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NOMENCLATURE

Acronyms

BCR Battery charge regulator.

BCDR  Battery charge discharge regulator.

BDR Battery discharge regulator.

DC Direct current.

DC-DC Direct current to direct current.

DCX Direct current transformer.

DET Direct energy transfer.

ECSS European Cooperation for Space Standardiza-
tion.

EMI Electromagnetic interference.

EP Electrical propulsion.

EPC Electronic power conditioner.

GEO Geostationary orbit.

HV High voltage.

LEO Low Earth orbit.

LV Low voltage.

MEA Main error amplifier.

MPP Maximum power point.

MPPT  Maximum power point tracking.

PCU Power conditioning unit.

PPU Power processing unit.

SAS Solar array section.

S3DCX  Sequential switching shunt DCX regulator.

S3R Sequential switching shunt regulator.

SSR Switching shunt regulator.

TWTA  Travelling wave tube amplifier.

ZCS Zero current switching.

ZNZC  Zero voltage zero current.

ZNVS Zero voltage switching.

[. INTRODUCTION

Solar array regulation is a critical power conversion
function for any spacecraft. Two main methods are dom-
inant nowadays: MPPT dc—dc converters and SSRs. While
the first approach is typical in low- and medium-power
LEO and interplanetary missions using unregulated bus
architectures, the second method is widely used in medium
and high-power satellites for GEO satellites using fully
regulated bus architectures, being the S3R [1], [2], [3], [4],
the most common SSR employed. The fully regulated bus
is realized by the PCU, which integrates the SSR, the BCR,
and the BDR, as represented in Fig. 1(a) [5], [6]. In the
European Space standard [7], 100-120 V dc bus voltage is
recommended for power levels higher than 8 kW, hence,
most of the space companies have adapted their products
to this voltage for the largest platforms. However, 100 V
starts to be inadequate for the actual needs, since the most
powerful platforms already reach 20-25 kW, also motivated
by the use of high-power EP systems [8]. Large bus current
lead to high mass harness and considerable dc losses, but
also impacts on the maximum bus impedance (Zy,,s) and
bus capacitor (Cpys) [7]. Furthermore, EP systems require
high-power, high-voltage supplies, which are provided by
the PPUs directly connected to the regulated bus. Two-level
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Fig. 1.

High-power spacecraft electrical architecture. (a) Traditional
[5]. (b) Proposed approach.

power conversion results in a penalty on efficiency and
with obvious consequences on the thermal design, size, and
mass. Besides, other systems, such as EPCs for TWTAs,
also demand high-voltage supplies and could benefit of high
voltage bus.

As aresult, a higher bus voltage, around 300 V, is being
considered, and two main approaches have been pondered
to address its implementation. In [9], the solar array voltage
is increased up to 300-350 V, and a DET connection from
the solar generator to the electric thruster is suggested. The
BCDR controls the bus voltage. While it is a conceptually
simple solution, there are relevant technical challenges asso-
ciated with the high-voltage solar array, such as arcing due to
differential charging of the different materials, high-voltage
slip rings, qualification, and cost [9]. Furthermore, it is a
costly solution that requires full requalification of the solar
array if the bus voltage is changed. In [10], a two-stage
approach is proposed for an ion-thruster supply with MPPT
tracking. The main advantages of this approach are the
simplicity and heritage, since only well-known power reg-
ulators are used for its implementation. Besides, it exhibits
very good regulation for large power transients that happen
in ion-thrusters. The main disadvantage is the efficiency
penalty due to S3R diodes and the Weinberg converter
losses.

In [11], a two-bus approach is presented, implementing
a high-voltage bus (HVy,s) at 450 V, and low-voltage bus
(LVpus) at 100V, featuring an integrated power processing
dc—dc converter. The power cell can operate in different
operating modes, including MPPT and bus regulated for
both busses, HVy,,s and LVy,s. However, it requires a com-
plex power processing dc—dc converter and control, making
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the practical implementation difficult with space-qualified
electronic parts.

In this work, as presented in Fig. 1(b), a differ-
ent approach for the solar array regulator is proposed.
It uses highly efficient, isolated, unregulated, constant
gain, high-frequency dc—dc converter, also known as “DC-
Transformer” (DCX). The DCXs, switching at hundreds of
kHz or more, are controlled as traditional S3R power cells
at low frequency, i.e., kHz range, [1], [12]. This concept
is adaptable to any regulated or unregulated bus. The de-
sign of BCRs and high-power BDRs [13], [14] are topics
already discussed in the literature, therefore, these will not
be covered in this work.

Different DCX topologies have been proposed for in-
dustrial, medical, telecommunications, and many other ar-
eas. Resonant techniques [15], and particularly the LLC
converter [16], [17], have been widely accepted, but these
are mostly oriented to have regulated outputs with complex
control loops. Another type of unregulated DCX with ZVS
and ZCS are described in [18] and [19]. Both converters use
the magnetizing current of the transformer to achieve ZVS
for all switches, but the method to achieve ZCS is slightly
different. In [18], the leakage inductance of the transformer
resonates with the output capacitor to achieve ZCS without
any inductor. In [19], the converter is current-fed and the
resonant circuit is formed by the leakage inductance and
a resonant capacitor placed at the input. A fundamental
feature of these DCXs is that the conversion gain is just the
transformer turns ratio, so they are very simple and robust
to parameter drifts. A detailed analysis of those types of
DCX can be found in [20]. In the case at hand, the method
proposed in [19] is better suited than the one described in
[18], because a photovoltaic source inherently behaves as
a current source below its MPP. This is also reinforced by
the fact that the solar array harness inductance is relatively
large in high-power satellites. Besides, a large capacitor is
required as the main bus capacitor at the secondary side to
fulfill the output impedance requirements [7]. As discussed
in [20], any dual-ended topology is suitable, but current-fed
ZNZC push—pull is widely used in satellite applications,
mainly in EPC for TWTA [19].

In summary, the proposed S3DCX has the following
benefits when compared to the existing solutions.

1) It is a simple concept that can be implemented with
different DCX topologies, allowing voltage decou-
pling between solar array and distribution bus, which
overcomes the limitations of the direct energy trans-
fer regulators and provides increased flexibility in
solar array design.

2) Higher (or lower) bus voltage could be achieved with
very high efficiency (>95%) end to end.

3) It can be used as direct replacement of the S3R with
minimum changes in regulated or unregulated bus
architectures and variations.

4) It is highly modular and accepts parallel and series
connection of isolated secondary sides to achieve
higher current and voltage.
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Fig. 2. DET shunt regulator. (a) Simplified schematic. (b) Large signal
averaged model. DCX (current-fed ZVZC push—pull). (c) Power cell
schematic. (d) Averaged model.

The rest of this article is organized as follows. Section II
introduces the S3DCX power cell as well as a particular
implementation and modeling of the regulator. Section III
details the design and simulation of the S3DCX for a 300
V=2 kW prototype. Section IV details the experimental val-
idation of the proposed prototype and discusses the results.
Finally, Section V concludes this article.

[I. S3DCX: POWER CELL AND REGULATOR

The current-fed ZVZC push—pull, represented in
Fig. 2(c), is considered as DCX for this work. Briefly, the
main benefits of the selected topology are as follows.

1) Galvanic isolation provides easy adjustment of re-
quired output by transformer turns ratio and possi-
bility of secondary side output connections (series
and parallel).

2) Ittakes advantage of the natural solar array behavior
and harness inductance to have a nearly constant
current source.

3) It uses for its advantage all the parasitic elements
of the transformer in a resonant manner, resulting
in a very compact, simple, lightweight, and high
efficiency solution.

4) All power semiconductors are operated in ZVS and
ZCS.

5) ZVS and ZCS (neglecting magnetizing current) are
load independent in a wide range.
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Fig. 3. DET and DCX main waveforms sketch.

6) Simple and low loss gate drive (rad-hard driver
implementation is not linked to any complex driver
integrated circuit).

7) Good power semiconductor utilization (>75%
equivalent duty cycle).

8) Operation at fixed frequency and duty cycle (very
simple and robust drive pulse generation).

9) Reduced number of components.

10) Very low EMI.

Fig. 2(a) and (b) represents the schematic and the large
signal averaged model for the DET shunt regulator, respec-
tively, and Fig. 2(c) and (d) shows the circuit schematic
and averaged model of the proposed DCX. The control
signal, u, dictates the power transfer from the solar array
to the main bus in both cases (1), but the working principle
is slightly different. When u = I, in the DET case, the
transistor My, is OFF and the diode D connects the solar array
section to the bus, while in the DCX, the M; and M, driving
pulses, g, operating at switching frequency, f;, enable the
power transfer. When u = 0, the transistor Mg, shunts
the solar array in the DET and the DCX power cells. An
important difference is that DCX allows voltage and current
conversion ratio (gain is transformer turns ratio, n) when it
transfers power to the bus, as it can be noted in the DCX
averaged model. The main waveforms of the power cells
are represented in Fig. 3, being from top to bottom: shunt
driving signal, u; DCX driving signal, g; Mg, drain-source
voltage of DET shunt regulator, v,,; diode current of DET
shunt regulator, ip; M; and M, drain—source voltage of
DCX, v, vae; rectifier diode current of DCX, ipq, ipo,
and resonant capacitor voltage of DCX, v¢,. My and M,
can be also used to perform power control transfer, u, and
therefore one transistor is saved, however, My, simplifies
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The working principle of the DCX can be explained
with the two equivalent circuits shown in Fig. 4. During
the ON state, i.e., M1 or M is in conduction, a resonant
switch current occurs due to the resonant circuit formed
by the resonant capacitor, C,, and the transformer leakage
inductance, Ly;. During the GAP state, i.e., M; and M5 are
turned-OFF, the magnetizing current charges and discharges
all the parasitic capacitances, i.e., MOSFETS, diodes, and
transformer.

The analysis of the ON state circuit results in the resonant
current, i, whose governing differential equation is given by
(2). MOSFET current is i p; = i—i,,, being i,,, the magnetizing
current and diode currentis ip = iy/n
2 .

)]

071
leC + i =Igq. )

On the other hand, the analysis of the GAP state results
in the governing differential (3), where the resonant circuit is
formed by the magnetizing inductance, L,,, and the parasitic
capacitance, C,, given by (4). C)y is the parasitic MOSFET
capacitance, Cy is the parasitic transformer capacitance
and Cp is the diode capacitance referred to the primary
side

Luc, o i 3)
P 2
Cp =Cy+Crr+Cp - n’. 4)

The detailed design procedure to solve (2) and (3) for
ZVS and ZCS conditions can be found in the Appendix. It
is clear from the ON state equivalent circuit that <V, > =
Vius/n, implying that the solar array operating point, and
therefore, the power injected to the bus, can be controlled
by the bus voltage in closed-loop operation.

Satellite solar arrays are typically divided into several
sections, i.e., an arrangement of several solar cell strings in
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Fig. 6. S3DCX. (a) Linearized sequential hysteresis control.
(b) Small-signal linear model. (c) Voltage feedback loop.

parallel. In the proposed regulator, each section is attached
to one DCX, refer to Fig. 2(c). In a sequential control
scheme, some DCX converters are permanently ON provid-
ing power to the bus, while others DCX are OFF and only
one DCXis turning ON and OFF to eventually perform output
voltage regulation. This can be achieved by sequential hys-
teretic control [1], as illustrated in Fig. 5, being this scheme
one of the most common methods employed in solar array
regulation for medium and large satellites.

The linearized model of the S3DCX regulator is given
by (5), resulting in a voltage-controlled current-source that
supplies the main bus capacitor, represented in Fig. 6.
The voltage loop gain, T,(s) and the closed-loop output
impedance Z(s) are given by (6) and (7), respectively

VC VHm - VL1
T, (5) = kG2 (s + kirky) 1 ©
Cp (s + (1/R.Cp))
o {

ip, Cp(s+1/R.Cp)U+T, ()]

To avoid phase and gain margin degradation, [21], the
regulator turn-ON delay, 74, must be smaller than 1/w., being

FEBRUARY 2024



TABLE I
S3DCX: Main Design Parameters

Description  Value | Comment
Solar array section (SAS) — Agilent E4351B simulator

Voc 120V Open-circuit voltage
Ve 110V Maximum power voltage R
Isc 4A Short-circuit current
Imp 3.9A Maximum power current Lu, R,
Pvp  429W Maximum power
Csas  200nF Agilent E4351B
L, 33pH Added inductance Fig. 7. S3DCX: Transformer equivalent circuit model.
DCX transformer — push-pull (N1=N,=Nip; N2=N2,=Nayp)
Core RMI14 Material 3C95 TABLEII o
n=No/N; _15/5 Veas=100V: V=300V S3DCX: Transformer Characterization
DCX & shunt — circuit L Lia L Crr Ri R, fres
C. 0.5pF CB182G0105J [pH] | [nH] | [nH] | [pF] | [mQ] | [mQ] | [kHz]
Mi; Ma;  IXTQ42N25P ) 172.8 650 680 235 9.7 41.6 789
" M ¢ SIMOSFET 230V, 424) 770577680 | 610 | 211 | 9.1 | 409 | 830
Di; D,  STPSCI0H12 | SiC diode (1.2kV, 10A) 169.7 | 765 690 174 9.3 41.6 925
ton  2.8us fi=135kHz; D=0.378 168.9 | 590 625 162 11.8 | 41.2 962
teap  0.9us foupu=270kHz 165.1 | 590 630 201 13.1 41.9 874
Ra  50mQ Max shunt current= 14A
Control loop
k 408107 ADUM3190, V,=1.225V B e b i
k, 298.8 Split into three stages 0.9
ki 97.96-10° S0,
ta < 25}18 g
G 111 $os
RL >45Q Pomu=2kW; Vo=300V =
Cgus 400pF B32778G1206K000 §°'3

w, the crossover frequency of the loop gain (6), |T,(jw.)| =
1. The closed-loop output impedance is constrained by the
output impedance mask, defined in the standard [7], clause
5.7.2.0.

[ll. DESIGN, SIMULATION, AND PROTOTYPE IMPLE-
MENTATION

A 2 kW, five power-cell S3DCX regulator has been de-
signed, simulated, and implemented. Detailed step-by-step
calculations are included in the Appendix.

A. Design

The main characteristics of the S3DCX regulator and
the solar array simulator are summarized in Table I.

Based on the simplified transformer circuit model
shown in Fig. 7, measured parameters for the five trans-
formers are included in Table II. These parameters are,
magnetizing inductance L,,, leakage inductance L, par-
asitic capacitance of the transformer Crr, resistance of
the primary R; and secondary winding R, and resonant

frequency fres.
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Fig. 8. S3DCX output impedance and ECSS impedance mask [7].

B. Simulation: Switching and Large-Signal Averaged
Models

Computer simulation models have been implemented
for both, switching and large-signal averaged versions.
The output impedance of the S3DCX, which meets the
impedance mask required by the European space standard
[71, clause 5.7.2.0., is represented in Fig. 8.

A half bus power load step simulation is shown in
Fig. 9. Nominal bus voltage ripple and bus voltage transient
meet the European space standard [7], clauses 5.7.2.m and
5.7.2.i.1, respectively.

The S3DCX prototype is shown in Fig. 10. The five
DCXs are identical, and the output connections are hard-
wired to allow independent or series connections to the
output bus capacitor, which is external and not shown in
the figure. The MEA is implemented using an isolated error
amplifier, and #,,, and f4,;, signals are obtained using only
discrete electronic parts.
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Fig. 9. S3DCX transient response simulation results. Top figure:
Output voltage (switching and large-signal averaged models).
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Fig. 10. S3DCX prototype: 2 kW, five power cells.
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Fig. 11. Left figure: S3DCX five-independent output configuration.

Right figure: Two solar array sections with two DCX in series
and one independent.

IV.  EXPERIMENTAL VALIDATION

Several tests have been carried out to validate the pro-
posed solar regulation concept using independent and series
configurations at the output of the regulator, as represented
in Fig. 11.

A. DCX: Shunt and ZVZC Operation

Fig. 12 shows the detail of the ON (u = 1) and OFF (u
= 0) of the DCX. It is clearly observed from the MOSFET
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200
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Fig. 12. Left: DCX ON detail. Right: DCX OFF detail. Top: Vps M1,
Middle: I Dy, Bottom: Blue trace: Vgg M1, and Red trace:
Vas shunt transistor.

TABLE III
DCX: Efficiency Measurements
Isas DCX1 | DCX2 | DCX3 | DCX4 | DCXS5
[A] [%] [%] [%] [%] [%]
1 92.5 92.5 92.0 91.9 92.0
2 95.3 95.2 94.8 94.8 94.8
3 95.9 95.3 95.5 95.4 95.5
4 95.8 95.8 95.4 95.1 95.3

—— DCX1

2200 I I I
3
>

—— DCX2 —— DCX3 —— Vays (AC Coupled)

0
3
g 0
> -3 Bus Voltage transient - ECSS-E-ST-20C-Rev2_5.7.2.i (1% Vaus)
~10 -5 0 5 10 15 20 25 30
Time [ms]
Fig. 13.  S3DCX voltage regulation. Top: DCX 1: Vpg M7 ; Middle-top:

DCX 2: Vpg My; Middle-bottom: DCX 3: Vpg My;
Bottom: bus voltage (ac coupled).

voltage and diode current that ZVS and ZCS are achieved
even during the transients. Besides, ON-delay, #4, is limited
to 18 us. It can be also noticed that the shunt transistor
goes into current limitation mode during the OFF action to
discharge the parasitic capacitance of the solar array and the
resonant capacitor of the DCX.

B. DCX: Efficiency

The efficiency of each DCX has been measured at dif-
ferent solar array currents, which could represent different
irradiance levels or different solar array orientation, refer
to Table III. Efficiency measurements also include power
consumption of ancillary electronics and is close to 95.5%
in nominal operation.
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~—— DCX3 —— DCX4 —— DCX5 —— Vpys (AC Coupled)

-10 -5 0 5 10 15 20 25 30
Time [ms]

Fig. 14. S3DCX voltage regulation—output series connection. Top:
DCX 3: Vs Middle Top: DCX 4: V,; Middle Bottom: DCX 5: Vs
Bottom: bus voltage (ac coupled).

C. S3DCX: Voltage Regulation

Fig. 13 illustrates the regulator’s response under a 1
kW load power step, from 100 W to 1.1 kW (50% of
the bus power). The configuration of the S3DCX is the
one indicated in Fig. 11(left). At the beginning, DCX 1 is
regulating the output voltage and the rest of DCX are fully
OFF. Once the load step happens, DCX 1 and DCX 2 go to
fully oN and DCX 3 regulates the output voltage. As it can
be observed in the ac bus voltage waveform (bottom), the
steady-state bus voltage ripple does not exceed the 0.5% of
the nominal bus voltage (1.5 V) and the peak values during
load transients are within 1% of the bus voltage (3 V). Bus
voltage steady state is reached in less than 5 ms.

D. S3DCX: Output Series Connection—Voltage Regula-
tion

Fig. 14 illustrates the operation of the regulator with
the configuration represented in Fig. 11(right) under a step
load of approximately 500 W. At the beginning, DCX 3
and DCX 4 are regulating the bus voltage and the load step
forces the operation of DCX 5. It is important to note that
DCX 3 and DCX 4 are accommodating 50 V solar sections
and, DCX 5 at 100 V solar section, as it can be observed
from the voltage measured in the resonant capacitor, C,, of
each DCX.

E. S3DCX: Output Series Connection—Unbalanced
Solar Array Currents

The last results show the proper operation of the regula-
tor with output series connection and unbalanced solar array
currents. The regulator has been configured as represented
in Fig. 11(right), but SAS 2 reduces its current to Isc =
32 A and Iyp = 3 A. As depicted in Fig. 15, as the
output current is limited, the operating point of the solar
sections adjust to a value where both currents are equal.
This effect is clearly shown in Fig. 16, where SAS 1 and
SAS 2 exhibit different voltages, either during regulation or
fully ON operation modes. It is also worth to note, that SAS
3 operates at the nominal value, since SAS 3 and SAS 4 are
not unbalanced. Thus, it is important to remark that DCX

ORTS ET AL.: SEQUENTIAL SWITCHING SHUNT REGULATION USING DC TRANSFORMERS
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Fig. 15. Sketch of balanced and unbalanced solar array sections in

output series connection.
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Fig. 16. S3DCX voltage regulation — output series connection and
unbalanced solar array currents. Top: DCX 1: V,; Middle Top: DCX 2:
V ey Middle Bottom: DCX 3: V,; Bottom: DCX 1: 1 Dy.

output series connection is possible, with no loss of ZVZC
conditions, even with unequal I-V curves of the solar array.

V. CONCLUSION

This article introduces a different concept for solar array
regulation that solves some of the problems associated to
direct energy transfer regulators commonly used in bus
regulated satellites. The use of the proposed DCX topology
provides two degrees of freedom for regulating bus voltage:
transformer turns ratio, and output series connection of
individual solar array sections, offering true adaptability to
accommodate different types of solar arrays. Although this
concept has been validated for a high voltage bus at 300
V, assuming step-up voltage conversion, other approaches
are possible. Design example, computer simulation, and
experimental prototype has been also included in this article
to show the operating principles of the proposed regulator.
Next steps include higher bus voltage (600 and 900 V),
miniaturization of DCX increasing switching frequency
(GaN power semiconductors and planar magnetics) and
digital implementation (control and pulsewidth modulated
gate signals).

APPENDIX
A. Design Guidelines: ZVZC Converter

1) Estimate the parasitic capacitance, C, (2), from
power semiconductors and transformer

Cy ~ 500 pF
Crr ~ 300 pF
Cp ~ 100 pF
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C,=Cy+Crr+Cp-n*~170F. (A-1)

2) Definition of the magnetizing current, i,,, as a per-
centage of the input current. An initial tentative of
20% of input current is considered. Low values iy,
means larger transformers and longer #4,,,,, but lower
transformer losses and better ZCS transitions

im = 0.2Ig5 = 0.8 A. (A-2)

3) Estimation of required gap time to charge the para-
sitic capacitance, f4ap,, and estimation of ON time, #,,,
as a percentage of #4,;, to maximize power transfer.
Estimation of switching frequency, f;

4ViusC
Lgapyin > % =0.85 us (A-3)
Toap.
fon ™ % =2.85us (A-4)
1
fi = —————— = 135kHz. (A-5)

2 (fon + gap)

4) Estimation of magnetizing inductance, L,,, and trans-
former design

Lm _ Vbuston

— 178 uH. (A-6)

2i,n
5) Transformer design. From the above inputs, a
RM14/1 core and 3C95 material with five turns ON
primary, n; =5, and 15 turns ON secondary, np = 15
is considered. Measured values of five transformers
will result in the following values (average of five
measured transformers):

Ly ~ 170 uH
Crr =~ 200 pF

Ly ~ 650 nH. (A-7)

6) Check if the transformer values are consistent with
the original design and go back to step 1, if necessary.

7) Gaptime, tyap,, calculation from measured values and
using the following expressions:

1
lgap = ——
gap
8L, 0)C
(arcsin |: m COS( ) pwgap +Sin (9)} _9) =09 IS
Ton
1
Wogpy = ———
gap TiC,
-2
tan (0) = . (A-8)
Wgaplon

8) Calculation of resonant frequency, w,., to satisfy zero
current switching condition. Resonant frequency is
found by numerical methods

Tgap

cos (w,ton) — w,T sin (w,ty,) = 1

w,

fr = — ~ 300 kHz. (A-9)
2
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9) Calculation of resonant capacitor, C,.

1
C, = ~ 500 nF.
a)Ele

(A-10)

Design Guidelines: S3ZVZC MEA

10) Definition of maximum bus voltage ripple as per
ECSS-E-ST-20C Rev.2, clause 5.7.2.m

AVbus‘pp < O.S%Vbus

A Vougpp = 1 V. (A-11)

11) Definition of bus capacitance as per ECSS-E-ST-
20C Rev.2, clauses 5.7.2.m and 5.7.2.0

Chus = 400 11F. (A-12)

12) Definition of MEA voltage reference, V..., and volt-
age feedback gain, K. V.. is given by the internal
voltage reference of the isolated error amplifier

Vief = 1.225V (A-13)
K = Vier /Vius = 4.083 - 1072, (A-14)

13) Definition of the hysteresis of the comparator and
the transconductance of the regulator, G. Hysteresis
voltage is selected as a function of the voltage
supply rail and number of power cells. If the upper
limit of the k cell is equal to the lower limit of the
k 4+ 1 cell, and the transformer turns ratio of all
power cells are the same, n, the transconductance
of regulator is simply the transconductance of one

power cell
Vi = V5ii=Vyr =12V (A-15)
G=1Iy/ (n-Vy)=1.11A/V. (A-16)

14) Calculation of proportional gain and integral term
of the MEA, k, and k;, respectively, k; is adjusted
to be one decade below the crossover frequency of
the voltage loop

v,
ky = —5 = 293.88 (A-17)
KAVbUSIW
KKG
=k, =2 = 97.96-10%",
10~ 10Chus
(A-18)
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