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a b s t r a c t 

Considering any graph technical inefficiency measure, we show that the so-called standard or traditional 

approach for decomposing profit inefficiency relying on Fenchel-Mahler inequalities obtained from duality 

theory, establishes that profit inefficiency is greater than or equal to the product of technical inefficiency 

times a positive factor expressed in monetary units. This product is identified as the technical profit in- 

efficiency and its difference with respect to the profit inefficiency as the allocative profit inefficiency. 

Dividing profit inefficiency by the mentioned positive factor one obtains the normalized (units’ invariant) 

profit inefficiency of the firm, which is a pure number, and can be decomposed into the sum of tech- 

nical inefficiency and the normalized allocative profit inefficiency, usually called allocative inefficiency. 

We propose a new decomposition based on equalities that starts from the input and output slacks con- 

necting the firm with the frontier benchmark, obtained through the pre-specified technical inefficiency 

measure. Profit inefficiency is then decomposed into the value of the technological gap and the profit in- 

efficiency of the frontier benchmark. Expressing the value of the technological gap as the product of the 

technical inefficiency times a certain normalizing factor, we deduce a new normalized profit inefficiency 

decomposition. Our decomposition ensures that the allocative efficiency of a firm corresponds to that of 

its benchmark on the frontier and therefore avoids the possibility of overestimating it. We compare the 

traditional and the general direct approach and show that the new decomposition is conceptually sound 

and more accurate, with the only exception of the family of directional distance functions, for which both 

decompositions are equivalent. 

© 2023 The Authors. Published by Elsevier Ltd. 
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. Introduction 

The decomposition of profit inefficiency was introduced by 

hambers et al.’s [ 1 ] based on the duality between the graph di-

ectional distance function (DDF) and the profit function. This du- 

lity enables the definition of a Fenchel-Mahler inequality where 

ormalized profit inefficiency is greater than or equal to the graph 

DF, which is interpreted as a measure of technical inefficiency. 

ubsequently, normalized profit inefficiency can be decomposed 

nto two mutually exclusive terms corresponding to the techni- 

al component and an allocative residual. Since then, several au- 
� Area: Data-Driven Analytics. This manuscript was processed by Associate Editor 

irofumi Fukuyama. 
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hors have adapted this methodology, which we term traditional 

pproach, to decompose profit inefficiency using alternative tech- 

ical inefficiency measures. 

Pastor et al. [ 2 ] offer a systematic review of the most rele-

ant proposals besides that based on the graph DDF. Chronolog- 

cally, normalized profit inefficiency can be decomposed resort- 

ng to: i) the Hölder distance functions under alternative norms, 

riec and Lesourd [ 3 ]; ii) the weighted additive distance function 

WADF), Aparicio, Pastor and Vidal [ 4 ]; iii) the Loss Distance Func- 

ion, Aparicio, Borras, Pastor and Zofío [ 5 ]; iv) the Enhanced Rus- 

ell Graph measure (ERG) (or Slack-Based Measure, SBM), Apari- 

io et al. [ 6 ]; v) the original graph Russell measure, Halická and 

rnovská [ 7 ]; vi) the modified directional distance function; and, 

nally, vii) the reverse directional distance function −duality results 

or these last two are presented in Pastor et al. [ 2 ]. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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2 The GDF minimizes the ratio of the geometric mean of proportional contraction 

rates of inputs to the geometric mean of proportional expansion rates of outputs. 
3 The enhanced Russell graph measure introduced by Pastor et al. [ 22 ] was for- 

mulated in terms of individual input and output proportional reductions, consistent 

with the definition of the Russell graph measure [ 35 ]. These authors showed that 

it could reformulated in terms of input and output slacks obtaining a specification 

that coincided with that proposed by Tone [ 36 ], who called it Slack Based Measure 

(SBM). Therefore, it can be referred indistinctly as ERG or SBM. A search in the ISI 
Relying on their associated Fenchel-Mahler inequalities, each of 

hese proposals derive a particular decomposition of profit ineffi- 

iency based on its corresponding technical efficiency measure and 

ssociated normalization factor. Profit inefficiency is normalized by 

hese factors, giving rise to a normalized (units’ invariant) decom- 

osition expressed in pure numbers, i.e., without units of mea- 

urement. However, as we show later, for some of these decom- 

ositions, the normalized allocative component of the traditional 

pproach can be unrelated to the profit inefficiency of its frontier 

enchmark, which may result in the underestimation (overestima- 

ion) of technical inefficiency (allocative inefficiency). 

To solve this question, we introduce a new method, the gen- 

ral direct approach (GDA), that directly states an equality between 

verall economic efficiency and the two typical drivers (viz. tech- 

ical and allocative efficiency). For any firm, and given a preferred 

echnical inefficiency measure, the method requires just two pieces 

f information: the firm’s technical inefficiency, and its associated 

rontier projection. Our approach, as the traditional one, results in 

n additive decomposition of profit inefficiency into two compo- 

ents. The first component, which we call technological profit gap 

r technical profit inefficiency, is the interior product of two vec- 

ors, the optimal slack vector (separating the firm under evaluation 

rom its frontier benchmark) and the market price vector. The sec- 

nd component corresponds to the profit inefficiency of the bench- 

ark at the frontier, which we call allocative profit inefficiency. 

his GDA decomposition of profit inefficiency is expressed in mon- 

tary units. However, following the literature, we show how to de- 

ne a normalized version that allows to relate profit inefficiency 

ith the initial technical inefficiency measure of choice based on 

uantities, and that is units’ invariant, thereby removing the mone- 

ary units of measurement, so the decomposition satisfies the com- 

ensurability property. For this purpose, we show that the profit 

echnological gap can be rewritten as the product of a certain nor- 

alizing factor, times the inefficiency measure. Then, by dividing 

he three terms of the equality by the mentioned factor, we obtain 

 general normalized profit inefficiency decomposition. 

The general direct approach offers a unifying framework for de- 

omposing profit inefficiency that is valid for any technical ineffi- 

iency measure. It follows similar steps to the traditional approach, 

ut it is easier to develop and implement. After selecting a spe- 

ific graph technical inefficiency measure , e.g., the already men- 

ioned DDF, Hölder, Loss distance function, WADF, ERG, graph Rus- 

ell measure, etc., we obtain the necessary information for its de- 

omposition by solving, for each evaluated firm, the corresponding 

athematical program. Contrarily, the traditional approach associ- 

ted with the selected measure proves more demanding, requiring 

ot only to solve the last mentioned program in order to know 

he values of the inefficiency measure and its projection, but also 

he explicit determination of the so-called Fenchel-Mahler inequal- 

ty relating economic inefficiency with the selected technical inef- 

ciency measure, from which a normalization factor can be recov- 

red, and that can be more or less costly to obtain. 1 The GDA relies

n duality implicitly because the normalization factor depends on 

he value of the technical inefficiency measure. Both proposals end 

p decomposing profit inefficiency, after normalizing it, into the 

um of a technical and an allocative component, but the direct ap- 

roach is general, easier to implement, and more reliable. It is gen- 

ral because it can be applied to any efficiency measure; direct and 

asier to implement , because it does not require formulating the 

ormalizing factors associated to Fenchel-Mahler inequalities (al- 

hough the underlying duality holds); and more reliable because, as 

entioned above, working with equalities instead of inequalities, 
1 For what is probably the most complicated case, see the results by Halická and 

rnovská [7] for the non-linear graph Russell measure proposed by Färe and Lovell 

 34 ]. 
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2 
voids the possibility of overestimating allocative inefficiency (the 

o-called essential property), something that happens with many 

raditional approaches as recently proven by Aparicio et al. [ 8 ]. 

Our general direct approach has some precursors in the litera- 

ure that also use the profit levels of the projections to decompose 

rofit inefficiency. We can highlight Cooper et al. [ 9 ] who, resort- 

ng to the (unweighted) additive model, established a decomposi- 

ion of profit inefficiency into the economic value of technical inef- 

ciency and allocative inefficiency. Following this thread, Ruiz and 

irvent [ 10 ] determine lower and upper bounds for the technical 

nd allocative components of the profit efficiency decomposition 

sing market prices as weights of the additive model. Portela and 

hanassoulis [ 11 ] proposed a decomposition of overall economic 

fficiency based on the mathematical expression of the objective 

unction of the multiplicative Geometric Distance Function (GDF) 

odel. 2 More recently, Färe et al. [ 12 ] introduced a decomposition 

f profit inefficiency based on the slacks-based directional distance 

unction (SBD). Finally, Pastor et al. [ 13 ] propose a ‘reversed’ de- 

omposition of profit change that is driven by the minimization of 

llocative inefficiency when searching for the technically efficient 

rojection on the frontier and using the market prices of outputs 

nd inputs as weights of the output and inputs slacks in the ad- 

itive model. However, all these previous approaches are not suffi- 

iently general to encompass any technical efficiency measure. 

Other relevant contributions related to Data Envelopment Anal- 

sis and economic efficiency are the following: Juo et al. [ 14 ] pro-

osed a non-oriented slacks-based measure (SBM) model to de- 

ompose the change in the operating profit into various meaning- 

ul components (quantity and price effects); Fu et al. [ 15 ] assumed 

hat Taiwanese and Chinese banks operate under a common global 

rontier and measured profit inefficiency; Jradi et al. [ 16 ] measured 

nd decomposed revenue inefficiency over time through the Lu- 

nberger indicator; Yu [ 17 ] proposed a decomposition of profit in- 

fficiency for any directional distance function under non-perfect 

ompetition into three components: price, technical and allocative 

nefficiency; and Aparicio and Zofio [ 18 ] combined cross-efficiency 

nd profit inefficiency and decomposed the corresponding score 

nto technical and allocative inefficiency. 

The paper develops as follows. In Section 2 we propose the new 

eneral Direct Approach for decomposing profit inefficiency. Here, 

e compare the traditional approach based on the Fenchel-Mahler 

nequality with the GDA and show that the traditional technical 

rofit inefficiency can underestimate its GDA counterpart, prov- 

ng this result for the ERG graph measure. 3 We further prove for 

he ERG under which conditions, certainly demanding, both de- 

ompositions are equal. We also show that for the family of di- 

ectional distance functions the traditional and GDA decomposition 

re equal. We finalize this section presenting the normalized ver- 

ion of both decompositions and defining the necessary GDA nor- 

alization factors. Section 3 illustrates the new model with an em- 

irical application to Taiwanese banks, discussing the differences 

etween the traditional and GDA decompositions. Section 4 con- 

ludes. 
oK at the time of writing shows that both articles received about 2,650 citations, 

ollowed by the additive model of Charnes et al. [ 23 ] with 950 citations −although 

his number does not include cites to all its weighted variants (MIP, RAM, BAM, 

tc.). Both measures are followed by the directional distance function proposed by 

hambers et al. [ 37 ], receiving around 750 citations. 
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. The general direct approach (GDA) for decomposing profit 

nefficiency 

Let x ∈ R 

M + denote the vector of inputs and y ∈ R 

N + the vector of

utputs; the technology is given by 

 = 

{
( x, y ) : x ∈ R 

M 

+ , y ∈ R 

N 
+ , x can produce y 

}
(1) 

We assume that T is a subset of R 

M+ N 
+ that satisfies 

he usual axioms (see, for example , [ 19 ]). We also identify 

wo reference sets of the technology, namely the weakly 

nd strongly efficient production possibility sets: ∂ W (T ) = 

 ( x, y ) ∈ T : ( x ′ , −y ′ ) < ( x, −y ) ⇒ ( x ′ , y ′ ) / ∈ T } and ∂ S (T ) = 

 ( x, y ) ∈ T : ( x ′ , −y ′ ) ≤ ( x, −y ) , ( x ′ , y ′ ) � = ( x, y ) ⇒ ( x ′ , y ′ ) / ∈ T } . Intu- 

tively the strongly efficient subset includes all feasible production 

lans that are not dominated and, therefore, are technically ef- 

ciency in the sense of Koopmans [[ 20 ], p. 60], who provides a

ractical definition of efficiency based on the notion of Pareto 

ptimality. Contrarily, the weakly efficient subset of the technol- 

gy comprises production plans that may be dominated in some 

nput and output dimension. Therefore ∂ S (T ) ⊂ ∂ W (T ) . Regarding 

eturns to scale, since we are interested in profit inefficiency, we 

ssume that the technology is characterized by variable returns 

o scale, VRS, guaranteeing that at least one profit maximizing 

nput-output bundle exists and belongs to ∂ S (T ) . 

Let us also assume that common positive market prices for each 

nput and each output are known, ( w, p ) ∈ R 

M+ N 
++ . Then the profit

unction is defined as: 

( w, p ) = max 
x,y 

{ p · y − w · x : (x, y ) ∈ T } (2) 

Profit inefficiency of firm ( x j , y j ) , j = 1,…, J , denoted by

I( x j , y j , w, p ) , measures the difference between maximum profit, 

( w, p ) , and observed profit: � j = p · y j − w · x j . That is: 

I 
(
x j , y j , w, p 

)
= �( w, p ) −

(
p · y j − w · x j 

)
, j = 1 , ..., J (3) 

For any firm j , �I( x j , y j , w, p ) ≥ 0 $ ;, where $ denotes the mon-

tary unit (currency) in which profit is denominated −if ( x j , y j ) is 

 profit maximizing firm, then �I(x j , y j , w, p) = 0 $ . 

Let us now assume that we are considering a graph inefficiency 

easure G that allows calculating the technical inefficiency of firm 

 , T I G ( x j , y j ) ; i.e., DDF, Hölder, ERG (or SBM), WADF, etc. For each

rm ( x j , y j ) these measures yield the value of technical ineffi- 

iency, which is a dimensionless number, and identifies a projec- 

ion, ( ̂  x G 
j 
, ̂  y G 

j 
) that belongs to either ∂ W (T ) or ∂ S (T ) of the produc-

ion possibility set. 

The profit inefficiency of ( ̂  x G 
j 
, ̂  y G 

j 
) is given by 

I 
(

ˆ x G j , ̂  y G j , w, p 
)

= �( w, p ) −
(

p · ˆ y G j − w · ˆ x G j 

)
= �I 

(
x j , y j , w, p 

)
−
(

p · ˆ s + G 
j 

+ w · ˆ s −G 
j 

)
. (4) 

here ( ̂ s −G 
j 

, ̂  s + G 
j 

) is the vector of input and outputs slacks, corre- 

ponding to the L 1 -path connecting the firm under evaluation and 

ts projection: ˆ x G 
j 

= x j − ˆ s −G 
j 

, ̂  y G 
j 

= y j + ̂  s + G 
j 

, j = 1 , ..., J. 4 Finally, sub-

tituting (4) into (3) and simplifying delivers 5 

I 
(
x j , y j , w, p 

)
= 

(
w · ˆ s −G 

j 
+ p · ˆ s + G 

j 

)
+ �I 

(
ˆ x G j , ̂  y G j , w, p 

)
(5) 

This expression represents the general direct approach, GDA, 

howing that profit inefficiency decomposes into the sum of two 

erms expressed in the same monetary values: the price value of 
4 This L 1 -path can always be calculated for any type of measure, multiplicative or 

dditive. 
5 The rearrangement of the two terms of the GDA profit inefficiency decompo- 

ition in (5) facilitates its future comparison with the equality associated with the 

raditional profit inefficiency decomposition. 

i

2

s

3 
he slacks ( w · ˆ s −G 
j 

+ p · ˆ s + G 
j 

) and the profit inefficiency of the pro- 

ection, �I( ̂  x G 
j 
, ̂  y G 

j 
, w, p ) . The above decomposition of profit inef- 

ciency can be interpreted in terms of the usual technical and 

llocative components. The profit value of the slacks provides a 

atural measure of technical inefficiency, i.e., ( w · ˆ s −G 
j 

+ p · ˆ s + G 
j 

) ≡
 �I GDA 

G 
( x j , y j , w, p ) , while the profit inefficiency of the projection 

orresponds to the profit loss due to allocative inefficiency, i.e., 

I( ̂  x G 
j 
, ̂  y G 

j 
, w, p ) ≡ A �I GDA 

G 
( x j , y j , w, p ) . 

Consequently, expression (5) can be equivalently rewritten as 

I 
(
x j , y j , w, p 

)
= T �I GDA 

G 

(
x j , y j , w, p 

)
+ A �I GDA 

G 

(
x j , y j , w, p 

)
(6) 

.1. Comparing the general direct and traditional decompositions of 

rofit inefficiency 

It is possible to derive an equality like (6) for the traditional 

rofit inefficiency decompositions based on any of the technical 

nefficiency measures, G , surveyed in the introduction. The tra- 

itional approach relies on duality theory to derive a Fenchel- 

ahler inequality according to which normalized profit inefficiency 

s greater or equal than the specific technical inefficiency measure 

. In the traditional decompositions the second allocative profit 

erm is retrieved as a residual and, generally speaking, it is un- 

elated to its projection on the frontier with only one remarkable 

xception, the DDF, that we discuss later on. 

Given a graph technical inefficiency measure T I G ( x j , y j ) , the tra- 

itional approach generates the following Fenchel-Mahler inequal- 

ty for firm ( x j , y j ) : 

I 
(
x j , y j , w, p 

)
≥ T I G 

(
x j , y j 

)
NF T RA 

G 

(
x j , y j , p, w 

)
(7) 

here the normalizing factor appears multiplying technical ineffi- 

iency in the right-hand side instead of dividing profit inefficiency 

n the left-hand side, as usually presented. In expression (7) 

rofit inefficiency is once again expressed in monetary units, 

nd the right-hand side term is the product of the technical 

nefficiency T I G ( x j , y j ) , which is a nonnegative number, and the 

orresponding traditional normalization factor NF T RA 
G 

( x 
j 
, y 

j 
, w, p ) , 

hich is positive and expressed in the same monetary units 

s profit inefficiency. Their product is defined as the tradi- 

ional technical profit inefficiency T �I T RA 
G ( x j , y j , w, p ) , whic h 

s the counterpart of the profit technical inefficiency term of 

he GDA decomposition (6). Expression (7) can be transformed 

nto an equality that defines the traditional profit inefficiency 

ecomposition by retrieving as residual its second component, 

orresponding to the traditional allocative profit inefficiency; i.e., 

 �I T RA 
G ( x j , y j , w, p ) = �I( x j , y j , w, p ) −T I G ( x j , y j ) NF T RA 

G ( x 
j 
, y 

j 
, p, w ) . 

ence, the traditional decomposition of profit inefficiency corre- 

ponds to: 

I 
(
x j , y j , w, p 

)
= T �I T RA 

G 

(
x j , y j , w, p 

)
+ A �I T RA 

G 

(
x j , y j , w, p 

)
(8) 

Formally, the structures of the general and traditional ap- 

roaches, (6) and (8), are equal, although the two terms of both 

ight-hand sides are frequently different for the subset of ineffi- 

ient firms. This mismatch emerges because expression (7), which 

s defined as an inequality, makes the traditional normalization 

actor liable to undervaluation , in which case the same happens 

o T �I T RA 
G 

( x j , y j , w, p ) . This does not happen in the GDA approach

ased on an equality, where its technical component is as large as 

ossible, since it is based on the slacks that connect each firm with 

ts frontier projection. 

.2. Normalized decompositions of profit inefficiency 

Based on the previous relationships, it is possible to con- 

ider the traditional decomposition of normalized profit ineffi- 
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iency. Dividing profit inefficiency by the above normalization fac- 

or NF T RA 
G ( x 

j 
, y 

j 
, w, p ) one can define a Fenchel-Mahler inequality 

y which normalized profit inefficiency is greater than or equal to 

echnical inefficiency. The advantage of the normalized decompo- 

ition over its unnormalized (monetary) counterpart is that it is 

nits’ invariant, satisfying the so-called commensurability property. 

eformulating (7) and adding a second term to the technical ineffi- 

iency on the right-hand side by closing the inequality −namely the 

esidual normalized allocative inefficiency term AI T RA 
G 

( x j , y j , ˜ w , ˜ p ) , 

e obtain the traditional decomposition of normalized profit inef- 

ciency: 

�I T RA 
G 

(
x j , y j , ˜ w , ˜ p 

)
= T I G 

(
x j , y j 

)
+ 

A �I T RA 
G 

(
x j , y j , w, p 

)
NF T RA 

G 

(
x j , y j , w, p 

)
= T I G 

(
x j , y j 

)
+ AI T RA 

G 

(
x j , y j , ˜ w , ˜ p 

)
. (9) 

In the same way, we propose a normalized version of the GDA 

ecomposition, which requires the definition of its associated nor- 

alizing factor: 

F GDA 
G 

(
X j , y j , w, p 

) { 

(
w · ˆ s −G 

j 
+ p· ˆ s + G 

j 

T I G 
(
x 

j 
,y 

j 

) )
, when T I G 

(
x 

j 
, y 

j 

)
> 0 

k j > 0 $ ; , when T I G 
(
x 

j 
, y 

j 

)
= 0 

} 

(10) 

This expression assigns a positive normalization factor to the 

echnically efficient firms, which is expressed in the same mone- 

ary units as profit inefficiency. 

Dividing expression (5) by NF GDA 
G 

( x j , y j , w, p ) , we define the 

ormalized GDA profit inefficiency decomposition as follows: 

�I GDA 
G 

(
x j , y j , ˜ w , ˜ p 

)
= 

( 

�I 
(
x j , y j , w, p 

)
NF GDA 

G 

(
x j , y j , w, p 

)
) 

= T I G 
(
x j , y j 

)

+ 

�I 
(

ˆ x G 
j 
, ̂  y G 

j 
, w, p 

)
NF GDA 

G 

(
x j , y j , w, p 

) , (11) 

here the last term is identified as allocative inefficiency 

I GDA 
G 

( x 
j 
, y 

j 
, ˜ w , ˜ p ) . 

Previous papers in the literature have already dealt with tradi- 

ional profit decompositions by using various normalization factors 

see, for example , [ 1,4,12,21 ]). In our case, the normalization fac- 

or is general and can encompass any graph technical inefficiency 

easure G . 

.3. Implementing the general direct approach 

.3.1. The case of the enhanced Russell graph measure, ERG 

To implement the general direct approach, one needs to choose 

rst a technical inefficiency measure. We decide on the additive 

RG measure, which is defined as: 

 E ERG 

(
x j , y j 

)
= min 

s −,s + 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 − 1 
M 

M ∑ 

m =1 

s −m 
x jm 

1 + 

1 
N 

N ∑ 

n =1 

s + n 

y 
jn 

∣∣(x j − s −
j 
, y j + s + n 

)
∈ T 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(12) 

An appealing feature of the ERG is that it projects firms to the 

trongly efficient subset of the of technology ∂ S (T ) and therefore 

heir benchmarks comply with the notion of Pareto −Koopmans 

fficiency. This is not the case for measures projecting firms to 

 

W (T ) , where individual input reductions and output expansions 

ay still be feasible −as the DDF discussed below. 

The traditional profit inefficiency decomposition for the ERG 

easure was recently proposed by Aparicio et al. [ 6 ], who formu- 

ated the corresponding Fenchel-Mahler inequality, showing that 
4 
ts specific normalizing factor is: 

NF T RA 
ERG 

(
x j , y j , p, w 

)
= 

( 

1 + 

1 

N 

N ∑ 

n =1 

ˆ s + ERG 
jn 

y jn 

) 

·

min 

{
Mw 1 x j1 , ..., Mw M 

x jM 

, Np 1 y j1 , ..., Np N y jN 
}
. (13) 

Based on the formulation of the ERG technical efficiency (12), 

 E ERG ( x j , y j ) ∈ [0,1[, see Pastor et al. [ 22 ], so its associated techni-

al inefficiency, with range]0,1], is defined as follows: 

 I ERG 

(
x j , y j 

)
= 1 − T E ERG 

(
x j , y j 

)
= 

⎛ 

⎜ ⎜ ⎝ 

1 
M 

M ∑ 

m =1 

ˆ s −ERG 
jm 

x jm 
+ 

1 
N 

N ∑ 

n =1 

ˆ s + ERG 
jn 

y jn 

1 + 

1 
N 

N ∑ 

n =1 

ˆ s + ERG 
jn 

y jn 

⎞ 

⎟ ⎟ ⎠ 

. 

(14) 

Consequently, the right-hand side expression of the spe- 

ific Fenchel-Mahler inequality (7), which corresponds to 

 �I T RA 
ERG ( x j , y j , w, p ) = T I ERG ( x j , y j ) NF T RA 

ERG ( x j , y j , p, w ) , is equal

o ⎛ 

⎜ ⎜ ⎝ 

1 
M 

M ∑ 

m =1 

ˆ s −ERG 
jm 

x jm 
+ 

1 
N 

N ∑ 

n =1 

ˆ s + ERG 
jn 

y jn 

1 + 

1 
N 

N ∑ 

n =1 

ˆ s + ERG 
jn 

y jn 

⎞ 

⎟ ⎟ ⎠ 

( ( 

1 + 

1 

N 

N ∑ 

n =1 

ˆ s + ERG 
jn 

y jn 

) 

· min 

{
Mw 1 x j1 , ..., Mw M 

x jM 

, Np 1 y j1 , ..., Np N y jN 
})

= 

( 

1 

M 

N ∑ 

n =1 

s −∗ERG 
jm 

x jm 

+ 

1 

N 

N ∑ 

n =1 

s + ∗ERG 
jn 

y jn 

) 

· min 

{
Mw 1 x j1 , ..., Mw M 

x jM 

, Np 1 y j1 , ..., Np N y jN 
}
. (15) 

We enunciate next proposition related to the ERG measure, es- 

ablishing three relevant results: 

roposition 1. 

.1 For any firm ( x j , y j ) of the production possibility set the follow- 

ing inequality holds, T �I T RA 
ERG 

( x j , y j , w, p ) ≤ T �I GDA 
ERG 

( x j , y j , w, p ) , 

or, equivalently, A �I T RA 
ERG ( x j , y j , w, p ) ≥ A �I GDA 

ERG 
( x j , y j , w, p ) . 

.2 In particular, any efficient firm satisfies T �I T RA 
ERG ( x j , y j , w, p ) = 

T �I GDA 
ERG 

( x j , y j , w, p ) , or, equivalently, A �I T RA 
ERG 

( x j , y j , w, p ) = 

A �I GDA 
ERG 

( x j , y j , w, p ) . 

.3 Moreover, for any inefficient firm ( x j , y j ) , the equality 

T �I T RA 
ERG 

( x j , y j , w, p ) = T �I GDA 
ERG 

( x j , y j , w, p ) holds if, and only if, the

next chain of equalities holds: Mw 1 x j1 ... = Mw M 

x jM 

= Np 1 y j1 ... =
Np N y jN = min { Mw 1 x j1 , ..., Mw M 

x jM 

, Np 1 y j1 , ..., Np N y jN } . 
If all inefficient firms have a common subset of zero-valued in- 

ut or output slacks, the corresponding inputs and outputs can be 

ropped from the last chain of equalities. 

Proof. See Appendix 1 

The chain of equalities required for the latter result 1.3 are 

ighly demanding, making it unlikely that inefficient firms satisfy 

hem. This explains why the traditional approach to decompose 

rofit inefficiency normally underestimates the technical profit in- 

fficiency value of the subset of inefficient firms. Furthermore, 

ince similar requirements can be established for other additive 

echnical efficiency measures, e.g., the additive model by Charnes 

t al. [ 23 ] and its weighted variants, this is a pervasive result 

laguing the traditional approach to decompose profit inefficiency. 

From Proposition 1 , for any firm, the technical profit ineffi- 

iency of the traditional approach is always smaller than or equal 

o the technical profit inefficiency of the GDA approach, which 

mplies that the traditional normalization factor is always smaller 

han or equal to the GDA normalization factor: NF T RA 
ERG 

( x j , y j , w, p ) 

NF GDA 
ERG 

( x j , y j , w, p ) . 
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Table 1 

Descriptive statistics. Input and output quantities, Taiwanese banks, 2010. 

Inputs Outputs 

x 1 x 2 x 3 y 1 y 2 

Average 795,536 3826 13,393 196,808 609,489 

Median 428,995 3146 8721 157,870 328,574 

Max. 3171,493 9538 76,576 904,580 2091,100 

Min. 25,019 202 505 1681 66,947 

Stand. Dev. 768,008 2729 15,185 215,063 582,854 

Source: Juo et al. [ 24 ]. 
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.3.2. The case of the directional distance function, DDF 

However, it is worth mentioning that the additive directional 

istance function is the only known technical inefficiency mea- 

ure that gives rise to the same profit decomposition regardless 

he generalized direct or traditional approach, as next proposition 

stablishes: 

roposition 2. The directional distance function, DDF, always sat- 

sfies that its traditional and GDA profit inefficiency decomposi- 

ions are equal, which is equivalent to saying that the equality 

 �I T RA 
DDF ( x j , y j , w, p ) = T �I GDA 

DDF 
( x j , y j , w, p ) holds for any firm ( x 

j 
, y 

j 
)

f the production possibility set. Moreover, any graph measure G that 

atisfies last conditions is necessarily a DDF. 

Proof. See Appendix 2 

Nevertheless, the choice of the directional distance function im- 

lies that firms may be projected to the weakly efficient subset of 

he technology ∂ W (T ) , resulting in the underestimation of techni- 

al inefficiency and, equivalently, overestimation of allocative inef- 

ciency. Therefore, while the use of the DDF ensures that profit 

echnical inefficiency is not underestimated in the traditional ap- 

roach due to the particular specification of the normalization fac- 

or, it may still be underestimated if the projected benchmark does 

ot belong to the strongly efficient frontier, ∂ W (T ) . 

Regarding the normalized versions of the general direct and 

raditional approaches, we establish an interesting result between 

heir corresponding normalization factors. 

roposition 3. For any graph directional distance function, DDF, its 

DA and traditional normalization factors are equal. Moreover, any 

raph measure G that satisfies the mentioned condition is necessarily 

 DDF. 

Proof. It is derived from the proof of Proposition 2 . 

. An application: Taiwanese banking industry 

We illustrate the monetary and normalized GDA and traditional 

odels resorting to a set of 31 Taiwanese banks observed in 2010, 

reviously studied by Juo et al. [ 24 ]. A complete discussion of the

tatistical sources and variables specification can be found there. 6 

able 1 presents descriptive statistics for these variables. Regarding 

he technology and interrelations between inputs and outputs, the 

ariables reflect the so-called intermediation approach suggested 

y Sealey and Lindley [ 25 ], whereby financial institutions, through 

abor and capital, collect deposits from savers to produce loans and 

ther earning assets for borrowers. Inputs are financial funds ( x 1 ), 

umber of employees ( x 2 ), and physical capital ( x 3 ). The output 

ector includes financial investments ( y 1 ) and loans ( y 2 ). Monetary 

ariables are measured in millions of New Taiwan Dollar (TWD). 

he unit prices of inputs include average interest paid per TWD of 
6 We are grateful to these authors for sharing the data. The same data set 

as been used to illustrate symmetric decompositions of cost variation by Balk 

nd Zofío [ 38 ], and the decompositions of total factor productivity change using 

uantities-only and price-based indices by Balk [ 39 ]. 

s

o

a

5 
nancial funds ( w 1 ), the ratio of personnel expenses to the num- 

er of employees ( w 2 ), and the non-labor operational cost (opera- 

ional expenses net of personnel expenses) per TWD of fixed as- 

ets ( w 3 ). The unit prices of outputs correspond to average interest 

arned per TWD of investment ( p 1 ), and average interest earned 

er TWD of loan ( p 2 ). Common input and output prices are calcu- 

ated as unit values; that is, individual costs and revenues divided 

y quantities. Inputs prices are w 1 = 0.0064, w 2 = 1.2586, w 3 = 0.3171,

hile output prices are p 1 = 0.0349 and p 2 = 0.0211. 

We first calculate and decompose the monetary GDA and tra- 

itional profit inefficiency models based on the ERG (or SBM). The 

RG measure is calculated using Data Envelopment Analysis (DEA) 7 

echniques as shown in program (4) in Pastor et al. [ 22 ]. Table 2

resents both decompositions, where profit inefficiency, expressed 

n million TWD, is common to the GDA and traditional approach. 

he GDA decomposition −expressions (5) and (6), is reported in 

olumns 2 thru 4. As for the traditional approach based on 

enchel-Mahler inequalities, its decomposition −expression (8) −is 

eported in columns 5 thru 8. The Bank of Taiwan (#2) maximized 

rofit efficiency, i.e., its profit inefficiency value is null, and there- 

ore it is technically and allocatively efficient, constituting the eco- 

omic benchmark for the remaining banks. A total of 11 banks 

ere technically efficient (out of 31), while the rest were tech- 

ically and allocatively inefficient. It is easy to observe that, as 

tated in Proposition 1.1, the value of the technical profit ineffi- 

iency corresponding to the traditional approach is smaller than 

r equal to that of the generalized approach. As anticipated in 

ection 2.3.1 equality is verified for the previous 11 technically ef- 

cient firms, while a strict inequality is observed for the remain- 

ng 20 banks, implying that the condition stated in Proposition 1.3 

s not met. Consequently, the traditional approach underestimates 

he technical profit inefficiency, preventing banks from exploiting 

he potential production frontier, while overstating, in the exact 

ame amount, the allocative profit inefficiency, which is associated 

o suboptimal mixes of input demands and output supplies given 

heir market prices. Managers of these banks could had been mis- 

ed by the source of profit inefficiency, which may had resulted in 

rong efficiency enhancing strategies. For example, for bank #11, 

echnical profit inefficiency is underestimated in $4964.9 million 

WD ($15,021.2 −$10,056.4), which represent 23.7% of the overall 

rofit inefficiency ($4964.9/$20,955.5 × 100) and as much as 33.1% 

f the GDA technical profit inefficiency value ($4964.9/$15,021.2 ×
00). As many as six banks present two-digit deviations in per- 

entage points. Therefore, we observe that the discrepancy can be 

ubstantial. Generally, the average disparity in the measurement of 

echnical profit inefficiency in the whole industry amounts 6.4% of 

verall profit inefficiency. 

We observe considerable inefficiency dispersion across banks 

nd different patterns of technical and allocative efficiency. To pro- 

ide some insights about individual performance we discuss the 

est five and worst five performing banks in terms of profit effi- 

iency and its components. The profit efficient Bank of Taiwan (#2) 

s followed by Cooperative Bank (#6), First Bank (#7), Land Bank 

#5), and Hua Nan Bank (#8). All these banks, except the last one, 

ere technically efficient, showing that the main cause of profit 

oss for the top performing banks is allocative inefficiency. Further- 

ore, all these banks were publicly owned, suggesting that some 

f the weaknesses associated to profit maximization in public en- 

erprises were not at play in the Taiwanese banking sector; e.g., 

ultiplicity of objectives −like securing employment levels, higher 

ressure from political parties and lobbies, weaker budget con- 

traints since central banks acts as lenders of last resort, or dis- 
7 Cook et al. [ 40 ] addressed several problems in the context of DEA such as model 

rientation, input and output selection/definition, the use of mixed and raw data, 

nd the number of variables to use versus the number of DMUs. 
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Table 2 

Monetary General Direct Approach and Traditional decompositions of profit inefficiency based on the ERG measure. 

Economic inefficiency (GDA) Economic inefficiency (TRA) 

Bank 

Profit Ineff. 

�I( x j , y j , w, p ) 

Tech. Profit Ineff. 

T �I GDA 
ERG ( x j , y j , w, p ) 

Alloc. Prof. Ineff. 

A �I GDA 
ERG ( x j , y j , w, p ) 

Profit Ineff. 

�I( x j , y j , w, p ) 

Tech. Prof. Ineff. 

T �I TRA 
ERG ( x j , y j , w, p ) 

Allocative Ineff. 

A �I TRA 
ERG ( x j , y j , w, p ) 

Export-Import Bank 19,908.3 0.0 19,908.3 19,908.3 0.0 19,908.3 

Bank of Taiwan 0.0 0.0 0.0 0.0 0.0 0.0 

Taipei Fubon Bank 8922.1 0.0 8922.1 8922.1 0.0 8922.1 

Bank of Kaohsiung 20,216.3 4149.9 16,066.5 20,216.3 4124.1 16,092.2 

Land Bank 3396.7 0.0 3396.7 3396.7 0.0 3396.7 

Cooperative Bank 1603.6 0.0 1603.6 1603.6 0.0 1603.6 

First Bank 3202.5 0.0 3202.5 3202.5 0.0 3202.5 

Hua Nan Bank 7981.6 5248.7 2732.9 7981.6 4919.3 3062.3 

Chang Hwa Bank 13,550.2 8864.5 4685.7 13,550.2 7367.4 6182.9 

Mega Bank 1791.2 0.0 1791.2 1791.2 0.0 1791.2 

Cathay United Bank 20,955.5 15,021.2 5934.3 20,955.5 10,056.4 10,899.2 

The Shanghai Bank 14,638.4 2773.3 11,865.1 14,638.4 2254.1 12,384.4 

Union Bank 24,839.3 11,277.2 13,562.1 24,839.3 8262.0 16,577.3 

Far Eastern Bank 12,052.0 0.0 12,052.0 12,052.0 0.0 12,052.0 

E. Sun Bank 12,220.6 3361.8 8858.8 12,220.6 2933.9 9286.6 

Cosmos Bank 24,409.6 7164.9 17,244.7 24,409.6 4008.8 20,400.8 

Taishin Bank 20,760.0 11,521.3 9238.8 20,760.0 9455.7 11,304.4 

Ta Chong Bank 18,916.4 4897.4 14,018.9 18,916.4 1768.1 17,148.2 

Jih Sun Bank 21,933.0 6472.0 15,461.0 21,933.0 5724.1 16,209.0 

Entie Bank 20,925.3 5875.9 15,049.4 20,925.3 4835.9 16,089.4 

China Trust Bank 14,248.8 0.0 14,248.8 14,248.8 0.0 14,248.8 

Sunny Bank 23,815.2 8567.9 15,247.3 23,815.2 5915.1 17,900.1 

Bank of Panhsin 23,693.5 7535.6 16,157.9 23,693.5 5265.8 18,427.7 

Taiwan Business Bank 13,339.1 4494.1 8845.0 13,339.1 3708.7 9630.4 

Taichung Bank 20,773.8 6959.4 13,814.4 20,773.8 6856.9 13,916.9 

China Development 17,244.7 0.0 17,244.7 17,244.7 0.0 17,244.7 

Hwatai Bank 21,469.5 4739.0 16,730.6 21,469.5 4520.8 16,948.7 

Cota Bank 21,642.4 3945.5 17,696.9 21,642.4 3183.0 18,459.3 

Industrial Bank of 

Taiwan 

20,302.6 0.0 20,302.6 20,302.6 0.0 20,302.6 

Bank SinoPac 11,687.0 3960.5 7726.4 11,687.0 2044.6 9642.4 

Shin Kong Bank 22,591.6 10,790.1 11,801.5 22,591.6 9268.2 13,323.4 

Average 15,581.6 4439.4 11,142.3 15,581.6 3434.6 12,147.0 

Median 18,916.4 4149.9 12,052.0 18,916.4 3183.0 13,323.4 

Maximum 24,839.3 15,021.2 20,302.6 24,839.3 10,056.4 20,400.8 

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 

Std. Dev. 7590.8 4233.4 5882.6 7590.8 3275.0 6141.8 
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arate incentives structures away from financial performance (pub- 

ic banks are indicated in italics in Tables 2 and 3 ). This result is

n accordance with the findings of Juo et al. [ 24 ], who further dis-

uss the good performance of these public banks in terms of key 

nancial indicators such as ‘non-performing loan (NPL) ratio’, ‘net 

ncome before taxes to asset (NIBT/A) ratio’, and ‘NBIT/employee 

NIBT/E) ratio’. The last two ratios are highly related to the outputs 

nd inputs used in the study. We also refer the reader to their ar- 

icle to gain insights about the individual course of some of these 

anks that may had favored their good performance, e.g., mergers 

nd acquisitions favoring the realization of economics of scale and 

cope. 

Regarding the worst five performing banks, we find Union Bank 

#13), Cosmos Bank (#16), Sunny Bank (#22), Bank of Panhsin 

#23) and Shin Kong Bank (#33). As opposed to their best per- 

orming counterparts, these banks exhibit both technical and al- 

ocative inefficiency. Besides being privately owned and enduring a 

mall production scale, most of these banks were either newly es- 

ablished or transformed from credit cooperatives into commercial 

anks. In this regard the adjustments required to start the enter- 

rise or complete the necessary transition to a commercial setting 

eem to have hampered their financial performance. This is also 

onfirmed from the financial perspective of the above key perfor- 

ance indicators which were well above the industry average for 

non-performing loans’ and below for the ‘net income before taxes 

atio’, either to assets or employees. 
6 
The monetary decompositions of profit inefficiency do not com- 

ly with the commensurability property. Relying on the normal- 

zed versions of the GDA and traditional profit inefficiency we en- 

ure that our results are units’ invariant. Normalized profit inef- 

ciency along with its technical and allocative inefficiency terms 

re reported in columns 2 thru 4 in Table 3 . As for the traditional

ecomposition, we calculate for each firm its specific ERG normal- 

zing factor, see (13), and report the corresponding profit, tech- 

ical and allocative inefficiency values in columns 5 thru 8. We 

bserve that technical inefficiency is common to both approaches 

s they share the same measure, while the values of normalized 

rofit and allocative inefficiencies differ for technically inefficient 

rms due to different normalization factors: NF T RA 
ERG ( x j , y j , w, p ) 

 NF GDA 
ERG 

( x j , y j , w, p ) . Regarding the normalized profit inefficiency 

alues, these are shown in columns 2 and 5. Consistent with the 

onetary decomposition, the second bank maximized profit effi- 

iency, so its generalized and traditional profit inefficiencies are 

ull. Again, a total of eleven banks were technically efficient. For 

he technically inefficient firms, and given the direction of the in- 

quality in the respective normalization factors above, we observe 

hat normalized profit inefficiency is greater in the traditional ap- 

roach than in the generalized approach, with the amount in ex- 

ess being attributed to allocative inefficiency. Profit and allocative 

nefficiency are overvalued for all 20 inefficient banks, represent- 

ng just 8.4% of average profit inefficiency in the GDA approach 

 = 0.435/5.605 × 100). However, in some cases, the disparity in the 
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Table 3 

Normalized General Direct Approach and Traditional decompositions of profit inefficiency based on the ERG measure. 

Economic inefficiency (GDA) Economic inefficiency (TRA) 

Bank 

Profit Ineff. 

N�I GDA 
ERG ( x j , y j , ˜ w , ̃  p ) 

Technical Ineff. 

T I ERG ( x j , y j ) 

Allocative Ineff. 

AI GDA 
ERG ( x j , y j , ˜ w , ̃  p ) 

Profit Ineff. 

N�I TRA 
ERG ( x o , y o , ˜ w , ̃  p ) 

Technical Ineff. 

T I ERG ( x j , y j ) 

Allocative Ineff. 

AI TRA 
ERG ( x j , y j , ˜ w , ̃  p ) 

Export-Import Bank 91.207 0.000 91.207 91.207 0.000 91.207 

Bank of Taiwan 0.000 0.000 0.000 0.000 0.000 0.000 

Taipei Fubon Bank 0.776 0.000 0.776 0.776 0.000 0.776 

Bank of Kaohsiung 3.814 0.783 3.031 3.838 0.783 3.055 

Land Bank 0.214 0.000 0.214 0.214 0.000 0.214 

Cooperative Bank 0.050 0.000 0.050 0.050 0.000 0.050 

First Bank 0.147 0.000 0.147 0.147 0.000 0.147 

Hua Nan Bank 0.316 0.208 0.108 0.337 0.208 0.129 

Chang Hwa Bank 0.556 0.364 0.192 0.669 0.364 0.305 

Mega Bank 0.139 0.000 0.139 0.139 0.000 0.139 

Cathay United Bank 0.827 0.593 0.234 1.236 0.593 0.643 

The Shanghai Bank 1.359 0.257 1.101 1.672 0.257 1.414 

Union Bank 2.056 0.934 1.123 2.807 0.934 1.873 

Far Eastern Bank 4.437 0.000 4.437 4.437 0.000 4.437 

E. Sun Bank 0.790 0.217 0.573 0.905 0.217 0.688 

Cosmos Bank 3.366 0.988 2.378 6.016 0.988 5.028 

Taishin Bank 0.959 0.532 0.427 1.168 0.532 0.636 

Ta Chong Bank 1.607 0.416 1.191 4.450 0.416 4.034 

Jih Sun Bank 2.754 0.813 1.941 3.113 0.813 2.301 

Entie Bank 2.619 0.735 1.883 3.182 0.735 2.446 

China Trust Bank 0.556 0.000 0.556 0.556 0.000 0.556 

Sunny Bank 2.665 0.959 1.706 3.860 0.959 2.902 

Bank of Panhsin 3.086 0.981 2.104 4.416 0.981 3.435 

Taiwan Business Bank 0.829 0.279 0.549 1.004 0.279 0.725 

Taichung Bank 2.617 0.877 1.740 2.656 0.877 1.779 

China Development 14.870 0.000 14.870 14.870 0.000 14.870 

Hwatai Bank 4.343 0.959 3.385 4.553 0.959 3.594 

Cota Bank 5.169 0.942 4.227 6.407 0.942 5.465 

Industrial Bank of 

Taiwan 

19.067 0.000 19.067 19.067 0.000 19.067 

Bank SinoPac 0.669 0.227 0.442 1.296 0.227 1.069 

Shin Kong Bank 1.898 0.906 0.991 2.210 0.906 1.303 

Average 5.605 0.418 5.187 6.041 0.418 5.622 

Median 1.607 0.279 1.101 2.210 0.279 1.414 

Maximum 91.207 0.988 91.207 91.207 0.988 91.207 

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 

Std. Dev. 16.407 0.398 16.490 16.339 0.398 16.414 
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llocative inefficiency can reach three orders of magnitude, as for 

ank #18, whose profit or allocative inefficiency in excess, 2.843 

4.034 −1.191) represents 238.8% of the allocative inefficiency un- 

er the GDA (2.843/1.191 × 100), and 177.0% of overall profit inef- 

ciency (2.843/1.607 × 100). 

These discrepancies confirm the concerns raised about the char- 

cterization of profit inefficiency and its decomposition using the 

raditional approach. We further study the (dis)similarity between 

he normalized profit (or allocative) inefficiencies under the tra- 

itional and general approaches. We look first at their ranking 

ompatibility by means of Kendall’s tau-b correlation (handling 

ies) and second, relying on kernel density estimations, determine 

hether the two profit inefficiency distributions are equal or not ac- 

ording to the test proposed by Simar and Zelenyuk [ 26 ] −which is

n extension of the nonparametric test for the equality of two den- 

ities of Li [ 27 ]. Their Kendall correlation is 0.891, which is signifi-

ant at the 5% level. Although this value suggests that the ranking 

ompatibility is relatively high, the value of the Li test also con- 

rms that there is a significant statistical difference between the 

wo models at the same significance level. 

. Conclusions 

We introduce a new method to decompose profit inefficiency, 

dentified as the General Direct Approach (GDA) that, based on 

qualities, identifies a technical profit inefficiency term and an al- 

ocative profit inefficiency term. The advantage of the new ap- 

roach is that its decomposition in monetary terms with re- 
7 
pect to the technical profit inefficiency does not depend on 

he normalization factor as the traditional approach does. In- 

eed, as we prove theoretically and illustrate in the empirical 

pplication −considering the enhanced Russell graph measure as 

nderlying technical efficiency, when both approaches differ for 

echnical inefficient firms, the traditional approach undervalues 

overvalues) the value of profit technical (allocative) inefficiency. 

ast sentence can be reformulated in terms of the normalizing fac- 

ors, which may be underestimated by the traditional approach for 

echnically inefficient firms, giving rise to different general and tra- 

itional decompositions. Moreover, the GDA satisfies by construc- 

ion the essential property which requires that the allocative inef- 

ciency of the firm under evaluation is null when projected to a 

rofit maximizing benchmark −a property that traditional decom- 

ositions based on relevant technical inefficiency measures fail to 

atisfy [ 8 ]. As a result, we advocate for the use of the general direct

pproach to prevent the discrepancies detected in the traditional 

pproach and perform reliable comparisons of profit inefficiency 

nd its sources across firms. Besides, it can be adapted for any 

in)efficiency measure and eases the calculation and decomposition 

f profit inefficiency in light of already existing or newly proposed 

easures, whose duality results, necessary to obtain the Fenchel- 

ahler inequalities and their associated normalizations factors, are 

ore complex and need to be developed explicitly, whereas our 

pproach, although requiring duality criteria implicitly, offers an 

asier approach to obtain the normalization factor. Duality refers 

o the methods allowing to relate price measures of economic ef- 

ciency with quantity measures of technical efficiency, and there- 



J.T. Pastor, J.L. Zofío, J. Aparicio et al. Omega 119 (2023) 102889 

f

h

t

i

w

t

d

u

o

p

e

m

v

c

s

e

o

b

f

t

t

i

f

o

t

i

p

a

c

i

I

a

c

e

r

p

q

s

m

c

f

c

o

t

v

i

t

p

N

D

C

Z

e

t

D

A

c

c

J

1

A

a

f

d

t

C

A

r

a

t

1

 

1

 

1

 

 

A

T

I

T

T

i

t

i

b

T  

c

w

T

R

ore the GDA approach falls within this theoretical framework. We 

ave also established that both approaches are equivalent when 

he directional distance function is used as measure of technical 

nefficiency. Therefore, despite this measure projecting firms to the 

eakly efficient subset of the technology, it is superior to other al- 

ernative measures when resorting to the traditional approach to 

ecompose profit inefficiency. From a managerial perspective, the 

nnormalized version of the general direct approach would be rec- 

mmended since both the technical and allocative terms are ex- 

ressed in monetary units and therefore easier to interpret. Nev- 

rtheless, being dependent on the units of measurement, the nor- 

alized version is also available for economic efficiency studies in- 

olving, for example, firms belonging to countries with different 

urrencies. 

We finish with a relevant remark and further venues of re- 

earch. First, we focus on the additive decomposition of profit in- 

fficiency defined in difference form, i.e., as maximum profit less 

bserved profit. Therefore, we leave out possible decomposition 

ased on multiplicative measures such as the generalized distance 

unction proposed by Chavas and Cox [ 28 ] or the geometric dis- 

ance function by Portela and Thanassoulis [ 11 ], which fall outside 

he objectives of this paper, since they cannot be related by dual- 

ty to the profit function. However, a similar study analyzing the 

unctioning of multiplicative measures should be welcome. Also, 

ne interesting extension of our new model would be to consider 

he case of different prices across firms. In the literature reviewed 

n the introduction, as well as in our proposed general direct ap- 

roach, it is customarily assumed that firms face common input 

nd output prices that are exogenously determined in perfectly 

ompetitive markets, i.e., firms are price takers. However, under 

mperfectly competitive markets firms may exhibit different prices. 

n this case one can think of price changes as yet another strategy 

vailable to the firms to improve economic efficiency. In a cost effi- 

iency framework Camanho and Dyson [ 29 ] suggest different mod- 

ls allowing firms to reduce their observed input prices by mir- 

oring those of their peers, while Portela and Thanassoulis [ 30 ] 

ropose a more general model that simultaneously reduce input 

uantities (resulting in technical savings) and input prices (price 

avings). Very recently, Boussemart et al. [ 31 ] introduced a new 

odel, assuming different prices across firms, decomposing first 

ost efficiency as the product of a price effect and a quantity ef- 

ect, and ending with a similar decomposition for profitability effi- 

iency (which is defined as revenue to cost). From the perspective 

f either the general direct approach or the traditional approach 

he existence of different prices represents yet another source of 

ariation resulting in firm-specific normalization factors, hamper- 

ng the comparability of profit inefficiency and its components be- 

ween firms. 

Other possible extensions could be the application of our ap- 

roach and decomposition of profit inefficiency in the context of 

etwork DEA ( [32] , and [33] ). 
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ppendix 1. Proof of Proposition 1. We only prove the 

elationships between technical profit inefficiencies since the 

ssociation between allocative profit inefficiencies can be 

rivially derived from them 

.1 T �I T RA 
ERG 

( x j , y j , w, p ) = T I ERG ( x j , y j ) NF T RA 
ERG 

( x 
j 
, y 

j 
, p, w ) with T I ERG 

( x 
j 
, y 

j 
) = 

1 
M 

∑ M 

m =1 

ˆ s −ERG 
jm 

x jm 
+ 

1 
N 

∑ N 
n =1 

ˆ s + ERG 
jn 

y jn 
and NF T RA 

ERG ( x j , y j , p, w ) 

= min { Mw 1 x j1 , ..., Mw M 

x jM 

, Np 1 y j1 , ..., Np N y jN } . Then, NF T RA 
ERG 

( x 
j 
, y 

j 
, p, w ) ≤ Mw 1 x jm 

, ∀ m, and NF T RA 
ERG ( x j , y j , p, w ) ≤

Np 1 y j1 , ∀ n . This implies that T �I T RA 
ERG 

( x j , y j , w, p ) =
1 
M 

∑ M 

m =1 

NF TRA 
ERG 

( x 
j 
,y 

j 
,p,w ) ̂ s −ERG 

jm 

x jm 
+ 

1 
N 

∑ N 
n =1 

NF TRA 
ERG 

( x 
j 
,y 

j 
,p,w ) ̂ s + ERG 

jn 

y jn 
≤ 1 

M ∑ M 

m =1 

( Mw m x jm ) ̂ s −ERG 
jm 

x jm 
+ 

∑ N 
n =1 

( Np n y jn ) ̂ s + ERG 
jn 

y jn 
= 

∑ M 

m =1 w m ̂

 s −ERG 
jm 

+ ∑ N 
n =1 p n ̂  s + ERG 

jn 
= T �I GDA 

ERG 
( x j , y j , w, p ) . 

.2 If ( x 
j 
, y 

j 
) is technically efficient under the ERG, then 

ˆ s −ERG 
jm 

= ˆ s + ERG 
jn 

= 0 , ∀ m, n and T I ERG ( x j , y j ) = 0 . This implies that

T �I GDA 
ERG 

( x j , y j , w, p ) = 0 and T �I T RA 
ERG ( x j , y j , w, p ) = 0 . 

.3 From the proof of 1.1, for a technically inefficient firm 

( x 
j 
, y 

j 
) , i.e., a firm such that ∃ m such that ˆ s −ERG 

jm 

> 0

and/or ∃ n such that ˆ s + ERG 
jn 

> 0 , the only way of hav- 

ing the equality T �I T RA 
ERG 

( x j , y j , w, p ) = T �I GDA 
ERG 

( x j , y j , w, p ) 

is that Mw 1 x j1 = ... = Mw M 

x jM 

= Np 1 y j1 = ... = Np N y jN . =
min { Mw 1 x j1 , ..., Mw M 

x jM 

, Np 1 y j1 , ..., Np N y jN } 
ppendix 2. Proof of Proposition 2 

Regarding the first result, by Chambers et al. [ 1 ], 

 �I T RA 
DDF 

( x j , y j , w, p ) = T I DDF ( x j , y j ; g −
j 
, g + 

j 
) ( w · g −

j 
+ p · g + 

j 
) . 

n the case of the DDF, we have the relationship ˆ s −DDF 
j 

= 

 I DDF ( x j , y j ; g −
j 
, g + 

j 
) g −

j 
and ˆ s + DDF 

j 
= T I DDF ( x j , y j ; g −

j 
, g + 

j 
) g + 

j 
. 

herefore, T �I T RA 
DDF ( x j , y j , w, p ) = w · s −DDF 

j 
+ p · s + DDF 

j 
, which 

s, by definition, equal to T �I GDA 
DDF 

( x j , y j , w, p ) . As for 

he second result, let G be any graph measure satisfy- 

ng T �I T RA 
G 

( x j , y j , w, p ) = T �I GDA 
G 

( x j , y j , w, p ) . Given that, 

y definition, T �I GDA 
G 

( x j , y j , w, p ) = w · ˆ s −G 
j 

+ p · ˆ s + G 
j 

and 

 �I T RA 
G ( x j , y j , w, p ) = T I G ( x j , y j ) NF T RA 

G ( x j , y j , w, p ) , we con-

lude that NF T RA 
G 

( x j , y j , w, p ) = 

T �I GDA 
G 

( x j ,y j ,w,p ) 

T I G ( x j ,y j ) 
= w · ˆ s −G 

j 

T I G ( x j ,y j ) 
+ p ·

ˆ s + G 
j 

T I G ( x j ,y j ) 
, which corresponds to the normalization factor of a DDF 

hose directional vector is ( g −
j 
, g + 

j 
) = ( 

ˆ s −G 
j 

T I G ( x j ,y j ) 
, 

ˆ s + G 
j 

T I G ( x j ,y j ) 
) , i.e., 

 I G ( x j , y j ) = T I DDF ( x j , y j ; g −
j 
, g + 

j 
) . 
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