
Engineering Applications of Artiϧcial Intelligence 154 (2025) 110822 

A
0

 

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai  

Research paper

Interpreting frequency evolution in ventricular fibrillation using embeddings 
and deep learning methods
Dafne Lozano-Paredes a ,∗, Juan José Sánchez-Muñoz b, Luis Bote-Curiel a ,
Francisco M. Melgarejo-Meseguer a , Antonio Gil-Izquierdo c, F. Javier Gimeno-Blanes c ,
José Luis Rojo-Álvarez a
a Universidad Rey Juan Carlos, Department of Signal Theory and Communications, Telematics, and Computing Systems, Cam. del Molino, 
5, Fuenlabrada, 28942, Madrid, Spain
b Hospital Clínico Universitario Virgen de la Arrixaca, Arrhythmia and Electrophysiology Unit, Department of Cardiology, Ctra. Madrid-Cartagena, s/n, El 
Palmar, 30120, Murcia, Spain
c Universidad Miguel Hernández, Department of Signal Theory and Communications, Av. de la Universidad, s/n, Elche, 03202, Alicante, Spain

A R T I C L E  I N F O

Keywords:
Ventricular fibrillation
Frequency evolution
Manifold learning
Deep learning
Electrocardiogram analysis
Interpretability

 A B S T R A C T

Recently, the necessity for advanced tools to scrutinize ventricular fibrillation (VF) has been highlighted. 
Despite progress in the field, applying deep learning techniques and manifold interpretations in clinical settings 
remains underexplored. This study aims to evaluate the effectiveness of low-dimensional embeddings for 
distinguishing VF. We analyzed VF from three clinical conditions: patients during cardiopulmonary bypass, 
dogs administered with different drugs, and implantable cardioverter defibrillator devices with varying offset 
characteristics. We employed several algorithms, including uniform manifold approximation and projection 
embeddings, temporal convolutional networks, fully connected networks, and Kolmogorov–Arnold networks. 
Our experiments revealed that VF dynamics can be categorized based on frequency evolution, and the result 
can be interpreted based on clinical knowledge. However, each dataset has unique characteristics, leading 
to variations in the best-performing method. These differences may arise because some VF types are more 
easily identifiable. Our findings prove that longer signals differentiate VF types more clearly as the frequency 
evolution becomes clearer over extended periods. Across the same dataset, methods showed only slight 
differences in performance. Notably, for one dataset, two different drugs in dogs showed similar frequency 
patterns. For the rest of the datasets and methods, accuracy ranged between 0.68 and 0.86, precision ranged 
from 0.69 to 0.84, recall ranged from 0.68 to 0.84, and F1 scores ranged from 0.68 to 0.84. We conclude 
that low-dimensional embeddings are an effective method for characterizing VF types, and these methods can 
support ongoing research that aims to clarify the mechanisms of VF.
1. Introduction

Cardiac arrhythmias are disruptions in the regular rhythm of the 
heart, often resulting in too-fast (tachycardia), too-slow (bradycardia), 
or erratic heartbeats. These disturbances can range from benign con-
ditions to life-threatening emergencies. Arrhythmias can impair the 
heart’s ability to pump blood effectively, leading to a cascade of health 
issues such as stroke, heart failure, and sudden cardiac arrest. Arrhyth-
mias can originate in the atria or ventricles (Gaztañaga et al., 2012; 
Kingma et al., 2023). One of the most prevalent cardiac arrhythmias in 
individuals with sudden cardiac death (SCD) is ventricular fibrillation 
(VF), responsible for more than 80% of cases (Haïssaguerre, 2010). The 
failure of synchronized ventricular contraction due to rapid and chaotic 
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electrical activity causes an instant decrease in cardiac output. To end 
VF, electrical defibrillation is currently the sole treatment available. 
Long-term VF causes the waveform amplitude to decrease, progressing 
from coarse to fine VF. As a result of the increasing consumption 
of myocardial energy stores, which leads to myocardial cell death, 
VF eventually degenerates into asystolia. Consequently, following a 
prolonged period of VF, the likelihood of effective defibrillation drops 
significantly (de Luna et al., 1989; John et al., 2012; Link et al., 2015).

Two primary hypotheses have been proposed to explain the mecha-
nisms behind cardiac fibrillation: the multiple-wavelet hypothesis and 
the focal-source hypothesis. The multiple-wavelet hypothesis suggests 
that VF is characterized by multiple wandering wavelets within the 
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heart, observed through computerized mapping studies in large an-
imals. This hypothesis proposes that steep action potential duration 
restitution and existing heart tissue heterogeneities work together to 
create wave breaks, sustaining VF (Moe et al., 1964; Garfinkel et al., 
2000). In contrast, the focal-source hypothesis proposes that a sta-
ble mother rotor could generate rapid, localized activation. The fast 
activation rate from this rotor may cause conduction blocks, leading 
to sustained VF wavefronts (Jalife, 2000; Pandit and Jalife, 2013). 
To advance the understanding of VF dynamics, recent research has 
focused on developing advanced analytical methods, including the role 
of spectral analysis in enhancing our understanding of the electrophys-
iological features during VF episodes (Latcu et al., 2011). VF has been 
extensively studied for its various spectral and temporal characteristics, 
particularly concerning the multiple-wavelet and rotor theories of its 
mechanism (Nash et al., 2006). Recent research has further supported 
a paradigm of VF based on statistical fibrillatory dynamics, proposing 
equations that describe the behavior and number of wavelets and rotors 
observed during VF episodes (Dharmaprani et al., 2022).

Detection of VF using temporal (Arafat et al., 2011) and spectral 
characteristics has become a critical area of research, with methods 
such as fast Fourier transform (FFT) employed to analyze the fre-
quency components of electrocardiogram (ECG) signals by estimating 
the power spectral density (PSD) (Afonso and Tompkins, 1995; Vaneghi 
et al., 2012). Algorithms employing band-pass digital filters with inte-
ger coefficients for VF and ventricular tachycardia (VT) detection have 
been developed for their simplicity and real-time efficiency (Jekova 
and Krasteva, 2004). Additionally, automatic diagnostic systems using 
temporal-frequency representation images of ECG signals have im-
proved classification accuracy by removing the feature extraction stage 
in VF (Mjahad et al., 2018). Furthermore, other studies have focused 
on analyzing dominant frequencies and various parameters, including 
amplitude, bispectral analysis, amplitude spectrum area, wavelets, non-
linear dynamics, and N(𝛼) histograms, in the context of VF detection to 
characterize the arrhythmia (Stewart et al., 1992; Amann et al., 2001). 
This type of frequency analysis has been instrumental in linking VF 
characteristics to resuscitation success, indicating that low-frequency 
ventricular fibrillation is associated with a low probability of effective 
resuscitation (Stewart et al., 1992). In a study comparing the spectral 
characteristics of electrical signals during sustained and non-sustained 
VF in patients with an implantable cardioverter-defibrillator (ICD), it 
was found that dominant frequency during the initial 3 s can differ-
entiate between sustained and non-sustained VF (SánchezMuñoz et al., 
2009). Moreover, additional spectral parameters can be estimated for 
each VF episode, including the peak power at the dominant frequency, 
an organization index, a bandwidth measurement, and an estimate of 
the correlation with a sinusoidal wave. It was found that these param-
eters were higher in induced VF episodes compared to spontaneous 
VF episodes (SánchezMuñoz et al., 2008). Despite these advancements, 
uncertainties remain regarding the exact progression and potential 
subtypes of VF based on different developmental stages.

Machine learning (ML) has revolutionized medicine and signal pro-
cessing by offering powerful tools to analyze complex data, leading 
to significant advancements in diagnosis, treatment, and patient care. 
ML algorithms can identify complex patterns and dynamics within 
bioelectric signals, diagnose cardiac arrhythmias, including VF, and 
enhance patient outcomes and clinical interventions (Sahoo et al., 
2020; Pham et al., 2021). For instance, one study extracted 14 VF 
metrics from ECG data, and a genetic algorithm was used as a feature 
selection technique to identify the optimal variables, followed by an ML 
classifier to distinguish between VF and VT, achieving high accuracy (Li 
et al., 2014). Similarly, QRS complex shape data have been combined 
with heart rate variability features to predict VF onset. By applying 
these measurements to neural networks, researchers found that the 
QRS complex shape significantly enhanced the accuracy of VF predic-
tion (Taye et al., 2019). In addition to traditional ML approaches, deep 
learning has shown remarkable efficacy in arrhythmia detection. These 
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efforts primarily focus on analyzing surface signals, including those 
from the 12-lead ECG and Holter monitoring systems. Some studies 
predict VF onset based on frequency metrics (Tseng and Tseng, 2020) or 
by incorporating time–frequency-based features into the model (Sabut 
et al., 2021). One notable application of deep learning involved using 
a convolutional neural network (CNN) to analyze spectral features of 
ECG to detect VF with 97% accuracy using the MIT-BIH dataset (Tseng 
and Tseng, 2020). Another significant study developed a deep learning 
model that combined long short-term memory (LSTM) and CNN layers, 
achieving 99.9% accuracy on the same database by utilizing temporal 
windows surrounding the beats as input features (Hassan et al., 2024). 
More recently, it has been proposed to integrate CNN, LSTM, and 
transformer models to classify arrhythmias based on ECG features, 
achieving 99.56% accuracy (Din et al., 2024). Their approach has three 
components. The first component extracts relevant features using deep 
learning, with a CNN capturing spatial features and a hybrid CNN-
LSTM model capturing spatiotemporal features. A transformer model 
is then used to capture long-range temporal dependencies. The second 
component fuses these features and processes them in parallel with 
three base learners: random forest (RF), support vector machine (SVM), 
and logistic regression (LR). Finally, a majority voting classifier (ensem-
ble learner) is applied to the concatenated features, further enhancing 
accuracy. Despite these advancements, manifold learning (MnL) tech-
niques remain largely unexplored in ECG analysis, especially in VF 
research. Recently, a study demonstrated using MnL to distinguish 
between different VF types, showing that latent variables were more 
accurate VF descriptors than traditional temporal or frequency-domain 
features (Bernal Oñate et al., 2023). Unlike other ML techniques, 
such as tree-based methods or SVMs, which require feature extraction 
from bioelectric signals through heuristic methods, MnL provides a 
data-driven approach to extracting latent variables from biopotentials.

Our study builds on previous research that describes various poten-
tial mechanisms for VF. VF has been recognized as having a wide array 
of underlying substrates and phenotypes. Clinical insights are progres-
sively identifying diverse mechanisms and ablation targets, emphasiz-
ing factors such as Purkinje or myocardial triggers, the temporal evolu-
tion of VF in hearts with no structural abnormalities, and the influence 
of localized substrate areas in cases involving structural heart disease. 
VF exhibits a range of scenarios and phenotypes in patients with 
structurally normal hearts, with distinct presentations often unique 
to each individual. While the fibrillating heart represents a dynamic 
and complex process, discrete sources frequently drive it, and catheter 
ablation has shown promise as a treatment option (Haïssaguerre et al., 
2016; Walton et al., 2014). In this context, integrating advanced ML 
techniques with digital signal processing holds significant promise for 
advancing VF research and improving diagnostic and therapeutic capa-
bilities. Our novel approach focuses on uncovering the heterogeneity 
within VF by identifying distinct subtypes based on frequency dynam-
ics, whereas previous methods primarily aimed to distinguish VF as 
a singular condition and differentiate it from other arrhythmias. As 
previously mentioned, traditionally, bioelectric recordings have been 
analyzed using time-based features (e.g., cycle length, fragmentation), 
spectral features (e.g., fundamental and dominant frequencies, organi-
zation index), and entropy-based metrics (SánchezMuñoz et al., 2009, 
2008). In contrast, our study emphasizes the frequency evolution of 
signals to differentiate these subtypes, avoiding reliance on ad hoc 
characteristics and making the methodology more generalizable. To 
achieve this, MnL techniques offer a powerful approach for introducing 
new feature dimensions, as they can distill the essence of signals 
into a reduced set of latent variables. Though these latent variables 
represent nonlinear combinations of the original input features, they 
can serve as valuable new features and be further examined to explore 
their physical and physiological implications. We hypothesize that MnL 
methods can enhance our understanding of VF by revealing distinct 
VF types characterized by unique frequency evolutions over time. Our 
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Fig. 1. General scheme of the methodology. The figure shows the steps followed in this work from left to right. The first block represents the time–frequency descriptive analysis 
in the Datasets Section. The second block shows the methods applied, where two steps are represented: first, the methods used for classification; and second, the methods used 
for visualization.
methodology consists of various approaches, including uniform mani-
fold approximation and projection (UMAP) (McInnes et al., 2018), fully 
connected networks (FCNs) (Goodfellow et al., 2016), and deep learn-
ing methods such as temporal convolutional networks (TCN) (Bai et al., 
2018) and Kolmogorov–Arnold networks (KAN) (Liu et al., 2024). This 
methodology effectively demonstrates the ability of manifold learning 
to reduce the dimensionality of complex VF data while preserving criti-
cal frequency-based features, making FV distinguishable. By integrating 
these approaches, the study not only seeks to classify VF subtypes 
but also provides interpretability into their dynamics. By clinically 
interpreting the embedding space, we aim to uncover new insights 
into the classification and pathophysiology of different VF types that 
conventional methods have not been able to detect so far. Our analysis 
focuses on signals of varying origins, lengths, and patterns, using three 
different datasets to ensure a comprehensive evaluation. This diverse 
data collection is a benchmark for detecting different VF types, allowing 
us to rigorously test and validate our methods. It also acknowledges 
that variations in dataset characteristics may influence the detection 
and differentiation of VF types and that certain VF types may not be 
distinguishable in some cases.

This document is organized as follows. Section 2 details the three 
datasets and the data acquisition and analysis methodologies. Then, 
Section 3 presents the results of the distinction of VF types, including 
classifiers, the embedding space representations, and a comparison with 
standard frequency metrics. Finally, Section 4 offers a discussion of the 
findings and the conclusions drawn from the study.

2. Materials and proposed method

As shown in Fig.  1, the first step of our process involved obtaining 
the frequency information from the raw VF time signals. Then, several 
methods were applied to check for distinctions between different VF 
types and to visualize the low-dimensional latent spaces generated by 
these methods.

2.1. Description of data sets

This study used three different datasets, each representing various 
types of patients or conditions. These are clinical datasets obtained 
from the Hospital Clínico Universitario Virgen de la Arrixaca; therefore, 
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they are not publicly accessible at this time. The first data set includes 
human ECG recordings during cardiopulmonary bypass surgery (CPB), 
the second includes recordings during pharmacological administration 
of various substances in dogs, and the last includes ICD recordings from 
patients who experienced sustained and non-sustained VF. To analyze 
these datasets, we apply signal processing to obtain the frequency 
characteristics from the signals. Specifically, the FFT was applied to 
each signal or signal segment to compute the PSD. Therefore, we 
obtained frequency-based characteristics used as input to the models, 
focusing on the inherited structure of the signals.

This first dataset comprises ECG recordings obtained during CPB 
procedures. Specifically, it includes a dataset encompassing data from 
two distinct cardiac conditions occurring during VF in CPB, VFON, 
and VFOFF. In cardiac surgery, VFON episodes, prevalent during ex-
tracorporeal circulation, often depict a natural progression from VF to 
asystole. These occurrences were induced during post-aortic clamping 
and perfusion, with CPB conducted via cannulation in the ascending 
aorta and moderate hypothermia (28–32 ◦C) employed for myocardial 
protection using cold hyperkalemic blood cardioplegia administered 
via antegrade and retrograde routes. In contrast, VFOFF episodes orig-
inated from asystole following aortic declamping and restoration of 
cardiac circulation in patients. Each recording comprises one ECG lead 
sampled at 200 Hz. To ensure robust evaluation, the train–test split 
was implemented on the signals from 29 patients, resulting in distinct 
cases for each split, 17 cases for training (8 cases of VFON and 9 
cases of VFOFF) and 12 cases for testing (4 cases of VFON and 8 cases 
of VFOFF). The analysis encompassed frequency-based approaches in 
which signals were segmented using overlapping windows, and the 
Welch periodogram method was applied. The 10 windows were se-
lected to capture the frequency evolution over time, resulting in an 
effective window length of 2 s.

The second dataset involved a study of 23 anesthetized mongrel 
dogs administered various pharmacological agents: amiodarone, dilti-
azem, flecainide, and a control group. VF was induced by electrical 
pacing through a catheter electrode in the right ventricle. ECG signals 
were recorded continuously for 6 min. Group 1 (5 dogs) served as 
the control group with no prior drug administration, group 2 (5 dogs) 
received amiodarone at a dose of 5 mg/kg, group 3 (7 dogs) received 
diltiazem at 0.2 mg/kg, and group 4 (5 dogs) received flecainide at 
2 mg/kg. Drugs were chosen based on their effects on molecular and 
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electrophysiological changes during VF. Specifically, amiodarone treats 
life-threatening arrhythmias unresponsive to other drugs by relaxing 
heart muscles and decreasing certain ionic currents. Diltiazem, a cal-
cium channel blocker, manages high blood pressure and angina by 
relaxing blood vessels and improving heart oxygenation. Flecainide 
is an antiarrhythmic drug that prevents severe ventricular arrhyth-
mias and stabilizes cardiac rhythm by slowing electrical signals in the 
heart. Each recording comprises one ECG lead sampled at 1000 Hz. 
To ensure robust evaluation, the train–test split was implemented on 
the signals from 23 dogs, resulting in distinct cases for each split, 
14 cases for training (3 cases of amiodarone, 4 cases of flecainide, 
4 cases of diltiazem, and 3 control cases) and 9 cases for testing (2 
cases of amiodarone, 2 cases of flecainide, 3 cases of diltiazem and 2 
control cases). The analysis encompassed frequency-based approaches 
in which signals were segmented using overlapping windows, and the 
Welch periodogram method was applied. Ten windows were selected 
to capture the frequency evolution over time, resulting in an effective 
window length of 1 s.

The third dataset includes patients who experienced at least one 
sustained VF episode requiring defibrillation and at least one non-
sustained VF episode, both of which were induced and recorded by the 
ICD. Sustained VF episodes require an electrical shock to terminate the 
arrhythmia, while non-sustained VF episodes resolve naturally without 
intervention. The dataset consists exclusively of induced VF episodes, 
each recording sampled at 128 Hz from the ICD. For robust evaluation, 
a train–test split was performed on 74 episodes, resulting in distinct 
cases for each split, 60 cases for training (40 sustained VF and 20 
non-sustained VF) and 14 cases for testing (9 sustained VF and 5 
non-sustained VF). Given that the signals have a mean duration of 
7.3731 s, we examined the frequency spectrum of complete signal 
datasets without using segmented windows with overlapping intervals. 
This approach ensures the reliability of our analysis by capturing the 
complete spectral characteristics of uninterrupted signal sequences.

Fig.  2 presents an initial exploratory analysis of the datasets in-
corporated in this study. These datasets constitute the input space for 
the models and methodologies applied. Although not exhaustive, the 
exploratory analysis shown in this figure shows an example of the 
temporal and frequency space representation for each of the three 
datasets evaluated. In particular, under the denominations (a) and (b), 
the representation in time and frequency of two paired signals (VFON 
and VFOFF) corresponding to the first surgical dataset is presented. 
The corresponding ones are presented under the denominations (c) 
and (d) with the paired analysis of an example of the dataset of dogs 
treated with diltiazem versus those treated with flecainide. Finally, the 
illustrative example of the third set of data that involves the signals 
corresponding to the classification of Sustained and Non-sustained VF 
is depicted on panels (e) and (f). In the first column of the figure, 
four graphs are presented under a single denomination, panels (a), (c), 
and (e), for each of the three datasets. In these three blocks of four 
graphs, the left column includes the temporal representation of the two 
paired signals for the two classes in rows. In the right-hand column, still 
within the left block, a spectral representation of the different segments 
into which the temporal signal was divided is shown. For the reader’s 
convenience, the temporal illustration of the signal is represented with 
different segment colors. These colors correspond to their respective 
spectral analyses in their proper wire-framed representation. In case 
(e), corresponding to the example of the Sustained and Non-sustained 
VF dataset, the temporal limitation of the signal has suggested its 
representation in a single segment. Finally, to offer a more illustrative 
comparative view, the superposition of the wire-frame spectral figures 
of both classes of signals has been incorporated in the right-hand 
column, on panels (b), (d), and (f), where in this case, the colors have 
been made to correspond with the classes analyzed.

Visual inspection of Fig.  2 allows us to observe that in the case 
of surgical signals, the spectrum of VFOFF seems to contain a higher 
spectral content than VFON. Although less intense, this situation seems 
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repeated for the Flecainide vs. Diltiazem classes in the second data set 
from dogs. Finally, in the case of the third set of data, and for the 
example incorporated in this exploratory analysis, a clear bimodality 
is seen in the case of non-sustained VF, with a greater participation of 
the low-frequency lobe. In contrast, in the case of sustained VF, a single 
prevalent modality is observed in the high-frequency band where the 
second lobe of Non-Sustained appeared. At this point, it is necessary 
to state that the examples shown here have been selected among all 
existing datasets for illustrative purposes. So, they cannot be considered 
generalizable over the dataset. Still, they do suggest that there may 
be underlying intrinsic differences that could be evaluated under the 
appropriate machine learning evaluation.

With each dataset, we can represent the data in the form of a matrix 
𝐗 ∈ R𝑀×𝑁 . In this case, the 𝑛th column of the matrix, 𝐱⋅𝑛, is a 𝑀 × 1
column vector containing the frequency observations of each of the 
𝑀 patients samples. The 𝑚th row, 𝐱𝑚⋅, is a 1 ×𝑁 row vector with 
the frequency observations for the 𝑚th patient. The element 𝑥𝑚,𝑛 is 
the frequency observation for the 𝑚th patient and the 𝑛th frequency 
information. For the dataset involving a binary classification problem, 
𝐲 ∈ {0, 1}𝑀×1 represents the column vector that identifies the class 
or label: 1 for VFON in the CBP dataset or sustained VF in the ICD 
dataset, and 0 for VFOFF in the CBP dataset or non-sustained VF 
in the ICD dataset. In the case of a multiclass classification prob-
lem, 𝐲 ∈ {0, 1, 2, 3}𝑀×1 represents the different drugs administered to 
the dogs, with each value corresponding to a specific drug treatment 
category.

2.2. Estimating embeddings

Data representation in a latent space is crucial for extracting mean-
ingful patterns and features from complex datasets. Hence, our method-
ology focuses on comparing different methods to evaluate the identifi-
cation of various types of VF, measuring performance using metrics, 
and visually representing the dimensional reduction structure for each 
method. UMAP was chosen for its topological capabilities, allowing 
us to capture complex, high-dimensional relationships in a lower-
dimensional space. TCN was employed for its convolutional nature, 
which is well-suited for modeling sequential data and frequency pattern 
evolution in the signals. FCNs were included due to their versatility 
and ability to model complex interactions across features. KANs were 
selected for their interpretability, offering insights into the underlying 
dynamics through activation functions.

UMAP is an advanced dimensionality reduction technique known 
for its efficiency and scalability (McInnes et al., 2018). When analyzing 
this kind of data in the high-dimensional space, other dimensionality 
reduction methods, such as PCA, may struggle because it primarily cap-
tures linear relationships, and t-SNE can capture nonlinear relationships 
but can be computationally inefficient due to the high dimensional 
data. Then, UMAP is an appropriate method to analyze data on such 
characteristics in which extensive datasets and nonlinear characteristics 
appear. One of its key features is its ability to preserve both local and 
global structures within the data, ensuring that relationships between 
data points remain consistent even after dimensionality reduction. 
UMAP achieves this by creating a graph that connects nearby data 
points based on their distance or similarity in the high-dimensional 
space. It then optimally places these points in a lower-dimensional 
space, minimizing the differences in distances between the original and 
reduced representations. This process maintains the local and intrinsic 
structures of the data.

For the mathematical formulation of UMAP, we consider our pre-
viously defined dataset as 𝐗 ∈ R𝑀×𝑁 . Let 𝐱𝑚1⋅

 and 𝐱𝑚2⋅
 denote two 

data points in this dataset, located in the high-dimensional space R𝑁 . 
After the reduction to 3 dimensions, in the embedding space, we have 
𝐙 ∈ R𝑀×3. To determine which data points are considered neighbors in 
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Fig. 2. The left column shows the correspondence between time segments and their frequency representations. The right column compares input spaces, illustrating two signals 
per dataset. In the first row, (a) and (b) illustrate the time–frequency analysis (VFON and VFOFF) corresponding to the surgical dataset. In the second row, (c) and (d) correspond 
with the paired analysis of an example of the dataset of dogs treated with diltiazem versus those treated with flecainide. In the last row, (e) and (f) correspond to the classification 
of Sustained and Non-sustained VF.
the high-dimensional space, the conditional probability 𝑝𝑚2|𝑚1
 that 𝐱𝑚2⋅

is selected as a neighbor of 𝐱𝑚1⋅
 is defined as: 

𝑝𝑚2|𝑚1
= 𝑒𝑥𝑝

[

−𝑑(𝐱𝑚1⋅
, 𝐱𝑚2⋅

) − 𝜌𝑚1

𝜎𝑚1

]

, (1)

where 𝜎𝑚1
 is the perplexity parameter influencing the effective number 

of neighbors considered from a given point. On the other hand, 𝜌𝑚1
can be interpreted as the average weighted distance between a specific 
point and its neighboring points. We use 𝑑(𝐱𝑚1⋅

, 𝐱𝑚2⋅
) to denote the 

distance metric measuring the separation between 𝐱𝑚1⋅
 and 𝐱𝑚2⋅

 in 
the dataset. An essential distinction in the probability distributions of 
UMAP lies in its unique local distance metric customized for each pair 
of points. The distance probability in UMAP low-dimensional space is 
5 
defined as: 
𝑞𝑚1 ,𝑚2

= (1 + 𝑎‖𝐡𝑚1
− 𝐡𝑚2

‖

2𝑏)−1, (2)

where 𝐡𝑚1
 and 𝐡𝑚2

 represent the embeddings of data points 𝐱𝑚1⋅
 and 𝐱𝑚2⋅

in the low-dimensional space and 𝑎 and 𝑏 are parameters controlling the 
shape and scaling of the distribution.

TCNs are networks structured with one or more blocks of one-
dimensional convolutional (1D-CONV) layers. These layers use dilated 
convolutions, where the filter is applied to input data points spaced 
apart by a certain number of steps, determined by a dilation factor. This 
dilation factor increases the receptive field, allowing the network to 
capture dependencies between distant frequency steps. When calculat-
ing the output at a frequency step 𝑠 in causal TCNs, a CONV layer only 
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considers previous frequency steps (1 to 𝑠 − 1). In a dilated causal 1D-
CONV layer, the convolution operation 𝐹  at location 𝑠 of the sequence 
and a filter 𝑓 ∶ {0,… , 𝑘 − 1} → R is provided by the following equation:

𝐹 (𝑠) =
(

𝐱𝑚⋅ ∗𝑑 𝑓
)

(𝑠) =
𝑘−1
∑

𝑖=0
𝑓 (𝑖) ⋅ 𝑥𝑚,𝑠−𝑑⋅𝑖, (3)

where 𝐱𝑚⋅ is the layers input, ∗𝑑 is the convolution operation, 𝑑 is 
the dilation factor, 𝑘 is the filter size, and 𝑠 − 𝑑 ⋅ 𝑖 accounts for the 
past directions. In TCNs with 𝐿 layers, each layer successively applies 
dilated convolutions, extracting hierarchical features from the input 
𝐱𝑚⋅. This hierarchical feature extraction process leads to a progressive 
reduction of dimensionality 𝐡𝑚 of 𝐱𝑚⋅.

FCNs are employed to reduce the dimensionality of the input data. 
The FCN operates by transforming the high-dimensional input data 
through several layers, with each layer progressively reducing the 
number of features until the bottleneck is reached. The bottleneck layer 
is a compact input data representation, capturing the most critical 
features for the classification task. Moreover, visualizing the structure 
given by the bottleneck can provide insights into the reduction process. 
A direct representation is provided for a bottleneck of size 3, while for 
higher bottlenecks, the reduction to 3 dimensions is performed using 
UMAP. After this dimensionality reduction phase, a subsequent part of 
the network acts as a classifier to perform the final classification task 
based on the compressed information. Mathematically, the input data 
𝐱𝑚⋅ is compressed by the first layers of the FCN into an encoding symbol 
𝐡𝑚, given by 
𝐡(𝐿)𝑚 = 𝜙(𝐿)(𝐖(𝐿)

𝑒 𝐡(𝐿−1)𝑚 + 𝐛(𝐿)𝑒 ), (4)

where 𝜙(𝐿) is a nonlinear transformation, 𝐖(𝐿)
𝑒  is the weight matrix 

and 𝐛(𝐿)𝑒  is the bias vector of the encoder at layer 𝐿. The reduction 
of dimensionality at 𝐿th layer in the latent space corresponding to the 
input 𝐱𝑚⋅ is indicated by 𝐡(𝐿)𝑚 .

An additional approached method consists of KANs, which can 
be considered an alternative to Multi-Layer Perceptrons (MLPs) by 
introducing a fundamentally different approach to activation func-
tions. Unlike MLPs, which use fixed activation functions at each node 
(neuron), KANs utilize learnable activation functions applied to the 
edges (weights). This design eliminates using linear weights; instead, 
every weight parameter is replaced by a univariate function, typically 
parameterized as a spline. The theoretical foundation of KANs comes 
from the Kolmogorov–Arnold representation theorem, which states that 
any multivariate continuous function (𝑓 ∶ [0, 1]𝑛 → R) can be repre-
sented as a superposition of continuous functions of a single variable. 
Mathematically, this can be expressed as: 

𝑓 (𝐱𝑚⋅) =
2𝑛+1
∑

𝑞=1
𝛷𝑞

( 𝑛
∑

𝑝=1
𝜑𝑞,𝑝(𝑥𝑚,𝑝)

)

, (5)

where 𝜙𝑞,𝑝 ∶ [0, 1] → R and 𝛷𝑞 ∶ R → R. In this formulation, 𝛷𝑞 and 
𝜑𝑞,𝑝 are learnable activation functions, making the network adaptable 
to various data distributions and feature interactions. The composition 
of these functions can summarize the overall function of a KAN, then 
a 𝐿-layer KAN can be defined as: 
KAN(𝐱𝑚⋅) =

(

𝜱𝐿−1◦𝜱𝐿−2◦⋯◦𝜱1◦𝜱0
)

𝐱𝑚⋅, (6)

where Φ𝑖 represents the 𝑖th layer of the complete KAN network. For 
each layer with 𝑛in -dimensional input and 𝑛out -dimensional output, 
Φ consist of 𝑛in × 𝑛out  1-D learnable activation functions 𝜙𝑞,𝑝, 

Φ =
{

𝜙𝑞,𝑝
}

, 𝑝 = 1, 2,… , 𝑛in , 𝑞 = 1, 2⋯ , 𝑛out . (7)

This approach allows KANs to effectively capture and model complex, 
nonlinear relationships within the data, improving accuracy and in-
terpretability since the learned activation functions can offer insights 
into the specific transformations and relationships the network has 
identified. As in MLPs, we can obtain activations from KANs during 
training and generate embeddings of these learnable features. These 
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embeddings enable us to conduct similarity assessments with the other 
methodologies, thereby evaluating the effectiveness of the learning 
process.

2.3. Frequency characteristics of the signals

Analyzing frequency metrics such as the dominant frequency, fun-
damental frequency, and the second and third harmonics of the sig-
nal (Barquero-Pérez et al., 2010; SánchezMuñoz et al., 2009) is an 
established method for assessing differences between various signal 
types. This analysis can help compare our proposed methodology with 
classifications based on these metrics. The metrics are calculated using 
the signal PSD, representing signal power distribution across different 
frequency components 𝐟𝑚.. The dominant frequency is the frequency at 
which the signal power peaks, indicating the most significant feature 
and where the majority of the signal energy is concentrated: 𝑓𝑑 =
argmax 𝐟𝑚.. Moreover, the fundamental frequency, the lowest frequency 
of a periodic waveform, defines the primary rhythmic pattern of the 
signal. Alongside the fundamental frequency, the bandwidth around 
it indicates the range of frequencies that hold significant energy close 
to the fundamental frequency. Additionally, the second and third har-
monics, integer multiples of the fundamental frequency, provide deeper 
insights into the signal structure and complexity. The second harmonic 
is twice the fundamental frequency, while the third harmonic is three 
times the fundamental frequency. These harmonics help identify the pe-
riodic components of the signal and reveal any distortions or additional 
patterns.

3. Experiments and results

3.1. Results on class separation

In this research, we explored diverse techniques to detect VF in 
various datasets. These methods included UMAP for latent space rep-
resentation, TCNs, FCNs with varying bottleneck sizes (3, 5, 10, and 
15) and KAN to optimize feature extraction and classification. We 
assessed the performance of these classifiers using standard metrics 
like accuracy, precision, recall, and F1-score. Our goal is to char-
acterize VF subtypes by identifying frequency evolutions over time 
and determining an operational detection threshold. Since we classify 
individual frequency segments within a signal, some misclassifications 
may occur. However, the overall frequency progression remains iden-
tifiable, making a 70% accuracy threshold sufficient for meaningful 
subtype differentiation while accounting for intrinsic signal variability. 
Additionally, lower performance metrics can indicate minimal or no 
differences between VF subtypes under certain conditions, so they are 
also considered. Additionally, we compared our approach to traditional 
methods based on dominant and fundamental frequencies to gauge its 
effectiveness. We will also consider LSTM networks to compare the 
performance of our proposed networks with that of well-established 
methods.

Table  1 summarizes the performance metrics for each classifier 
with the surgical VF data. UMAP demonstrated good performance 
with an overall accuracy of 0.79, balanced precision, and recall across 
both classes. TCNs achieved an accuracy of 0.68. They offered stable 
performance with a balanced precision and recall for class C1 (VFOFF), 
but struggled with class C2 (VFON), as indicated by a lower recall 
(0.60). Finally, for FCNs with a bottleneck size of 3, the network 
achieved an accuracy of 0.78 and slightly higher performance in recall 
for class C1. With bottleneck 5, an accuracy of 0.79 was achieved. For 
the bottleneck of 10, the highest accuracy was obtained with a value 
of 0.81, so this larger bottleneck retained more information, capturing 
essential features. Similar to FC n10, the FC n15 achieved an accuracy 
of 0.80 and showed high recall for class C1. Finally, KAN obtained 
lower metrics compared to the best-performing methods but remained 
within the range of the TCN. In Table  2 appear the results for the 
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Table 1
Performance metrics for the surgical VF data for UMAP, TCN, and FCNs with different 
bottleneck sizes (3, 5, 10, and 15), and KAN. Class C1 (VFOFF) and class C2
(VFON).
 UMAP TCN FC n3 FC n5 FC n10 FC n15 KAN 
 Accuracy 0.79 0.68 0.78 0.79 0.81 0.80 0.67 
 Precision C1 0.85 0.64 0.76 0.77 0.77 0.75 0.63 
 Precision C2 0.75 0.73 0.79 0.81 0.87 0.85 0.74 
 Macro precision 0.80 0.69 0.78 0.79 0.82 0.80 0.67 
 Recall C1 0.73 0.77 0.80 0.82 0.87 0.85 0.70 
 Recall C2 0.86 0.60 0.76 0.77 0.77 0.76 0.64 
 Macro recall 0.80 0.68 0.78 0.80 0.82 0.81 0.67 
 F1 score C1 0.79 0.70 0.78 0.79 0.81 0.80 0.66 
 F1 score C2 0.80 0.68 0.77 0.79 0.82 0.81 0.68 
 Macro F1 score 0.79 0.68 0.78 0.79 0.81 0.80 0.67 

Table 2
Performance metrics using frequency metrics method for surgical VF data.
 Class C1 Class C2 Macro average 
 Precision 0.76 0.69 0.72  
 Recall 0.67 0.77 0.72  
 F1 Score 0.71 0.73 0.72  
 Accuracy 0.72

Table 3
Performance metrics for UMAP, TCN, and FCNs with different bottleneck sizes (3, 5, 
10, and 15), and KAN for the data comparing VF signals in dogs treated with different 
drugs. Class C1 (Flecainide), Class C2 (Amiodarone), Class C3 (Diltiazen), Class C4 
(Controls).
 UMAP TCN FC n3 FC n5 FC n10 FC n15 KAN 
 Accuracy 0.57 0.63 0.56 0.59 0.59 0.59 0.57 
 Precision C1 0.48 0.43 0.62 0.57 0.50 0.66 0.55 
 Precision C2 0.52 0.31 0.28 0.43 0.51 0.34 0.38 
 Precision C3 0.65 0.89 0.71 0.74 0.72 0.70 0.68 
 Precision C4 0.60 0.72 0.55 0.55 0.59 0.59 0.55 
 Macro precision 0.56 0.59 0.54 0.57 0.58 0.57 0.55 
 Recall C1 0.62 0.59 0.44 0.44 0.44 0.45 0.53 
 Recall C2 0.38 0.19 0.46 0.49 0.50 0.51 0.36 
 Recall C3 0.76 0.81 0.71 0.74 0.75 0.75 0.71 
 Recall C4 0.44 0.85 0.56 0.64 0.65 0.61 0.57 
 Macro recall 0.55 0.61 0.54 0.58 0.58 0.58 0.54 
 F1 score C1 0.54 0.50 0.52 0.50 0.47 0.53 0.52 
 F1 score C2 0.44 0.24 0.35 0.46 0.50 0.41 0.36 
 F1 score C3 0.70 0.85 0.71 0.74 0.73 0.72 0.69 
 F1 score C4 0.51 0.78 0.55 0.59 0.62 0.60 0.56 
 Macro F1 score 0.55 0.59 0.53 0.57 0.58 0.57 0.54 

Table 4
Confusion matrix illustrating the difficulty in distinguishing between C1 (flecainide) 
and C2 (amiodarone) in the TCN model.
 Predicted classes
 Flecainide Amiodarone Diltiazen Controls 
 
Actual classes

Flecainide 295 159 20 4  
 Amiodarone 205 184 71 18  
 Diltiazen 57 3 542 115  
 Controls 60 8 202 208  

classical frequency methods employed in the same dataset. The FC n10 
model achieved the highest accuracy at 0.81, compared to 0.72 for this 
classical method. This indicated a significant improvement in correctly 
identifying VFON and VFOFF instances.

The classification task involved four classes based on different treat-
ments for the dataset of VF signals in dogs treated with various drugs. 
As shown in Table  3, UMAP demonstrated moderate performance with 
an overall accuracy of 0.57. It showed balanced precision and recall 
across the four classes. However, it struggled significantly with iden-
tifying class C1 (flecainide) and class C2 (amiodarone), as indicated 
by lower precision and recall values. TCN achieved better overall 
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Table 5
Performance metrics using frequency metrics method for VF detection based on 
different drugs.
 Class C1 Class C2 Class 3 Class C4 Macro average 
 Precision 0.48 0.42 0.67 0.65 0.56  
 Recall 0.59 0.36 0.74 0.51 0.55  
 F1 score 0.53 0.39 0.70 0.57 0.55  
 Accuracy 0.57

Table 6
Performance metrics for UMAP, TCN, and Fully Connected Networks with different 
bottleneck sizes (3, 5, 10, and 15), and KAN for the data comparing VF signals in DAI. 
Class C1 (sustained VF) and Class C2 (non-sustained VF).
 UMAP TCN FC n3 FC n5 FC n10 FC n15 KAN 
 Accuracy 0.86 0.79 0.71 0.71 0.71 0.71 0.66 
 Precision C1 0.89 0.88 0.67 0.67 0.67 0.67 0.60 
 Precision C2 0.80 0.67 0.80 0.80 0.80 0.80 0.72 
 Macro precision 0.84 0.77 0.73 0.73 0.73 0.73 0.66 
 Recall C1 0.89 0.78 0.86 0.86 0.86 0.86 0.74 
 Recall C2 0.80 0.80 0.57 0.57 0.57 0.57 0.56 
 Macro recall 0.84 0.79 0.71 0.71 0.71 0.71 0.65 
 F1 score C1 0.89 0.82 0.75 0.75 0.75 0.75 0.65 
 F1 score C2 0.80 0.73 0.67 0.67 0.67 0.67 0.63 
 Macro F1 score 0.84 0.78 0.71 0.71 0.71 0.71 0.64 

performance with an accuracy of 0.63, and class C3 showed the highest 
precision and recall. However, again, the model faced challenges with 
class C2 and class C1, where the precision and recall for class C2 were 
particularly low (precision of 0.31 and recall of 0.19). The results for 
FCNs with different bottleneck dimensions varied. FC n3 achieved an 
accuracy of 0.56, FC n5 showed a slight improvement with an accuracy 
of 0.59, and FC n10 and FC n15 maintained the same accuracy of 0.59 
with slightly improved macro-averaged metrics. Finally, KAN, with an 
accuracy of 0.57, achieved a performance similar to UMAP and FC 
networks. Despite these varied performances, all FCNs demonstrated 
difficulty in accurately distinguishing between class C1 and class C2.

It is valuable to visualize the confusion matrix to gain further 
insights into the classification challenges, particularly the confusion 
between class C1 (flecainide) and class C2 (amiodarone). Given the 
relatively better performance of the TCN, we have selected TCN for this 
visualization, as shown in Table  4. Here, we can observe the confusion 
between class C1 and class C2, probably indicating a similar frequency 
evolution.

In comparison with the classification based on classical frequency 
metrics, the accuracy of the proposed models was similar to this 
method, with most models achieving around 0.57 to 0.63, while the 
classical method accuracy was 0.57 as shown in Table  5. TCNs offered 
notable improvements in precision, recall, and F1 scores for certain 
classes, but they underperformed in others. The overall macro averages 
for precision, recall, and F1 scores were comparable between the 
proposed models and the classical methods. This indicates that the 
proposed approach can be as effective as classical frequency-based 
methods, with specific advantages in certain areas.

For the final dataset, the performance metrics for UMAP, TCN, 
FCNs and KAN with different bottleneck sizes indicate varying degrees 
of effectiveness in recognizing two types of VF, sustained and non-
sustained (see Table  6). UMAP demonstrated good overall accuracy 
(0.86) and balanced performance for both classes, showing its effec-
tiveness at classifying both classes with high macro precision and recall. 
TCN achieved an accuracy of 0.79. The FCNs, regardless of bottleneck 
size (3, 5, 10, and 15), showed a consistent overall accuracy of 0.71 and 
similar metrics across all configurations. This consistency indicates that 
increasing the bottleneck size did not improve the model performance, 
and the FCNs displayed balanced precision and recall for both classes. 
However, KAN obtained the lowest performance among all methods, 
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Table 7
Performance metrics using frequency metrics method for sustained and non-sustained 
VF.
 Class C1 Class C2 Macro average 
 Precision 0.84 0.70 0.77  
 Recall 0.84 0.70 0.77  
 F1 score 0.84 0.70 0.77  
 Accuracy 0.79

Table 8
Performance metrics of the LSTMs for all the datasets.
 Surgical FV Dogs FV DAI FV 
 Accuracy 0.79 0.59 0.71  
 Precision C1 0.76 0.48 0.60  
 Precision C2 0.83 0.49 0.78  
 Precision C3 – 0.68 –  
 Precision C4 – 0.60 –  
 Macro precision 0.80 0.56 0.68  
 Recall C1 0.84 0.57 0.6  
 Recall C2 0.75 0.31 0.78  
 Recall C3 – 0.51 –  
 Recall C4 – 0.77 –  
 Macro recall 0.79 0.54 0.68  
 F1 score C1 0.80 0.52 0.6  
 F1 score C2 0.79 0.38 0.78  
 F1 score C3 – 0.59 –  
 F1 score C4 – 0.67 –  
 Macro F1 score 0.79 0.56 0.68  

although it remains comparable to FC. Moreover, the performance 
metrics for the classification using frequency metrics are shown in 
Table  7. In terms of accuracy, UMAP outperformed this method with 
the highest accuracy score of 0.86. TCN matched the classical method 
accuracy at 0.79, while all FCN models and KAN achieved slightly 
lower accuracy at 0.66–0.71. This indicates that UMAP and TCN are 
generally more effective than more complex networks and frequency 
metrics in accurately detecting VF signals in this dataset.

To demonstrate that the differences in performance between differ-
ent methods considering UMAP, TCN, FCN n3 and KAN are not due to 
random chance, we have applied bootstrap resampling and performed 
pairwise comparison using the Wilcoxon signed-rank test. For each of 
the three datasets, we generated 1000 bootstrap samples by resampling 
from the test set and calculating predictions for each method. We then 
used the Wilcoxon signed-rank test to evaluate pairwise accuracy com-
parisons between methods, assessing whether the observed differences 
are statistically significant.

For the surgical VF dataset, UMAP results are statistically significant 
with a 𝑝-value < 0.05 compared to TCN, FC n3 and KAN, while FC n3 
demonstrated a statistically significant detection over TCN and KAN. 
For the dataset treated with different drugs, TCN is statistically signif-
icant compared to the rest of the methods, while UMAP is statistically 
significant compared to FC n3. Finally, for the sustained and non-
sustained VF datasets from DAI, UMAP is statistically significant with a 
𝑝-value < 0.05 compared to TCN, FC n3 and KAN. At the same time, 
TCN is statistically significant compared to FC n3 and KAN. These 
statistical distinctions are maintained across datasets, highlighting con-
sistency in method rankings and identifying the best-performing model 
in each case that varies across datasets.

Moreover, we compared our approach to an established method 
used to capture long-range dependencies across time series, which is 
LSTMs. As shown in Table  8, LSTMs achieve comparable performance 
to TCNs and FCNs in the test set, with high accuracy on the surgical 
dataset (outperforming TCNs and matching FCNs), while on the two 
other datasets, they perform similarly to FCNs but fall slightly behind 
TCNs. Therefore, we can conclude that our proposed methodology 
aligns well with current approaches for this type of data.
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3.2. Results on embedding estimators

UMAP was used primarily for visualization and interpretation of 
the high-dimensional data. It was applied not only to the methods 
themselves but also to visualize the activation functions of the last layer 
of the TCN, the bottleneck layers of the FCNs, and the activations of 
KANs.

Fig.  3 displays the embedding spaces generated for the surgical 
VF detection task. The UMAP embeddings separate the two classes 
in both the training and test sets. The embeddings generated from 
the activations of the last layer of the TCN demonstrate a separation 
between classes in the training set, but the classes are not distinctly 
clustered. Moreover, the spatial distribution of the classes in the test 
set is not maintained in the training set. The embeddings from the FCN 
with a bottleneck of three dimensions also show separation between 
the classes in both sets. Finally, from KAN, the embeddings are more 
compact and exhibit some degree of overlap. For higher-dimensional 
FCN bottlenecks of 5, 10, and 15, UMAP was applied to reduce the 
dimensions to three for visualization. In all three cases, the embeddings 
show a similar pattern, with a separation between VFON and VFOFF 
classes and minimal overlap, especially for the FCN with a bottleneck 
of 10 dimensions, as shown in Fig.  4.

Fig.  5 displays the embedding spaces generated for the VF detection 
task in dogs, categorized into four classes. In the embeddings, class 
C1 (Flecainide) and class C2 (Amiodarone) overlap across all methods, 
making them indistinguishable. However, these classes are separated 
from Diltiazem and Controls. In the TCN embeddings, no large clusters 
are formed. However, there is a separation between the classes. Among 
the FCNs, the best results are observed with a bottleneck dimension 
of 10, but the differences are minimal compared to other bottleneck 
dimensions. Regardless of the bottleneck size, the overlap between 
classes 1 and 2 persists, as shown in Fig.  6. As seen in the metrics 
results, this overlap negatively impacts accuracy and precision perfor-
mance. The consistent overlap between Flecainide and Amiodarone in 
the embeddings suggests similar effects of these drugs on VF, which 
could be valuable for understanding how these treatments influence 
the electrical activity of the heart during VF episodes. Moreover, in 
our analysis, the signals from the dogs have a duration of 360 s. We 
considered the last 120 s, where class differences are more pronounced. 
This focus is due to the initial part of the signals (the first 120 s) 
showing significant overlap with no clear distinctions. This observation 
suggests an evolution in the frequency characteristics of the signals, 
which becomes more accentuated towards the end. This evolution may 
contribute to the observed confusion between classes.

The embedding spaces generated by UMAP demonstrate superior 
performance in distinguishing between the two classes for the sustained 
and non-sustained VF datasets from DAI. UMAP effectively creates 
distinct clusters for both VF classes, allowing for better interpretability 
and visualization. In contrast, the TCN embeddings fail to produce 
two separate clusters, indicating difficulty in accurately differentiating 
the classes, as seen in Fig.  7. In Fig.  8, the results obtained from the 
higher-dimensional fully connected networks show a similar level of 
separation, although the clusters appear in different parts of the space.

4. Discussion and conclusion

In this study, we investigated the use of advanced analytical meth-
ods, particularly MnL techniques, and deep learning approaches, to 
classify and interpret the underlying dynamics of VF. Our primary 
focus is advancing clinical knowledge by exploring the different evo-
lutions in VF based on frequency, with MnL better identifying the 
features for these distinctions. The application of MnL across different 
methods is particularly valuable, as it enables the visualization of net-
work embeddings where activation functions can vary. Specifically, in 
KAN, activation functions are learnable at the edges between neurons, 
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Fig. 3. Embedding spaces of classifiers for surgical VF detection. The top row represents the training set embeddings, while the bottom row represents the test set embeddings. 
Blue points indicate VFOFF (Class C1), and red points indicate VFON (Class C2): (a) UMAP embeddings; (b) Embeddings from the activations of the last layer of the TCN; (c) 
Embeddings from the FCN with a bottleneck of three dimensions; (d) Embeddings from the activations of KAN.

Fig. 4. Embedding spaces of FCNs classifiers with different bottleneck dimensions. Blue points indicate VFOFF (Class C1), and red points indicate VFON (Class C2): (a) Bottleneck 
dimension of 5; (b) Bottleneck dimension of 10; (c) Bottleneck dimension of 15.

Fig. 5. Embedding spaces of classifiers for VF detection based on different drugs. The top row represents the training set embeddings, while the bottom row represents the test 
set embeddings. Red points indicate Flecainide (Class C1), yellow points indicate Amiodarone (Class C2), green points indicate Diltiazem (Class C3), and purple points indicate 
the control group (Class C4): (a) UMAP embeddings; (b) Embeddings from the activations of the last layer of the TCN; (c) Embeddings from the FCN with a bottleneck of three 
dimensions; (d) Embeddings from the activations of KAN.
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Fig. 6. Embedding spaces of FCN classifiers with different bottleneck dimensions. Red points indicate Flecainide (Class C1), yellow points indicate Amiodarone (Class C2), green 
points indicate Diltiazem (Class C3), and purple points indicate the control group (Class C4): (a) Bottleneck dimension of 5; (b) Bottleneck dimension of 10; (c) Bottleneck dimension 
of 15.
Fig. 7. Embedding spaces of classifiers for sustained and non-sustained VF detection. The top row represents the training set embeddings, while the bottom row represents the test 
set embeddings. Blue points indicated sustained VF (Class C1) while red points indicate non-sustained VF (Class C2): (a) UMAP embeddings; (b) Embeddings from the activations 
of the last layer of the TCN; (c) Embeddings from the FCN with a bottleneck of three dimensions; (d) Embeddings from the activations of KAN.
Fig. 8. Embedding spaces of FCN classifiers with different bottleneck dimensions. Blue points indicated sustained VF (Class C1) while red points indicated non-sustained VF (Class 
C2): (a) Bottleneck dimension of 5; (b) Bottleneck dimension of 10; (c) Bottleneck dimension of 15.
whereas in TCN and FC networks, they operate within the neurons 
themselves. KAN networks are known for their interpretability due to 
the derivation of explicit equations. However, in our case, due to the 
high input size, these equations are not useful for interpretation. Across 
all methods and datasets, we observed consistency in classification 
performance within a certain range, as well as an embedding repre-
sentation where some classes formed separate clusters, while others 
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overlapped.

At this stage, we are not yet addressing practical implementation in 
real-world hospital settings, instead aiming to provide valuable infor-
mation that could guide future research and clinical approaches. More-
over, due to their differing nature and context, the datasets used cannot 
be directly compared in terms of classification performance. This is 
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Fig. 9. Impact of signal length: (a) Shorter signal segments lead to higher misclassification rates; (b) Longer signals provide more frequency information, resulting in fewer 
misclassifications.
because two datasets involve human subjects, while the third con-
sists of recordings from canines undergoing various pharmacological 
treatments.

Our results demonstrated that the separability of VF types is sig-
nificantly accentuated in longer signals where the frequency evolution 
can be observed more clearly. For instance, in clinical settings involv-
ing CPB procedures, we analyzed signals with an average length of 
138.29 s. These longer signals allowed us to observe distinct frequency 
evolution patterns, enabling the classification of VF types. However, 
shorter signals, particularly those from 6 s to 10 s duration for VFON, 
were often misclassified. This misclassification likely indicates a lack of 
sufficient frequency evolution, thereby underscoring the importance of 
signal duration in accurately identifying VF types. In Fig.  9, the impact 
of signal length on the UMAP methodology is shown. As observed, 
longer signals exhibit a clearer frequency evolution.

In the dataset involving dogs treated with different drugs, the 
complete recorded signals were 360 s long, but we focused on the last 
120 s, where differences between groups appeared. Interestingly, the 
differences were not evident during the first 120 s of the recordings. 
Differences started to appear in the middle part of the signal but were 
not as pronounced as in the final segment. This observation suggests 
that the critical frequency evolution necessary for distinguishing VF 
types occurs later in the signal, where the signals are longer and the 
frequency evolution and change are more evident.

Finally, the average signal duration for the analysis of sustained and 
non-sustained VF signals from the ICD was 7.544 s. Our initial approach 
involved using overlapping windows to examine the frequency evolu-
tion of these signals, which was consistent with the methods applied 
to the previous dataset. However, more apparent separation between 
VF types was not observed with this approach. Consequently, we 
chose to visualize the frequency information to detect any differences 
better. In this way, differences between sustained and non-sustained VF 
appeared.

The results regarding VF during CPB can be clinically interpreted. 
Our findings demonstrate a clear separation between VFON and VFOFF 
conditions, which was evident in both the embeddings and performance 
metrics. This separation is consistent with previous research using this 
dataset that employed spectral and nonlinear parameters, such as 𝑓𝑑 , 
regularity index (𝑟𝑖), and nonlinear index sample entropy (𝑆𝑎𝑚𝑝𝐸𝑛), 
to differentiate between VFON (pre-surgery) and VFOFF (post-surgery) 
conditions. This study primarily relied on statistical metrics applied to 
5-s segments at the beginning and end of the VF signals. The results 
showed that at the beginning of the VF episodes, only the spectral 
index 𝑟𝑖 showed a statistically significant increase. At the end of the VF 
episodes, 𝑓𝑑 increased significantly by approximately 1 Hz on average, 
and 𝑆𝑎𝑚𝑝𝐸𝑛 reflected higher irregularity and complexity after surgery 
(VFOFF) (Pulido-Hidalgo et al., 2013).
11 
Our findings align with existing literature that characterizes the 
evolution of VF in the frequency domain for dogs treated with different 
drugs. As previously mentioned, differences appear in the last part of 
the signal, with amiodarone and flecainide showing similar frequency 
evolution as indicated by their overlap in the embeddings. At the same 
time, there are more pronounced differences with diltiazem. Previous 
research on this dataset also analyzed the temporal evolution of 𝑓𝑑 to 
study the impact of different drugs on VF dynamics using statistical 
tests to identify significant differences across time intervals. These 
studies showed that 𝑓𝑑 typically increased during the initial seconds 
of VF, followed by a progressive decrease as the spectrum became 
more disorganized. Initial frequencies in control groups were reported 
at approximately 8.37±1.22 Hz, with significant changes occurring after 
90 s. Specifically, diltiazem increased the 𝑓𝑑 of VF and diminished 
the arrhythmia-slowing process, whereas amiodarone and flecainide 
showed an arrhythmia-slowing effect, reducing the 𝑓𝑑 of VF. The 
statistical results reveal that the 𝑓𝑑 values in the diltiazem group were 
significantly higher than those in the flecainide group throughout the 
entire arrhythmia (𝑝-value < 0.05). Similarly, 𝑓𝑑 values in the diltiazem 
group were significantly higher than those in the amiodarone group 
during key intervals, including the initial phase, 15 s, 120 s, and up 
to 300 s (𝑝-value < 0.05). These results demonstrate that diltiazem 
not only increases the 𝑓𝑑 but also exhibits a distinct electrophysio-
logical effect compared to amiodarone and flecainide (Chorro et al., 
1996). Regarding the action of amiodarone and flecainide, Class III 
agents significantly reduced 𝑓𝑑 in episodes of VF induced during ICD 
testing (Panfilov et al., 2009). Another study analyzing VF from ICD 
showed that VT/VF episodes with the Class III antiarrhythmic drug 
amiodarone displayed lower 𝑓𝑑 than episodes without the drug (Calvo 
et al., 2022). In this way, flecainide diminished the 𝑓𝑑 during VF 
in an animal model (Chorro et al., 2000). Therefore, these findings 
suggest that the electrophysiological actions of these drugs significantly 
impact the frequency dynamics of VF, with flecainide and amiodarone 
clustering together in the embeddings due to their similar reduction 
of the 𝑓𝑑 . Analyzing how different drugs (amiodarone, diltiazem, and 
flecainide) modify the frequency dynamics of VF helps identify which 
drugs may be most effective in controlling or slowing down fibrillatory 
activity, improving antiarrhythmic treatment based on their effects on 
VF dynamics.

Finally, our study investigated the differences in VF termination by 
examining the complete spectrum of VF signals, revealing notable dis-
tinctions between sustained and non-sustained VF episodes. In this way, 
a previous study analyzed 𝑓𝑑 , the power of the dominant frequency 
and its harmonics, and the organization index (OI) which were used 
as metrics for comparison. These parameters were analyzed statisti-
cally, and the results indicated that sustained VF episodes presented 
a significantly larger 𝑓  than non-sustained VF episodes (4.6 ± 0.7 Hz
𝑑
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vs. 4.3 ± 0.6 Hz, respectively). However, the powers of the dominant 
frequency, its harmonics, and the OI were found to be similar in both 
groups (SánchezMuñoz et al., 2009). Likewise, Calvo et al. showed 
that the average 𝑓𝑑 was lower in self-terminated than shock-terminated 
episodes of VF recorded by ICD (Calvo et al., 2022). The differences 
between sustained and non-sustained VF could provide information on 
the mechanisms of VF and help the development of new algorithms 
in implantable automatic defibrillators to avoid therapies in case of 
self-limiting fibrillations.

In conclusion, our study underscores the ability of MnL and deep 
learning methods using frequency evolution to distinguish between 
different subtypes of VF that could enhance the understanding of VF 
pathophysiology in diverse clinical contexts. Our findings demonstrate 
that longer signals provide a clearer differentiation between VF types 
as the frequency evolution becomes more evident over extended pe-
riods. This highlights the importance of signal duration in accurately 
identifying VF types. Moreover, the results obtained with the proposed 
methods are clinically interpretable.
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