating system since the earliest studies in this
field [23], and recently, this configuration [24] has been used to
study the dynamics of silicon nanowires. In Ref. [25], a 4Pi focusing
system has been used to obtain (among other results) spiral trajectories
by switching an adequate phase modulation of the incident beams.
Recently, the importance of multipole excitations [26] has been pointed
out in different papers, where the following have been analyzed: the
optical pulling force produced by the interference of the radiation
multipoles [27], resonant electromagnetic dipole–quadrupole coupling
in nanoparticle arrays [28] or the angular momentum transfer between
a quadrupole emitter and a dipole acceptor [29]. Finally Refs. [30]
and [1] have proposed different optical sorting techniques which in-
clude the quadrupolar forces. In this paper, we study the dynamics of
Si nanoparticles inside an infrared quadrupolar optical trap by solving
the Langevin equation. We also analyze the angular momentum transfer
from the electromagnetic field to mechanical angular momentum of Si
nanoparticles mainly via the interference forces of dipole–dipole and
quadrupole–dipole radiation.

2. Theory

Let us assume two circularly polarized counter-propagating Gaus-
sian beams given by [31]:

𝐄 = 𝜔
(

𝑖𝜓− 𝐱̂ − 𝜓− 𝐲̂ + 1
𝑘
∇𝑇𝜓+ 𝐳̂

)

(1)

= 𝑘
𝜇0

(

𝜓+ 𝐱̂ + 𝑖𝜓+ 𝐲̂ − 𝑖
𝑘
∇𝑇𝜓− 𝐳̂

)

(2)

where

𝜓± = (𝑢− 𝑒𝑥𝑝(𝑖𝑘𝑧) ± 𝑢+ 𝑒𝑥𝑝(−𝑖𝑘𝑧)) (3)

and 𝑢± is the fundamental gaussian mode given by:

𝑢± =
𝐴0 𝑧𝑅

±𝑧 + 𝑖𝑧𝑅
𝑒𝑥𝑝

(

−𝑖𝑘(𝑥2 + 𝑦2)
2(±𝑧 + 𝑖𝑧𝑅)

)

(4)

0 is the amplitude of potential vector [31] and 𝑧𝑅 is the confocal
arameter whose relation with the beam waist 𝑤0 is 𝑧𝑅 = 𝑘𝑤2

0∕2, k
being the wave number in water (with refractive index n) and ∇𝑇 =
𝜕𝑥 + 𝑖𝜕𝑦.

Under these conditions, we are going to analytically demonstrate
that Si particles at the focus plane describe different types of spirals,
circles or straight lines, which implies that they have acquired orbital
angular momentum from the electromagnetic field except when the
trajectory is a straight line. Particle dynamics and the angular moment
acquired by them are strongly determined by the balance of dipolar and
quadrupolar forces, so this dynamic can be used to determine which
type of forces are dominant. In order to demonstrate this, we have used
the time-average optical forces obtained in Ref. [27] including high
order forces [27,30] related to multipolar expansion; i.e. by taking into
account electric and magnetic quadrupoles. The total force 𝐅𝑇 can be
expressed as the sum of dipolar forces 𝐅𝑑 and quadrupole forces 𝐅𝑞 :

𝐅𝑇 = 𝐅𝑑 + 𝐅𝑞 (5)

where

𝐅𝑑 = 𝐅𝑝 + 𝐅𝑚 + 𝐅𝑝𝑚 (6)

𝐅𝑞 = 𝐅𝑄 + 𝐅𝑀 + 𝐅𝑄𝑝 + 𝐅𝑀𝑚 (7)

and

𝐅𝑝 =
1
2
ℜ[(∇𝐄∗).𝐩]; 𝐅𝑚 = 1

2
ℜ[(∇𝐁∗)𝐦] (8)

𝐅𝑄 = 1
4
ℜ[(∇∇𝐄∗) ∶ 𝐐]; 𝐅𝑀 = 1

4
ℜ[(∇∇𝐁∗) ∶ 𝐌] (9)

𝑝𝑚 = − 𝑘4 ℜ[𝐩 ×𝐦∗]; 𝐅𝑄𝑝 = − 𝑘5 ℑ[𝐐.𝐩∗] (10)
2

12𝜋𝜖0𝑐 40𝜋𝜖0 t
𝑀𝑚 = − 𝑘5

40𝜋𝜖0𝑐2
ℑ[𝐌.𝐦∗] (11)

where 𝐄 and 𝐁 = 𝜇0𝐇 are given by Eqs. (1)–(2), 𝐩,𝐐, 𝐦 and 𝐌
are the electric dipole, electric quadrupole, magnetic dipole and the
magnetic quadrupole respectively, given by: 𝐩 = 𝛼𝑒𝐄,𝐦 = 𝛼𝑚𝐁,𝐐 =
𝛼𝑄
2 (∇𝐄 + (∇𝐄)𝑇 ),𝐌 = 𝛼𝑀

2 (∇𝐁 + (∇𝐁)𝑇 ) [27], 𝛼𝑒 = 6𝑖𝜋𝜖0𝑎1𝑛2∕𝑘3, 𝛼𝑚 =
6𝑖𝜋𝑏1∕(𝑘3𝜇0), 𝛼𝑄 = 40𝑖𝜋𝜖0𝑎2𝑛2∕𝑘5 and 𝛼𝑀 = 40𝑖𝜋𝑏2∕(𝑘5𝜇0), 𝑎1, 𝑏1, 𝑎2 and
𝑏2 being the Mie coefficients [4]. Finally n is the water refractive index,
and ℜ[], ℑ[] denote real and imaginary part respectively.

By introducing Eqs. (1)–(2) into (8)–(11), and evaluating them at
the focus plane (𝑧 = 0) we obtain in cylindrical coordinates that:

𝐅𝑑 = 𝐹 (𝑟)
(

(𝐴𝑑 + 𝐵𝑑 𝑟2)𝑟̂ + 𝐶𝑑 𝜃̂
)

= 𝐹 𝑟𝑑 (𝑟)𝑟̂ + 𝐹
𝜃
𝑑 (𝑟)𝜃̂ (12)

𝐅𝑞 = 𝐹 (𝑟)
(

(𝐴𝑞 + 𝐵𝑞 𝑟2)𝑟̂ + 𝐶𝑞 𝜃̂
)

= 𝐹 𝑟𝑞 (𝑟)𝑟̂ + 𝐹
𝜃
𝑞 (𝑟)𝜃̂ (13)

where we have defined the radial function:

𝐹 (𝑟) = 𝐴2
0𝑒𝑥𝑝

(

−𝑘𝑟2
𝑧𝑅

)

𝑘2𝑟 (14)

nd the coefficients are given by:

𝑑 = 𝐴𝑝 + 𝐴𝑚 + 𝐴𝑝𝑚 (15)

𝑞 = 𝐴𝑄 + 𝐴𝑀 + 𝐴𝑄𝑝 + 𝐴𝑀𝑚 (16)

𝑑 = 𝐵𝑝 + 𝐵𝑚 + 𝐵𝑝𝑚 (17)

𝑞 = 𝐵𝑄 + 𝐵𝑀 + 𝐵𝑄𝑝 + 𝐵𝑀𝑚 (18)

𝑑 = 𝐶𝑝 + 𝐶𝑚 + 𝐶𝑝𝑚 (19)

𝑞 = 𝐶𝑄 + 𝐶𝑀 + 𝐶𝑄𝑝 + 𝐶𝑀𝑚 (20)

here suffixes refer to the contribution to dipolar and quadrupolar
oefficients (A, B, C) of electric dipolar force (p), magnetic dipolar force
m), interference electric–magnetic dipolar force (pm), quadrupolar
lectric force (Q), quadrupolar magnetic force (M), interference of
ipole–dipole and quadrupole–dipole forces quadrupolar–dipolar elec-
ric force (Qp) and interference quadrupolar–dipolar magnetic force
Mm). Their values are:

𝑝 =
2𝑐2ℜ[𝛼𝑒]
𝑧2𝑅𝑛

2
𝐴𝑚 =

−4𝑘ℜ[𝛼𝑚]
𝑧𝑅

𝐴𝑝𝑚 = −
4𝑘4ℜ[𝛼𝑒 𝛼∗𝑚]𝜇0𝑐

2

3𝜋𝑧𝑅𝑛
(21)

𝐵𝑝 = −
2𝑘𝑐2ℜ[𝛼𝑒]
𝑧3𝑅𝑛

2
𝐵𝑚 = 0 𝐵𝑝𝑚 = 0 (22)

𝐶𝑝 =
2𝑐2ℑ[𝛼𝑒]
𝑧2𝑅𝑛

2
𝐶𝑚 = 0 𝐶𝑝𝑚 =

𝑘4𝜇0𝑐2ℜ[𝛼𝑒 𝛼∗𝑚]
3𝑧𝑅𝜋𝑛

(23)

𝐴𝑄 = −
ℜ[𝛼𝑄]𝑐2𝑘(𝑠 − 4)(𝑠 − 2)

𝑧3𝑅𝑛
2

𝐴𝑀 = −
ℜ[𝛼𝑀 ](𝑠(8 − 5𝑠) − 8)

2𝑧4𝑅
(24)

𝐴𝑄𝑝 = −
𝑐2𝑘5(𝑠 − 2)ℑ[𝛼𝑄 𝛼∗𝑒 ]

20𝜋𝑧2𝑅𝑛2𝜖0
𝐴𝑀𝑚 =

𝑘63𝑛2ℑ[𝛼𝑀 𝛼∗𝑚]
20𝜋𝑧𝑅𝑐2𝑛2𝜖0

(25)

𝐵𝑄 = −
ℜ[𝛼𝑄]𝑐2𝑘2(4𝑠 − 13)

2𝑧4𝑅𝑛2
𝐵𝑀 = −

ℜ[𝛼𝑀 ]𝑘(𝑠(5𝑠 − 12) + 16)
2𝑧5𝑅

(26)

𝐵𝑄𝑝 =
3𝑐2𝑘6ℑ[𝛼𝑄 𝛼∗𝑒 ]

40𝜋𝑧3𝑅𝑛2𝜖0
𝐵𝑀𝑚 = 0 (27)

𝐶𝑄 = 0 𝐶𝑀 =
ℑ[𝛼𝑀 ]

(

𝑠2 − 8𝑠 + 8
)

2𝑧4𝑅
(28)

𝐶𝑄𝑝 =
𝑐2𝑘5(𝑠 − 2)ℜ[𝛼𝑄 𝛼∗𝑒 ]

20𝜋𝑧2𝑅𝑛2𝜖0
𝐶𝑀𝑚 =

𝑘6ℜ[𝛼𝑀 𝛼∗𝑚]
20𝜋𝑧𝑅𝑐2𝜖0

(29)

𝑠 = 𝑧𝑅𝑘 being an adimensional parameter. To obtain Eqs. (12)–(13)
from the exact ones, we have neglected the terms dependent on 𝑟2

in the azimuthal forces and higher than 𝑟3 in the radial quadrupolar
forces 𝐅𝑄 and 𝐅𝑀 . It is important to note that Eqs. (12) and (13) have
neither axial component nor dependence on the azimuthal coordinate
𝜃, so the particles will be trapped at focus plane (𝑧 = 0) for any radial
and azimuthal position.

Azimuthal forces 𝐹 𝜃𝑑 = 𝐶𝑑 𝐹 (𝑟) and 𝐹 𝜃𝑞 = 𝐶𝑞 𝐹 (𝑟) transfer an-
ular momentum from the electromagnetic field to the particles, so,
aking into account that 𝐶 = 𝐶 = 0, we can affirm that dipolar
𝑚 𝑄
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magnetic forces and quadrupolar electric forces do not contribute to
the angular momentum transfer when counter-propagating circularly
polarized gaussian beams are used. Magnetic dipolar forces do not
transfer angular momentum because the magnetic orbital angular mo-
mentum associated to the magnetic field given by Eq. (2) is null [6].
Furthermore, the radial dependence in both cases is the same (𝐹 (𝑟)),
ut the coefficients 𝐶𝑑 and 𝐶𝑞 depend on dipolar and quadrupolar
olarizabilities respectively, then, the total azimuthal force 𝐹 𝜃𝑇 = 𝐹 𝜃𝑑 +
𝜃
𝑞 = 𝐹 (𝑟)(𝐶𝑑 + 𝐶𝑞), could be positive, negative or null according to
he values of (𝐶𝑑 + 𝐶𝑞). Therefore, the angular momentum transfer
rom the electromagnetic field to the particles could be controlled by
alancing the dipolar and quadrupolar forces. To do this, for a fixed
article radius, balance between dipolar and quadrupolar forces could
e obtained by varying the wavelength of the incident electromagnetic
ield.

In the same way as azimuthal forces, radial forces 𝐹 𝑟𝑑 and 𝐹 𝑟𝑞
lso show the same radial dependence that can be controlled by the
adiation wavelength for obtaining attractive, repulsive or null forces.

In the next section we are going to analyze the influence of
uadrupolar interaction on particle dynamics.

.1. Particle dynamics

As it is widely used, we will assume that the viscous forces in water
ominate the inertia forces thus, the dynamics of Si nanoparticles can
e described by the overdamped Langevin equation [32,33] given by:
𝑑𝐑
𝑑𝑡

= 𝐅𝑇 (𝐑) +𝐖(𝑡) (30)

where 𝐑 is the position vector of a particle, 𝛾 𝑑𝐑𝑑𝑡 is the frictional force of
particle, (𝛾 = 6𝜋𝜈𝑟𝑎, 𝑟𝑎 is the particle radius and 𝜈 = 8.9 10−4𝑃𝑎 𝑠 is the
ater viscosity), 𝐅𝑇 (𝐑) is the optical force given by Eqs. (5)–(13) and
(𝑡) is a time dependent random force that causes Brownian motion.
By introducing Eqs. (12)–(13) into (30), we can obtain the deter-

inistic overdamped Langevin equation (𝐖(𝑡) = 0):
𝑑𝑟
𝑑𝑡

= 𝐹 𝑟𝑇 (𝑟) = (𝐴𝑟 + 𝐵 𝑟3)𝑓 (𝑟) (31)
𝑑𝜃
𝑑𝑡

= 𝐹 𝜃𝑇 (𝑟) = 𝐶𝑓 (𝑟) (32)

where 𝑓 (𝑟) = 𝐹 (𝑟)∕(𝛾𝑟), 𝐴 = 𝐴𝑑 + 𝐴𝑞 , 𝐵 = 𝐵𝑑 + 𝐵𝑞 and 𝐶 = 𝐶𝑑 + 𝐶𝑞 .
Eq. (31) presents two critical points, 𝑟𝑐1 = 0 and 𝑟𝑐2 = (−𝐴∕𝐵)1∕2.

If a particle is located at critical point 𝑟𝑐1, it will remain trapped at
origin. If a particle is located at 𝑟𝑐2, it will describe a circular motion
(provided that 𝐴∕𝐵 < 0) of radius 𝑟𝑐2 and angular velocity 𝐶 𝑓 (𝑟𝑐2).
Therefore, this result implies that the electromagnetic field given by
Eqs. (1), (2) transfers angular momentum to particles that describe a
circular motion whose angular velocity is determined by the adequate
selection of dipolar and quadrupolar forces.

If parameter C= 0 then 𝐹 𝜃𝑇 (𝑟) is zero, so in this case, the force acting
on the particle will be central, conservative, and its resulting angular
momentum will be null.

We are interested in analyzing the case where 𝐶 ≠ 0, which implies
that 𝑑𝜃∕𝑑𝑡 ≠ 0 and, as a result, the particle will acquire angular
momentum from the electromagnetic field. In this sense, to find the
differential equation that describes the path of the Si particle, we use
the relation 𝑑𝑟∕𝑑𝜃 = 1∕(𝑑𝜃∕𝑑𝑡)𝑑𝑟∕𝑑𝑡; so, taking into account Eqs.
(31)–(32), the trajectory of the particle can be obtained by solving:

𝑑𝑟
𝑑𝜃

=
𝐹 𝑟𝑇 (𝑟)

𝐹 𝜃𝑇 (𝑟)
= 𝐴𝑡 𝑟 + 𝐵𝑡 𝑟3 (33)

being 𝐴𝑡 = 𝐴∕𝐶 and 𝐵𝑡 = 𝐵∕𝐶.
It is easy to check that Eq. (33) admits four solutions, 𝑟1(𝜃) = 0;

2(𝜃) = 𝑟𝑐2 is related to the initial condition 𝑟2(0) = 𝑟𝑐2,

3(𝜃) =
𝑟0

( 2 )
1
2

(34)
3

1 − 2𝐵𝑡𝑟0𝜃
for the initial condition 𝑟(0) = 𝑟0 if 𝐴𝑡 = 0, and:

𝑟4(𝜃) =
1

(

− 𝐵𝑡
𝐴𝑡

+ ( 1
𝑟20

+ 𝐵𝑡
𝐴𝑡
)𝑒𝑥𝑝(−2𝐴𝑡𝜃)

)
1
2

(35)

for the initial condition 𝑟(0) = 𝑟0 and 𝐴𝑡 ≠ 0.
Solution 𝑟1 implies that particles located at origin remain trapped

and solution 𝑟2, as we have mentioned, implies that the particle de-
scribes a circular trajectory. On the other hand, solution 𝑟3, represents
a quasi Lituus spiral, 𝑟4 is a logarithmic spiral if 𝐵𝑡 = 0 and a quasi loga-
rithmic spiral if 𝐵𝑡 ≠ 0. In this sense, there are different possibilities for
spiral trajectories as a function of dipolar and quadrupolar coefficients:

1. If 𝐴𝑡 = 0 and 𝐵𝑡 < 0, Eq. (34) describes an attractive Lituus spiral
towards the origin.

2. If 𝐴𝑡 = 0 and 𝐵𝑡 > 0, Eq. (34) describes a repulsive Lituus spiral,
with an asymptote at 𝜃𝑚 = 1∕(2𝐵2

𝑡 𝑟
2
0).

3. If 𝐴𝑡 < 0, 𝐴 < 0 and 𝐶 > 0, Eq. (35) describes an attractive
logarithmic spiral towards the origin.

4. If 𝐴𝑡 > 0, and 𝐵 < 0 Eq. (35) describes a repulsive spiral
that degenerates into a circular trajectory of radius equal to the
previously described 𝑟𝑐2 = (−𝐴∕𝐵)1∕2

5. If 𝐴𝑡 > 0, and 𝐵 > 0 Eq. (35) describes a repulsive spiral, with
an asymptote at 𝜃𝑙 = −1∕(2𝐴𝑡)𝑙𝑜𝑔(𝑟20∕(𝑟

2
0 + 𝐴∕𝐵)).

n cases 1 and 3, particles are trapped at origin, but the convergence
ynamic to this point is different, being a function of the balance
f dipole and quadrupole coefficients. In case 4, particles describe
final circular movement with angular velocity 𝐶𝑓 (𝑟𝑐 ); this radius

nd angular velocity can be modified by the adequate selection of
avelength, which also balances the quadrupolar and dipolar forces.
inally, in cases 2 and 5, particles are repelled towards the outer area
f the focal plane.

. Numerical examples

In this section, we are going to numerically analyze the dynamics
f Si nanoparticles immersed in water when two counter-propagating
aussian beams, with a beam waist radius 𝑤0 = 2 μm, are propagating
t different wavelengths and with total incident power of 100 mW. We
olve the Langevin equation analyzing orbital stability under Brownian
orces.

Fig. 1 shows the quadrupolar 𝐅𝑞 and dipolar radial forces 𝐅𝑑 for a
i particle located at 𝑟 = 𝑤0∕2. As can be observed, quadrupolar forces
pen a narrow window (this window is narrower and less effective for
horter wavelengths), and for infrared wavelengths, there are attractive
nteractions that correspond to dipolar repulsive forces resulting in a
uadrupolar trap, this being independent from the azimuthal coordi-
ate of particles, as can be deduced from Eqs. (12)–(13). This result
as obtained in Ref. [30] for the visible region only using a unique

inearly polarized Gaussian beam. We are interested in the analysis
f the previously described particle dynamics with strong resonances
t infrared region. In this sense, we have fixed the particle radius to
04 nm, which according to Fig. 2(a) shows strong dipolar–quadrupolar
agnetic resonance at 1064 nm wavelength, which it is the most

ommon wavelength used in optical traps, as indicated in a recent study
f Si nanoparticles forces in the infrared region [34]. Fig. 2(b) shows
he coefficients A, B, C for a Si particle of radius 204 nm immersed
n water. As can be observed, coefficient A is non null at nearly all
he wavelengths of the studied region except for 𝜆𝐴1 = 1046.1 nm and
𝜆𝐴2 = 1097.9 nm. Moreover, 𝐴 < 0 if 𝜆 ∈ [𝜆𝐴1, 𝜆𝐴2] and is positive for
the rest of the wavelengths. In addition, 𝐵 > 0 if 𝜆 < 𝜆𝐵 and 𝐵 < 0
for 𝜆 > 𝜆𝐵 𝜆𝐵 = 1063 nm being the wavelength for which parameter
B is null. Finally, C is positive in the wavelength region 𝜆 > 𝜆𝐶 where

𝜆𝐶 = 858.27 nm and corresponds to the wavelength at which 𝐶 = 0.
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Fig. 1. Quadrupolar (a) and dipolar (b) forces for a Si particle located at 𝑟 = 𝑤0∕2.
Scale colors are given in pN. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Taking into account Eqs. (21)–(29), Fig. 3 shows the different mul-
tipolar contributions given to the quadrupolar and dipolar coefficients
A, B and C depicted in Fig. 2(b). As can be observed in Fig. 3(a),
the contribution of the electric dipolar force to 𝐴𝑑 is negligible and
the main contributions are due to the dipolar magnetic force 𝐴𝑚, and
for high wavelength values, the magnetic–electric dipolar interference
force 𝐴𝑝𝑚. On the other hand, the major contributions to 𝐴𝑞 arise
from quadrupolar electric forces 𝐴𝑄 and magnetic quadrupole–dipole
interference force 𝐴𝑀𝑚, the influence of electric quadrupole–dipole
interference 𝐴𝑄𝑝 and magnetic quadrupole 𝐴𝑀 being negligible. Thus,
taking into account these considerations, 𝐴 ≈ 𝐴𝑚 + 𝐴𝑝𝑚 + 𝐴𝑄 + 𝐴𝑀𝑚.
In the same way, 𝐵𝑑 is equal to 𝐵𝑝 being 𝐵𝑚 = 𝐵𝑝𝑚 = 0. As for the
quadrupolar coefficient 𝐵𝑞 , it can be observed in Fig. 3(b) that the
main contributions are given by the magnetic quadrupole force 𝐵𝑀 ,
and electric quadrupolar force 𝐵𝑄 whereas the values of 𝐵𝑄𝑝 are less
significant, and hence 𝐵 ≈ 𝐵𝑝 + 𝐵𝑀 + 𝐵𝑄. Finally, it can be deduced
from Fig. 3(c) that 𝐶𝑑 = 𝐶𝑝𝑚 and there is no contribution of dielectric
forces because 𝐶𝑝 ≈ 0. The quadrupolar coefficient 𝐶𝑞 is practically
equal to 𝐶𝑀𝑚 with little corrections due to 𝐶𝑄𝑝. The contribution of
4

Fig. 2. (a) Total electric (𝑄𝑒
𝑠𝑐𝑎) and magnetic (𝑄𝑚

𝑠𝑐𝑎) scattering efficiency including
dipolar and quadrupolar terms and dipolar electric (𝑄𝑒,𝑑

𝑠𝑐𝑎) and magnetic (𝑄𝑚,𝑑
𝑠𝑐𝑎 ) scattering

efficiency. (b) Coefficients A, B, C for a Si particle of 204 nm radius immersed in water.

magnetic quadrupolar forces (𝐶𝑀 ) is negligible, so 𝐶 = 𝐶𝑝𝑚+𝐶𝑀𝑚+𝐶𝑄𝑝
and thus the parameter C mainly depends on the interference forces
of dipole–dipole and dipole–quadrupole; i.e. the angular momentum
transfer from the electromagnetic field to the particle will be given by
interference forces 𝐅𝑝𝑚,𝐅𝑄𝑝 and 𝐅𝑀𝑚.

Assuming that the initial position of particle is at 𝑟 = 𝑤0∕2, Fig. 4,
shows the radial and azimuthal forces for a Si nanoparticle of radius
204 nm. As can be seen in Fig. 4(a), the dipolar force is always
positive and the quadrupolar force is negative, the resulting total force
being repulsive in all the analyzed wavelength spectrum except for the
spectral interval that coincides with 𝜆 ∈ [𝜆𝐴1, 𝜆𝐴2] (with an error below
0.5 nm, in this zone the parameter 𝐴 < 0 is accomplished, see Fig. 2(b)),
where quadrupolar force dominates and an optical trap is obtained.
This result is similar to the one obtained by Xu et al. [30], although
they studied the particle dynamic of Si by sorting them by means of
Kerker forces using only one linearly polarized Gaussian beam. In our
case, Kerker forces (𝐅𝑝𝑚) are included in the dipolar forces, and are
not null, unlike with a single circularly polarized Gaussian beam. In
one beam configuration, as pointed out in Ref. [30], radiation pressure
dominates in the axial direction and thus the particles are not confined
at the focus plane. In our configuration, particles are trapped at plane
𝑧 = 0, where we are going to analyze their dynamic behavior.

Fig. 4(b), shows the azimuthal forces, and as can be observed, the
total force is positive for wavelengths 𝜆 ≥ 𝜆𝐶 nm.

When dipolar and quadrupolar azimuthal forces have the same
value but with opposite sign 𝜆 = 𝜆𝐶 , there is no angular momen-
tum transfer from the electromagnetic field to particles and they will
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Fig. 3. (a) Contributions to 𝐴𝑑 (dashed) and 𝐴𝑞 (continuous), (b) contributions to 𝐵𝑑
(dashed) and 𝐵𝑞 (continuous) and (c) contributions to 𝐶𝑑 (dashed) and 𝐶𝑞 (continuous).

describe a rectilinear motion at focus plane. The transfer of angular
momentum will be maximum at 𝜆𝑀2 = 1057 nm which corresponds
to the wavelength where C and 𝐹𝜃 reach the maximum value, the
contribution of quadrupolar forces to momentum being nearly 40%
of the total. At wavelength 𝜆𝑀1 = 922.1 nm, the angular momentum
that a particle acquires is only produced by quadrupolar forces, and for
wavelength 𝜆𝑀3 = 1083 nm, the angular momentum transfer to particle
is only generated by dipolar forces. Moreover, if the angular momentum
of particles is only given by the quadrupolar forces at wavelength 𝜆𝑀1,
then 𝐶𝑑 = 0, and according to the previous discussion that 𝐶𝑝𝑚 = 0;
5

Fig. 4. (a) Total radial force (red color), dipolar force (green color) and quadrupolar
force (magenta color). (b) Total azimuthal force (red color), dipolar force (green color)
and quadrupolar force (magenta color). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

hence, the particle angular momentum is obtained from the interfer-
ence of quadrupole–dipole forces. On the other hand, when dipolar
forces dominate, the main contribution to the angular momentum
transfer at wavelength 𝜆𝑀3, is given by the interaction dipole–dipole
𝐶𝑝𝑚, since, in this case, the interference forces of quadrupole–dipole
cancel each other as 𝐶𝑀𝑚 = −𝐶𝑄𝑝.

Fig. 5 shows the trajectories of different particles located at different
radial and angular positions at focus plane for wavelengths 𝜆𝐶 (a), 𝜆𝑀1
(b), 𝜆𝑀2 (c) and 𝜆𝑀3 (d). As can be observed, when 𝜆 = 𝜆𝐶 (Fig. 5(a)),
the trajectories are repulsive straight lines, which confirms that there
is no transfer of angular momentum from the electromagnetic field to
particles. As the wavelength increases, 𝐶 increases too and particles
describe different types of spirals. These trajectories are repulsive for
𝜆 = 𝜆𝑀1, at which the transfer of angular momentum is only produced
by quadrupolar forces, because 𝐴𝑡 > 0 and 𝐵 > 0 (previously described
case 5). Furthermore, attractive quasi logarithmic spirals towards the
origin with counter-clockwise rotation direction are obtained at 𝜆 =



Results in Physics 19 (2020) 103520L. Carretero et al.
Fig. 5. Trajectories described by Si nanoparticles with 203 nm radius for (a) 𝜆 = 𝜆𝐶 ,
(b) 𝜆 = 𝜆𝑀1, (c) 𝜆 = 𝜆𝑀2 and (d) 𝜆 = 𝜆𝑀3. Red dots indicate the initial position of
particle at focus plane. The inset figure shows the deterministic solution of the Langevin
equation obtained in Section 2. The simulation time in Figs. 5(a) and (b) is 10 ms,
whereas in Figs. 5 (c) and (d) is 100 ms with a time step of 1 μs.

𝜆𝑀2 = 𝜆𝑀3, which corresponds to case 3 analyzed in Section 2. As can
be seen, the deterministic solutions of the Langevin equation (straight
lines or spirals) are also observed when the Brownian movement is
included. It is interesting to note that trajectories have been represented
6

Fig. 6. Trajectories described by Si nanoparticles with 203 nm radius for (a) 𝜆 = 𝜆𝐴1,
(b) 𝜆 = 𝜆𝐴2, (c) 𝜆 = 𝜆𝐵 and (d) 𝜆 = 1099 nm. Red dots indicate the initial position of
particle at focus plane. The inset figure shows the deterministic solution of the Langevin
equation obtained in Section 2. The simulation time in figures is 100 ms with a time
step of 1 μs, except figure d, for which it has a duration of 1 s.

on the electromagnetic density energy, which shows an optical vortex
at origin.

Fig. 6 shows attractive and repulsive Lituus spirals Figs. 6(a) and
6(b) by using illumination wavelengths 𝜆 and 𝜆 , respectively. In
𝐴1 𝐴2
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both cases, particle radial velocity is much lower than that obtained
with the logarithmic spiral shown in Fig. 6(c) corresponding to a
wavelength 𝜆𝐵 , because, as can be observed in Fig. 4, the radial force
is nearly null in Figs. 6(a) and 6(b). Finally, Fig. 6(d) shows the
trajectories that correspond to an illumination with a wavelength of
1099 nm. In this case, according to Figs. 4 and 2 we are under the
conditions of case 4, so deterministic orbits converge to a limit cycle
that describes a circular movement of radius 𝑟𝑐2 = (−𝐴∕𝐵)1∕2 and
angular velocity C 𝑓 (𝑟𝑐2 ). As can be observed, when the Brownian
movement is included the circular trajectory (magenta circle) is not
stable, but all particles are confined in a region close to this limit cycle,
describing spirals around it.

4. Conclusion

The dynamic of Si nanoparticles in a quadrupolar optical trap have
been analyzed for different wavelengths in the infrared region. For this
purpose, we have obtained the optical forces (characterized by a set of
parameters) generated by two counterpropagating circularly polarized
Gaussian beams. By solving the deterministic over-damped Langevin
equation, we have analytically demonstrated that particles inside the
trap describe different types of spirals (attractive or repulsive to the
center of the focus), straight lines or circles that are observable with
Brownian motion. Through the analysis of the parameters and trajec-
tories, we have demonstrated that the angular momentum transfer is
mainly due to the interference forces of dipole–dipole and quadrupole–
dipole. In the counter-propagation configuration used particles are
trapped at focus plane, so this system could be used in devices to repel
or trap particles as a function of wavelength; i.e. it can act as a filter
or a purification procedure.
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