UNIVERSIDAD MIGUEL HERNÁNDEZ

GRADO EN MEDICINA

TRABAJO DE FIN DE GRADO EN MEDICINA

TRIAJE EN URGENCIAS EN LOS PACIENTES CON INSUFICIENCIA CARDIACA AGUDA. RELACIÓN CON EL PRONÓSTICO A CORTO Y LARGO PLAZO.

Autora: Piñero Rubio Tatiana

Tutor: Pere Llorens Soriano

Cotutor: Chico Sánchez, Pablo

Departamento y área: Medicina clínica

Curso académico 2024-2025

Convocatoria de Junio

ÍNDICE

RESUMEN	3
ABSTRACT	4
INTRODUCCIÓN, HIPÓTESIS DE TRABAJO Y OBJETIVOS	6
MATERIAL Y MÉTODOS	14
DISEÑO DEL ESTUDIO	14
SUJETOS A ESTUDIO	14
Variables de resultado	15
ANÁLISIS ESTADÍSTICO	16
RESULTADOS	17
DISCUSIÓN	19
LIMITACIONES DEL ESTUDIO	23
IMPLICACIONES PRÁCTICAS	24
OPTIMIZACIÓN DE LA GESTIÓN ASISTENCIAL	24
MEJORA DE LA PRÁCTICA CLÍNICA DIRECTA	25
ESTRATEGIAS DE PREVENCIÓN DE REVISITAS	25
FORMACIÓN	25
CONCLUSIÓN	25
REFERENCIAS BIBLIOGRÁFICAS	27
ANEXO I. TABLAS	30
ANEXO II. INFORME DE EVALUACIÓN DE INVESTIGACIÓN RESPONSARI	F (COIR) 34

Resumen

La insuficiencia cardíaca aguda (ICA) constituye una de las principales causas de atención en los servicios de urgencias hospitalarios (SUH), especialmente en pacientes de edad avanzada, y se asocia a una elevada morbimortalidad a corto plazo. La correcta estratificación del riesgo en el momento de triaje es clave para priorizar la atención y optimizar la gestión de los recursos asistenciales.

Objetivo. Evaluar la asociación entre el nivel de prioridad asignado mediante el Sistema de Triaje Manchester (STM) y los desenlaces clínicos a corto plazo en pacientes con ICA atendidos en SUH, valorando su relación con la mortalidad, reconsulta y reingreso a los 30 días, así como la utilidad del sistema como herramienta pronóstica.

Método. Estudio observacional, multicéntrico, de cohortes prospectivo, en el que se incluyeron pacientes atendidos por un episodio de ICA en 52 SUH españoles durante distintos años entre 2008 y 2022. Se analizaron variables clínicas, antecedentes, funcionalidad basal y características del episodio agudo. Los pacientes fueron clasificados en tres grupos según el nivel de prioridad del STM (muy urgentes, urgentes y no urgentes). La variable principal fue la evolución a 30 días: mortalidad, revisita a urgencias o reingreso hospitalario.

Resultados. Se incluyeron 18.929 pacientes, con una edad media de 81 años, predominando las mujeres (55,5%). El 33,1% falleció a los 30 días, el 37,1% realizó alguna revisita y el 60,9% de los que reconsultaron fueron reingresados. Los pacientes clasificados con mayor prioridad presentaron un riesgo significativamente mayor de mortalidad y reingreso. El evento combinado se produjo en el 54,3% de los casos, siendo más frecuente en los grupos más prioritarios. Las comorbilidades como enfermedad renal crónica, demencia e hipofunción física se asociaron con peor pronóstico.

Conclusiones. El STM demuestra utilidad para estratificar el riesgo en pacientes con ICA en urgencias, siendo los niveles de mayor prioridad predictivos de mortalidad y reingresos a corto

plazo. A pesar de sus limitaciones en presentaciones atípicas, el STM puede contribuir a la optimización de la atención y recursos, apoyando decisiones clínicas y organizativas desde el primer contacto en el SUH.

Abstract

Acute heart failure (AHF) is one of the leading causes of emergency department (ED) visits and hospital admissions, particularly among the elderly population, and is associated with high short-term morbidity and mortality. Accurate risk stratification during triage is essential to prioritize care and optimize resource allocation.

Objective. To evaluate the association between triage level according to the Manchester Triage System (MTS) and short-term clinical outcomes in patients with AHF seen in EDs, analyzing its predictive value for 30-day mortality, revisits, and rehospitalizations, and assessing the system's prognostic utility.

Methods. A prospective, observational, multicenter cohort study including patients diagnosed with AHF in 52 Spanish EDs between 2008 and 2022. Clinical variables, comorbidities, baseline functional status, and characteristics of the acute episode were collected. Patients were grouped into three categories based on MTS priority levels (very urgent, urgent, and non-urgent). The primary outcome was 30-day evolution: mortality, ED revisit, or hospital readmission.

Results. A total of 18,929 patients were included, with a mean age of 81 years; 55.5% were women. Thirty-day mortality was 33.1%, ED revisit rate was 37.1%, and 60.9% of those who revisited were readmitted. Higher triage priority levels were significantly associated with increased risk of 30-day mortality and readmission. The composite endpoint occurred in 54.3% of cases and was more frequent in higher-priority groups. Comorbidities such as chronic kidney disease, dementia, and poor functional status were linked to worse outcomes.

Conclusions. The MTS is a useful tool for early risk stratification in patients with AHF in the ED setting. Higher priority levels predict increased short-term mortality and readmissions. Despite some limitations in atypical presentations, the MTS supports both clinical and operational decision-making and contributes to more efficient emergency care for this high-risk population.

Introducción, hipótesis de trabajo y objetivos.

La insuficiencia cardíaca (IC) representa uno de los principales motivos de consulta y hospitalización en los servicios de urgencias hospitalarias (SUH), especialmente en poblaciones de edad avanzada. Según datos epidemiológicos, la IC constituye una de las principales causas de hospitalización no planificada en pacientes mayores de 65 años, asociándose con resultados adversos significativos en esta población.¹

La insuficiencia cardíaca aguda (ICA) se define como la rápida aparición de una serie de síntomas y signos secundarios a una anormalidad en la función cardiaca y se caracteriza por un aumento de la presión capilar pulmonar con signos de congestión pulmonar, aunque en algunos pacientes la presentación clínica puede estar marcada por una disminución del gasto cardiaco y la hipoperfusión tisular. Por lo tanto, requiere atención médica inmediata debido a su potencial riesgo vital.² Se trata de una de las causas más frecuentes de asistencia en los servicios de urgencias hospitalarios (SUH) y constituye el principal motivo de ingreso hospitalario en la población anciana.^(3,4,5)

La ICA se asocia a una alta morbimortalidad, con tasas de reingreso del 30% a los 60-90 días, una mortalidad intrahospitalaria entre el 2% y el 7% y una mortalidad a los 60-90 días que oscila entre el 5% y el 14%.⁶ Además, su impacto en el sistema sanitario es considerable, ya que el 70% del gasto sanitario relacionado con la insuficiencia cardíaca corresponde a sus episodios agudos.⁷ En este contexto, la evaluación rápida y precisa del riesgo clínico resulta fundamental para determinar la prioridad asistencial y optimizar el flujo de pacientes.

Los sistemas estructurados de triaje se han desarrollado como herramientas para la clasificación inicial y la asignación de prioridad asistencial en los SUH. Entre ellos, el Sistema de Triaje Manchester (STM) ha logrado amplia implementación internacional debido a su estructura sistemática y reproducible. (8,9)

El STM, desarrollado inicialmente en Manchester (Reino Unido) en 1994, se fundamenta en un enfoque basado en síntomas para identificar el nivel de urgencia médica. El sistema utiliza 55 diagramas de flujo que orientan la recopilación y análisis de información durante la evaluación inicial. Clasifica a los pacientes en cinco niveles de prioridad diferenciados por colores, basándose en la presentación clínica y en discriminadores específicos, asignando tiempos máximos de espera para la atención médica. Cada color está asociado con un tiempo máximo recomendado para la atención médica: Nivel 1 (Rojo): Atención inmediata (0 minutos), Nivel 2 (Naranja): Muy urgente (10 minutos), Nivel 3 (Amarillo): Urgente. Estable, pero requiere evaluación rápida (60 minutos), Nivel 4 (Verde): Estándar (120 minutos), Nivel 5 (Azul): No urgente (240 minutos).

Estos tiempos objetivo están diseñados para garantizar que los pacientes reciban atención médica dentro de un marco temporal seguro según su condición clínica. El sistema se basa en identificar el problema más urgente presentado por el paciente y asignar la prioridad en consecuencia, independientemente del diagnóstico final.

La aplicación del STM involucra que el personal de triaje, generalmente enfermería, seleccione un diagrama de flujo apropiado basado en el motivo de consulta principal del paciente. A continuación, se evalúan sistemáticamente los discriminadores clínicos (que incluyen signos vitales, nivel de dolor, características del malestar y otros parámetros) para determinar el nivel de prioridad. La formación adecuada del personal resulta fundamental para garantizar la aplicación correcta del sistema, como lo demuestran estudios que señalan que los errores en la asignación de prioridad suelen relacionarse con problemas formativos. 11

En pacientes con sospecha de insuficiencia cardíaca aguda, varios diagramas de flujo del STM pueden ser aplicables, dependiendo de la presentación clínica predominante. Los diagramas más comúnmente utilizados incluyen "Disnea", "Dolor torácico", "Malestar general" y "Adulto indispuesto". ¹² Este último ocupa un papel especial en el sistema, definido como la presentación

no específica de un paciente en urgencias, y diversos estudios muestran que se utiliza con frecuencia en pacientes con quejas inespecíficas a su llegada al servicio de urgencias.¹²

Los discriminadores específicos que suelen determinar la prioridad en pacientes con IC incluyen compromiso de la vía aérea, dificultad respiratoria significativa, saturación de oxígeno, alteración del estado mental, signos de shock, dolor torácico e intensidad del dolor. Estos discriminadores están diseñados para identificar rápidamente pacientes con fisiología comprometida o en riesgo de deterioro clínico.⁹

La evaluación y clasificación de pacientes con IC mediante el STM presenta desafíos particulares.

La presentación clínica de la IC aguda puede ser heterogénea, desde síntomas leves como fatiga o edema periférico hasta manifestaciones graves como edema pulmonar agudo o shock cardiogénico. Además, los síntomas pueden desarrollarse de forma insidiosa, especialmente en pacientes ancianos, donde la presentación típica puede estar ausente o enmascarada por comorbilidades.¹

El estudio TRICA-EAHFE identificó que los pacientes con insuficiencia cardíaca aguda y mayor prioridad según el STM presentaban con más frecuencia edema pulmonar agudo, perfil clínico húmedo-caliente, presión arterial más alta y signos prominentes de insuficiencia cardíaca izquierda. Sin embargo, este mismo estudio señaló limitaciones en la capacidad discriminativa del sistema para predecir resultados adversos en esta población específica.

Otro desafío significativo se observa con el diagrama "adulto indispuesto" del STM, utilizado frecuentemente en pacientes ancianos con presentación no específica. Un estudio observó que los pacientes triados con este diagrama a menudo recibían niveles de prioridad bajos, y notablemente, aquellos que fallecieron durante el periodo de observación hospitalaria habían recibido con frecuencia niveles de triaje bajos. Esto sugiere posibles limitaciones en la sensibilidad del sistema para identificar pacientes con insuficiencia cardíaca grave pero con presentación atípica.

La evidencia científica disponible sugiere una correlación significativa entre los niveles de prioridad asignados mediante el STM y la mortalidad en pacientes con insuficiencia cardíaca aguda, aunque con capacidad predictiva limitada. El estudio TRICA-EAHFE, que evaluó específicamente esta correlación, demostró que, a mayor nivel de prioridad asignado por el STM, mayor era la tasa de mortalidad observada durante la hospitalización y en el seguimiento a corto plazo. ¹³ Sin embargo, la capacidad discriminativa fue estadísticamente significativa pero clínicamente limitada, con áreas bajo la curva ROC entre 0,458 y 0,661, lo que indica una precisión predictiva moderada.

Estudios más generales sobre el STM, no limitados a pacientes con IC, muestran resultados similares. Un análisis de la versión alemana del STM encontró una diferencia sustancial en la supervivencia a 30 días entre las 5 categorías del sistema, con un área bajo la curva para predecir mortalidad a 30 días de 0,613.¹⁴ Esto indica que, aunque el sistema identifica tendencias generales de riesgo, su precisión para predecir mortalidad a nivel individual es modesta.

Otra investigación comparativa señaló que algunos sistemas de triaje de urgencias, incluido el STM, predicen mejor la mortalidad en urgencias que la mortalidad intrahospitalaria.¹⁵ Esto sugiere que el valor pronóstico del STM podría disminuir con el tiempo transcurrido desde la evaluación inicial, posiblemente debido a intervenciones terapéuticas o cambios en la condición clínica del paciente.

La correlación entre los niveles de prioridad del STM y la necesidad de ingreso en unidades de cuidados intensivos muestra resultados variables según los estudios analizados. Para pacientes con insuficiencia cardíaca específicamente, el estudio TRICA-EAHFE encontró una asociación entre mayor prioridad asignada y mayor probabilidad de ingreso en UCI, aunque nuevamente con capacidad predictiva limitada.¹³

Un hallazgo particularmente relevante se observó en relación con el diagrama "adulto indispuesto" del STM, frecuentemente aplicado a pacientes ancianos con presentaciones no

específicas, incluyendo aquellos con IC descompensada. El área bajo la curva para este diagrama y la admisión a UCI en pacientes mayores (≥65 años) fue de 0,631, inferior al 0,730 observado en pacientes triados con diagramas más específicos.¹² Esto sugiere una menor sensibilidad del sistema cuando se utiliza este diagrama genérico, lo que podría afectar la identificación temprana de pacientes con IC que eventualmente requerirán cuidados intensivos.

En contraposición, un estudio que evaluó la versión alemana del STM en una población general de urgencias encontró un área bajo la curva de 0,871 para predecir admisión a UCI,¹⁴ indicando una buena capacidad discriminativa en la población general. Esta discrepancia sugiere que el rendimiento del sistema puede variar según las características específicas de la población estudiada y los diagramas de flujo aplicados.

La evidencia sobre la correlación entre niveles de prioridad del STM y duración de la estancia hospitalaria en pacientes con IC es limitada, pero sugiere una asociación positiva. El estudio TRICA-EAHFE identificó una correlación entre mayor nivel de prioridad y estancias hospitalarias más prolongadas, aunque con capacidad predictiva modesta.¹³

Respecto a los reingresos hospitalarios, el mismo estudio encontró resultados interesantes: mientras que el STM asociaba mayor prioridad con mayor tasa de reconsulta en urgencias, otro sistema de triaje (MAT/SET) encontró que mayor prioridad se asociaba con menor reconsulta en urgencias.¹³ Esta divergencia sugiere que diferentes aspectos de los sistemas de triaje pueden capturar distintos factores de riesgo para eventos recurrentes.

Un hallazgo relacionado proviene del análisis del tiempo puerta-furosemida en pacientes con IC aguda. Un estudio observó que los pacientes con mayor prioridad según el STM recibían tratamiento diurético intravenoso más rápidamente.¹ Aunque no evalúa directamente reingresos, este hallazgo tiene implicaciones potenciales para el pronóstico, dado que estudios observacionales sugieren que la terapia diurética intravenosa administrada en la primera hora de presentación se asocia con resultados favorables en IC aguda.¹

La evidencia disponible sobre la correlación entre los niveles de prioridad del STM y la necesidad de intervenciones específicas urgentes en IC es escasa. Sin embargo, algunos estudios proporcionan información indirecta relevante. La investigación sobre tiempo puerta-furosemida mencionada anteriormente indica que los niveles más altos de prioridad según el STM se asocian con tiempos más cortos hasta la administración de diuréticos intravenosos,¹ una intervención fundamental en el manejo inicial de la IC aguda.

Por otro lado, un estudio que evaluó el STM versión II en relación con la utilización de recursos en urgencias encontró una asociación consistente entre los niveles de prioridad y la utilización de ECG y pruebas de laboratorio. ¹⁶ Aunque este estudio no fue específico para IC, sugiere que el sistema puede predecir adecuadamente la necesidad de pruebas diagnósticas urgentes, que son componentes esenciales en la evaluación inicial de pacientes con sospecha de IC aguda.

La implementación efectiva del STM en pacientes con IC aguda tiene implicaciones significativas para la toma de decisiones clínicas iniciales. La evidencia revisada sugiere que el nivel de prioridad asignado mediante el STM, aunque con limitaciones, puede orientar aspectos críticos de la atención temprana.

Los niveles de mayor prioridad (rojo y naranja) se asocian consistentemente con mayor mortalidad y necesidad de ingreso en UCI, lo que justifica una evaluación médica inmediata, monitorización continua e inicio rápido de intervenciones terapéuticas. (13,14) Un hallazgo particularmente relevante es la asociación entre mayor prioridad y menor tiempo puerta-furosemida, 1 sugiriendo que el sistema facilita la identificación de pacientes que requieren tratamiento diurético urgente.

Sin embargo, las limitaciones en la sensibilidad del sistema, especialmente con el diagrama "adulto indispuesto", 12 sugieren la necesidad de cautela al interpretar niveles de baja prioridad en pacientes ancianos o con presentaciones atípicas. En estos casos, una reevaluación clínica frecuente podría ser necesaria para detectar deterioros no anticipados por la valoración inicial.

El STM representa una herramienta valiosa para la gestión del flujo de pacientes con IC en los servicios de urgencias. La estratificación en cinco niveles de prioridad permite una distribución racional de los pacientes dentro del servicio según su urgencia clínica, optimizando la utilización de espacios físicos como salas de reanimación, boxes de críticos y áreas de observación.

La investigación muestra que los pacientes con mayor prioridad según el STM tienen mayor probabilidad de ingreso hospitalario y en UCI, (13,14) información que puede utilizarse para anticipar necesidades de camas hospitalarias y facilitar una planificación proactiva de ingresos. Esto resulta particularmente relevante considerando que la IC es una de las principales causas de hospitalización en pacientes mayores.¹

Un aspecto a considerar es el impacto de mostrar los tiempos objetivo del STM al personal médico. Un estudio cruzado prospectivo encontró que los tiempos de espera y permanencia en urgencias aumentaban cuando el sistema de información no mostraba los tiempos objetivo del STM.⁸ Esto sugiere que la visualización de estos objetivos temporales puede mejorar el cumplimiento de los tiempos recomendados e influir positivamente en el flujo de pacientes.

La capacidad del STM para predecir, aunque con limitaciones, resultados clínicos adversos y necesidades de recursos en pacientes con IC lo convierte en una herramienta valiosa para la optimización y asignación eficiente de recursos en urgencias.

Estudios demuestran una asociación consistente entre los niveles de prioridad del STM y la utilización de ECG y pruebas de laboratorio,¹⁶ recursos diagnósticos fundamentales en la evaluación de la IC aguda. Esta correlación permite anticipar necesidades de personal técnico y equipamiento diagnóstico según los niveles de prioridad identificados.

Asimismo, la correlación entre niveles de prioridad y probabilidad de ingreso hospitalario o en UCI (13,14) facilita la planificación anticipada de recursos de hospitalización. En servicios con alta demanda asistencial, esta información puede orientar decisiones sobre asignación de personal médico y de enfermería, reserva de camas y activación de protocolos específicos para IC.

No obstante, las limitaciones en la precisión predictiva del sistema, con áreas bajo la curva moderadas para la mayoría de las variables evolutivas evaluadas, indican que el STM debe considerarse una herramienta complementaria, no sustitutiva, del juicio clínico en la asignación de recursos.

Las limitaciones de la evidencia actual incluyen la escasez de estudios específicamente diseñados para evaluar el STM en población con IC aguda, la heterogeneidad metodológica entre los estudios disponibles, y la potencial variabilidad en la implementación del sistema entre diferentes centros hospitalarios.

En este contexto, el triaje en urgencias en pacientes con ICA desempeña un papel fundamental en la identificación precoz de los pacientes con mayor riesgo y en la optimización del uso de recursos sanitarios. Este trabajo tiene como objetivo principal valorar si los 5 niveles de prioridad del STM se correlacionan con riesgo de mortalidad, revisita o reingreso a los 30 días en pacientes con insuficiencia cardiaca aguda atendidos en SUH.

Material y métodos.

Diseño del estudio

Se realiza un estudio observacional, multicéntrico, no intervencionista, de cohortes prospectivo donde se incluyeron todos los casos de pacientes que acudieron a SUH de España por un episodio de ICA.

La ICA se definió siguiendo los criterios de guías de la *European Society of Cardiology*, junto con criterios de Framinghan, que incluyen unos criterios mayores (ortopnea, disnea paroxística nocturna, distensión venosa yugular, cardiomegalia, edema agudo de pulmón, auscultación de tercer ruido, presión venosa yugular elevada, y reflujo hepato-yugular positivo), y unos criterios menores (edema bilateral periférico, disnea de esfuerzo, hepatomegalia, derrame pleural, taquicardia mayor de 120 latidos/minuto y tos nocturna). y los péptidos natriuréticos y/o la ecocardiografía, en los casos en los que están disponibles en los SUH participantes.

Sujetos a estudio

Se reclutaron de forma consecutiva a pacientes que acudieron a los servicios de urgencias de 52 hospitales de la geografía española durante dos meses por un episodio de ICA cada 2 años (2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022), y que cumplieron los criterios de inclusión y ninguno de los de exclusión:

Criterios de inclusión: Pacientes mayores de 18 años que consulten en el SUH por un episodio de ICA y que den su consentimiento para participar en el estudio.

Criterios de exclusión: Pacientes a los que no se les puede realizar el seguimiento, pacientes en los que el diagnóstico principal de alta hospitalaria no sea el de IC y pacientes con ICA en el seno de un síndrome coronario agudo con elevación de ST en el ECG.

Variables de resultado

Las variables de resultado que se van a medir son:

- Mortalidad a los 30 días. Es la mortalidad que ocurre en los 30 primeros días desde su consulta en el SUH por la ICA y al año. Se registrará la mortalidad global.
- Reconsulta en los 30 días. Se considera como tal que el paciente vuelva a consultar en ese SUH en los 30 días siguientes a la asistencia que generó su inclusión en el estudio.
 Se registrará la reconsulta global.
- Reingreso en los 30 días. Se considera como tal si la reconsulta origina un ingreso en una unidad de hospitalización convencional.

El resto de variables se agruparán en distintos bloques según se describe a continuación.

Bloque 1. Datos del triaje en el servicio de urgencias sobre el nivel de prioridad asignado como: nivel I o Rojo (inmediato), II o Naranja (muy urgente), III o Amarillo (urgente), IV o Verde (No urgente) y V o Azul (no urgente).

Bloque 2. Antecedentes de patología previa del paciente. Aquí se recogerán los factores de riesgo cardiovascular (hipertensión arterial, diabetes mellitus, dislipemia y tabaquismo), enfermedad cardiovascular (cardiopatía isquémica, accidente cerebrovascular, fibrilación auricular, flutter auricular, arteriopatía periférica, enfermedad renal crónica e insuficiencia cardiaca previa) y enfermedad no cardiovascular (demencia, neoplasias, cirrosis hepática y enfermedad pulmonar obstructiva crónica). Si existe diagnóstico de insuficiencia cardiaca previo.

Otros datos incluidos en este bloque son la puntuación sobre la dependencia funcional basal calculada mediante la Escala de Barthel, referida a la que el paciente tenía las dos semanas previas y el grado funcional basal para disnea según la escala de la New York Heart Association (NYHA). Se recogerá si el paciente dispone de una ecocardiografía previa y si es así, fecha de realización, fracción de eyección del ventrículo izquierdo

(FEVI) y tipo de disfunción detectada (reducida ≤40, intermedia o levemente reducida 41-49 %, preservada, ≥ 50, o desconocida).

Se considerará que el paciente tiene cualquiera de estos antecedentes si constan en la historia clínica previa o bien están recibiendo tratamiento específico para cada una de ellas.

Bloque 3. Datos sobre el episodio agudo. En este bloque se recogerán datos sobre el episodio actual del ICA, como el factor precipitante conocido del cuadro de ICA y cual o cuales son los identificados.

Análisis estadístico

Se realizó un análisis estadístico comparativo según el nivel de triaje. Se agruparon en 3 grupos grupo 1 (muy urgentes): I-Rojo y II-Naranja, grupo 2 (urgente): III-Amarillo y grupo 3 (no urgente): IV-Verde y V-Azul. Para el análisis estadístico se utilizó el programa estadístico SPSS (Statistical Package for the Social Sciences, SPSS Inc), versión 25.0. Tras estudiar la normalidad de las variables mediante el test de Kolmogorov-Smirnoff, se aplicó el análisis de la U de Mann-Whitney para la comparación de variables cuantitativas y la prueba de la ji al cuadrado con corrección de Fisher o de Pearson en caso necesario para la comparación de proporciones. Los resultados se expresan en número (porcentaje) o en media (desviación estándar). Se considera estadísticamente significativo un valor de p < 0,05.

El estudio se llevó a cabo siguiendo los principios de la Declaración de Helsinki para la investigación en seres humanos y fue aprobado por el Comité de Ética del hospital coordinador, Hospital General Doctor Balmis de Alicante (Ref. PI2023-140). Se eximió al estudio de la solicitud del consentimiento informado de los pacientes, al tratarse de un estudio epidemiológico de un largo periodo de tiempo y utilizarse una base de datos anonimizada.

Resultados

Se analizaron un total de 18.929 pacientes, distribuidos según el nivel de prioridad del sistema de triaje en tres grupos:

- Grupo 1 (muy urgentes): niveles I (rojo) y II (naranja) 6.246 pacientes
- Grupo 2 (urgentes): nivel III (amarillo) 11.083 pacientes
- Grupo 3 (no urgentes): niveles IV (verde) y V (azul) 1.508 pacientes

La edad media global fue de 81 años (DE: 10,35), con diferencias estadísticamente significativas entre grupos (p = 0,012), siendo el Grupo 3 el de menor edad media (80,24 años).

Respecto al sexo, el 44,5% de la muestra eran hombres, sin diferencias significativas entre los grupos (p = 0,172). (Tabla 1)

Entre los antecedentes personales más frecuentes destacan la hipertensión arterial (84%) y la diabetes mellitus (41,8%), sin diferencias significativas entre los grupos. La dislipemia fue más común en los pacientes con menor prioridad clínica (p < 0,001), mientras que la enfermedad renal crónica y el ictus fueron más prevalentes en los grupos más urgentes (p < 0,001 y p = 0,036, respectivamente). La fibrilación auricular afectaba al 51,5% de los pacientes sin diferencias relevantes, al igual que la insuficiencia cardíaca previa (72,8%). Por otro lado, el EPOC y la demencia fueron más frecuentes en los grupos con mayor prioridad, mientras que la cirrosis hepática se observó más en el grupo de menor urgencia (p = 0,002). (Tabla 1)

La fracción de eyección media fue del 53,15%, sin diferencias significativas entre los grupos. La mayoría de los pacientes (69,3%) presentaban una FEVI ≥50%. En cuanto a la clase funcional NYHA, hubo diferencias significativas: el grupo menos urgente tenía más pacientes en clase I, mientras que los más urgentes concentraban los casos más graves. El índice de Barthel reflejó una mayor dependencia funcional en los grupos de mayor prioridad, con una media global de 78,75 puntos y un 19% de pacientes con puntuación inferior a 60. (Tabla 1)

Los principales factores precipitantes del episodio de insuficiencia cardíaca aguda fueron la infección, presente en el 38,9% de los casos y más frecuente en los pacientes más urgentes; la fibrilación auricular o flutter, que se observó en el 14,4%, también predominante en los grupos de mayor prioridad; y la anemia, que afectó al 7,7% de los pacientes, con diferencias significativas entre los grupos. (Tabla1)

La mortalidad a 30 días fue del 33,1% en el total de pacientes, siendo más elevada en los grupos de mayor prioridad (36,5% en el grupo 1 frente al 28,3% en el grupo 3; p < 0,001). La tasa de revisitas a urgencias fue del 37,1%, sin diferencias significativas entre grupos. En cuanto al reingreso tras una reconsulta, se observó una mayor frecuencia en los pacientes más prioritarios (64,8% en el grupo 1 vs. 54,8% en el grupo 3; p < 0,001). Finalmente, el evento combinado (mortalidad, revisita o reingreso) se produjo en el 54,3% de los casos, con diferencias significativas entre grupos (p = 0,002). (Tabla 2)

Los pacientes con mayor prioridad presentaron un riesgo significativamente más alto de mortalidad a 30 días, con una odds ratio (OR) de 1,46 en el grupo 1 y de 1,17 en el grupo 2, en comparación con el grupo 3. También se observó mayor probabilidad de reingreso tras una reconsulta en los grupos más urgentes (OR: 1,51 en el grupo 1 y 1,23 en el grupo 2). En cambio, las revisitas a urgencias no mostraron diferencias significativas. El evento combinado (mortalidad, revisita o reingreso) fue más frecuente en los pacientes del grupo 1 (OR: 1,19), aunque con menor fuerza de asociación. (Tabla 3)

Entre las comorbilidades, la enfermedad renal crónica, el ictus, la valvulopatía, la EPOC, la demencia y la cirrosis se asociaron de forma significativa con un mayor riesgo de mortalidad, reingreso y evento combinado. Asimismo, un peor estado funcional según NYHA y un índice de Barthel <60 puntos también se relacionaron con peores desenlaces. Como factores precipitantes, la infección y la anemia aumentaron el riesgo de mortalidad y evento combinado, mientras que la fibrilación auricular se asoció a un riesgo más bajo. (Tabla 3)

Tras el ajuste por variables clínicas, el grupo 1 presentó una mayor probabilidad de mortalidad a los 30 días (OR ajustada: 1,25; IC 95%: 1,08–1,44) y de reingreso tras una reconsulta (OR ajustada: 1,47; IC 95%: 1,17–1,85), en comparación con el grupo 3. El grupo 2 mostró una asociación con el reingreso de menor magnitud (OR ajustada: 1,22; IC 95%: 1,00–1,51). No se encontraron diferencias significativas en las tasas de revisita ni en el evento combinado entre los distintos grupos de prioridad. (Tabla 4)

Discusión

Nuestro estudio demuestra una clara asociación entre los niveles de prioridad asignados mediante el STM y los resultados adversos a 30 días en pacientes con ICA atendidos en un SUH. La estratificación inicial mediante el STM muestra capacidad predictiva significativa para mortalidad y reingresos, aunque no para revisitas a urgencias. Estos hallazgos validan la utilidad del STM como herramienta de estratificación temprana del riesgo en esta población específica, con importantes implicaciones para la práctica clínica y la optimización de recursos asistenciales. La elevada mortalidad global a 30 días (33,1%) observada en nuestra cohorte refleja la considerable gravedad de la ICA en el contexto agudo. Este porcentaje, superior a las tasas reportadas en algunos registros internacionales (7-12%), sugiere que nuestra población podría presentar características de mayor riesgo basal, como edad avanzada, estados funcionales peores o mayor comorbilidad. Alternativamente, estos hechos podrían indicar oportunidades de mejora en los protocolos de manejo inmediato o en la continuidad asistencial tras el alta. La diferencia significativa en mortalidad entre los grupos de mayor prioridad (36,5% en Grupo 1) y menor prioridad (28,3% en Grupo 3) (p<0,001) demuestra la capacidad discriminativa del STM para identificar pacientes con ICA de mayor riesgo vital. Este hallazgo es particularmente relevante porque sugiere que los discriminadores utilizados en el STM, aunque no están específicamente diseñados para la ICA, capturan elementos clínicos que predicen desenlaces adversos en esta población. Los signos evaluados durante el triaje inicial (como alteraciones hemodinámicas, dificultad respiratoria o alteración del nivel de conciencia) parecen correlacionarse adecuadamente con el riesgo de mortalidad a corto plazo.

La tasa global de revisitas a urgencias a 30 días (37,1%) sin diferencias significativas entre grupos de prioridad constituye un hallazgo destacable. Esto sugiere que los factores que conducen a la reconsulta podrían ser independientes de la gravedad inicial evaluada por el STM. Las reconsultas podrían estar más influenciadas por aspectos no capturados en el triaje, como el soporte social, la adherencia terapéutica o la accesibilidad a seguimiento ambulatorio. Así mismo, pacientes con diferentes niveles de prioridad podrían recibir distintas intensidades de atención y seguimiento post-alta que equiparen su riesgo de reconsulta. 15

Por el contrario, observamos una asociación significativa entre la prioridad del triaje y los reingresos tras reconsulta, con tasas significativamente mayores en los grupos de mayor prioridad (64,8% en Grupo 1 frente a 54,8% en Grupo 3; p<0,001). Esta correlación sugiere que la evaluación inicial mediante el STM no solo identifica el riesgo inmediato, sino que también podría predecir la evolución clínica posterior y la necesidad de hospitalización en reconsultas. Los pacientes triados con mayor prioridad probablemente presentan formas más severas de ICA, con menor reserva cardiopulmonar y mayor vulnerabilidad a nuevas descompensaciones que requieran ingreso.

Respecto al evento combinado (mortalidad, revisita o reingreso) a 30 días, observamos una tasa global del 54,3%, con diferencias significativas entre grupos (mayor en el grupo de más alta prioridad; p=0,002). Este resultado reafirma la utilidad global del STM como herramienta de estratificación de riesgo en la población con ICA. La magnitud del efecto (aproximadamente 55,9% en el grupo de mayor prioridad) subraya la considerable vulnerabilidad de estos pacientes y la necesidad de implementar estrategias específicas de seguimiento. La significación estadística de esta asociación, incluso al combinar eventos de distinta naturaleza, refuerza la

potencia de nuestros hallazgos y sugiere que el STM captura adecuadamente el riesgo global de complicaciones a corto plazo.

Respecto a esta capacidad predictiva a corto plazo, en estudio de Miró et al.¹³ se mostró que el STM presentaba una capacidad moderada para predecir la mortalidad a 30 días en pacientes con ICA, con un área bajo la curva ROC de 0,68. Nuestros resultados son consistentes con esta observación, al demostrar diferencias significativas en la mortalidad entre grupos de prioridad. Sin embargo, mientras Miró et al. encontraron una capacidad predictiva similar para hospitalizaciones, nuestro estudio muestra una disociación entre la predicción de reingresos y revisitas, lo que sugiere matices importantes en la aplicación del STM a diferentes tipos de eventos adversos.

En la serie de Andika et al.¹⁰ sobre la efectividad global del STM en urgencias, concluyó que el sistema mostraba una sensibilidad moderada-alta para identificar casos críticos, pero con especificidad variable según la enfermedad analizada. Nuestros resultados son coherentes con esta conclusión, demostrando la capacidad del STM para estratificar el riesgo en pacientes con ICA, particularmente para eventos graves como mortalidad y reingresos.

Respecto a otras enfermedades, Valença y Peres.⁹ cuestionaron la precisión del STM en pacientes con cefalea, señalando limitaciones en la capacidad del sistema para capturar adecuadamente la gravedad en enfermedades específicas. Si bien nuestro estudio se centra en una enfermedad diferente, encontramos que el STM sí discrimina eficazmente los diferentes niveles de riesgo en pacientes con ICA, lo que sugiere que la validez del sistema podría ser dependiente de la enfermedad. Esto plantea la posibilidad de que el STM sea más adecuado para condiciones como la ICA, donde signos vitales alterados y síntomas de disfunción orgánica son más evidentes y están mejor capturados por los discriminadores del sistema.

Brutschin et al. 12 analizaron específicamente el diagrama de flujo "adulto indispuesto" del STM, encontrando que su aplicación tendía a sobrestimar la prioridad en pacientes mayores. Esto

podría ser relevante para nuestro estudio, considerando que la población con ICA suele tener edad avanzada. Sin embargo, nuestros resultados sugieren que, incluso si existiera esta sobrestimación, seguiría habiendo una correlación significativa con los desenlaces adversos, lo que valida la utilidad clínica del sistema en esta población. El estudio clásico de Cooke y Jinks¹¹ sobre la capacidad del STM para detectar al paciente crítico mostró una sensibilidad del 87% para identificar casos que requerirían intervención inmediata. Nuestro trabajo complementa estos hallazgos al demostrar que esta identificación temprana mediante el STM no solo predice necesidades inmediatas sino también desenlaces a 30 días, ampliando así el horizonte temporal de validez del sistema.

En un estudio reciente⁸ donde se exploraron los efectos de mostrar tiempos objetivo del STM, encontrando que la visualización de estos afectaba la percepción de urgencia y la toma de decisiones del personal sanitario. Aunque no evaluamos específicamente este aspecto, nuestros resultados refuerzan la importancia del STM como herramienta organizativa, pues demuestra su capacidad para identificar pacientes con mayor riesgo de desenlaces adversos, justificando la priorización de su atención. Gräff et al.14, en su validación de la versión alemana del STM, encontraron una buena concordancia entre el nivel de triaje y el consumo de recursos hospitalarios. Aunque no evaluamos directamente el consumo de recursos, nuestros hallazgos sobre reingresos (que implican un considerable uso de recursos) concuerdan con esta observación, sugiriendo que el STM puede ser útil también para anticipar necesidades asistenciales futuras en pacientes con ICA. En una revisión sobre predicción de mortalidad por sistemas de triaje¹⁵ se concluyó que el STM mostraba un rendimiento comparable a otros sistemas internacionales, con valores predictivos positivos modestos pero alta sensibilidad. Nuestros resultados de mortalidad estratificada por niveles de prioridad son consistentes con esta conclusión, confirmando la utilidad del STM como herramienta pronóstica en el contexto específico de la ICA. Finalmente, Santos et al. 16 demostraron la correlación entre el STM y el uso de recursos en urgencias. La asociación que encontramos entre niveles de prioridad y reingresos podría interpretarse como un indicador indirecto de mayor consumo de recursos, alineándose así con sus conclusiones.

Desde una perspectiva más amplia, nuestro estudio aporta evidencia que respalda la integración conceptual entre los sistemas de triaje y los modelos de predicción de riesgo en ICA. Los discriminadores utilizados en el STM parecen capturar, aunque sea parcialmente, elementos pronósticos similares a los incluidos en escalas específicas como el EFFECT¹⁷, ADHERE¹⁸ o GET-UP¹⁹, sugiriendo la posibilidad de desarrollar futuros modelos híbridos que combinen la agilidad del triaje con la precisión de escalas específicas.

Limitaciones del Estudio

Nuestro estudio presenta varias limitaciones que deben reconocerse. Su naturaleza observacional limita la capacidad para establecer relaciones causales entre el nivel de triaje y los resultados adversos. La asociación observada podría estar influenciada por variables de confusión no medidas o ajustadas en el análisis. Factores como la comorbilidad, soporte social o adherencia terapéutica y tipo de seguimiento tras el alta, podrían influir tanto en la presentación clínica evaluada en el triaje como en los desenlaces posteriores.

Una limitación inherente al STM es su dependencia de la interpretación subjetiva de los profesionales que realizan el triaje. Aunque el sistema está estructurado para minimizar la variabilidad interpersonal, diferencias en la experiencia, formación o criterio podrían afectar la asignación de niveles de prioridad. No evaluamos específicamente la concordancia interobservador en la aplicación del STM, lo que podría afectar la validez interna de nuestros resultados.

La posible variabilidad en el manejo clínico posterior al triaje representa otra limitación importante. Pacientes clasificados con mayor prioridad probablemente recibieron atención más intensiva y monitorización más estrecha, lo que podría haber modificado su evolución natural.

Este "sesgo de tratamiento diferencial" podría atenuar las diferencias en resultados adversos entre grupos de triaje, subestimando la capacidad predictiva real del sistema.

Otra limitación significativa es la ausencia de ajuste por variables pronósticas específicas de la ICA. Factores conocidos como predictores de mal pronóstico (niveles de péptidos natriuréticos, función renal, fracción de eyección)²⁰ o escalas de riesgo en la ICA (MEESSI)²¹ no fueron incorporados en nuestro análisis. Esto impide determinar si el STM aporta valor pronóstico independiente o si su asociación con eventos adversos está mediada por estas variables fisiopatológicas.

Implicaciones Prácticas

Optimización de la gestión asistencial

Para la gestión hospitalaria, nuestros resultados aportan información valiosa para la asignación de recursos. Conociendo que los pacientes con ICA clasificados en niveles de mayor prioridad presentan tasas significativamente más altas de mortalidad (36,5% en Grupo 1) y reingreso (64,8%), sería recomendable implementar protocolos específicos de actuación para estos pacientes. Estos podrían incluir circuitos asistenciales diferenciados, activación precoz de equipos especializados de insuficiencia cardiaca, o criterios de ingreso más flexibles basados en el nivel de triaje inicial.

La elevada tasa de eventos combinados (55,9% en el grupo de mayor prioridad) justificaría la inversión de recursos adicionales en estos pacientes, anticipando su mayor complejidad y necesidades asistenciales. Para optimizar el flujo de pacientes, nuestros resultados apoyan la implementación de unidades de observación o estancias cortas específicas para ICA, donde los pacientes puedan ser monitorizados tras la estabilización inicial, con criterios de derivación parcialmente basados en el nivel de triaje.

Mejora de la práctica clínica directa

Respecto a la atención clínica directa, nuestros hallazgos sugieren la necesidad de integrar el nivel de triaje como un elemento más en la toma de decisiones sobre el manejo de pacientes con ICA. Los médicos responsables podrían considerar intensificar el tratamiento, ampliar estudios diagnósticos o establecer criterios de respuesta más estrictos en aquellos pacientes clasificados con mayor prioridad, reconociendo su mayor riesgo de complicaciones. Asimismo, sería recomendable extremar las precauciones al plantear el alta en estos pacientes, estableciendo garantías adicionales de seguimiento.

Estrategias de prevención de revisitas

La ausencia de diferencias en las tasas de revisita según el nivel de prioridad tiene implicaciones prácticas importantes para la planificación del seguimiento post-alta. Sugiere que las estrategias para reducir reconsultas deberían aplicarse de manera universal a todos los pacientes con ICA, independientemente de su clasificación inicial, y centrarse en factores potencialmente modificables como la educación sanitaria, el soporte domiciliario o el acceso a seguimiento precoz.

Formación

Finalmente, nuestros hallazgos refuerzan la importancia de la formación continuada del personal de triaje en la identificación y clasificación correcta de pacientes con ICA. Considerando que el nivel de triaje asignado tiene implicaciones pronósticas significativas, garantizar la precisión de esta evaluación inicial resulta crucial para la adecuada estratificación del riesgo y la consecuente toma de decisiones clínicas.

Conclusión

Los resultados de nuestro estudio demuestran que el Sistema de Triaje Manchester constituye una herramienta eficaz para la estratificación temprana del riesgo en pacientes con ICA atendidos en el SUH. La correlación significativa encontrada entre mayores niveles de prioridad

y tasas más elevadas de mortalidad, reingreso tras reconsulta y eventos combinados a 30 días valida su utilidad clínica como predictor de eventos adversos en esta población específica. Este hallazgo es particularmente relevante considerando que el STM no fue desarrollado específicamente para la ICA, sugiriendo que sus discriminadores generales capturan adecuadamente los elementos clínicos determinantes del pronóstico. Estudios futuros deberían explorar combinaciones del STM con parámetros específicos de la ICA para desarrollar modelos predictivos más precisos, así como evaluar intervenciones personalizadas según el nivel de triaje para mejorar los resultados en esta población de alto riesgo.

Referencias bibliográficas

- Marques P, Brito MT, Vasques-Nóvoa F, Ferreira JP, Jardim AL, Gouveia R, Besteiro B, Vieira JT, Gomes F, Leite-Moreira A, Bettencourt P, Almeida J, Friões F. Door-tofurosemide time and clinical outcomes in acute heart failure. Eur J Emerg Med. 2023;30(2):85-90.
- Llorens P, Miró Ò, Martín-Sánchez FJ, Herrero P, Jacob J, Gil V, et al. Manejo de la insuficiencia cardiaca aguda en los servicios de urgencias, emergencias y unidades adscritas. Documento de consenso del Grupo de Insuficiencia Cardiaca Aguda de la Sociedad Española de Medicina de Urgencias y Emergencias (ICA-SEMES). Emergencias. 2011;23(2):119–139.
- 3. Anguita Sánchez M, Crespo Leiro MG, de Teresa Galván E, Jiménez Navarro M, Alonso-Pulpón L, Muñiz García J; en representación de los investigadores del estudio PRICE. Prevalencia de la insuficiencia cardiaca en la población general española mayor de 45 años. Estudio PRICE. Rev Esp Cardiol. 2008;61(10):1041–1049.
- Rodríguez-Artalejo F, Banegas Banegas JR, Guallar-Castillón P. Epidemiología de la insuficiencia cardiaca. Rev Esp Cardiol 2004; 57: 163-70.
- 5. Sayago-Silva I, García-López F, Segovia-Cubero J. Epidemiología de la insuficiencia cardiaca en España en los últimos 20 años. RevEspCardiol 2013; 66: 649-56.
- Martín-Sánchez FJ, Covarrubias M, Terán C, Llorens P, Herrero P, Jacob J, et al. El papel pronóstico del NTproBNP en el anciano con insuficiencia cardiaca aguda en urgencias.
 Rev Esp Geriatr Gerontol 2013; 48: 155-60.
- Delgado JF, Oliva J, Llano M, Pascual-Figal D, Grillo JJ, Comin-Colet J, et al. Costes sanitarios y no sanitarios de personas que padecen insuficiencia cardiaca crónica sintomática en España. Rev Esp Cardiol 2014; 67: 643-50.

- 8. Bienzeisler J, Becker G, Erdmann B, Kombeiz A, Majeed RW, Röhrig R, Greiner F, Otto R, Otto-Sobotka F; AKTIN Research Group. The Effects of Displaying the Time Targets of the Manchester Triage System to Emergency Department Personnel: Prospective Crossover Study. J Med Internet Res. 2024; 26: e45593.
- Valença MM, Peres MFP. Urgent Need for Reform: Addressing the Inadequate Emergency Care for Headache Patients Under the Manchester Triage System. Headache Med. 2024;15(2):98–103.
- Andika IPJ, Safaruddin, Christina TY, Baso YS, Utami S. Effectiveness of the Manchester Triage System in the emergency department: A literature review. BIO Web Conf. 2025; 152:01004.
- 11. Cooke MW, Jinks S. Does the Manchester triage system detect the critically ill? J Accid Emerg Med. 1999; 16(3):179-81.
- 12. Brutschin V, Kogej M, Schacher S, Berger M, Gräff I. The presentational flow chart "unwell adult" of the Manchester Triage System-Curse or blessing? PLoS One. 2021;16(6): e0252730.
- 13. Miró Ò, Tost J, Herrero P, Jacob J, Martín-Sánchez FJ, Gil V, Fernández-Pérez C, Escoda R, Llorens P; ICA-SEMES Research Group. Short-term predictive capacity of two different triage systems in patients with acute heart failure: TRICA-EAHFE study. Eur J Emerg Med. 2016; 23(6):435-441.
- 14. Gräff I, Goldschmidt B, Glien P, Bogdanow M, Fimmers R, Hoeft A, Kim SC, Grigutsch D.

 The German Version of the Manchester Triage System and its quality criteria--first assessment of validity and reliability. PLoS One. 2014; 9(2):e88995.
- 15. Htay T, Aung K. Review: Some ED triage systems better predict ED mortality than inhospital mortality or hospitalization. Ann Intern Med. 2019;170(8):JC47.
- 16. Santos AP, Freitas P, Martins HM. Manchester Triage System version II and resource utilisation in the emergency department. Emerg Med J. 2014; 31(2):148-52.

- 17. Lee DS, Stitt A, Austin PC, Stukel TA, Schull MJ, Chong A, et al. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. *JAMA*. 2003;290(19):2581–7. [Escala EFFECT]
- 18. Fonarow GC, Adams KF Jr, Abraham WT, Yancy CW, Boscardin WJ. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. *JAMA*. 2005;293(5):572–80. [Escala ADHERE]
- 19. Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF, Peterson ED, et al. A validated risk score for in-hospital mortality in patients with heart failure from the American Heart Association Get with the Guidelines Program. *Circ Cardiovasc Qual Outcomes*. 2010;3(1):25–32. [Escala GWTG-HF]
- 20. Collins SP, Pang PS. Acute heart failure risk stratification: From the emergency department to the short stay unit. *Curr Heart Fail Rep.* 2015;12(3):252–9
- 21. Miró Ò, Rossello X, Gil V, Martín-Sánchez FJ, Herrero P, Jacob J, et al. Predicting 30-day mortality for patients with acute heart failure in the emergency department: a cohort study. *Ann Intern Med.* 2017;167(10):698–705.

ANEXO I. Tablas

Tabla 1. Características de los pacientes incluidos en el estudio y comparación según el nivel de prioridad del sistema de triaje (n=18929)

		otal	Gru	ipo 1 6246)	Gru	ipo 2 1083)	Grupo 1 (n=1508)		<u>p</u>
	%	(n)	%	(n)	%	(n)	%	(n)	
Edad, media (DE)	81,00	(10,35)	81,06	(10,32)	81,07	(10,37)	80,24	(10,35)	0,012
Sexo		, ,		, ,		, ,		, ,	0,172
Hombre	44,5	(8425)	43,7	(2739)	45,1	(5019)	43,9	(667)	
Mujer	55,5	(10504)	56,3	(3534)	54,9	(6116)	56,1	(854)	
Antecedentes Personales		. ,		. ,		. ,		• •	
Hipertensión arterial	84,0	(15822)	83,1	(5191)	84,5	(9360)	84,3	(1271)	0,065
Diabetes Mellitus	41,8	(7879)	42,1	(2627)	41,8	(4635)	40,9	(617)	0,721
Dislipemia	46,2	(8705)	44,2	(2760)	47,0	(5206)	49,0	(739)	<0,001
Cardiopatía isquémica	26,9	(5073)	27,8	(1735)	26,6	(2947)	25,9	(391)	0,157
Enfermedad renal crónica	28,4	(5352)	26,6	(1662)	29,6	(3284)	26,9	(406)	<0,001
Ictus	12,8	(2407)	12,8	(801)	13,0	(1445)	10,7	(161)	0,036
Fibrilación auricular / Flutter auricular	51,5	(9755)	50,6	(3175)	52,2	(5814)	50,4	(766)	0,081
Arteriopatía periférica	8,8	(1661)	9,4	(586)	8,7	(959)	7,7	(116)	0,073
Valvulopatía	25,5	(4807)	24,2	(1514)	26,0	(2882)	27,3	(411)	0,010
Enfermedad pulmonar obstructiva	23,1	(4352)	24,2	(1509)	23,0	(2546)	19,7	(297)	0,001
Demencia	11,1	(2016)	12,0	(720)	10,9	(1171)	8,7	(125)	0,001
Neoplasia	14,6	(1438)	14,2	(851)	15,0	(1609)	13,8	(198)	0,257
Cirrosis hepática	1,5	(273)	1,1	(67)	1,6	(173)	2,3	(33)	0,002
Insuficiencia cardiaca previa	72,8	(13763)	73,5	(4606)	72,6	(8074)	71,4	(1083)	0,201
FEVI, media (DE)	53,15	(14,11)	52,87	(13,88)	53,24	(14,25)	53,60	(13,97)	0,281
FEVI, (%)									0,181
≤ 40	21,4	(2367)	22,1	(777)	21,2	(1417)	20,7	(1737)	
41-49	9,3	(1025)	9,9	(347)	9,2	(613)	7,8	(65)	
≥50	69,3	(7648)	68,0	(2390)	69,7	(4659)	71,6	(599)	
Estadio funcional NYHA									<0,001
I	24,4	(4278)	23,1	(1343)	24,8	(2552)	27,4	(383)	
II	52,0	(9111)	50,8	(2958)	52,6	(5417)	52,6	(736)	
III	22,0	(3846)	24,0	(1398)	21,2	(2183)	19,0	(265)	
IV	1,6	(274)	2,1	(121)	1,4	(139)	1,0	(14)	
Índice Barthel, media (DE)	78,75	(25,10)	77,02	(26,07)	79,31	(24,63)	81,86	(23,81)	<0,001
Índice Barthel (<60 puntos)									<0,001
Sí	19,0	(3253)	21,0	(1204)	18,3	(1841)	15,4	(208)	
No	81,0	(13875)	79,0	(4530)	81,7	(8200)	84,6	(1145)	
Factores precipitantes		,						-	
Infección	38,9	(6818)	42,3	(2435)	37,6	(3901)	34,2	(482)	<0,001
Fibrilacion auricular/Flutter auricular	14,4	(2730)	18,1	(1137)	12,8	(1421)	11,3	(172)	<0,001
Anemia	7,7	(1352)	6,5	(374)	8,2	(854)	8,8	(124)	<0,001

DE: desviación estándar. FEVI: fracción de eyección del ventrículo izquierdo. HTA: hipertensión arterial.*Evento combinado: mortalidad a los 30 días y/o revista y/o reingreso. Grupo 1 (muy urgentes): I-Rojo y II-Naranja, grupo 2 (urgente): III-Amarillo y grupo 3 (no urgente): IV-Verde y V-Azul

Tabla 2. Evolución de los pacientes según el nivel de prioridad del sistema de triaje.

	Total		Grupo 1		Gru	ipo 2	Gru	р	
	%	(n)	%	(n)	%	(n)	%	(n)	
Mortalidad a los 30 días (n=18918)									<0,001
Sí	33,1	(6253)	36,5	(2289)	31,7	(3533)	28,3	(431)	
No	66,9	(12665)	63,5	(3979)	68,3	(7596)	71,7	(1090)	
Revisita (n=17183)									0,255
Sí	37,1	(6375)	36,2	(1999)	37,6	(3843)	37,2	(533)	
No	62,9	(10808)	63,8	(3519)	62,4	(6389)	62,8	(900)	
Reingreso tras reconsulta (n=5235)									<0,001
Sí	60,9	(3189)	64,8	(1040)	59,8	(1900)	54,8	(249)	
No	39,1	(2046)	35,2	(566)	40,2	(1275)	45,2	(205)	
Evento combinado a los 30 días* (n=18929)						·			0,002
Sí	54,3	(10274)	55,9	(3508)	53,7	(5981)	51,6	(785)	
No	45,7	(8655)	44,1	(2765)	46,3	(5154)	48,4	(736)	

*Evento combinado: mortalidad a los 30 días y/o revista y/o reingreso. Grupo 1 (muy urgentes): I-Rojo y II-Naranja, grupo 2 (urgente): III-Amarillo y grupo 3 (no urgente): IV-Verde y V-Azul. Los valores en negrita denotan significación estadística (p<0,05)

Tabla 3. Factores asociados a mortalidad a los 30 días, revisita, reingreso o evento combinado

	Mortalidad a los 30 días		Revisita			Reingreso			Evento combinado 30 días*			
	%	(n/N)	OR (IC 95%)	%	(n/N)	OR (IC 95%)	%	(n/N)	OR (IC 95%)	%	(n/N)	OR (IC 95%)
Nivel prioridad sistema triaje												
Grupo 1	36,5	(2289/6268)	1,46 (1,29-1,64)	36,2	(1999/5518)	0,96 (0,85-1,08)	64,8	(1040/1606)	1,51 (1,22-1,87)	55,9	(3508/6273)	1,19 (1,06-1,33)
Grupo 2	31,7	(3533/11129)	1,17 (1,04-1,32)	37,6	(3843/10232)	1,02 (0,91-1,14)	59,8	(1900/3175)	1,23 (1,01-1,49)	53,7	(5981/11135)	1,08 (0,97-1,21)
Grupo 3	28,3	(431/1521)	1	37,2	(533/1433)	1	54,8	(249/454)	1	51,6	(785/1521)	1
Sexo												
Hombre	33,7	(3415/10497)	1,05 (0,99-1,12)	37,2	(2858/7688)	1,01 (0,94-1,07)	60,9	(1435/2355)	1,00 (0,90-1,12)	54,7	(4606/8425)	1,03 (0,97-1,09)
Mujer	32,5	(2838/8421)	1	37,0	(3517/9495)	1	60,9	(1754/2880)	1	54,0	(5668/10504)	1
Dislipemia												
Si	31,8	(2769/8703)	0,89 (0,84-0,95)	38,9	(3096/7960)	1,14 (1,08-1,22)	59,3	(1544/2602)	0,87 (0,78-0,98)	54,9	(4781/8705)	1,04 (0,98-1,10)
No	34,3	(3469/10124)	1	35,7	(3265/9137)	1	62,6	(1639/2620)	1	54,0	(5467/10132)	1
Enfermedad Renal Crónica		,			,			,			,	
Sí	41,8	(2234/5349)	1,70 (1,59-1,81)	42,2	(1999/4736)	1,34 (1,25-1,43)	65,3	(1103/1689)	1,32 (1,17-1,48)	62,6	(3353/5352)	1,60 (1,50-1,71)
No	29,7	(4004/13478)	1	35,3	(4362/12361)	1	58,9	(2080/3533)	1	51,1	(6895/13485)	1
Ictus		,			,			,			,	
Sí	38,6	(928/2406)	1,31 (1,20-1,43)	41,7	(906/2171)	1,24 (1,14-1,36)	64,2	(472/735)	1,18 (1,01-1,38)	60,2	(1448/2407)	1,31 (1,20-1,43)
No	32,3	(5310/16421)	1	36,5	(5455/14926)	1 1	60,4	(2711/4487)	1	53,6	(8800/16430)	1
Valvulopatía	, ,	,			((,	
Sí	36,1	(1734/4806)	1,19 (1,11-1,28)	39,0	(1695/4348)	1,11 (1,03-1,19)	61,4	(845/1376)	1,03 (0,90-1,17)	57,1	(2747/4807)	1,16 (1,09-1,24)
No	32,1	(4504/14021)	1 1	36,6	(4666/12749)	1 1	60,8	(2338/3846)	1 '	53,6	(7501/14030)	1 1
EPOC	,	,		,	,		,	,			,	
Sí	36,8	(1601/4349)	1,24 (1,15-1,33)	41,9	(1652/3944)	1,30 (1,20-1,39)	65,0	(861/1325)	1,26 (1,10-1,43)	59,7	(2600/4352)	1,33 (1,24-1,42)
No	32,0	(4637/14478)	1	35,8	(4709/13153)	1	59,6	(2322/3897)	1 1	52,8	(7648/14485)	1
Demencia	, ,	())			((' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		, ,	(
Sí	52,3	(1055/2016)	2,40 (2,18-2,63)	39,4	(659/1673)	2,40 (2,18-2,63)	66,4	(366/551)	1,30 (1,08-1,57)	67,0	(1350/2016)	1,75 (1,59-1,94)
No	31,4	(5074/16160)	1	37,4	(5542/14824)	1 1	60,3	(2817/4671)	1 1	53,6	(8662/16163)	1
Cirrosis hepática	,	((,		, .	(,			(,	
Sí	47,6	(130/273)	1,80 (1,42-2,30)	48,1	(113/235)	1,55 (1,20-2,00)	61,4	(62/101)	1,02 (0,68-1,53)	68,9	(188/273)	1,82 (1,40-2,35)
No	33,5	(5997/17890)	1	37,5	(6086/16251)	1	60,9	(3120/5119)	1	54,9	(9820/17893)	1
NYHA	,	,		,	,		,	,			,	
1	22,4	(956/4276)	1	31,9	(1286/4029)	1	54,5	(596/1093)	1	44,0	(1881/4278)	1
II	33,0	(3003/9107)	1,71 (1,57-1,86)	37,4	(3130/8359)	1,30 (1,18-1,38)	60,6	(1581/2610)	1,28 (1,11-1,48)	54,8	(4989/9111)	1,54 (1,43-1,66)
III	43,3	(1663/3843)	2,65 (2,41-2,92)	40,4	(1354/3350)	1,45 (1,32-1,59)	68,2	(752/1102)	1,79 (1,51-2,13)	62,5	(2405/3846)	2,13 (1,95-2,32)
IV	44,3	(121/273)	2,76 (2,15-3,55)	37,1	(83/224)	1,26 (0,95-1,66)	62,2	(46/74)	1,37 (0,84-2,22)	60,6	(166/274)	1,96 (1,53-2,51)
Barthel (<60 puntos)	,	,		,	,	, (, , ,	,	,			,	, (, , ,
Si	54,6	(1774/3248)	3,08 (2,84-3,33)	40,6	(1073/2642)	1,21 (1,11-1,31)	66,9	(603/901)	1,37 (1,18-1,60)	69,2	(2250/3253)	2,18 (2,01-2,37)
No	28,1	(3900/13869)	1	36,2	(4692/12958)	1	59,6	(2344/3934)	1	50,7	(7036/13875)	1
Factores precipitantes	,	(=====)	-	,-	(-	,-	(==::::::::)		,-	(222. 227. 0)	-
Infección (Si)	37,3	(2540/6817)	1,31 (1,23-1,40)	36,6	(2226/6089)	0,94 (0,88-1,01)	63,9	(1232/1928)	1,22 (1,08-1,37)	56,7	(3863/6818)	1,13 (1,06-1,20)
Fibrilación / Flutter auricular (Si)	28,9	(789/2729)	0,79 (0,73-0,87)	35,7	(900/2519)	0,93 (0,85-1,02)	58,6	(450/768)	0,89 (0,76-1,04)	50,8	(1388/2730)	0,85 (0,78-0,92)
Anemia (Si)	40,5	(548/1352)	1,39 (1,24-1,55)	39,9	(481/1207)	1,12 (0,99-1,26)	59,6	(249 /403)	0,93 (0,76-1,15)	60,4	(817/1352)	1,28 (1,14-1,43)
*Evento combinado: mortalio		,		,	, ,	, ,	,	<u> </u>	i i	· ·	,	-,== (.,,)

*Evento combinado: mortalidad a los 30 días y/o revista y/o reingreso. Los valores en negrita denotan significación estadística (p<0,05) n.c.: no calculable; OR: Odds Ratio; IC 95%: intervalo de confianza al 95%.

Tabla 4. Asociación cruda y ajustada, según el nivel de prioridad del sistema de triaje y resultados a 30 días, revisita, reingreso tras reconsulta y evento combinado a los 30 días.

	ORc (IC 95%)	ORa (IC 95%)
Mortalidad a los 30 días		
Grupo 1	1,46 (1,29-1,64)	1,25 (1,08-1,44)
Grupo 2	1,17 (1,04-1,32)	1,02 (0,89-1,16)
Grupo 3	1	1
Revisita		
Grupo 1	0,96 (0,85-1,08)	0,89 (0,78-1,02)
Grupo 2	1,02 (0,91-1,14)	0,94 (0,83-1,07)
Grupo 3	1	1
Reingreso tras reconsulta		
Grupo 1	1,51 (1,22-1,87)	1,47 (1,17-1,85)
Grupo 2	1,23 (1,01-1,49)	1,22 (1,00-1,51)
Grupo 3	1	1
Evento combinado a los 30 días*		
Grupo 1	1,19 (1,06-1,33)	1,04 (0,92-1,19)
Grupo 2	1,08 (0,97-1,21)	0,96 (0,85-1,09)
Grupo 3	1	1

Los valores en negrita denotan significación estadística (p<0,05) *Ajustado por: Edad, sexo, enfermedad renal crónica, ictus, valvulopatía, EPOC, demencia, cirrosis, NYHA, Barthel, infección, fibrilación/flutter auricular, y anemia.
*Evento combinado: mortalidad a los 30 días y/o revista y/o reingreso. Grupo 1 (muy urgentes): I-Rojo y II-Naranja, grupo 2 (urgente): III-Amarillo y grupo 3 (no

urgente): IV-Verde y V-Azul

