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Abstract

The rapid adoption of electric vehicles (BEVs) has increased the need to understand how
fast-charging strategies influence long-distance travel times under real-world conditions.
While most manufacturers specify maximum charging power and standardized driving
ranges, these figures often fail to reflect actual highway operation, particularly in adverse
weather. This study addresses this gap by analyzing the fast-charging behaviour, net bat-
tery capacity and highway energy consumption of 62 EVs from different market segments.
Charging power curves were obtained experimentally at high-power DC stations, with
data recorded through both the charging infrastructure and the vehicles’ battery manage-
ment systems. Tests were conducted, under optimal conditions, between 10% and 90%
state of charge (SoC), with additional sessions performed under both cold and precondi-
tioned battery conditions to show thermal effects on the batteries’ fast-charging capabili-
ties. Real-world highway consumption values were applied to simulate 1000 km journeys
at 120 km/h under cold (-10 °C, cabin heating) and mild (23 °C, no AC) weather scenarios.
An optimization model was developed to minimize total trip time by adjusting the num-
ber and duration of charging stops, including a 5 min detour for each charging session.
Results show that the optimal charging cutoff point consistently emerges around 59%
SoC, with a typical deviation of 10, regardless of ambient temperature. Charging beyond
70% SoC is generally inefficient unless dictated by charging station availability. The opti-
mal strategy involves increasing the number of shorter stops—typically every 2-3 h of
driving —thereby reducing total trip.

Keywords: battery electric vehicle; DC fast-charging; charging power; charging curve;
charging time

1. Introduction

Promoting the development and implementation of Battery Electric Vehicles (BEVs)
is one of the key ongoing measures to transition towards a low-carbon energy model.
Despite their many advantages over conventional vehicles, BEVs adoption remains lim-
ited due to certain constraints compared to Internal Combustion Engine Vehicles (ICEVs).
Their range and battery recharging times are two of the most significant drawbacks of BEVs.

However, the average range of BEVs has more than doubled in the last decade, while
recharging times have been significantly reduced over the same period. For these reasons,
BEVs can now undertake long trips with minimal time differences compared to ICEVs.
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This difference ranges between 11% and 27%, depending on the BEV’s range and charging
capabilities, with BEVs requiring more time than ICEVs [1,2].

Given that there are enough high-power DC fast chargers along the route, the dura-
tion of a long-distance trip in a BEV essentially depends on two factors. On the one hand,
it depends on the battery capacity—and therefore the BEV’s range—and on the other
hand, on the charging power the battery can handle. BEV long-distance trip times are ex-
pected to converge with ICEV times as ultra-fast chargers become widely adopted [3].
Users consider overall travel time —which includes both driving time and charging time—
more important than the charging duration itself, as they typically stop to rest every 2-3
h during long trips, which can be done at fast-charging stations [4].

Charging power gradually decreases from 30-40% of the battery’s State of Charge
(S0C) and drops significantly beyond 70-80%. Therefore, stopping charging at 80% SoC
instead of reaching 100% significantly reduces total travel time (including charging stops)
[3,5]. Additionally, due to undesirable secondary electrochemical reactions, charging
above 80% SoC accelerates battery degradation [1,6]. Despite this effect, it is important to
mention that Lithium-Ion Phosphate batteries have very constant voltages over most of
the SoC. Thereby the estimation of the SoC mostly relies on Coulomb counting the power
in and out. This needs frequent recalibration to be correct. Therefore, LFP batteries should
be charged to 100% to get the SoC estimation of the BMS recalibrated, as an accurate SoC
estimation helps regulate the charging process [7].

Moreover, DC fast charging above 80% SoC prevents the full utilization of the avail-
able charging potential at fast-charging stations by reducing charging power and, conse-
quently, charger availability, which may lead to unnecessary waiting times for other users
[8,9]. These delays may occur occasionally during peak hours of daily fast-charging sta-
tion usage and can become significant in exceptional cases, such as during holiday rush
hour traffic [10]. They may also be very frequent if the DC fast-charging network is not
sufficiently well-developed [11,12].

On the other hand, prolonged DC fast charging over time causes a significant increase
in the battery’s internal temperature, which, in addition to reducing power delivery, can,
in severe cases, lead to internal short circuits that may destroy the battery and even cause
explosions [1,13]. Furthermore, it has been proven that high battery temperatures lead to
the fragmentation of electrode materials due to thermal expansion mismatch, causing cell
destruction and the consequent degradation of the battery [7,14].

It is neither necessary nor sustainable to size BEV batteries based on maximum usage
requirements for long trips [3]. In fact, although manufacturers such as NIO and GAC are
developing BEVs with ranges exceeding 1000 km, the weight and cost of the required bat-
teries lead to several drawbacks for these vehicles. Notably, these include poorer perfor-
mance in terms of longitudinal (acceleration and braking) and transverse (cornering) dy-
namics, a higher Total Cost of Ownership (TCO) compared to vehicles with lower-capac-
ity batteries, and lower energy efficiency [15]. Instead, a more effective approach is to size
BEV batteries around 400 km range and design optimal fast-charging strategies that min-
imize charging sessions and reduce total travel times.

Choosing a DC fast-charging station with a charging power that matches the maxi-
mum power the vehicle’s battery can handle, along with preconditioning (heating) the
battery before charging, can significantly reduce charging times by up to 50% in some
cases [1,16,17]. Battery preconditioning is especially important to achieve optimal perfor-
mance [13] and when performing DC fast charging at very low temperatures [18,19]. Un-
der such conditions, not only does charging efficiency decrease significantly [20], leading
to considerably longer charging times [21], but battery degradation also increases, reduc-
ing its lifespan [22]. For this reason, most EVs” manufacturers—including Audi, Hyundai,
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MG and Tesla—incorporate an automatic preconditioning system when the vehicle’s nav-
igation system sets a DC fast-charging station as the destination.

Considering that the main parameters influencing a battery’s charging session are
well known, two key factors play an important role in optimizing battery electric vehicles’
DC fast charging for long-distance trips. The first one is the user, who is usually not aware
of the optimal State of Charge (S0C) range that maximizes the charging session’s power.
This combined with the fact that most BEV drivers experience the so-called “range anxi-
ety” [23,24], leads to charging the battery outside its optimal SoC window, which can re-
duce efficiency and increase charging times. For example, a user may stop at a fast-charg-
ing station with 30% SoC and charge the battery up to 95%. This would result in a charging
session approximately 50% longer compared to a session from 10% to 75% SoC, despite
both recovering the same range.

The second parameter is the difference between the charging power curves of each
BEV on the market, which varies significantly across different models and brands. This
aspect also plays a crucial role in minimizing long-distance trip times. Charging power is
higher at low SoC levels and decreases as the charge percentage increases. This trend re-
sults from battery management strategies, which aim to accelerate charging when the bat-
tery is less charged and reduce it as it approaches higher SoC levels in order to preserve
battery health.

This paper analyzes data from a broad sample of BEVs available on the market, based
on testing and recording the main parameters of their charging sessions, and establishes
the optimal SoC window for maximizing charging power and reducing stop times. The
goal is to provide users with practical information to optimize their vehicles’” DC fast-
charging sessions for long-distance trips.

2. Materials and Methodology

This section shows the materials that were used to carry out this research and ex-
plains the methodology used for obtaining the optimal DC fast-charging strategies for a
wide range of battery electric vehicles during long-distance trips.

In order to obtain sufficient data to draw solid conclusions, 62 BEVs from different
segments were tested. All tested vehicles are available in the European market. Table 1
shows the number of EVs tested in this research, classified by segment. As can be seen,
segments C, D, and E are the most numerous, as these types of vehicles are more likely to
be used for long-distance trips. However, segments A, B, F and commercial vehicles were
also tested to provide useful information for their respective users.

Table 1. Number of battery electric vehicles tested classified according to their segment.

Segment Number of BEVs Tested
A (Mini) 2
B (Compact) 8
C (Medium) 14
D (Large) 20
E (Executive) 12
F (Luxury) 3
N (Commercial) 3

High-power DC fast-charging stations, of up to 350 kW, were used in this research to
recharge the EVs’ batteries. Choosing the appropriate charging equipment ensured that
the EVs’ battery could be charged to its maximum admissible power, avoiding the limita-
tion in the charging speed that could be caused by the charging station. Therefore, DC
fast-charging equipment was selected specifically for each vehicle according to their
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battery architecture (400 or 800 V) and maximum charging power capabilities. All these
charging stations were equipped with CCS Combo 2 connectors, as all tested vehicles
equipped this type of DC fast-charging port.

The first step in this research was to obtain the fast-charging power (kW) vs. SoC (%)
curve for each BEV, since manufacturers usually only provide the maximum DC fast-
charging power achievable under ideal conditions. However, this value is not constant
throughout the charging session and is typically only reached at the beginning if the bat-
tery’s SoC is sufficiently low and the battery has been properly pre-conditioned. The fast-
charging curve is essential for evaluating the EVs’ travel capability and for determining
the optimal fast-charging strategy for each vehicle, as it directly affects recharging times [5].

In order to obtain the fast-charging power curves, all BEVs were tested at a high-
power DC fast-charging station. To ensure optimal fast-charging conditions, all vehicles
equipped with this feature underwent 45 min of battery preconditioning before the charg-
ing session began. Charging power, SoC and battery temperature were recorded using
both the data provided by the charging station and the information retrieved from each
vehicle’s Battery Management System (BMS) via the EOBD connector. Data was collected
at 1% SoC intervals between 10% and 90% throughout the entire charging session. Figure
1 shows two of the tested vehicles during the tests along with all the data recorded during
each fast-charging session.

| ~H-V battery charge "\ Voltage of the high- \maximum voltage of théyminimum voltage of the)

currect actual value voltage battery battery cells battery cells

0.3 @E45.5 @SS/ [BSi92

' Vv
Air temperature of H- Ambient air
V battery temperature

Figure 1. Different battery electric vehicles” DC fast-charging tests.

On the other hand, Figure 2 shows, as a reference, the fast-charging power curves of
4 of the 62 tested vehicles (Audi eTron GT, Tesla Model Y, Toyota bZ4X and Volkswagen
eGolf). These vehicles have been chosen as examples to highlight the significant differ-
ences in fast-charging power curves among various technologies (i.e., 400 V vs. 800 V bat-
tery architectures or passive vs. active thermal management systems). The figure in brack-
ets corresponds to the nominal net capacity of each vehicle’s battery, expressed in kWh.
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Figure 2. Charging power curves of different BEVs under optimal conditions.

The amount of energy stored in a battery during a charging session depends on the
charging power that the battery can handle during this time. In this case, charging power
(kW) is plotted against SoC (%), and the area under the curve represents the amount of
energy delivered to the battery during charging.

For this reason, fast-charging capabilities do not depend merely on the maximum
charging power an EV can reach under ideal conditions, as this level is often maintained
only for a short period. Therefore, maintaining a high power level over a wide SoC range
is more important in order to recharge the battery faster and more efficiently.

A larger area under the curve corresponds to a greater total amount of energy trans-
ferred to the battery. For example, the Audi eTron GT (green line) maintains significantly
higher charging power for a longer period compared to the Tesla Model Y (red), Toyota
bZ4X (yellow), and VW eGolf (blue), indicating that it can accumulate more energy in a
shorter time. Conversely, vehicles with lower power curves accumulate energy more
slowly, extending the charging session and, therefore, prolonging long-distance trips.

Moreover, as the battery’s fast-charging capabilities depend significantly on its tem-
perature, several vehicles’ fast-charging power curves were registered both with the bat-
tery being cold and pre-conditioned prior to the charging session. Cold battery tempera-
tures ranged from 8 to 14 °C, while preconditioning was carried out for 45 min prior to
fast charging, raising battery temperatures between 41 and 52 °C. This was done to show
the influence of battery temperature and pre-conditioning in the batteries’ fast-charging
capabilities.

Figure 3 shows the difference between the fast-charging power curves of a cold and
a preconditioned battery for both a Tesla Model S and a Volvo XC40. As can be seen, the
initial charging power of a cold battery can be almost half that of the preconditioned bat-
tery. However, both power curves tend to converge over time, as the thermal management
system—and the charging process itself —gradually warm up the cold battery. For the
same charging duration, a preconditioned battery within the 10% to 50% SoC range can
store up to twice the amount of energy as a cold battery. This difference can significantly
reduce fast-charging sessions and, consequently, overall long-distance trip times.
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Figure 3. Comparison between charging power curves of cold and preconditioned batteries.

In addition to the fast-charging curve, two other factors play an essential role in an
EV’s long-distance travel capability. One of them is the battery’s net capacity, typically
expressed in kWh. This net capacity refers to the usable energy content of the battery, as
the actual capacity —known as gross or nominal capacity —is higher but partially unavail-
able for safety and durability reasons. The difference between the gross and net capacity
is called the battery buffer and usually ranges from 5 to 10% of the nominal capacity.

The other factor that influences an EV’s long-distance travel capability is its energy
consumption at highway speeds, typically measured in Wh/km or kWh/100 km. Although
every EV has a standard rated consumption and range, these values vary significantly
depending on the standardized test procedure under which the vehicle was tested and type
approved. The most common standard test protocols are WLTP [25] for Europe, EPA [26] for
the USA, and CLTC [27] for China.

However, the standardized rated consumption of any of these protocols includes a
mix of city, interurban, and highway driving. Since EVs tend to have significantly lower
energy consumption in city driving—unlike ICE vehicles—the standardized ratings are
not representative of real long-distance trips consumption.

For this reason, this research considers actual highway consumption values obtained
under real-world conditions, as published by EV Database https://ev-database.org/ (ac-
cessed on 8 March 2025). Moreover, as EV energy consumption can vary considerably (by
up to 30%) depending on weather conditions, two scenarios were considered: the first,
called Cold Weather, represents a worst-case scenario with an outside temperature of —10
°C and cabin heating in use; the second, Mild Weather, represents a best-case scenario
with an outside temperature of 23 °C and no air conditioning. The low-temperature con-
dition of 10 °C was selected because it represents a cold climate in which vehicles are still
commonly operated in many countries.

Table 2 below shows the battery specifications and highway energy consumption for
a sample of the 62 EVs analysed in this study. The battery net capacity and Mild and Cold
Weather highway consumption for each vehicle analyzed in this study are provided in
Table A4 of Appendix A.
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Table 2. Battery net capacity and Mild and Cold Weather highway consumption of different EVs.

EV Make & Model Battery Net Cap. (kWh) Mild Consump. (Wh/km) Cold Consump. (Wh/km)
Audi eTron GT 97 190 249
Tesla Model Y LR 75 181 234
Toyota bZ4X 64 200 256
VW eGolf 32 188 237
Since most new battery electric vehicles can travel more than 300 km on a single
charge, a 1000 km journey at highway speed was considered as long-distance trip. The
first leg starts with a fully charged battery (100% SoC), and the first charging stop occurs
when the battery charge reaches 10% SoC. The rest of the trip is divided into several charg-
ing legs, depending on the vehicle’s needs. The time required to recharge the battery from
10% to 90% SoC is calculated for each charging stop based on the vehicle’s previously
obtained charging power curve, with each subsequent leg also ending at 10% SoC.
To ensure uniform and comparable testing conditions across all vehicles, the follow-
ing assumptions were established:
e  All electric vehicles are assumed to support the Plug & Charge protocol, eliminating
any time delays associated with initiating or ending the charging session.
e Charging stations are assumed to consistently supply the power requested by the
vehicles’ BMS throughout the charging process.
e  Battery degradation is not considered: all batteries are assumed to have a State of
Health (SoH) of 100%.
e Environmental conditions align with the previously defined “Mild” and “Cold”
weather scenarios.
e  The assumed traffic conditions and road network enable continuous driving at a con-
stant speed of 120 km/h.
Figure 4 presents an infographic outlining the testing methodology and the proce-
dure used to determine the optimal charging strategy for each vehicle.
S.0.C.
100%

10% | XX% 10% E XX% 10% E XX% 10%
> > Id- > Id >

0 km

First leg distance xx km 1000 km

Figure 4. Testing methodology and procedure to determine the optimal charging strategy.

The real range (in kilometers) of each vehicle is calculated, according to Equation (1),
by dividing the battery’s net capacity, expressed in kilowatt-hours (kWh), by the vehicle’s
real energy consumption, expressed in watt-hours per kilometer (Wh/km).

Battery net capacity (kWh) - 1000 (Wh/kWh)
Real consumption (Wh/km)

Real range (km) = 1)

On the other hand, the total charging time (in minutes) is equal to the number of
charging stops (n) multiplied by the sum of the charging session duration and the detour
time, as can be seen in the following Equation (2):

Total charging time (min) = n - (charging session time + detour time) (2)

After that, the total trip time (in hours) is calculated by adding the total time spent
charging to the driving time. The driving time is obtained by dividing the total distance
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(1000 km) by the cruising speed (120 km/h). Accordingly, the following Equation (3) is
obtained:

1000 km

Total trip time (h) = Total charging time + 120 (km/h)

€))

This results in a driving time of 8.33 h, to which the total charging time must be added
to obtain the full trip duration. Then, the minimum number of charging stops is deter-
mined by considering the previously calculated real range and the fact that each charging
stop occurs when the battery’s state of charge (S0C) reaches 10%.

Finally, a MATLAB script calculates the total time required to recharge the battery,
considering a range between the minimum number of charging stops and a maximum of
15 stops. It thereby determines the optimal number of stops that minimizes the total charg-
ing time—and therefore, the total trip time —under the assumption that there are sufficient
fast-charging stations along the route and that each recharge includes a 5 min detour.

3. Results and Analysis

This section presents the key findings of the study for a representative subset of the
62 battery electric vehicles analyzed. Comprehensive results for all tested vehicles are pro-
vided in Appendix A, where they are presented in tabular form.

Table 3 presents the top 5, among all 62 EVs, that achieve the largest reductions in
total trip time when optimized charging strategies are applied under Mild Weather con-
ditions. For each model, the table compares the minimum number of charging stops re-
quired to complete the 1000 km journey with the optimal number of stops derived from
the charging power curves and consumption data. The “Time saved” column quantifies
the improvement in total recharging time achieved by adopting the optimal strategy. The
minimum and optimal charging stops, along with time saved in Mild Weather conditions
for each vehicle analyzed in this study, are provided in Table Al of Appendix A.

Table 3. EVs with the highest time savings from optimized charging strategies in Mild Weather

conditions.
Minimum Charging Stops Optimal Charging Stops Time Saved
EV Make & Model Number of  Total Recharging  Numberof  Total Recharging (min)
Charging Stops Time (min) Charging Stops Time (min)

Toyota bZ4X 64 kWh 3 151.40 6 101.67 49.73
Nissan Townstar 45 kWh 6 242.72 9 208.11 34.61
Volvo C40 75 kWh 3 128.06 5 105.02 23.04
Polestar 2 61 kWh 3 125.31 5 104.83 20.48
MG Cyberster 75 kWh 2 94.72 4 78.19 16.53

Under Mild Weather conditions, the Toyota bZ4X (64 kWh) exhibits the largest abso-
lute time saving, reducing total recharging time by approximately 49.73 min when in-
creasing the number of charging stops from three to six, thereby leveraging shorter and
more efficient charging sessions. This corresponds to a 32.85% reduction compared to the
minimum-stop strategy.

The Nissan Townstar (45 kWh) achieves a total recharging time reduction of 34.61
min, from 242.72 min with six stops to 208.11 min with nine stops, representing a 14.26%
improvement. This gain is particularly notable for a small-capacity battery vehicle oper-
ating at high fast-charging frequencies.

The Volvo C40 (75 kWh) benefits from a time saving of 23.04 min, achieved by in-
creasing stops from three to five, corresponding to an 18.00% reduction. The Polestar 2 (61
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kWh) follows closely, with a 20.48 min reduction (16.33%) when increasing stops from
three to five.

Finally, the MG Cyberster (75 kWh) achieves a time saving of 16.53 min (17.45%) by
increasing stops from two to four, highlighting that even high-capacity battery EVs can
benefit from optimized charging intervals under favorable ambient conditions.

These results indicate that, for most EV models, increasing the frequency of charging
stops—thus operating more frequently within the battery’s higher-power charging
range —can significantly reduce total recharging time, enhancing long-distance travel ef-
ficiency.

On the other hand, Table 4 presents the five best battery electric vehicles achieving
the highest time savings by using optimized charging strategies under Cold Weather con-
ditions. As in Table 3 (Mild Weather conditions), the results indicate that increasing the
number of charging stops—thereby maintaining the battery within a higher charging
power range — can significantly reduce total recharging time. However, the magnitude of
time savings in cold conditions is substantially greater due to the more pronounced neg-
ative impact of low temperatures on energy consumption and charging performance. The
minimum and optimal charging stops, along with time saved in Cold Weather conditions
for each vehicle analyzed in this study, are provided in Table A2 of Appendix A.

Table 4. EVs with the highest time savings from optimized charging strategies in Cold Weather

conditions.

Minimum Charging Stops Optimal Charging Stops

Time Saved

EV Make & Model Number of  Total Recharging  Numberof  Total Recharging (min)
Charging Stops Time (min) Charging Stops Time (min)

Toyota bZ4X 64 kWh 4 257.24 8 141.24 116.00

Nissan Townstar 45 kWh 7 394.93 10 289.57 105.36

Polestar 2 61 kWh 4 199.49 8 149.61 49.88

Volvo C40 75 kWh 4 187.23 7 145.54 41.69

Hyundai Inster 46 kWh 5 211.45 6 176.00 35.45

Under Cold Weather conditions, absolute time savings are markedly higher due to
the higher energy consumption and reduced charging power at low temperatures. The
Toyota bZ4X (64 kWh) achieves the greatest improvement, reducing total recharging time
by 116.00 min (45.09%) when increasing stops from four to eight.

The Nissan Townstar (45 kWh) records a 105.36 min saving (26.68%) when increasing
stops from seven to ten. This result underscores the significant impact of optimization in
small-battery vehicles affected by low-temperature charging limitations.

The Polestar 2 (61 kWh) achieves a 49.88 min reduction (25.01%) when increasing
stops from four to eight, while the Volvo C40 (75 kWh) shows a 41.69 min saving (22.27%)
with an increase from four to seven stops.

The Hyundai Inster (46 kWh) records the smallest absolute gain in this set, with a
35.45 min reduction (16.77%) when increasing stops from five to six, reflecting the influ-
ence of both battery size and charging profile on optimization outcomes.

A cross-comparison of Tables 3 and 4 reveals that Cold Weather conditions amplify
the absolute benefits of optimal charging strategies, with time savings more than doubling
for the top performers compared to Mild Weather. For example, the Toyota bZ4X in-
creases its absolute gain from 49.73 min to 116.00 min, and the Nissan Townstar from 34.61
min to 105.36 min. This disparity is primarily attributed to the higher energy consumption
at low temperatures, and the lower charging power attainable at reduced battery temper-
atures, which prolongs each individual charging session; thus, breaking recharging into
more frequent but shorter sessions mitigates the overall time penalty.
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Figure 5 synthesizes the time-saving performance, in minutes, of the vehicles listed
in Tables 3 and 4, providing a direct visual comparison between Mild and Cold Weather
scenarios. The bar plots highlight the substantial increase in absolute time savings under
Cold Weather conditions across all models, confirming the trends identified in the tabular
analysis. Notably, the Toyota bZ4X and Nissan Townstar display the most pronounced
improvements, while vehicles with larger battery capacities such as the Volvo C40 and
MG Cyberster show more moderate, though still significant, gains. This visualization un-
derscores the importance of adapting charging strategies to environmental conditions in
order to minimize total travel time during long-distance trips.

120

100

80

60

Toyota bZ4X 64 kWh  Nissan Townstar 45 kWh  Volvo C40 75 kWh Polestar 2 61 kWh MG Cyberster 75 kWh  Hyundai Inster 46 kWh

H Mild Weather Cold Weather

Figure 5. Time saved (min) between the minimum and the optimal charging stops strategies.

On the other hand, Figure 6 illustrates the distribution of the optimal number of
charging stops for the 62 EVs analyzed in this study, comparing Mild and Cold Weather
scenarios. Under Mild Weather conditions, the optimal strategy typically involves be-
tween 3 and 5 charging stops, with the majority of vehicles clustering around 3 and 4
stops. By contrast, Cold Weather conditions lead to a systematic increase in the number
of optimal stops, with most EV's requiring between 4 and 7 charging events. Notably, the mean
value shifts from 3.94 stops in Mild Weather to 5.48 stops in Cold Weather, with several vehi-
cles even exceeding 8 stops when operating under adverse thermal conditions.

These aggregated results complement the findings presented in Tables 3 and 4, where
individual vehicle case studies highlighted significant time savings achieved through op-
timized charging strategies. While Tables 3 and 4 demonstrated the magnitude of time
reduction for specific EVs, Figure 6 generalizes these observations by showing how colder
climates consistently increase the number of required charging stops. Taken together, the
results confirm that Cold Weather not only extends charging times, but also alters the
optimal trip planning strategy, thereby reinforcing the role of thermal management and
battery preconditioning in mitigating performance losses.
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Figure 6. Optimal number of charging stops under Mild and Cold Weather conditions.

Finally, the research determined an optimal mean SoC cutoff point of 58.7% under
Mild Weather conditions and 59.6% under Cold Weather conditions, with a standard de-
viation of 10.1 and 10.4, respectively. These findings provide valuable guidance for EV
users seeking to optimize long-distance trip times, as they indicate that charging beyond
70% SoC is generally not advantageous unless specific factors —such as the distance to the
next fast-charging station —require it. The optimal SoC cutoff point for each vehicle ana-
lyzed in this study, under Mild and Cold Weather conditions, is provided in Table A3 of
Appendix A.

4. Discussion

The results obtained in this research demonstrate that the optimization of charging
strategies has a significant impact on long-distance travel times for EVs. The analysis of
62 vehicles from different market segments revealed that an optimal charging cutoff point
consistently appears around 59% SoC, regardless of weather conditions, although with a
typical deviation of approximately 10. Furthermore, the comparison between Mild and
Cold Weather scenarios shows that low ambient temperatures not only extend charging
times due to reduced power intake and higher consumption, but also increase the number
of optimal charging stops, as illustrated in Figure 6. This highlights the critical influence
of environmental conditions and battery thermal management on EV usability for long-
distance trips.

These findings are consistent with prior works that emphasize the non-linearity of
EV charging curves and the detrimental effects of cold temperatures on charging effi-
ciency and energy consumption. Previous studies have reported efficiency penalties of
20-40% under cold climates, which aligns with the time extensions and additional charg-
ing stops observed in this research. However, the present study contributes a novel quan-
titative assessment of optimal cutoff SoC values and their statistical dispersion across a
large and diverse EV sample, providing practical thresholds that have not been systemat-
ically reported in earlier literature. In particular, the integration of fast-charging curves
with real-world consumption data strengthens the external validity of the results com-
pared to standardized WLTP or EPA values, which are known to underestimate highway
consumption.
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For industry stakeholders, these results underscore the importance of developing ad-
vanced thermal management systems and offering predictive route planners that incor-
porate weather and charging infrastructure availability, according to the vehicle’s fast-
charging capability, to optimize trip planning. Furthermore, vehicle software should be
designed to notify users of the optimal point at which to end a charging session and con-
tinue to the next available charging station, thereby facilitating the adoption of efficient
charging strategies in real-world scenarios.

5. Conclusions

The results have shown an optimal charging cutoff point much before 80% State of
Charge, which is the typical manufacturer’s recommendation. This finding indicates that,
in general, charging beyond 65% SoC is inefficient for minimizing trip duration, unless
dictated by station availability constraints. Moreover, low ambient temperatures have
demonstrated to increase the number of optimal charging stops. For both reasons, the op-
timal strategy is to increase the number of stops while keeping them shorter, generally
every 2-3 h of driving,.

From a user perspective, the results provide actionable insights for planning long-
distance trips. By adopting charging strategies that stop sessions around 60-70% SoC and
increasing the number of short, high-power sessions, drivers can reduce overall travel
times by up to 30 to 40% under favourable conditions. In colder climates, preconditioning
emerges as a key enabler, mitigating the otherwise severe penalties on charging efficiency.

Despite the robustness of the findings, certain limitations must be acknowledged.
Firstly, the analysis assumes ideal charging infrastructure availability, whereas in real-
world scenarios station occupancy, detours, and charging power fluctuations may alter
the optimal strategies. Secondly, the study focused on highway driving at a constant
speed of 120 km/h, which may not capture the full variability of on-road driving condi-
tions. Additionally, the results are based on data from currently available EVs; future
models with higher charging capabilities or larger battery capacities may shift the identi-
fied optimal cutoff point. Future research should therefore integrate dynamic traffic sim-
ulations, station availability models, and seasonal energy mix assessments to provide a
more comprehensive evaluation of EV long-distance travel feasibility.
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Appendix A

Table Al. Minimum and optimal charging stops and time saved in Mild Weather conditions.

Minimum Charging Stops Optimal Charging Stops
EV Make & Model No. (,)f Total .Re- Total Travel No. (.)f Total .Re- Total Travel Time .Saved
Charging charging . Charging charging . (min)
. . Time (h) . . Time (h)
Stops  Time (min) Stops  Time (min)
Audi e-tron GT 105 kWh 2 32.27 8.87 2 32.27 8.87 0.00
Audi Q6 e-tron 100 kWh 2 50.32 9.17 3 49.19 9.15 1.13
Audi Q4 e-tron 82 kWh 3 73.78 9.56 4 70.00 9.50 3.78
BMW i3 42 kWh 5 213.81 11.90 5 213.81 11.90 0.00
BMW i4 2 50.90 9.18 3 49.35 9.16 1.55
BMW i7 105 kWh 2 51.43 9.19 2 51.43 9.19 0.00
BMW iX3 3 90.18 9.84 4 87.26 9.79 2.92
BYD Dolphin 60 kWh 3 146.24 10.77 4 144.20 10.74 2.04
BYD Seal 84 kWh 2 71.04 9.52 4 64.43 9.41 6.61
BYD Seal U 89 kWh 3 110.89 10.18 6 102.03 10.03 8.86
BYD Sealion 7 93 kWh 3 77.47 9.62 3 77.47 9.62 0.00
Citroen e-C4X 54 kWh 3 107.72 10.13 4 100.14 10.00 7.58
Citroen e-Spacetourer 75 kWh 5 207.80 11.80 5 207.80 11.80 0.00
Ford Explorer 82 kWh 3 62.17 9.37 3 62.17 9.37 0.00
Ford Mustang Mach-e GT 3 118.68 10.31 5 117.10 10.29 1.58
Hyundai Inster 49 kWh 4 132.30 10.54 5 128.10 10.47 4.20
Hyundai Ioniq 28 kWh 6 171.19 11.19 7 157.06 10.95 14.13
Hyundai Ioniq 6 77 kWh 2 39.06 8.98 2 39.06 8.98 0.00
Hyundai Kona 65 kWh 3 106.45 10.11 4 100.87 10.01 5.58
Kia EV3 81 kWh 2 84.45 9.74 3 73.67 9.56 10.78
Kia Niro EV 64 kWh 3 135.16 10.59 4 128.47 10.47 6.69
Kia EV9 100 kWh 2 75.24 9.59 3 62.72 9.38 12.52
Kia Niro EV 64 kWh 3 126.75 10.45 4 122.22 10.37 4.53
Mercedes EQA 250+ 74 kWh 3 91.69 9.86 3 91.69 9.86 0.00
Mercedes EQE 2 72.51 9.54 3 66.42 9.44 6.09
Mercedes EQS 120 kWh 1 36.56 8.94 2 35.62 8.93 0.94
MG4 64 kWh 3 94.16 9.90 4 83.35 9.72 10.81
MG ZS EV 72 kWh 3 129.02 10.48 4 125.82 10.43 3.20
MG Marvel R 70 kWh 3 151.32 10.86 4 141.05 10.68 10.27
MG Cyberster 77 kWh 2 94.72 9.91 4 78.19 9.64 16.53
Nio EL6 100 kWh 2 80.29 9.67 3 78.89 9.65 1.40
Nio EL8 100 kWh 2 61.49 9.36 3 56.31 9.27 5.18
Nio ET5 100 kWh 2 80.24 9.67 2 80.24 9.67 0.00
Nissan Ariya 63 kWh 4 117.58 10.29 5 116.62 10.28 0.96
Nissan Ariya 87 kWh 2 89.08 9.82 3 86.97 9.78 2.11
Nissan Townstar 45 kWh 6 242.72 12.38 9 208.11 11.80 34.61
Polestar 2 64 kWh 3 125.31 10.42 5 104.83 10.08 20.48
Polestar 2 refresh 82 kWh 2 59.86 9.33 3 56.22 9.27 3.64
Polestar 4 100 kWh 2 60.58 9.34 2 60.58 9.34 0.00
Porsche Taycan 93 kWh 2 54.44 9.24 3 53.48 9.22 0.96
Renault Zoe 52 kWh 4 218.85 11.98 5 214.69 11.91 4.16
Renault Megane 60 kWh 3 110.07 10.17 6 100.50 10.01 9.57
Renault Scenic 92 kWh 2 80.22 9.67 3 77.46 9.62 2.76
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Tesla M3 RWD Highland 2 74.75 9.58 4 62.04 9.37 12.71
Tesla Model 3 LR 80 kWh 2 35.56 8.93 2 35.56 8.93 0.00
Tesla Model Y RWD BYD 3 77.26 9.62 4 73.50 9.56 3.76
Tesla Model Y LR LG 2 79.93 9.67 4 65.37 9.42 14.56
Tesla Model S P85 2013 3 117.62 10.29 5 109.23 10.15 8.39
Tesla Model S LR 2023 2 37.64 8.96 2 37.64 8.96 0.00
Toyota bZ4X 3 151.40 10.86 6 101.67 10.03 49.73
Volvo C40 78 kWh 3 128.06 10.47 5 105.02 10.08 23.04
Volvo EX30 69 kWh 3 103.54 10.06 5 90.64 9.84 12.90
Volvo XC40 69 kWh 4 113.73 10.23 5 112.65 10.21 1.08
VW ID Buzz 82 kWh 3 116.06 10.27 6 106.86 10.11 9.20
VW e-Golf 36 kWh 7 275.42 12.92 8 274.90 12.92 0.52
VW ID3 Facelift 62 kWh 3 120.21 10.34 5 105.21 10.09 15.00
VW ID4 82 kWh 3 95.42 9.92 4 92.21 9.87 3.21
VW ID5 GTX 82 kWh 3 90.44 9.84 5 84.90 9.75 5.54
VW ID7 82 kWh 2 55.45 9.26 3 50.55 9.18 4.90
Xpeng P7 2 99.06 9.98 2 99.06 9.98 0.00
Xpeng G6 92 kWh 2 48.71 9.15 2 48.71 9.15 0.00
Xpeng G9 98 kWh 2 46.29 9.10 2 46.29 9.10 0.00
Table A2. Minimum and optimal charging stops and time saved in Cold Weather conditions.
Minimum Charging Stops Optimal Charging Stops
EV Make & Model No. (,)f Total .Re- Total Travel No. (,)f Total .Re- Total Travel Time .Saved
Charging charging . Charging charging . (min)
) . Time (h) ) . Time (h)
Stops  Time (min) Stops  Time (min)
Audi e-tron GT 105 kWh 3 50.62 9.18 3 50.62 9.18 0.00
Audi Q6 e-tron 100 kWh 3 70.98 9.52 4 69.91 9.50 1.07
Audi Q4 e-tron 82 kWh 4 107.22 10.12 6 100.60 10.01 6.62
BMW i3 42 kWh 7 295.64 13.26 7 295.64 13.26 0.00
BMW i4 3 79.45 9.66 4 76.00 9.60 3.45
BMW i7 105 kWh 3 78.05 9.63 3 78.05 9.63 0.00
BMW iX3 4 131.35 10.52 5 122.41 10.37 8.94
BYD Dolphin 60 kWh 4 211.65 11.86 5 201.21 11.69 10.44
BYD Seal 84 kWh 3 107.78 10.13 5 96.94 9.95 10.84
BYD Seal U 89 kWh 3 162.12 11.04 9 140.95 10.68 21.17
BYD Sealion 7 93 kWh 3 127.03 10.45 4 106.95 10.12 20.08
Citroen e-C4X 54 kWh 5 149.37 10.82 6 144.63 10.74 4.74
Citroen e-Spacetourer 75 kWh 6 278.13 12.97 7 272.19 12.87 5.94
Ford Explorer 82 kWh 3 98.43 9.97 5 90.11 9.84 8.32
Ford Mustang Mach-e GT 3 191.93 11.53 7 164.22 11.07 27.71
Hyundai Inster 49 kWh 5 211.45 11.86 6 176.00 11.27 35.45
Hyundai Ioniq 28 kWh 9 217.77 11.96 9 217.77 11.96 0.00
Hyundai Ioniq 6 77 kWh 3 61.58 9.36 4 60.94 9.35 0.64
Hyundai Kona 65 kWh 4 160.87 11.01 5 142.19 10.70 18.68
Kia EV3 81 kWh 3 119.13 10.32 4 105.70 10.10 13.43
Kia Niro EV 64 kWh 4 194.58 11.58 6 181.11 11.35 13.47
Kia EV9 100 kWh 3 93.66 9.89 4 87.50 9.79 6.16
Kia Niro EV 64 kWh 4 184.41 11.41 6 174.23 11.24 10.18
Mercedes EQA 250+ 74 kWh 4 132.43 10.54 4 132.43 10.54 0.00
Mercedes EQE 3 102.17 10.04 4 95.50 9.92 6.67
Mercedes EQS 120 kWh 2 58.89 9.31 2 58.89 9.31 0.00
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MG4 64 kWh 4 139.43 10.66 6 117.30 10.29 22.13
MG ZS EV 72 kWh 4 186.05 11.43 5 174.75 11.25 11.30
MG Marvel R 70 kWh 4 224.36 12.07 6 196.33 11.61 28.03
MG Cyberster 77 kWh 3 132.35 10.54 5 113.54 10.23 18.81
Nio EL6 100 kWh 3 109.37 10.16 3 109.37 10.16 0.00
Nio EL8 100 kWh 3 82.84 9.71 4 79.70 9.66 3.14
Nio ET5 100 kWh 3 120.01 10.33 3 120.01 10.33 0.00
Nissan Ariya 63 kWh 5 164.73 11.08 6 160.85 11.01 3.88
Nissan Ariya 87 kWh 3 127.96 10.47 4 125.35 10.42 2.61
Nissan Townstar 45 kWh 7 394.93 14.92 10 289.57 13.16 105.36
Polestar 2 64 kWh 4 199.49 11.66 8 149.61 10.83 49.88
Polestar 2 refresh 82 kWh 3 90.32 9.84 4 84.66 9.74 5.66
Polestar 4 100 kWh 3 89.18 9.82 4 88.64 9.81 0.54
Porsche Taycan 93 kWh 3 80.90 9.68 4 78.66 9.64 2.24
Renault Zoe 52 kWh 5 317.62 13.63 7 300.44 13.34 17.18
Renault Megane 60 kWh 4 163.15 11.05 8 144.04 10.73 19.11
Renault Scenic 92 kWh 3 118.62 10.31 4 114.69 10.24 3.93
Tesla M3 RWD Highland 3 115.21 10.25 5 93.85 9.90 21.36
Tesla Model 3 LR 80 kWh 3 58.41 9.31 4 56.89 9.28 1.52
Tesla Model Y RWD BYD 4 115.49 10.26 5 104.75 10.08 10.74
Tesla Model Y LR LG 3 115.09 10.25 6 96.01 9.93 19.08
Tesla Model S P85 2013 4 170.19 11.17 7 154.45 10.91 15.74
Tesla Model S LR 2023 2 75.33 9.59 4 60.07 9.33 15.26
Toyota bZ4X 4 257.24 12.62 8 141.24 10.69 116.00
Volvo C40 78 kWh 4 187.23 11.45 7 145.54 10.76 41.69
Volvo EX30 69 kWh 4 155.90 10.93 7 128.59 10.48 27.31
Volvo XC40 69 kWh 5 156.23 10.94 6 151.72 10.86 451
VW ID Buzz 82 kWh 4 155.85 10.93 8 143.10 10.72 12.75
VW e-Golf 36 kWh 9 363.69 14.39 10 356.48 14.27 7.21
VW ID3 Facelift 62 kWh 4 174.29 11.24 8 148.48 10.81 25.81
VW ID4 82 kWh 4 137.39 10.62 6 130.58 10.51 6.81
VW ID5 GTX 82 kWh 4 130.71 10.51 7 119.89 10.33 10.82
VW ID7 82 kWh 3 84.08 9.73 5 77.47 9.62 6.61
Xpeng P7 3 152.70 10.88 4 149.63 10.83 3.07
Xpeng G6 92 kWh 3 72.13 9.54 4 71.37 9.52 0.76
Xpeng G9 98 kWh 3 67.10 9.45 4 66.86 9.45 0.24
Table A3. Optimal SoC (%) cutoff point under Mild and Cold Weather conditions.
EV Make & Model Mild Weather Cold Weather
Audi e-tron GT 105 kWh 62.9 65.6
Audi Q6 e-tron 100 kWh 56.6 59.9
Audi Q4 e-tron 82 kWh 52.4 50.6
BMW i3 42 kWh 84.9 83.8
BMW i4 48.1 54.2
BMW i7 105 kWh 67.3 67.8
BMW iX3 58.8 64.7
BYD Dolphin 60 kWh 66.8 73.7
BYD Seal 84 kWh 42.3 49.2
BYD Seal U 89 kWh 38.3 36.4
BYD Sealion 7 93 kWh 64.3 66.9
Citroen e-C4X 54 kWh 66.7 64.6
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Citroen e-Spacetourer 75 kWh 79.1 74.5
Ford Explorer 82 kWh 63.5 56.4
Ford Mustang Mach-e GT 43.9 43.9
Hyundai Inster 49 kWh 65.9 74.3
Hyundai Ioniq 28 kWh 76.7 82.1
Hyundai Ioniq 6 77 kWh 71.1 57.8
Hyundai Kona 65 kWh 57.8 64.8
Kia EV3 81 kWh 59.5 64.4

Kia Niro EV 64 kWh 60.9 58.0
Kia EV9 100 kWh 61.3 64.3
Kia Niro EV 64 kWh 58.1 55.7
Mercedes EQA 250+ 74 kWh 66.5 70.8
Mercedes EQE 60.2 64.5
Mercedes EQS 120 kWh 471 72.6
MG4 64 kWh 63.3 60.4

MG ZS EV 72 kWh 63.3 69.0
MG Marvel R 70 kWh 64.3 60.5
MG Cyberster 77 kWh 50.0 56.5
Nio EL6 100 kWh 63.3 85.9
Nio EL8 100 kWh 62.2 65.6
Nio ET5 100 kWh 72.8 72.6
Nissan Ariya 63 kWh 58.7 65.9
Nissan Ariya 87 kWh 61.2 65.7
Nissan Townstar 45 kWh 55.6 65.4
Polestar 2 64 kWh 54.6 49.8
Polestar 2 refresh 82 kWh 55.1 60.9
Polestar 4 100 kWh 75.1 58.0
Porsche Taycan 93 kWh 57.7 63.4
Renault Zoe 52 kWh 62.0 62.0
Renault Megane 60 kWh 42.5 45.0
Renault Scenic 92 kWh 55.9 61.1
Tesla Model 3 RWD Highland 49.2 57.7
Tesla Model 3 LR 80 kWh 60.3 50.8
Tesla Model Y RWD BYD 64.5 72.0
Tesla Model Y LR LG 47.8 47.0
Tesla Model S P85 2013 45.2 45.6
Tesla Model S LR 2023 56.1 47.0
Toyota bZ4X 47.1 48.8
Volvo C40 78 kWh 53.6 53.1
Volvo EX30 69 kWh 52.6 53.2
Volvo XC40 69 kWh 59.8 65.9
VW ID Buzz 82 kWh 49.5 49.7
VW e-Golf 36 kWh 72.2 75.1
VW ID3 Facelift 62 kWh 52.7 47.7
VW ID4 82 kWh 54.1 51.5

VW ID5 GTX 82 kWh 45.2 45.6
VW ID7 82 kWh 54.0 499
Xpeng P7 72.6 57.9

Xpeng G6 92 kWh 77.6 60.1
Xpeng G9 98 kWh 78.9 60.0
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Table A4. Battery net capacity and Mild and Cold Weather highway consumption of all tested EVs.

Battery Net Cap. Mild Consump. Cold Consump.

EV Male & Model (kWh) (Wh/km) (Wh/km)
Audi e-tron GT 105 kWh 97 190 249
Audi Q6 e-tron 100 kWh 94.9 218 275

Audi Q4 e-tron 82 kWh 77 200 257
BMW i3 42 kWh 37.9 176 230
BMW i4 81.3 166 217

BMW i7 105 kWh 101.7 208 268
BMW iX3 74 211 269

BYD Dolphin 60 kWh 60.5 192 247
BYD Seal 84 kWh 82.5 181 236
BYD Seal U 89 kWh 87 226 285
BYD Sealion 7 93 kWh 91.3 231 290
Citroen e-C4X 54 kWh 50.8 161 212
Citroen e-Spacetourer 75 kWh 68 296 368
Ford Explorer 82 kWh 77 193 248
Ford Mustang Mach-e GT 91 236 298
Hyundai Inster 49 kWh 46 170 219
Hyundai Ioniq 28 kWh 28 156 207
Hyundai Ioniq 6 77 kWh 74 157 208
Hyundai Kona 65 kWh 65.4 184 238
Kia EV3 81 kWh 78 186 240

Kia Niro EV 64 kWh 64 188 242
Kia EV9 100 kWh 96 234 295

Kia Niro EV 64 kWh 64.8 183 236
Mercedes EQA 250+ 74 kWh 70.5 183 235
Mercedes EQE 90.6 218 279
Mercedes EQS 120 kWh 107.8 177 232
MG4 64 kWh 61.7 187 242

MG ZS EV 72 kWh 68.3 207 263
MG Marvel R 70 kWh 70 215 275
MG Cyberster 77 kWh 74.4 186 240
Nio EL6 100 kWh 90 225 286
Nio EL8 100 kWh 90 222 281
Nio ET5 100 kWh 90 194 250
Nissan Ariya 63 kWh 63 210 268
Nissan Ariya 87 kWh 87 212 272
Nissan Townstar 45 kWh 45 225 290
Polestar 2 64 kWh 61 191 249
Polestar 2 refresh 82 kWh 79 178 232

Polestar 4 100 kWh 94 207 265

Porsche Taycan 93 kWh 83.7 195 254

Renault Zoe 52 kWh 52 182 236
Renault Megane 60 kWh 60 171 222
Renault Scenic 92 kWh 87 198 256
Tesla Model 3 RWD Highland 57.5 142 189
Tesla Model 3 LR 80 kWh 75 143 190
Tesla Model Y RWD BYD 57.5 177 230

Tesla Model Y LR LG 75 181 234
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Tesla Model S P85 2013 80.8 215 274
Tesla Model S LR 2023 95 173 226
Toyota bZ4X 64 200 256
Volvo C40 78 kWh 75 231 294
Volvo EX30 69 kWh 64 194 251
Volvo XC40 69 kWh 67 227 285
VW ID Buzz 82 kWh 77 252 314
VW e-Golf 36 kWh 32 188 237
VW ID3 Facelift 62 kWh 59 179 231
VW ID4 82 kWh 77 205 261
VW ID5 GTX 82 kWh 77 205 261
VW ID7 82 kWh 77 171 223
Xpeng P7 82.7 178 233
Xpeng G6 92 kWh 87.5 197 254
VW eGolf 32 188 237
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