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ABSTRACT

Considering any graph technical inefficiency measure, we show that the so-called standard or traditional
approach for decomposing profit inefficiency relying on Fenchel-Mahler inequalities obtained from duality
theory, establishes that profit inefficiency is greater than or equal to the product of technical inefficiency
times a positive factor expressed in monetary units. This product is identified as the technical profit in-
efficiency and its difference with respect to the profit inefficiency as the allocative profit inefficiency.
Dividing profit inefficiency by the mentioned positive factor one obtains the normalized (units’ invariant)
profit inefficiency of the firm, which is a pure number, and can be decomposed into the sum of tech-
nical inefficiency and the normalized allocative profit inefficiency, usually called allocative inefficiency.
We propose a new decomposition based on equalities that starts from the input and output slacks con-
necting the firm with the frontier benchmark, obtained through the pre-specified technical inefficiency
measure. Profit inefficiency is then decomposed into the value of the technological gap and the profit in-
efficiency of the frontier benchmark. Expressing the value of the technological gap as the product of the
technical inefficiency times a certain normalizing factor, we deduce a new normalized profit inefficiency
decomposition. Our decomposition ensures that the allocative efficiency of a firm corresponds to that of
its benchmark on the frontier and therefore avoids the possibility of overestimating it. We compare the
traditional and the general direct approach and show that the new decomposition is conceptually sound
and more accurate, with the only exception of the family of directional distance functions, for which both
decompositions are equivalent.
© 2023 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

thors have adapted this methodology, which we term traditional
approach, to decompose profit inefficiency using alternative tech-

The decomposition of profit inefficiency was introduced by
Chambers et al.’s [1] based on the duality between the graph di-
rectional distance function (DDF) and the profit function. This du-
ality enables the definition of a Fenchel-Mahler inequality where
normalized profit inefficiency is greater than or equal to the graph
DDF, which is interpreted as a measure of technical inefficiency.
Subsequently, normalized profit inefficiency can be decomposed
into two mutually exclusive terms corresponding to the techni-
cal component and an allocative residual. Since then, several au-
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nical inefficiency measures.

Pastor et al. [2] offer a systematic review of the most rele-
vant proposals besides that based on the graph DDF. Chronolog-
ically, normalized profit inefficiency can be decomposed resort-
ing to: i) the Holder distance functions under alternative norms,
Briec and Lesourd [3]; ii) the weighted additive distance function
(WADF), Aparicio, Pastor and Vidal [4]; iii) the Loss Distance Func-
tion, Aparicio, Borras, Pastor and Zofio [5]; iv) the Enhanced Rus-
sell Graph measure (ERG) (or Slack-Based Measure, SBM), Apari-
cio et al. [6]; v) the original graph Russell measure, Halickd and
Trnovska [7]; vi) the modified directional distance function; and,
finally, vii) the reverse directional distance function—duality results
for these last two are presented in Pastor et al. [2].

0305-0483/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Relying on their associated Fenchel-Mahler inequalities, each of
these proposals derive a particular decomposition of profit ineffi-
ciency based on its corresponding technical efficiency measure and
associated normalization factor. Profit inefficiency is normalized by
these factors, giving rise to a normalized (units’ invariant) decom-
position expressed in pure numbers, i.e., without units of mea-
surement. However, as we show later, for some of these decom-
positions, the normalized allocative component of the traditional
approach can be unrelated to the profit inefficiency of its frontier
benchmark, which may result in the underestimation (overestima-
tion) of technical inefficiency (allocative inefficiency).

To solve this question, we introduce a new method, the gen-
eral direct approach (GDA), that directly states an equality between
overall economic efficiency and the two typical drivers (viz. tech-
nical and allocative efficiency). For any firm, and given a preferred
technical inefficiency measure, the method requires just two pieces
of information: the firm’s technical inefficiency, and its associated
frontier projection. Our approach, as the traditional one, results in
an additive decomposition of profit inefficiency into two compo-
nents. The first component, which we call technological profit gap
or technical profit inefficiency, is the interior product of two vec-
tors, the optimal slack vector (separating the firm under evaluation
from its frontier benchmark) and the market price vector. The sec-
ond component corresponds to the profit inefficiency of the bench-
mark at the frontier, which we call allocative profit inefficiency.
This GDA decomposition of profit inefficiency is expressed in mon-
etary units. However, following the literature, we show how to de-
fine a normalized version that allows to relate profit inefficiency
with the initial technical inefficiency measure of choice based on
quantities, and that is units’ invariant, thereby removing the mone-
tary units of measurement, so the decomposition satisfies the com-
mensurability property. For this purpose, we show that the profit
technological gap can be rewritten as the product of a certain nor-
malizing factor, times the inefficiency measure. Then, by dividing
the three terms of the equality by the mentioned factor, we obtain
a general normalized profit inefficiency decomposition.

The general direct approach offers a unifying framework for de-
composing profit inefficiency that is valid for any technical ineffi-
ciency measure. It follows similar steps to the traditional approach,
but it is easier to develop and implement. After selecting a spe-
cific graph technical inefficiency measure, e.g., the already men-
tioned DDF, Holder, Loss distance function, WADF, ERG, graph Rus-
sell measure, etc., we obtain the necessary information for its de-
composition by solving, for each evaluated firm, the corresponding
mathematical program. Contrarily, the traditional approach associ-
ated with the selected measure proves more demanding, requiring
not only to solve the last mentioned program in order to know
the values of the inefficiency measure and its projection, but also
the explicit determination of the so-called Fenchel-Mahler inequal-
ity relating economic inefficiency with the selected technical inef-
ficiency measure, from which a normalization factor can be recov-
ered, and that can be more or less costly to obtain.! The GDA relies
on duality implicitly because the normalization factor depends on
the value of the technical inefficiency measure. Both proposals end
up decomposing profit inefficiency, after normalizing it, into the
sum of a technical and an allocative component, but the direct ap-
proach is general, easier to implement, and more reliable. It is gen-
eral because it can be applied to any efficiency measure; direct and
easier to implement, because it does not require formulating the
normalizing factors associated to Fenchel-Mahler inequalities (al-
though the underlying duality holds); and more reliable because, as
mentioned above, working with equalities instead of inequalities,

1 For what is probably the most complicated case, see the results by Halickd and
Trnovska [7] for the non-linear graph Russell measure proposed by Fire and Lovell
[34].
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avoids the possibility of overestimating allocative inefficiency (the
so-called essential property), something that happens with many
traditional approaches as recently proven by Aparicio et al. [8].

Our general direct approach has some precursors in the litera-
ture that also use the profit levels of the projections to decompose
profit inefficiency. We can highlight Cooper et al. [9] who, resort-
ing to the (unweighted) additive model, established a decomposi-
tion of profit inefficiency into the economic value of technical inef-
ficiency and allocative inefficiency. Following this thread, Ruiz and
Sirvent [10] determine lower and upper bounds for the technical
and allocative components of the profit efficiency decomposition
using market prices as weights of the additive model. Portela and
Thanassoulis [11] proposed a decomposition of overall economic
efficiency based on the mathematical expression of the objective
function of the multiplicative Geometric Distance Function (GDF)
model.? More recently, Fire et al. [12] introduced a decomposition
of profit inefficiency based on the slacks-based directional distance
function (SBD). Finally, Pastor et al. [13] propose a ‘reversed’ de-
composition of profit change that is driven by the minimization of
allocative inefficiency when searching for the technically efficient
projection on the frontier and using the market prices of outputs
and inputs as weights of the output and inputs slacks in the ad-
ditive model. However, all these previous approaches are not suffi-
ciently general to encompass any technical efficiency measure.

Other relevant contributions related to Data Envelopment Anal-
ysis and economic efficiency are the following: Juo et al. [14] pro-
posed a non-oriented slacks-based measure (SBM) model to de-
compose the change in the operating profit into various meaning-
ful components (quantity and price effects); Fu et al. [15] assumed
that Taiwanese and Chinese banks operate under a common global
frontier and measured profit inefficiency; Jradi et al. [16] measured
and decomposed revenue inefficiency over time through the Lu-
enberger indicator; Yu [17] proposed a decomposition of profit in-
efficiency for any directional distance function under non-perfect
competition into three components: price, technical and allocative
inefficiency; and Aparicio and Zofio [18] combined cross-efficiency
and profit inefficiency and decomposed the corresponding score
into technical and allocative inefficiency.

The paper develops as follows. In Section 2 we propose the new
General Direct Approach for decomposing profit inefficiency. Here,
we compare the traditional approach based on the Fenchel-Mahler
inequality with the GDA and show that the traditional technical
profit inefficiency can underestimate its GDA counterpart, prov-
ing this result for the ERG graph measure.> We further prove for
the ERG under which conditions, certainly demanding, both de-
compositions are equal. We also show that for the family of di-
rectional distance functions the traditional and GDA decomposition
are equal. We finalize this section presenting the normalized ver-
sion of both decompositions and defining the necessary GDA nor-
malization factors. Section 3 illustrates the new model with an em-
pirical application to Taiwanese banks, discussing the differences
between the traditional and GDA decompositions. Section 4 con-
cludes.

2 The GDF minimizes the ratio of the geometric mean of proportional contraction
rates of inputs to the geometric mean of proportional expansion rates of outputs.

3 The enhanced Russell graph measure introduced by Pastor et al. [22] was for-
mulated in terms of individual input and output proportional reductions, consistent
with the definition of the Russell graph measure [35]. These authors showed that
it could reformulated in terms of input and output slacks obtaining a specification
that coincided with that proposed by Tone [36], who called it Slack Based Measure
(SBM). Therefore, it can be referred indistinctly as ERG or SBM. A search in the ISI
WoK at the time of writing shows that both articles received about 2,650 citations,
followed by the additive model of Charnes et al. [23] with 950 citations—although
this number does not include cites to all its weighted variants (MIP, RAM, BAM,
etc.). Both measures are followed by the directional distance function proposed by
Chambers et al. [37], receiving around 750 citations.
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2. The general direct approach (GDA) for decomposing profit
inefficiency

Let xeRY denote the vector of inputs and yeRY the vector of
outputs; the technology is given by

T={(xy) :xeRY yeRY, xcanproduce y} (1)

We assume that T is a subset of RM*N that satisfies
the usual axioms (see, for example: [19]). We also identify
two reference sets of the technology, namely the weakly
and strongly efficient production possibility sets: 9% (T) =
{(xy)eT: (. —y)<(x-y)=>K.y)¢T} and  35(T)=
{xy)eT: &, -y)<x-y), ¥.y)# Ky = K.y)¢T} Intu-
itively the strongly efficient subset includes all feasible production
plans that are not dominated and, therefore, are technically ef-
ficiency in the sense of Koopmans [[20], p. 60], who provides a
practical definition of efficiency based on the notion of Pareto
optimality. Contrarily, the weakly efficient subset of the technol-
ogy comprises production plans that may be dominated in some
input and output dimension. Therefore 35(T) c d%(T). Regarding
returns to scale, since we are interested in profit inefficiency, we
assume that the technology is characterized by variable returns
to scale, VRS, guaranteeing that at least one profit maximizing
input-output bundle exists and belongs to 35(T).

Let us also assume that common positive market prices for each
input and each output are known, (w, p) € RMN. Then the profit
function is defined as:

H(W,p)=H}§VX{p-y—W-X:(x,y)eT} (2)

Profit inefficiency of firm (x;,y;), j = 1...J, denoted by
[TI(xj,y, w, p), measures the difference between maximum profit,
[T(w, p), and observed profit: T1; = p-y; —w-x;. That is:

I(xj,y5,w, p) =TI(w,p) = (p-y; —w-x;),j=1,....] 3)

For any firm j, ITI(x;,y;, w, p) > Og:, where $ denotes the mon-
etary unit (currency) in which profit is denominated—if (x;,y;) is
a profit maximizing firm, then I1I(x;,y;, w, p) = Os.

Let us now assume that we are considering a graph inefficiency
measure G that allows calculating the technical inefficiency of firm
Js TIG(xj,yj); i.e., DDF, Holder, ERG (or SBM), WADF, etc. For each
firm (x;,y;) these measures yield the value of technical ineffi-
ciency, which is a dimensionless number, and identifies a projec-
tion, ()25?,375?) that belongs to either 3% (T) or 85(T) of the produc-
tion possibility set.

The profit inefficiency of (}?J(?, 37?) is given by

MI(RS, 96, w, p) = (W, p) — (p-¥§ — w-X§) = TT(x;,y;, w, p)
—(p-3/°+w-5°). (4)

where (§ N G,s‘jf ) is the vector of input and outputs slacks, corre-
sponding to the L;-path connecting the firm under evaluation and

its projection: >?1G =xj -5 G,ﬁ? =Y +§]TG, j=1,...,J* Finally, sub-
stituting (4) into (3) and simplifying delivers®

Hl(xj,yj, w, p) = (w . 575 +p- 575) + 1'[1(2??,)7?, w, P) (5)

This expression represents the general direct approach, GDA,
showing that profit inefficiency decomposes into the sum of two
terms expressed in the same monetary values: the price value of

4 This L;-path can always be calculated for any type of measure, multiplicative or
additive.

5 The rearrangement of the two terms of the GDA profit inefficiency decompo-
sition in (5) facilitates its future comparison with the equality associated with the
traditional profit inefficiency decomposition.
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the slacks (w-s‘jfG +p- s‘}rc) and the profit inefficiency of the pro-
jection, HI()??,J??,W, p). The above decomposition of profit inef-
ficiency can be interpreted in terms of the usual technical and
allocative components. The profit value of the slacks provides a
natural measure of technical inefficiency, i.e., (w-s‘jfc +p-s‘}rc) =
TIUSPA(x;, v, w, p), while the profit inefficiency of the projection
corresponds to the profit loss due to allocative inefficiency, i.e.,
1'[1()?]@,57]5, w, p) = ATTIEPA(x;, y;, w, p).
Consequently, expression (5) can be equivalently rewritten as

T (x;,y;, w, p) = TIUE™ (x;, yj, w, p) + AT (x;, ;. w, p) ~ (6)

2.1. Comparing the general direct and traditional decompositions of
profit inefficiency

It is possible to derive an equality like (6) for the traditional
profit inefficiency decompositions based on any of the technical
inefficiency measures, G, surveyed in the introduction. The tra-
ditional approach relies on duality theory to derive a Fenchel-
Mabhler inequality according to which normalized profit inefficiency
is greater or equal than the specific technical inefficiency measure
G. In the traditional decompositions the second allocative profit
term is retrieved as a residual and, generally speaking, it is un-
related to its projection on the frontier with only one remarkable
exception, the DDF, that we discuss later on.

Given a graph technical inefficiency measure TIG(xj, y j), the tra-
ditional approach generates the following Fenchel-Mahler inequal-
ity for firm (x;,y;):

T (%}, yj, W, p) = Tle(x;, y;)NFE*(x;, v, p. w) (7)
where the normalizing factor appears multiplying technical ineffi-
ciency in the right-hand side instead of dividing profit inefficiency
in the left-hand side, as usually presented. In expression (7)
profit inefficiency is once again expressed in monetary units,
and the right-hand side term is the product of the technical
inefficiency TIG(xj,yj), which is a nonnegative number, and the

corresponding traditional normalization factor NFGTRA(xj, Y w. D),
which is positive and expressed in the same monetary units
as profit inefficiency. Their product is defined as the tradi-
tional technical profit inefficiency TIIZR(x;.y; w.p), which
is the counterpart of the profit technical inefficiency term of
the GDA decomposition (6). Expression (7) can be transformed
into an equality that defines the traditional profit inefficiency
decomposition by retrieving as residual its second component,
corresponding to the traditional allocative profit inefficiency; i.e.,
ATHERA (x;, v w, p) = TII(Xj. yj. W, p)—TIG(xj,yj)NFGTRA(x].,yj, D, w).
Hence, the traditional decomposition of profit inefficiency corre-
sponds to:

T (x;,yj, w, p) = TIUER (x;, v, w, p) + ATUER (x, 5, w, p)  (8)

Formally, the structures of the general and traditional ap-
proaches, (6) and (8), are equal, although the two terms of both
right-hand sides are frequently different for the subset of ineffi-
cient firms. This mismatch emerges because expression (7), which
is defined as an inequality, makes the traditional normalization
factor liable to undervaluation, in which case the same happens
to TTTILRA(x;, y;. w. p). This does not happen in the GDA approach
based on an equality, where its technical component is as large as
possible, since it is based on the slacks that connect each firm with
its frontier projection.

2.2. Normalized decompositions of profit inefficiency

Based on the previous relationships, it is possible to con-
sider the traditional decomposition of normalized profit ineffi-
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ciency. Dividing profit inefficiency by the above normalization fac-
tor NFGT RA(x]., yjpw. p) one can define a Fenchel-Mahler inequality
by which normalized profit inefficiency is greater than or equal to
technical inefficiency. The advantage of the normalized decompo-
sition over its unnormalized (monetary) counterpart is that it is
units’ invariant, satisfying the so-called commensurability property.
Reformulating (7) and adding a second term to the technical ineffi-
ciency on the right-hand side by closing the inequality—namely the
residual normalized allocative inefficiency term AI(T;RA(xj,yj, w, p),
we obtain the traditional decomposition of normalized profit inef-
ficiency:

ATIZR(x;, yj, w, )
NFIRA(x;, v W, p)
= Tls(x;.y;) + AL (x;. y;. W, ). (9)

In the same way, we propose a normalized version of the GDA
decomposition, which requires the definition of its associated nor-
malizing factor:

NI (x5, y;. W. B) = Tl(x;.y;) +

(w»§jfc+p§j5
NFGGDA (X], y]’ w, p) ITIG(Xj.éj)
(j > Ug;

) , when Tlg(x;,y;) > 0
, when Tlg(x;,y;) =0
(10)

This expression assigns a positive normalization factor to the
technically efficient firms, which is expressed in the same mone-
tary units as profit inefficiency.

Dividing expression (5) by NF¢PA(x;,y;.w.p), we define the
normalized GDA profit inefficiency decomposition as follows:

Mi(x;.y;.w.p) \
NFGGDA(Xj’yj’ w. p) - TIC(XJ"yJ)

1.9 w.0)
NFEPA(x;,yj.w. p)’

NTIIE™ (x;.yj. W, p) = (

(11)
where the last term is identified as allocative
AIgDA(xj,yj,vT/, p).

Previous papers in the literature have already dealt with tradi-
tional profit decompositions by using various normalization factors
(see, for example' [1,4,12,21]). In our case, the normalization fac-
tor is general and can encompass any graph technical inefficiency
measure G.

inefficiency

2.3. Implementing the general direct approach

2.3.1. The case of the enhanced Russell graph measure, ERG

To implement the general direct approach, one needs to choose
first a technical inefficiency measure. We decide on the additive
ERG measure, which is defined as:

1 s

TEERG(styj):Eglsg N - |(Xj—sj_,yj'+S;)ET (12)
T+y 250
n=1""

An appealing feature of the ERG is that it projects firms to the
strongly efficient subset of the of technology d5(T) and therefore
their benchmarks comply with the notion of Pareto—Koopmans
efficiency. This is not the case for measures projecting firms to
W (T), where individual input reductions and output expansions
may still be feasible—as the DDF discussed below.

The traditional profit inefficiency decomposition for the ERG
measure was recently proposed by Aparicio et al. [6], who formu-
lated the corresponding Fenchel-Mahler inequality, showing that
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its specific normalizing factor is:

1 N §4'-ERG
NERE (xj. v pow) = [ 1+ ;fjn :
n=1

min {MWlxj'] s ey MWMX]‘M, Np]y]'1 s ey NpN.y]N} (13)

Based on the formulation of the ERG technical efficiency (12),
TEERC(xj,y].) € [0,1], see Pastor et al. [22], so its associated techni-
cal inefficiency, with range]0,1], is defined as follows:

M &ERG

1 s 1
M2 % TN
m=1

ij

N &+ERG
s

.an

n=1

Tler (%;: ¥;) = 1= TEer(x;, ;) =

N &+ERG
S

.yjn

1+ 5§

n=1

(14)

Consequently, the right-hand side expression of the spe-
cific Fenchel-Mahler inequality (7), which corresponds to

TTUIRA (x;, yj, W, p) = TIERG(Xj,yj)NFETRRGA(Xj,y]-, p,w), is  equal
to
1 M g—ERG 1 N SHERG
Mo vt N > - N G+ERG
m=1 "’ n=1 "’ 1 1 jn
+7
1 N %ERG N —t yjn
1+N Z Vin -
n=1
-min {MwiXj1. ..., MWyXjy. Np1Yj1. ... Npyin})
B 1 N s;nﬁERC+1 N s}rn*ERG
Mn:l xjm Nn:l yj"
-min {MwiXj1, ..., MWyXjw, Np1Yji, ... NDnyin }- (15)

We enunciate next proposition related to the ERG measure, es-
tablishing three relevant results:

Proposition 1.

1.1 For any firm (x;,y;) of the production possibility set the follow-
ing inequality holds, TTIIRA(x;, y;, w, p) < TIISRA(x;,y;. w, p),
or, equivalently, ATIITRA (x;, y;, w, p) > ATIISRA (x;, y;, w, p).

1.2 In particular, any efficient firm satisfies Tﬂlggé(xj,yj, w, p)=
THIg}gé‘(xj,yj, w,p), or, equivalently, ATUIRA(x; y; w. p)=
ATLIgge (xj,yj, w, p).

1.3 Moreover, for any inefficient firm (x;,y;), the equality
TIIRA(x;. y ;. w. p)= TTTERA (x;. yj. w. p) holds if, and only if, the
next chain of equalities holds:Mw1xj;... = MwyXjyy = Np1yjq... =
Npnyjny = min{Mw1x;q, ..., MWyXjp, Np1Yj1. ... NPNY jn}-

If all inefficient firms have a common subset of zero-valued in-
put or output slacks, the corresponding inputs and outputs can be
dropped from the last chain of equalities.

Proof. See Appendix 1

The chain of equalities required for the latter result 1.3 are
highly demanding, making it unlikely that inefficient firms satisfy
them. This explains why the traditional approach to decompose
profit inefficiency normally underestimates the technical profit in-
efficiency value of the subset of inefficient firms. Furthermore,
since similar requirements can be established for other additive
technical efficiency measures, e.g., the additive model by Charnes
et al. [23] and its weighted variants, this is a pervasive result
plaguing the traditional approach to decompose profit inefficiency.

From Proposition 1, for any firm, the technical profit ineffi-
ciency of the traditional approach is always smaller than or equal
to the technical profit inefficiency of the GDA approach, which
implies that the traditional normalization factor is always smaller
than or equal to the GDA normalization factor: NFETRR({‘ (*j,¥j, W, p)

< NESPA(x;. y;. w. p).
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Table 1
Descriptive statistics. Input and output quantities, Taiwanese banks, 2010.
Inputs Outputs
X1 X2 X3 Y1 Y2
Average 795,536 3826 13,393 196,808 609,489
Median 428,995 3146 8721 157,870 328,574
Max. 3171,493 9538 76,576 904,580 2091,100
Min. 25,019 202 505 1681 66,947
Stand. Dev. 768,008 2729 15,185 215,063 582,854

Source: Juo et al. [24].

2.3.2. The case of the directional distance function, DDF

However, it is worth mentioning that the additive directional
distance function is the only known technical inefficiency mea-
sure that gives rise to the same profit decomposition regardless
the generalized direct or traditional approach, as next proposition
establishes:

Proposition 2. The directional distance function, DDF, always sat-
isfies that its traditional and GDA profit inefficiency decomposi-
tions are equal, which is equivalent to saying that the equality
TTUTRA (x;. y ;. w. p) = TTISPA (x;. y;. w, p) holds for any firm *;.y))
of the production possibility set. Moreover, any graph measure G that
satisfies last conditions is necessarily a DDF.

Proof. See Appendix 2

Nevertheless, the choice of the directional distance function im-
plies that firms may be projected to the weakly efficient subset of
the technology 0% (T), resulting in the underestimation of techni-
cal inefficiency and, equivalently, overestimation of allocative inef-
ficiency. Therefore, while the use of the DDF ensures that profit
technical inefficiency is not underestimated in the traditional ap-
proach due to the particular specification of the normalization fac-
tor, it may still be underestimated if the projected benchmark does
not belong to the strongly efficient frontier, W (T).

Regarding the normalized versions of the general direct and
traditional approaches, we establish an interesting result between
their corresponding normalization factors.

Proposition 3. For any graph directional distance function, DDF, its
GDA and traditional normalization factors are equal. Moreover, any
graph measure G that satisfies the mentioned condition is necessarily
a DDE.

Proof. It is derived from the proof of Proposition 2.
3. An application: Taiwanese banking industry

We illustrate the monetary and normalized GDA and traditional
models resorting to a set of 31 Taiwanese banks observed in 2010,
previously studied by Juo et al. [24]. A complete discussion of the
statistical sources and variables specification can be found there.6
Table 1 presents descriptive statistics for these variables. Regarding
the technology and interrelations between inputs and outputs, the
variables reflect the so-called intermediation approach suggested
by Sealey and Lindley [25], whereby financial institutions, through
labor and capital, collect deposits from savers to produce loans and
other earning assets for borrowers. Inputs are financial funds (x;),
number of employees (x,), and physical capital (x3). The output
vector includes financial investments (y;) and loans (y,). Monetary
variables are measured in millions of New Taiwan Dollar (TWD).
The unit prices of inputs include average interest paid per TWD of

6 We are grateful to these authors for sharing the data. The same data set
has been used to illustrate symmetric decompositions of cost variation by Balk
and Zofio [38], and the decompositions of total factor productivity change using
quantities-only and price-based indices by Balk [39].
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financial funds (w;), the ratio of personnel expenses to the num-
ber of employees (w,), and the non-labor operational cost (opera-
tional expenses net of personnel expenses) per TWD of fixed as-
sets (ws3). The unit prices of outputs correspond to average interest
earned per TWD of investment (p;), and average interest earned
per TWD of loan (p,). Common input and output prices are calcu-
lated as unit values; that is, individual costs and revenues divided
by quantities. Inputs prices are w;=0.0064, w,=1.2586, w3=0.3171,
while output prices are p;=0.0349 and p,=0.0211.

We first calculate and decompose the monetary GDA and tra-
ditional profit inefficiency models based on the ERG (or SBM). The
ERG measure is calculated using Data Envelopment Analysis (DEA)’
techniques as shown in program (4) in Pastor et al. [22]. Table 2
presents both decompositions, where profit inefficiency, expressed
in million TWD, is common to the GDA and traditional approach.
The GDA decomposition—expressions (5) and (6), is reported in
columns 2 thru 4. As for the traditional approach based on
Fenchel-Mahler inequalities, its decomposition—expression (8)—is
reported in columns 5 thru 8. The Bank of Taiwan (#2) maximized
profit efficiency, i.e., its profit inefficiency value is null, and there-
fore it is technically and allocatively efficient, constituting the eco-
nomic benchmark for the remaining banks. A total of 11 banks
were technically efficient (out of 31), while the rest were tech-
nically and allocatively inefficient. It is easy to observe that, as
stated in Proposition 1.1, the value of the technical profit ineffi-
ciency corresponding to the traditional approach is smaller than
or equal to that of the generalized approach. As anticipated in
Section 2.3.1 equality is verified for the previous 11 technically ef-
ficient firms, while a strict inequality is observed for the remain-
ing 20 banks, implying that the condition stated in Proposition 1.3
is not met. Consequently, the traditional approach underestimates
the technical profit inefficiency, preventing banks from exploiting
the potential production frontier, while overstating, in the exact
same amount, the allocative profit inefficiency, which is associated
to suboptimal mixes of input demands and output supplies given
their market prices. Managers of these banks could had been mis-
led by the source of profit inefficiency, which may had resulted in
wrong efficiency enhancing strategies. For example, for bank #11,
technical profit inefficiency is underestimated in $4964.9 million
TWD ($15,021.2—$10,056.4), which represent 23.7% of the overall
profit inefficiency ($4964.9/$20,955.5 x 100) and as much as 33.1%
of the GDA technical profit inefficiency value ($4964.9/$15,021.2 x
100). As many as six banks present two-digit deviations in per-
centage points. Therefore, we observe that the discrepancy can be
substantial. Generally, the average disparity in the measurement of
technical profit inefficiency in the whole industry amounts 6.4% of
overall profit inefficiency.

We observe considerable inefficiency dispersion across banks
and different patterns of technical and allocative efficiency. To pro-
vide some insights about individual performance we discuss the
best five and worst five performing banks in terms of profit effi-
ciency and its components. The profit efficient Bank of Taiwan (#2)
is followed by Cooperative Bank (#6), First Bank (#7), Land Bank
(#5), and Hua Nan Bank (#8). All these banks, except the last one,
were technically efficient, showing that the main cause of profit
loss for the top performing banks is allocative inefficiency. Further-
more, all these banks were publicly owned, suggesting that some
of the weaknesses associated to profit maximization in public en-
terprises were not at play in the Taiwanese banking sector; e.g.,
multiplicity of objectives—like securing employment levels, higher
pressure from political parties and lobbies, weaker budget con-
straints since central banks acts as lenders of last resort, or dis-

7 Cook et al. [40] addressed several problems in the context of DEA such as model
orientation, input and output selection/definition, the use of mixed and raw data,
and the number of variables to use versus the number of DMUs.
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Table 2
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Monetary General Direct Approach and Traditional decompositions of profit inefficiency based on the ERG measure.

Economic inefficiency (GDA)

Economic inefficiency (TRA)

Profit Ineff. Tech. Profit Ineff. Alloc. Prof. Ineff. Profit Ineff. Tech. Prof. Ineff. Allocative Ineff.
Bank TI(x;.y;, w, p) TIUSRA(xj.yj. w,p)  ATHUERA(x;.yj. w.p)  TI(x;.y;. w,p) TR (%, y;. w.p)  ATIZRA(x;, y;, W, p)
Export-Import Bank 19,908.3 0.0 19,908.3 19,908.3 0.0 19,908.3
Bank of Taiwan 0.0 0.0 0.0 0.0 0.0 0.0
Taipei Fubon Bank 8922.1 0.0 8922.1 8922.1 0.0 8922.1
Bank of Kaohsiung 20,216.3 4149.9 16,066.5 20,216.3 41241 16,092.2
Land Bank 3396.7 0.0 3396.7 3396.7 0.0 3396.7
Cooperative Bank 1603.6 0.0 1603.6 1603.6 0.0 1603.6
First Bank 3202.5 0.0 3202.5 3202.5 0.0 3202.5
Hua Nan Bank 7981.6 5248.7 27329 7981.6 4919.3 3062.3
Chang Hwa Bank 13,550.2 8864.5 4685.7 13,550.2 7367.4 6182.9
Mega Bank 1791.2 0.0 1791.2 1791.2 0.0 1791.2
Cathay United Bank 20,955.5 15,021.2 5934.3 20,955.5 10,056.4 10,899.2
The Shanghai Bank 14,638.4 27733 11,865.1 14,638.4 22541 12,384.4
Union Bank 24,839.3 11,277.2 13,562.1 24,839.3 8262.0 16,577.3
Far Eastern Bank 12,052.0 0.0 12,052.0 12,052.0 0.0 12,052.0
E. Sun Bank 12,220.6 3361.8 8858.8 12,220.6 2933.9 9286.6
Cosmos Bank 24,409.6 7164.9 17,244.7 24,409.6 4008.8 20,400.8
Taishin Bank 20,760.0 11,5213 9238.8 20,760.0 9455.7 11,304.4
Ta Chong Bank 18,916.4 4897.4 14,018.9 18,916.4 1768.1 17,148.2
Jih Sun Bank 21,933.0 6472.0 15,461.0 21,933.0 5724.1 16,209.0
Entie Bank 20,925.3 5875.9 15,049.4 20,925.3 4835.9 16,089.4
China Trust Bank 14,248.8 0.0 14,248.8 14,248.8 0.0 14,248.8
Sunny Bank 23,815.2 8567.9 15,247.3 23,815.2 5915.1 17,900.1
Bank of Panhsin 23,693.5 7535.6 16,157.9 23,693.5 5265.8 18,427.7
Taiwan Business Bank 13,339.1 44941 8845.0 13,3391 3708.7 9630.4
Taichung Bank 20,773.8 6959.4 13,814.4 20,773.8 6856.9 13,916.9
China Development 17,244.7 0.0 17,244.7 17,244.7 0.0 17,244.7
Hwatai Bank 21,469.5 4739.0 16,730.6 21,469.5 4520.8 16,948.7
Cota Bank 21,642.4 3945.5 17,696.9 21,642.4 3183.0 18,459.3
Industrial Bank of 20,302.6 0.0 20,302.6 20,302.6 0.0 20,302.6
Taiwan
Bank SinoPac 11,687.0 3960.5 7726.4 11,687.0 2044.6 9642.4
Shin Kong Bank 22,591.6 10,790.1 11,801.5 22,591.6 9268.2 13,3234
Average 15,581.6 4439.4 11,1423 15,581.6 3434.6 12,147.0
Median 18,916.4 4149.9 12,052.0 18,916.4 3183.0 13,3234
Maximum 24,839.3 15,021.2 20,302.6 24,839.3 10,056.4 20,400.8
Minimum 0.0 0.0 0.0 0.0 0.0 0.0
Std. Dev. 7590.8 42334 5882.6 7590.8 3275.0 6141.8

parate incentives structures away from financial performance (pub-
lic banks are indicated in italics in Tables 2 and 3). This result is
in accordance with the findings of Juo et al. [24], who further dis-
cuss the good performance of these public banks in terms of key
financial indicators such as ‘non-performing loan (NPL) ratio’, ‘net
income before taxes to asset (NIBT/A) ratio’, and ‘NBIT/employee
(NIBT/E) ratio’. The last two ratios are highly related to the outputs
and inputs used in the study. We also refer the reader to their ar-
ticle to gain insights about the individual course of some of these
banks that may had favored their good performance, e.g., mergers
and acquisitions favoring the realization of economics of scale and
scope.

Regarding the worst five performing banks, we find Union Bank
(#13), Cosmos Bank (#16), Sunny Bank (#22), Bank of Panhsin
(#23) and Shin Kong Bank (#33). As opposed to their best per-
forming counterparts, these banks exhibit both technical and al-
locative inefficiency. Besides being privately owned and enduring a
small production scale, most of these banks were either newly es-
tablished or transformed from credit cooperatives into commercial
banks. In this regard the adjustments required to start the enter-
prise or complete the necessary transition to a commercial setting
seem to have hampered their financial performance. This is also
confirmed from the financial perspective of the above key perfor-
mance indicators which were well above the industry average for
‘non-performing loans’ and below for the ‘net income before taxes
ratio’, either to assets or employees.

The monetary decompositions of profit inefficiency do not com-
ply with the commensurability property. Relying on the normal-
ized versions of the GDA and traditional profit inefficiency we en-
sure that our results are units’ invariant. Normalized profit inef-
ficiency along with its technical and allocative inefficiency terms
are reported in columns 2 thru 4 in Table 3. As for the traditional
decomposition, we calculate for each firm its specific ERG normal-
izing factor, see (13), and report the corresponding profit, tech-
nical and allocative inefficiency values in columns 5 thru 8. We
observe that technical inefficiency is common to both approaches
as they share the same measure, while the values of normalized
profit and allocative inefficiencies differ for technically inefficient
firms due to different normalization factors: NFETRRé“(xj, Yj»w, p)
< NFE%%A(Xj, Yj, w, p). Regarding the normalized profit inefficiency
values, these are shown in columns 2 and 5. Consistent with the
monetary decomposition, the second bank maximized profit effi-
ciency, so its generalized and traditional profit inefficiencies are
null. Again, a total of eleven banks were technically efficient. For
the technically inefficient firms, and given the direction of the in-
equality in the respective normalization factors above, we observe
that normalized profit inefficiency is greater in the traditional ap-
proach than in the generalized approach, with the amount in ex-
cess being attributed to allocative inefficiency. Profit and allocative
inefficiency are overvalued for all 20 inefficient banks, represent-
ing just 8.4% of average profit inefficiency in the GDA approach
(=0.435/5.605 x 100). However, in some cases, the disparity in the
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Table 3
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Normalized General Direct Approach and Traditional decompositions of profit inefficiency based on the ERG measure.

Economic inefficiency (GDA)

Economic inefficiency (TRA)

Profit Ineff. Technical Ineff. Allocative Ineff. Profit Ineff. Technical Ineff. Allocative Ineff.
Bank NTTISRA (%}, y;. W, B) Tler (%}, ¥;) AIGRA (%}, y;. W, P) NTZRA (o, Yo, W, P) Tlere (x5, ¥;) AITRA (x5, y;, W, P)
Export-Import Bank 91.207 0.000 91.207 91.207 0.000 91.207
Bank of Taiwan 0.000 0.000 0.000 0.000 0.000 0.000
Taipei Fubon Bank 0.776 0.000 0.776 0.776 0.000 0.776
Bank of Kaohsiung 3.814 0.783 3.031 3.838 0.783 3.055
Land Bank 0.214 0.000 0.214 0.214 0.000 0.214
Cooperative Bank 0.050 0.000 0.050 0.050 0.000 0.050
First Bank 0.147 0.000 0.147 0.147 0.000 0.147
Hua Nan Bank 0316 0.208 0.108 0.337 0.208 0.129
Chang Hwa Bank 0.556 0.364 0.192 0.669 0.364 0.305
Mega Bank 0.139 0.000 0.139 0.139 0.000 0.139
Cathay United Bank 0.827 0.593 0.234 1.236 0.593 0.643
The Shanghai Bank 1.359 0.257 1.101 1.672 0.257 1.414
Union Bank 2.056 0.934 1.123 2.807 0.934 1.873
Far Eastern Bank 4.437 0.000 4.437 4.437 0.000 4.437
E. Sun Bank 0.790 0.217 0.573 0.905 0.217 0.688
Cosmos Bank 3.366 0.988 2.378 6.016 0.988 5.028
Taishin Bank 0.959 0.532 0.427 1.168 0.532 0.636
Ta Chong Bank 1.607 0.416 1.191 4.450 0.416 4.034
Jih Sun Bank 2.754 0.813 1.941 3.113 0.813 2.301
Entie Bank 2.619 0.735 1.883 3.182 0.735 2.446
China Trust Bank 0.556 0.000 0.556 0.556 0.000 0.556
Sunny Bank 2.665 0.959 1.706 3.860 0.959 2.902
Bank of Panhsin 3.086 0.981 2.104 4.416 0.981 3.435
Taiwan Business Bank  0.829 0.279 0.549 1.004 0.279 0.725
Taichung Bank 2.617 0.877 1.740 2.656 0.877 1.779
China Development 14.870 0.000 14.870 14.870 0.000 14.870
Hwatai Bank 4.343 0.959 3.385 4.553 0.959 3.594
Cota Bank 5.169 0.942 4.227 6.407 0.942 5.465
Industrial Bank of 19.067 0.000 19.067 19.067 0.000 19.067
Taiwan
Bank SinoPac 0.669 0.227 0.442 1.296 0.227 1.069
Shin Kong Bank 1.898 0.906 0.991 2.210 0.906 1.303
Average 5.605 0.418 5.187 6.041 0.418 5.622
Median 1.607 0.279 1.101 2.210 0.279 1.414
Maximum 91.207 0.988 91.207 91.207 0.988 91.207
Minimum 0.000 0.000 0.000 0.000 0.000 0.000
Std. Dev. 16.407 0.398 16.490 16.339 0.398 16.414

allocative inefficiency can reach three orders of magnitude, as for
bank #18, whose profit or allocative inefficiency in excess, 2.843
(4.034-1.191) represents 238.8% of the allocative inefficiency un-
der the GDA (2.843/1.191 x 100), and 177.0% of overall profit inef-
ficiency (2.843/1.607 x 100).

These discrepancies confirm the concerns raised about the char-
acterization of profit inefficiency and its decomposition using the
traditional approach. We further study the (dis)similarity between
the normalized profit (or allocative) inefficiencies under the tra-
ditional and general approaches. We look first at their ranking
compatibility by means of Kendall's tau-b correlation (handling
ties) and second, relying on kernel density estimations, determine
whether the two profit inefficiency distributions are equal or not ac-
cording to the test proposed by Simar and Zelenyuk [26]—which is
an extension of the nonparametric test for the equality of two den-
sities of Li [27]. Their Kendall correlation is 0.891, which is signifi-
cant at the 5% level. Although this value suggests that the ranking
compatibility is relatively high, the value of the Li test also con-
firms that there is a significant statistical difference between the
two models at the same significance level.

4. Conclusions

We introduce a new method to decompose profit inefficiency,
identified as the General Direct Approach (GDA) that, based on
equalities, identifies a technical profit inefficiency term and an al-
locative profit inefficiency term. The advantage of the new ap-
proach is that its decomposition in monetary terms with re-

spect to the technical profit inefficiency does not depend on
the normalization factor as the traditional approach does. In-
deed, as we prove theoretically and illustrate in the empirical
application—considering the enhanced Russell graph measure as
underlying technical efficiency, when both approaches differ for
technical inefficient firms, the traditional approach undervalues
(overvalues) the value of profit technical (allocative) inefficiency.
Last sentence can be reformulated in terms of the normalizing fac-
tors, which may be underestimated by the traditional approach for
technically inefficient firms, giving rise to different general and tra-
ditional decompositions. Moreover, the GDA satisfies by construc-
tion the essential property which requires that the allocative inef-
ficiency of the firm under evaluation is null when projected to a
profit maximizing benchmark—a property that traditional decom-
positions based on relevant technical inefficiency measures fail to
satisfy [8]. As a result, we advocate for the use of the general direct
approach to prevent the discrepancies detected in the traditional
approach and perform reliable comparisons of profit inefficiency
and its sources across firms. Besides, it can be adapted for any
(in)efficiency measure and eases the calculation and decomposition
of profit inefficiency in light of already existing or newly proposed
measures, whose duality results, necessary to obtain the Fenchel-
Mabhler inequalities and their associated normalizations factors, are
more complex and need to be developed explicitly, whereas our
approach, although requiring duality criteria implicitly, offers an
easier approach to obtain the normalization factor. Duality refers
to the methods allowing to relate price measures of economic ef-
ficiency with quantity measures of technical efficiency, and there-
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fore the GDA approach falls within this theoretical framework. We
have also established that both approaches are equivalent when
the directional distance function is used as measure of technical
inefficiency. Therefore, despite this measure projecting firms to the
weakly efficient subset of the technology, it is superior to other al-
ternative measures when resorting to the traditional approach to
decompose profit inefficiency. From a managerial perspective, the
unnormalized version of the general direct approach would be rec-
ommended since both the technical and allocative terms are ex-
pressed in monetary units and therefore easier to interpret. Nev-
ertheless, being dependent on the units of measurement, the nor-
malized version is also available for economic efficiency studies in-
volving, for example, firms belonging to countries with different
currencies.

We finish with a relevant remark and further venues of re-
search. First, we focus on the additive decomposition of profit in-
efficiency defined in difference form, i.e., as maximum profit less
observed profit. Therefore, we leave out possible decomposition
based on multiplicative measures such as the generalized distance
function proposed by Chavas and Cox [28] or the geometric dis-
tance function by Portela and Thanassoulis [11], which fall outside
the objectives of this paper, since they cannot be related by dual-
ity to the profit function. However, a similar study analyzing the
functioning of multiplicative measures should be welcome. Also,
one interesting extension of our new model would be to consider
the case of different prices across firms. In the literature reviewed
in the introduction, as well as in our proposed general direct ap-
proach, it is customarily assumed that firms face common input
and output prices that are exogenously determined in perfectly
competitive markets, i.e.,, firms are price takers. However, under
imperfectly competitive markets firms may exhibit different prices.
In this case one can think of price changes as yet another strategy
available to the firms to improve economic efficiency. In a cost effi-
ciency framework Camanho and Dyson [29] suggest different mod-
els allowing firms to reduce their observed input prices by mir-
roring those of their peers, while Portela and Thanassoulis [30]
propose a more general model that simultaneously reduce input
quantities (resulting in technical savings) and input prices (price
savings). Very recently, Boussemart et al. [31] introduced a new
model, assuming different prices across firms, decomposing first
cost efficiency as the product of a price effect and a quantity ef-
fect, and ending with a similar decomposition for profitability effi-
ciency (which is defined as revenue to cost). From the perspective
of either the general direct approach or the traditional approach
the existence of different prices represents yet another source of
variation resulting in firm-specific normalization factors, hamper-
ing the comparability of profit inefficiency and its components be-
tween firms.

Other possible extensions could be the application of our ap-
proach and decomposition of profit inefficiency in the context of
Network DEA ([32], and [33]).
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Appendix 1. Proof of Proposition 1. We only prove the
relationships between technical profit inefficiencies since the
association between allocative profit inefficiencies can be
trivially derived from them

11 TR (xj.y ;. w. p) = TIERG(styj)NFET;gR(?(XwY'a p,w) with Tlggg

Sme L 15N S TRA
=1 X N 2n=1 Yin and NEgé (X' Y P, w)
= min{Mw1Xj1. .... MWyX . Nplyﬂ,...,NpNyjN} Then, NFJRA
(XY p,W) <MWiXjm,  ¥m, and  NERA(x;.y;. p.w) <

Np1yﬂ, Vn. This implies that nggg(xj yj. w,p) =

¢—ERG ERG
Z NELRA (%, . pw)S ;T Z NERA (x,.y; pw)SH _1
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>N 1pnA+ERG TTUSRA(Xj.y . W, p).

1.2 If (x y) is technically efficient under the ERG, then
SLERG “JJ’HERG 0,Ym.n and Tlge(x;.y;) = 0. This 1mplles that

THIEEg(x],y], w, p) =0 and THIETI’gé(x],y], w,p) =
1.3 From the proof of 1.1, for a technically inefﬁcient firm
(x;y;), ie, a firm such that 3m such that sJERG>O

andjor 3n such that sj*ERG >0,
ing the equality TIIIR(x; y; w.p)= Tnlggg(xj,yj,w, p)
is. that Mwixj; = ... = MwyX;y = Np1yj1  =...=Npyyjn-=
min{MwX;q, ..., MWyXjp, Np1Yj1, ... NPy jn}

the only way of hav-

Appendix 2. Proof of Proposition 2

Regarding the first result, by Chambers et al. [1],
TIUIRA (x;, v, w. p) = Tlppr (xj.yj:&;.8)(W-&; +P-&}).
—DDF

In the case of the DDF, we have the relatlonshlp 5

Tlppr (X, Y: &5 . 818} and §]+DDF_TIDDF(X]' Vi &;-80)8;
Therefore, THITDF(x] Yj. W, p) =w- s]*DDF+p stDDE - which
is, by definition, equal to TIISPA(x;.y;. w, p). As for
the second result, let G be any graph measure satisfy-
ing  TIIIRA(x;.y;. w,p) = THISPA(x;, y;, w. p).  Given  that,

by definition, TIEPA(x;.y;,w.p) = W'§fc+p'§fc and
TAM (. yjw.p) = Tlo(x;.y )NFIF (x;. ;. w. p),  we
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