Universidad Miguel Herndndez de Elche

MASTER UNIVERSITARIO EN ROBOTICA

UNIVERSITAS
Miguel Herndndez

Enhancing Communication Security in ROS 2

Trabajo de Fin de Master
2024/2025

Autor: Francisco Javier Blanco Romero

Tutor: José Maria Azorin Poveda

Enhancing Communication Security in ROS 2 page. 1

Summary

This master thesis explores the intersection of robotics, cybersecurity, and post-quantum cryp-
tography, focusing on enhancing the communication security of the Robot Operating System
2 (ROS 2). As robotic systems become increasingly interconnected and deployed in sensitive
applications, the need for robust security measures has never been more pressing. This re-
search addresses the growing concern that current cryptographic methods, including those im-
plemented in ROS 2’s security framework, may be vulnerable to future quantum computing
attacks.

The thesis begins with an overview of networking in robotics, emphasizing the unique chal-
lenges faced in teleoperation, telemetry, Robot-to-Robot communication (R2R) and networked
robotics. It then analyzes ROS 2’s communication architecture, examining the transition from
ROS 1 and the adoption of the Data Distribution Service (DDS) as the primary middleware.
The new ROS 2 alternative middleware, Zenoh, is also considered. Special attention is given to
the security features of DDS and the Secure Robot Operating System 2 (SROS2) framework.

A significant portion of the research is dedicated to post-quantum cryptography (PQC) and
its potential integration into ROS 2. The thesis presents a novel approach to enhancing ROS 2
security by designing and implementing a PQC plugin for DDS. This includes an exploration of
adapting PQC for alternative middlewares, particularly Zenoh, which has emerged as a promis-
ing option for addressing some of the limitations of DDS in certain robotic applications. The
practical implications of integrating PQC into ROS 2 are considered.

Finally, the thesis discusses the challenges encountered during the research, proposes potential
improvements, and outlines future research directions in the field of secure robotic communi-
cations. The findings of this study contribute to the ongoing efforts to secure robotic systems
against evolving cyber threats.

By addressing the need for quantum-resistant security in robotic communications, this research
aims to enhance the security of ROS 2-based systems in various applications, from industrial
automation to healthcare robotics.

Enhancing Communication Security in ROS 2 page. 2

Resumen

Este Trabajo de Fin de Master explora la interseccién de la robdética, la ciberseguridad y la crip-
tografia post-cudntica, centrdndose en mejorar la seguridad de las comunicaciones del Sistema
Operativo de Robots 2 (ROS 2). A medida que los sistemas robéticos se interconectan cada vez
maés y se implementan en aplicaciones sensibles, la necesidad de medidas de seguridad sélidas
es mds importante que nuca. Esta investigacion aborda la creciente preocupaciéon de que los
métodos criptograficos actuales, incluidos los implementados en el marco de seguridad de ROS
2, puedan ser vulnerables a futuros ataques de computacién cuantica.

La tesis comienza con una descripcion general de las redes en robética, enfatizando los desafios
tnicos que enfrentan la teleoperacion, la telemetria, la comunicacién robot-robot y las redes
robéticas. Luego profundiza en un andlisis de la arquitectura de comunicaciones de ROS 2,
examinando la transicién de ROS 1 y la adopcién del Servicio de Distribucién de Datos (DDS)
como el middleware principal. También se considera Zenoh, un nuevo middleware alternativo
para ROS 2. Se presta especial atencién a las caracteristicas de seguridad de DDS y el marco del
Sistema Operativo de Robots Seguros 2 (SROS2).

Una parte importante de la investigacion estd dedicada a la criptografia post-cudntica (PQC) y
su posible integracién en ROS 2. La tesis presenta un enfoque novedoso para mejorar la seguri-
dad de ROS 2 mediante el disefio e implementacién de un complemento PQC para DDS. Esto
incluye una exploracién de la adaptacion de PQC para middlewares alternativos, en particular
Zenoh, que ha surgido como una opcién prometedora para abordar algunas de las limitaciones
de DDS en ciertas aplicaciones robéticas. Se consideran las implicaciones practicas de la inte-
graciéon de PQC en ROS 2.

Finalmente, la tesis analiza los desafios encontrados durante la investigacién, propone posi-
bles mejoras y describe futuras direcciones de investigacion en el campo de las comunicaciones
roboticas seguras. Los hallazgos de este estudio contribuyen a los esfuerzos en curso para pro-
teger los sistemas robéticos contra las amenazas de ciberseguridad en evolucion.

Al abordar la necesidad de seguridad resistente a la computacién cuédntica en las comunica-
ciones robdticas, esta investigacion tiene como objetivo mejorar la seguridad de los sistemas
basados en ROS 2 en varias aplicaciones criticas, desde la automatizacién industrial hasta la
robdtica sanitaria.

Enhancing Communication Security in ROS 2 page. 3

Contents
Glossary 6
1 Introduction 8
1.1 Background and Motivationo Lo Lo 8
1.2 Problem Statement 10
1.3 Research Objectives 10
1.4 Master Thesis Structure o L. 10
2 Networked Robotics: Applications and Communication Requirements 11
21 ControlSystems L 11
2.2 Telerobotics e 12
23 Telemetry. 13
2.4 Multi-Robot Systems and Robot-to-Robot (R2R) Communication 14
2.5 Common Protocols and Technologies in Robotic Networking 14
2.6 Challenges in Robotic Networking 15
3 ROS Communication Stack: Middleware, Protocols, and Internet Connectivity 17
3.1 ROS 1: XMLRPC and TCPROS/UDPROS 17
3.1.1 XMLRPC for Node Discovery and Negotiation 17
312 TCPROSand UDPROS 18
3.1.3 Communication Flow inROS1 18
3.2 Data Distribution Service (DDS) inROS2 18
321 ROS1 toROS 2 Transition: The Casefor DDS 18
3.22 DDS Architecture and Key Features 19
3.2.3 ROS 2 DDS Middleware Implementations 21
33 Zenoh e e 22
3.3.1 A Need for an Alternative Middleware? 22
332 ZenohOverview e 24
3.3.3 zenoh-bridge-ros2dds: Zenoh Bridge for ROS2 over DDS 25
3.34 rmw_zenoh: Zenoh ROS 2 middleware 26
335 ComparisonwithDDS 27
3.4 Communicating ROS 2 Over the Internet 28
3.4.1 Challenges in Internet-based ROS Communication 28
3.4.2 Solutions for Internet-enabled ROS Communication 29
4 Security in ROS 2 31
4.1 Overview of Security Considerations in Robotics 31
42 Post-Quantum Cryptography, 31
421 Integrating Post-Quantum Cryptography in TLS/DTLS 32
43 ROS2/DDSSecurity e 32
431 Overview e 32
432 Authentication Process in DDS Security 34
43.3 Comparison with TLS (HTTPS) 35
434 Post-Quantum Cryptography: PQSec-DDS 36
43.5 Comparison with TLS (HTTPS) 38
44 ZenohSecurity 39

441 Transport Layer Security (TLS) in Zenoh 39

Enhancing Communication Security in ROS 2 page. 4

442 QUIC Protocol Support L 40
443 Rustls: The Core TLSLibrary 40
444 Post-Quantum Cryptography 40
4.5 SROS2: Secure Robot Operating System 41
451 SROS2 Architectureand Features 42
45.2 Current Limitations and Challenges 42
5 Enhancing ROS 2 Security with Post-Quantum Cryptography 44
51 Extending SROS2 for PQC Support L. 44
51.1 Compatibility with PQSec-DDS 46
512 Testingand Validation, 47
5.2 Secure Communication with the Zenoh Bridge 48
521 Approach 1: Transporting Encrypted DDS Messages over Zenoh 48

5.2.2 Approach 2: Transporting Unencrypted DDS Messages over Encrypted
Zenoh 49
5.2.3 Comparison and Operational Implications 49
5.3 Secure Communication with the Zenoh Middleware 50
5.3.1 Modifications to Zenoh for PQC Support 51
5.3.2 Leveraging SROS2 for Certificate Generation and Mutual Authentication. 51
53.3 Implementing Secure Communication over Zenoh 51
534 Testingand Validation 53
53.5 Advantages and Considerations 53

6 Conclusions and Future Work 55

Enhancing Communication Security in ROS 2

page. 5

List of Figures

1

W

Overview of the DDS architecture, illustrating the data-centric publish-subscribe
model and key components (image from OpenDDS).
Overview of the DDS architecture, illustrating the data-centric publish-subscribe
model and key components (image from OpenDDS [?]).
DDS authentication workflow (image taken from DDS Security Specification). . .
DDS Authentication handshake with mutual authentication between two do-
main participants, Alice and Bob. The discovery mechanism of the participants
isomitted for clarity. o
Integration of Post-Quantum KEMs and signatures into DDS Authentication hand-
shake with mutual authentication. The discovery mechanism of domain partici-
pants is omitted for clarity. The required changes are highlighted in blue.

20

21

35

37

38

Enhancing Communication Security in ROS 2 page. 6

Glossary
DDS
DTLS

ICE
IoT

MOQTT
PQC

ROS
RTPS

SROS2
TLS

UDP

VPN

Zenoh

Data Distribution Service - A middleware protocol for data-centric publish-
subscribe communication in distributed systems.

Datagram Transport Layer Security - A communications protocol that pro-
vides security for datagram-based applications.

Interactive Connectivity Establishment - A technique used in computer net-
working to find ways for two computers to talk to each other as directly as
possible in peer-to-peer networking.

Internet of Things - The network of physical objects embedded with sensors,
software, and other technologies for the purpose of connecting and exchang-
ing data with other devices and systems over the internet.

Message Queuing Telemetry Transport - A lightweight publish-subscribe
network protocol that transports messages between devices.

Post-Quantum Cryptography - Cryptographic algorithms that are thought
to be secure against an attack by a quantum computer.

Robot Operating System - A flexible framework for writing robot software.

Real-Time Publish-Subscribe - The wire protocol used by DDS to enable in-
teroperability between different vendor implementations.

Secure Robot Operating System 2 - A set of security tools and libraries for
ROS 2.

Transport Layer Security - A cryptographic protocol designed to provide
communications security over a computer network.

User Datagram Protocol - A communications protocol that is primarily used
for establishing low-latency and loss-tolerating connections between appli-
cations on the internet.

Virtual Private Network - A service that allows you to create a secure con-
nection to another network over the Internet.

A scalable and performant protocol for Iol and edge computing, used as an
alternative middleware for ROS 2.

Enhancing Communication Security in ROS 2 page. 8

1 Introduction

1.1 Background and Motivation

The Robot Operating System (ROS) [1, 2] has emerged as a dominant framework in the robotics
community, with ROS 2 positioning itself as a more robust and industry-oriented successor [3].
While this Master thesis focuses on ROS 2, it also considers broader applications in networked
cyber-physical systems. These systems, which include but extend beyond traditional robotics,
can be categorized into several key domains:

1. Control Systems: Encompassing both local and remote control of robotic and automated
systems, including industrial automation and process control.

2. Telerobotics: Focusing on the remote operation of robots, particularly in scenarios requir-
ing human intervention in distant or hazardous environments.

3. Telemetry: Addressing the collection and transmission of data from remote systems, es-
sential for monitoring and analysis in various fields including aerospace, healthcare, and
environmental monitoring.

4. Multi-Robot Systems: Exploring the communication and coordination aspects of multi-
ple robotic units, including:

e Robot-to-Robot (R2R) Communication: Direct interaction between individual robotic
units.

e Swarm Robotics: Collective behavior and communication in large groups of rela-
tively simple robots.

The adoption of ROS 2 in sectors like healthcare, industrial automation, and autonomous vehi-
cles has highlighted the need for robust security measures. The transition to ROS 2, particularly
its use of the Data Distribution Service (DDS) middleware, while improving reliability and per-
formance, has introduced new security challenges.

Cyber-physical systems, including robotic platforms, have become prime targets for cyber threats
due to their direct influence on the physical world. The increasing interconnectivity of these
systems, often extending to external networks and potentially the global Internet, significantly
expands the attack surface. This trend towards greater networking, while beneficial for func-
tionality, exposes these systems to a broader range of potential network-based attacks.

As the cyber threat landscape evolves, cybersecurity is becoming an important factor in technol-
ogy selection for cyber-physical systems. Organizations are increasingly prioritizing solutions
with strong security guarantees, especially in applications where breaches could have severe
real-world consequences. This shift underscores the urgent need for security measures in ROS
2 and similar systems.

The importance and timeliness of robotics cybersecurity research are underscored by recent
developments in both the industry and academia. The European Innovation Council (EIC)
has recently awarded significant funding to Alias Robotics, a Spanish robotics cybersecurity
company. This funding, comprising €2.5M in grants and €5M in investment, highlights the
EU’s commitment to advancing cybersecurity in robotics and related fields [4].

Enhancing Communication Security in ROS 2 page. 9

One of the most pressing concerns in the field of cybersecurity, including robotics security, is the
threat of quantum computing. Since the seminal work by Shor and Grover [5, 6], advancements
in quantum computing are estimated to pose a threat to current cryptographic methods within
the next 10 to 20 years [7]. This timeline suggests that without adaptation, traditional asym-
metric encryption protocols will become ineffective against quantum computing capabilities.
To overcome this threat, the usage of post-quantum cryptography (PQC) or quantum-resistant
algorithms is proposed and is being implemented [8].

The urgency of addressing quantum computing threats is further emphasized by leading cy-
bersecurity agencies worldwide. Organizations such as the American NCSC, NSA, CISA, and
NIST [9, 10, 11], along with European bodies like ENISA and national agencies including CCN
(Spain) [12], have collectively stressed the need to transition towards PQC. Notably, a posi-
tion paper [13] jointly issued by several European agencies strongly advocates for quantum-
resistant cryptography as a more practical and cost-effective solution compared to alternatives
like Quantum Key Distribution (QKD). This paper was authored by four key European cy-
bersecurity agencies: the French Cybersecurity Agency (ANSSI), the German Federal Office
for Information Security (BSI), the Netherlands National Communications Security Agency
(NLNCSA), and the Swedish National Communications Security Authority (Swedish Armed
Forces). Their stance has gained further support from the National Cyber and Information Se-
curity Agency (NUKIB) of the Czech Republic [14]. These agencies emphasize the need for
further research and development in PQC, highlighting its potential to address current short-
comings in quantum-safe communication strategies. Recently, another significant milestone in
this transition was reached when NIST finalized standards for post-quantum cryptographic al-
gorithms [15].

This need is also highlighted by recent EU proposals. The European Union has demonstrated a
strong interest in advancing post-quantum cryptography and its applications in critical sectors.
This is evidenced by two significant calls for proposals:

1. The Digital Europe Programme call "Deployment of Post Quantum Cryptography in sys-
tems in industrial sectors" (DIGITAL-ECCC-2024-DEPLOY-CYBER-06-PQCINDUSTRY),
which focuses on enabling PQC adoption in industrial sectors such as automotive, au-
tomation, finance, control systems, and energy. This call emphasized the integration of
standardized PQC protocols into existing digital security and communication networks
[16].

2. The Horizon Europe call "Post-quantum cryptography transition" (HORIZON-CL3-2024-
CS-01-02), which aims to increase the maturity of post-quantum cryptographic algorithms
and contribute to their standardization. This call also seeks to develop tools for large-
scale implementation of PQC algorithms and secure transition strategies from pre- to post-
quantum encryption [17].

The confluence of these factors — the widespread adoption of ROS, the vulnerability of command
and telemetry systems, the growing threat landscape for cyber-physical systems, the increasing
interconnectedness of robotic networks, the rising importance of cybersecurity in technology
decisions, and the significant EU investment in related fields — creates a compelling motivation
for this research. By focusing on enhancing the communication security in ROS 2, this thesis
aims to address a need in the field, contributing to the safety and reliability of a wide range of
cyber-physical systems that rely on robust, secure communication frameworks.

Enhancing Communication Security in ROS 2 page. 10

1.2 Problem Statement

Despite the advancements in ROS 2, its current security framework, primarily based on DDS Se-
curity, may not be sufficient to counter emerging threats, particularly those posed by quantum
computing. This vulnerability extends to ROS 2 systems, potentially exposing robotic applica-
tions to security risks. Therefore, there is a need to enhance the communication security in ROS
2 to ensure its resilience against both current and future threats.

1.3 Research Objectives

This thesis aims to address the security challenges in ROS 2 by integrating post-quantum cryp-
tography (PQC) into its communication stack. The primary objectives of this research are:

1. To analyze the current security architecture of ROS 2, with a focus on its DDS-based com-
munication layer and the emerging Zenoh middleware.

2. To investigate the feasibility and methods of incorporating post-quantum cryptographic
algorithms into ROS 2’s security framework, including SROS2.

3. To design and implement PQC enhancements for both DDS and Zenoh-based commu-
nications in ROS 2, exploring different approaches such as end-to-end encryption and
transport-level security.

4. To explore and compare secure communication strategies when using Zenoh as a bridge
for ROS 2 over wide-area networks and as a native middleware for ROS 2.

5. To identify current limitations and challenges in implementing PQC in ROS 2, particu-
larly focusing on the constraints in Zenoh'’s cryptographic libraries and potential future
developments.

1.4 Master Thesis Structure

This master thesis is organized as follows: Chapter 1 provides an introduction to the research,
including background, motivation, problem statement, and research objectives. Chapter 2 of-
fers an overview of networked robotics, discussing various applications and communication
requirements in robotic systems. Chapter 3 explores the ROS communication stack, exploring
middleware options, protocols, and internet connectivity solutions for ROS 1 and ROS 2. Chap-
ter 4 focuses on security in ROS 2, covering general security considerations in robotics, post-
quantum cryptography, ROS 2/DDS security, Zenoh security, and an analysis of SROS2. Chap-
ter 5 presents the core contribution of this research, detailing the design and implementation of
post-quantum cryptography integration in ROS 2, including extending SROS2 for PQC support,
secure communication with the Zenoh bridge and middleware, and a discussion of current lim-
itations and potential improvements. Finally, Chapter 6 concludes the thesis, summarizing the
contributions, discussing implications for ROS 2 and robotics security, and outlining challenges
and future work directions.

Enhancing Communication Security in ROS 2 page. 11

2 Networked Robotics: Applications and Communication Require-
ments

The field of robotics heavily relies on effective networking technologies to enable communica-
tion between various components of robotic systems, as well as between robots and their control
stations. As robotic systems become increasingly complex and distributed, the importance of
robust, efficient, and secure networking solutions has grown significantly.

In recent years, cyber-physical systems—computing systems that interact with and influence the
physical world, including industrial control systems, medical devices, and robotic platforms—
have become increasingly attractive targets for malicious actors. This trend underscores the
importance of robust cybersecurity measures in robotic networking. As these systems become
more interconnected and autonomous, the security of their communication channels becomes
more important [18].

As we focus on communication security in the context of ROS 2, it is essential to review the
applications and contexts in which communications appear in robotics. Key areas include:

e Control
e Teleoperation
o Telemetry

e Robot-to-Robot (R2R) Communication

2.1 Control Systems

Control systems in robotics involve the management and regulation of robotic behavior through
communication networks [19, 20]. These systems are essential for ensuring precise and respon-
sive robot operations, often requiring real-time data exchange between sensors, actuators, and
control units.

In networked control systems, the communication infrastructure plays a major role in transmit-
ting control signals and feedback data. The effectiveness of these systems depends heavily on
the reliability, latency, and bandwidth of the underlying network.

Key aspects of control systems in robotics include:

e SCADA in Robotics: Supervisory Control and Data Acquisition (SCADA) systems for
large-scale robotic deployments.

e Real-time Control Networks: Protocols and technologies for low-latency control commu-
nications.

e Distributed Control Architectures: Networked approaches to decentralized robot con-
trol.

e Industrial Control Protocols: Application of protocols like Modbus, Profinet, and Ether-
CAT in robotic systems.

Enhancing Communication Security in ROS 2 page. 12

e Edge Computing in Control: Leveraging edge devices for local processing and control.

e Network-induced Challenges: Addressing issues like jitter, packet loss, and delays in
control systems.

e Cyber-Physical Systems: Integration of physical processes with networked computing in
robotic control.

e Adaptive Control over Networks: Techniques for maintaining control stability in varying
network conditions.

2.2 Telerobotics

Teleoperation [21, 22, 23], the practice of controlling robots from a distance, presents unique
challenges and requirements for robotic networking. This field has gained significant traction
in various domains, including space exploration, underwater research, military applications,
and robotic surgery, where it has led to unprecedented advancements.

Teleoperated robotic systems typically comprise several main elements [23]:

e Operator: The person who performs remote control of the operation. Their action can
range from continuous control to supervised control.

e Slave: The device located in the remote area that is being controlled by the operator. It
can be a manipulator or a robot.

o Interface: Equipment and programs that communicate between the operator and the ele-
ments of the remote environment, such as the master manipulator, video monitors, voice
recognition systems, etc.

e Control and Communication Channels: Devices responsible for transmitting and pro-
cessing signals sent between the remote and local areas.

e Sensors: Devices that collect information from the local and remote areas to be used by
the interface and control systems.

The operator interface serves as the point of interaction for human controllers, allowing them to
issue commands and receive feedback. This interface can range from simple keyboard controls
to sophisticated haptic feedback systems. The communication link, essential for transmitting
data between the operator and the robot, must support bidirectional, often real-time data flow.
The robot, whether fixed or mobile, houses the necessary mechanical and electronic components
to execute commands and gather environmental data.

Key considerations in teleoperation include:

e Bilateral Communication: Teleoperation requires robust two-way data flow, not only for
control commands but also for sensory feedback and system acknowledgments [18].

e Real-time Requirements: System stability often depends on strict real-time performance,
with specific thresholds for maximum delay and packet loss [18]. For instance, in tele-
surgical applications, studies suggest that surgeons can adapt to certain latencies but rec-

Enhancing Communication Security in ROS 2 page. 13

ommend a maximum latency of approximately 300 ms [24].

e Data Characteristics: Control data in teleoperation is typically compact, ranging from 20
to 100 octets, but requires frequent transmission [18]. This high-frequency, low-volume
data pattern presents unique networking challenges.

e Quality of Service (QoS): Teleoperation systems demand specific QoS parameters, in-
cluding minimal latency, low jitter, and high reliability to ensure smooth and responsive
control [25].

Wirz et al. [26] propose additional requirements for teleoperation protocols, including mech-
anisms for smooth congestion avoidance, services that differentiate and prioritize various data
streams, and the provision of Round-Trip Time (RTT) feedback to the application layer for dy-
namic control parameter adjustments.

The design of teleoperated robots varies based on their specific applications, typically includ-
ing components such as power systems, communication transceivers, embedded computation
units, and various sensors. As teleoperation technology advances and expands into new do-
mains, it continues to push the boundaries of remote robotic control. However, this expansion
also brings new challenges, particularly in ensuring secure and reliable communication over
varied and often unpredictable network conditions. Addressing these challenges remains a key
focus in the ongoing development of teleoperation systems.

2.3 Telemetry

Telemetry in robotics involves the remote collection and transmission of data from robotic sys-
tems to monitoring stations or control centers. This process is essential for maintaining sit-
uational awareness, performing diagnostics, and enabling remote decision-making in robotic
operations.

Vasseur and Dunkels [27] define telemetry as the process of performing remote measurements,
derived from the Greek words tele (remote) and metron (to measure). They note that Machine-
to-Machine (M2M) communication, a broader concept encompassing telemetry, can be applied
in both long-distance and short-distance scenarios, from remote weather stations to medical
devices.

Key aspects of telemetry in robotics include:

e Data Types in Robotic Telemetry: Sensor readings, status information, environmental
data.

e Telemetry Protocols: Lightweight protocols for efficient data transmission (e.g., MQTT,
CoAP).

e Bandwidth Management: Techniques for optimizing data transfer in limited-bandwidth
environments.

e Real-time vs. Batch Telemetry: Trade-offs and use cases for different data transmission
strategies.

e Edge Computing in Telemetry: Local processing to reduce data transmission needs.

Enhancing Communication Security in ROS 2 page. 14

o Telemetry Security: Ensuring data integrity and confidentiality during transmission.
e Scalability in Robotic Swarms: Managing telemetry data from large numbers of robots.

e Integration with Control Systems: Using telemetry data for real-time decision-making
and control.

e Long-range Telemetry: Challenges and solutions for remote robotics operations.

Effective telemetry systems in robotics must balance the need for comprehensive data collection
with the constraints of network capacity, power consumption, and real-time requirements. As
robotic systems become more autonomous and operate in more diverse environments, the role
of telemetry in maintaining operational awareness and enabling remote intervention becomes
increasingly relevant.

2.4 Multi-Robot Systems and Robot-to-Robot (R2R) Communication

Robot-to-Robot (R2R) communication refers to the direct exchange of data, commands, or status
information between two or more autonomous robotic systems without immediate human in-
tervention. This form of communication enables coordinated actions, shared situational aware-
ness, and collaborative task execution among robots. R2R communication typically involves
peer-to-peer networking protocols, often operates in real-time or near-real-time, and may occur
over various physical media (e.g., wireless, wired) depending on the deployment environment.

Robot-to-Robot (R2R) communication connects with concepts such as Machine-to-Machine (M2M)
communication, Device-to-Device (D2D) communication, and Vehicle-to-Vehicle (V2V) com-
munication from the autonomous vehicles context. It also relates to SCADA systems, robot
swarms, and the deployment of agentic Al in cyber-physical systems.

Communication between entities is fundamental to both cooperation and coordination, playing
a central role in networked robotics [28]. Multihop wireless robot networks [29] and multi-
robot systems (MRSs) [30] have been extensively studied, emphasizing the importance of reli-
able and efficient communication protocols.

Swarm robotics, a subset of multi-robot systems, involves collective coordinated behavior emerg-
ing from local interaction rules between neighboring robots. This approach fundamentally dif-
fers from centralized control systems, as it does not rely on global information or a central con-
trol unit.

2.5 Common Protocols and Technologies in Robotic Networking

Several protocols and technologies are commonly used in robotic networking, each with its own
strengths and use cases:

e UDP (User Datagram Protocol): Often preferred for its low latency and reduced over-
head. It is used in various robotic applications, including telesurgery [31] and haptic
teleoperation sys’cems.1

1https ://github.com/thomasl86/ros_teleop_web

https://github.com/thomasl86/ros_teleop_web

Enhancing Communication Security in ROS 2 page. 15

e WebSockets: Employed in web-based teleoperation systems for full-duplex communica-
tion [32].

e MQTT (Message Queuing Telemetry Transport): A lightweight publish-subscribe pro-
tocol used in some robotic control architectures [33].

2.6 Challenges in Robotic Networking

Networking in robotics faces several challenges, particularly when operating over the public
internet:

e NAT Traversal and Multicasting: Many robotic systems operate behind Network Ad-
dress Translators (NATs), complicating direct peer-to-peer communication and multicas-
ting. NATs can hinder the discovery and communication between robots, especially when
using protocols that rely on multicast messaging for discovery and coordination. Over-
coming NAT traversal issues is essential for enabling seamless connectivity in distributed
robotic systems.

e Security: Ensuring secure communication over public networks is essential, especially for
critical applications like telesurgery. Robotic systems must protect against eavesdropping,
tampering, and unauthorized access, necessitating robust encryption and authentication
mechanisms.

e Scalability: As robotic systems grow in complexity and number, scalable networking so-
lutions become essential. Handling increased data traffic, managing numerous devices,
and maintaining performance require networking architectures that can scale efficiently.

e Interoperability: With various protocols and middleware in use, ensuring interoperabil-
ity between different robotic systems can be challenging. Diverse communication stan-
dards can lead to compatibility issues, hindering collaboration among heterogeneous robots.

e Quality of Service (QoS): Many robotic applications have strict QoS requirements, such
as low latency and high reliability. Meeting these requirements over unpredictable net-
works like the internet can be difficult, affecting the performance of time-sensitive opera-
tions.

e Bandwidth Limitations: Limited bandwidth can restrict the transmission of high-volume
data such as video streams or sensor data, impacting tasks that rely on rich data exchange.

o Network Reliability and Latency: Variable network conditions, including packet loss and
latency, can disrupt robotic operations, especially those requiring real-time responses.

e Mobility Support: Mobile robots may change network points of attachment, requiring
seamless handover and connectivity maintenance without disrupting ongoing communi-
cations.

To address these challenges, several solutions are being explored. Virtual Private Networks
(VPNs) are sometimes used to securely connect robots across the internet, providing encrypted
communication channels, though they may introduce additional latency. Cloud robotics lever-
ages cloud infrastructure for robotic control and data processing, offering scalability and cen-
tralized resources. Specialized middleware solutions, such as Zenoh, are being developed to

Enhancing Communication Security in ROS 2 page. 16

facilitate efficient and secure communication between robotic systems across various network
conditions. These middleware platforms aim to abstract the complexity of networking, provide
interoperability, and handle issues like NAT traversal and multicasting.

As the field of robotics continues to evolve, networking solutions must adapt to meet the increas-
ing demands for performance, security, and flexibility in robotic communications. Ongoing re-
search and development focus on creating robust, scalable, and secure networking frameworks
that can support the complex requirements of modern robotic applications.

Enhancing Communication Security in ROS 2 page. 17

3 ROS Communication Stack: Middleware, Protocols, and Internet
Connectivity

The Robot Operating System (ROS) [1] has established itself as a fundamental framework in
robotics development. This section examines ROS through the lens of networking and commu-
nication, aspects central to its evolving role in modern robotics.

ROS conceptualizes a robot as a network of networks [34], integrating sensors, actuators, and
computational resources. This paradigm enables cohesive environmental response and real-
time adaptation.

The communication infrastructure of ROS has evolved significantly from ROS 1 to ROS 2, ad-
dressing demands for improved scalability, real-time performance, and security. The adoption
of the Data Distribution Service (DDS) as the underlying middleware in ROS 2 represents a
substantial change in robotic system communication, enhancing reliability and flexibility across
diverse network conditions. Recently, the introduction of Zenoh as an alternative middleware
for ROS 2 has further diversified the options for networked communication in robotic systems,
offering potential advantages in certain deployment scenarios.

The adoption rate of ROS 2 is increasing rapidly, with usage trends suggesting it may become
more prevalent than ROS 1 by 2023 [34]. This shift indicates the robotics community’s growing
preference for the advanced networking features and communication models offered by ROS 2.
However, this transition towards more connected robotic systems brings with it new cyberse-
curity concerns. A study examining security practices within the ROS community found that
nearly three-quarters of respondents felt their efforts to safeguard their robotic systems against
cyber threats were inadequate [34]. This finding underscores the emerging security challenges
in the increasingly networked domain of robotics and highlights the need for greater attention
to cybersecurity measures in robotic system development and deployment.

This section will analyze ROS’s communication architecture, its approach to distributed com-
puting, and ongoing efforts to enhance security in networked robotic systems. It will explore
how ROS facilitates complex interactions within robotic systems and addresses the challenges
of an increasingly connected operational environment.

3.1 ROS 1: XMLRPC and TCPROS/UDPROS

The original Robot Operating System (ROS 1) implemented a communication architecture that
was revolutionary for its time in robotics software development. This architecture was built on
two primary communication mechanisms: XMLRPC for node discovery and negotiation, and
TCPROS/UDPROS for actual data transfer between nodes [35, 36].

3.1.1 XMLRPC for Node Discovery and Negotiation

XMLRPC (XML Remote Procedure Call) served as the backbone for essential functions in ROS
1:

e Master Node Communication: For registering and unregistering nodes, topics, and ser-
vices.

e Node Discovery: Allowing nodes to announce their presence and capabilities.

Enhancing Communication Security in ROS 2 page. 18

e Connection Negotiation: Facilitating communication setup between nodes.
e Parameter Server: For storing and retrieving configuration parameters.

While XMLRPC provided flexibility and language independence, it introduced scalability lim-
itations and a single point of failure with the Master node.

3.1.2 TCPROS and UDPROS
Data transfer in ROS 1 primarily utilized two protocols [37, 36]:

e TCPROS: The default protocol built on TCP/IP, offering reliable, ordered data delivery.

e UDPROS: An alternative UDP-based protocol for faster, but potentially less reliable com-
munication.

Both protocols employed a custom ROS message serialization format for efficient transfer of
complex data structures.
3.1.3 Communication Flow in ROS 1

The typical communication flow in ROS 1 involved [36]:
1. Node registration with the Master via XMLRPC.
2. Topic subscription and publisher discovery through the Master.
3. Direct connection negotiation between nodes.
4. Data transfer using TCPROS or UDPROS.

This architecture enabled the creation of flexible and dynamic robotic systems. However, it
faced limitations in scalability and performance for large-scale or distributed systems, which
ultimately led to the development of ROS 2 with its adoption of DDS as the underlying middle-
ware [35, 3].

3.2 Data Distribution Service (DDS) in ROS 2

The Data Distribution Service (DDS) is the foundation of ROS 2’s communication infrastructure
and a key component of its security architecture. Understanding DDS is important for improv-
ing communication security in ROS 2. This section examines the basic concepts and architecture
of DDS, providing context for the subsequent discussion on enhancing ROS 2 security, including
the integration of post-quantum cryptography.

3.2.1 ROS 1 to ROS 2 Transition: The Case for DDS

The transition from ROS 1 to ROS 2 marked a significant shift in the underlying communication
architecture, with the adoption of DDS as the middleware. This decision was driven by several
key factors [35]:

e End-to-End Middleware: DDS offered a complete, well-documented solution, reducing

Enhancing Communication Security in ROS 2 page. 19

the need for maintaining custom code and providing a concrete specification for third-
party review and implementation.

Technical Credibility: DDS had a proven track record in mission-critical systems across
various industries, lending credibility to its reliability and flexibility.

Distributed Discovery: Unlike ROS 1’s centralized master, DDS provides a distributed
discovery system, enhancing fault tolerance and flexibility in robotic networks.

Quality of Service (QoS): DDS offers fine-grained control over communication parame-
ters, allowing better adaptation to different network conditions and application require-
ments.

Standardization: As an OMG standard, DDS ensures interoperability between different
implementations and provides a clear specification for future developments.

The DDSI-RTPS (DDS-Interoperability Real Time Publish Subscribe) protocol replaced ROS 1’s
TCPROS and UDPROS wire protocols for publish/subscribe communications, offering a more
robust and standardized approach.

3.2.2 DDS Architecture and Key Features

DDS, developed by the Object Management Group (OMG), is a middleware protocol designed
to facilitate data-centric publish-subscribe communication in distributed systems [38]. Its ar-
chitecture is built around several key components and features [38, 39]:

Interoperability: DDS uses the DDS Interoperability Wire Protocol (DDSI-RTPS) to en-
sure that applications built on different DDS implementations can communicate effec-
tively [40].

Real-Time Publish-Subscribe (RTPS) Protocol: This forms the backbone of DDS’s wire-
level communication, designed to meet stringent requirements for discovery, fault toler-
ance, reliability, and timeliness.

Decentralized Architecture: RTPS operates without central points of failure, enhancing
system robustness.

Quality of Service (QoS): Publishers and subscribers interact based on QoS contracts,
allowing fine-tuned control over data distribution.

Flexible Transport Layer: DDS allows for different transport mechanisms to suit various
network environments and application requirements.

An overview of the DDS architecture is illustrated in Figure 1, showing how these components
interact to create a robust, scalable, and efficient data distribution system.

DDS features several technical capabilities that enhance its functionality:

A built-in discovery service that dynamically identifies and monitors publishers and sub-
scribers without relying on centralized name servers.

Enhancing Communication Security in ROS 2

page. 20

|
l
|

Data Ohject

0..0

publication

Publisher

| Data\Writer

subscription

Subscriber

" _'\._,
I
|

DataReader

Figure 1: Overview of the DDS architecture, illustrating the data-centric publish-subscribe
model and key components (image from OpenDDS).

o A fault-tolerant and decentralized architecture that eliminates single points of failure.

e Extensibility and backward compatibility, allowing for protocol evolution while maintain-
ing interoperability with existing systems.

e Configurable settings to balance reliability and timeliness requirements for each data de-

livery.

e Scalability to accommodate large-scale networks with potentially thousands of partici-

pants.

o Type-safety mechanisms to prevent programming errors from compromising operations

on remote nodes.

e Support for various transport protocols to optimize communication based on application

needs.

DDS implementations, such as OpenDDS, provide flexibility in the transport layer to accommo-
date different network conditions and performance requirements. OpenDDS, an open-source

implementation of the DDS specification, supports multiple transport protocols [41]:

e TCP Transport: Utilizes the Transmission Control Protocol (TCP) for reliable, connection-
oriented communication. It is suitable for applications requiring guaranteed delivery.

e RTPS/UDP Transport: Uses the Real-Time Publish-Subscribe protocol over the User Data-
gram Protocol (UDP), enabling interoperability with other DDS implementations and
support for real-time communication with configurable reliability.

Enhancing Communication Security in ROS 2

page. 21

UDP Transport: Employs unicast UDP for lightweight, low-latency communication with-
out built-in reliability, suitable for scenarios where speed is essential, and occasional data
loss is acceptable.

Multicast Transport: Leverages multicast UDP to efficiently distribute data to multiple
subscribers simultaneously, reducing network bandwidth usage in one-to-many commu-
nication patterns.

Shared Memory Transport: Enables inter-process communication on the same host via
shared memory, offering high throughput and low latency by bypassing the network

stack.

Custom Transports: Allows developers to implement specialized transport mechanisms

tailored to specific application requirements or network environments.

In ROS 2, the integration of DDS is facilitated through the ROS Middleware Interface (RMW),
which abstracts the underlying middleware implementation. Figure 2 shows the architecture of
ROS 2’s internal APIs, highlighting the relationship between the RMW API and the ROS Client

Library (RCL) APL

User Application

rclepp (C++ API)
+ Exec. with std::thread
+ Intra-Process Comms
+ Type Adaption

rclpy (Python API)

+ Exec. with Thread

+ Intra-Process Comms
+ Type Adaption

ros_to_dds

rcljava (Java API)

+ java.lang.Thread

+ Intra-Process Comms
+ Type Adaption

rcl (C API / optional C++ Implementation)

i

i

* Intra-Process Comms and Type Adaption could be implemented

in the client library, but may not currently exist.

+ Actions + Time
+ Parameters + Console Logging
+ Names + Node Lifecycle
rmw (C API)
+ Pub/Sub with QoS + Services with QoS + Discovery + Graph Events
Cyclone DDS or Fast DDS or Connext DDS or 00 e

Figure 2: Overview of the DDS architecture, illustrating the data-centric publish-subscribe

model and key components (image from OpenDDS [?]).

3.2.3 ROS 2 DDS Middleware Implementations

ROS 2 supports multiple DDS implementations [42], allowing users to choose based on their

specific requirements. The main implementations include:

e eProsima Fast DDS: The default middleware for most ROS 2 distributions.

Enhancing Communication Security in ROS 2 page. 22

e Eclipse Cyclone DDS: An alternative implementation gaining popularity in the ROS com-
munity.

e RTI Connext DDS: A commercial implementation with additional features.
e OpenDDS: An open-source implementation of the DDS specification.

These implementations exhibit varying performance characteristics, leading to ongoing evalu-
ations and benchmarking efforts in the ROS community [43, 44, 45]. Comparative studies, such
as those between Fast DDS and OpenDDS or Cyclone DDS [46, 45], provide insights into their
relative performance in different scenarios.

The choice of DDS implementation can have significant implications for system performance,
resource usage, and security features. As we explore enhancing the security of ROS 2 in subse-
quent sections, particularly in integrating post-quantum cryptographic methods, understand-
ing the characteristics and security capabilities of each implementation will be necessary.

3.3 Zenoh

Zenoh represents a significant development in the domain of robotics middleware, particularly
inrelation to ROS 2. As an alternative to traditional DDS implementations, Zenoh offers promis-
ing solutions to some of the challenges faced in ROS 2 environments. This section explores
Zenoh's key features, its performance compared to other messaging systems, and its integra-
tion as a ROS 2 middleware. We’ll examine how Zenoh addresses discovery overhead issues
in ROS 2 and its potential impact on robotics applications. Additionally, we'll discuss Zenoh’s
security aspects and its selection as an alternate ROS 2 middleware, highlighting its importance
in the evolving landscape of robotic communication frameworks.

3.3.1 A Need for an Alternative Middleware?

The adoption of the Data Distribution Service (DDS) as the middleware for ROS 2 brought sig-
nificant improvements in reliability, scalability, and real-time performance compared to ROS 1.
However, as robotic systems have become more complex and distributed, certain limitations of
DDS have become apparent, particularly in large-scale and heterogeneous environments [47].
These limitations, along with other factors, have led to a growing need for alternative middle-
ware solutions:

e Scalability Limitations: As highlighted in the ROSConDE 2023 presentation [48], one
of the primary challenges with DDS is its scalability. The DDS discovery protocol’s com-
plexity grows quadratically with the number of participants, topics, readers, and writers
in the system:

O(T-R-W-P?%, (1)

where T' is the number of topics, R is the number of readers, W is the number of writers,
and P is the number of participants. Such scaling characteristics can lead to significant
performance degradation in large-scale robotic deployments.

e UDP Multicast Dependency: DDS heavily relies on UDP multicast for discovery, which

Enhancing Communication Security in ROS 2 page. 23

can be problematic in networks where multicast is not supported or restricted, such as
many institutional and large WiFi networks.

e Large Data Transfer: DDS can struggle with transferring large data sets efficiently, a com-
mon requirement in modern robotics applications involving sensors like high-resolution
cameras or LiDAR.

e Network Performance and Compatibility Issues: DDS performance can be suboptimal
in various network environments, particularly in WiFi networks, which is essential for
mobile and field robotics applications. This issue stems from several factors:

— Modern computing environments are often more suited to TCP-based communica-
tions, while DDS primarily relies on UDP [49].

- DDS’s dependency on UDP multicast for discovery can lead to issues in networks
where multicast is not supported or restricted.

— The default UDP kernel and userland buffers are often insufficient for handling large
data structures common in modern robotics applications, such as high-resolution
sensor data [49].

— In WiFi networks, DDS performance is highly dependent on network quality and
multicast support. If either condition is not met, data delivery can be unreliable [47].

— These challenges are particularly problematic for ROS 2, which is frequently used in
mobile robotics and debugging scenarios where "out of the box" functionality across
diverse network environments is essential.

e Complex Tuning and Suboptimal Out-of-the-Box Experience: DDS often requires com-
plex parameter tuning to achieve optimal performance, which creates a significant barrier
for users without deep middleware expertise. This need for extensive configuration re-
sults in a suboptimal out-of-the-box experience, particularly for new users. Moreover, the
system is prone to common silent failures that are difficult to diagnose, further complicat-
ing the user experience and system setup process [49].

e Middleware Agnosticism and Abstraction Leakage: Despite the original goal of creat-
ing a middleware-agnostic architecture in ROS 2, the prevalence and dominance of DDS-
based implementations have led to DDS-specific details permeating through various lay-
ers of the ROS 2 stack, including the RMW, rcl, and rclcpp layers. This leakage through
the RMW interface compromises middleware abstraction, making it challenging to imple-
ment and integrate non-DDS middleware solutions seamlessly [49].

e Complexity in Containerized Environments: The setup and configuration of DDS in con-
tainerized environments have proven to be complex [49], posing significant challenges to
developers and system integrators.

These limitations have led the robotics community to explore alternative middleware solutions.
In 2023, Open Robotics conducted a comprehensive study on ROS 2 RMW alternatives [47],
evaluating various middleware options against a set of defined requirements. The ideal alterna-
tive would offer improved performance in diverse network environments, simplify deployment

Enhancing Communication Security in ROS 2 page. 24

and configuration, provide better handling of large data transfers, and adhere more strictly to
the principle of middleware agnosticism originally envisioned for ROS 2.

The study identified several key requirements for an alternative middleware, including;:
o Efficient discovery mechanisms to reduce overhead in large-scale systems

e Better support for heterogeneous networks, including those with limited multicast capa-
bilities

Improved performance in transferring large data sets and in challenging network condi-
tions

Simplified configuration and use, reducing the need for complex tuning

Support for peer-to-peer, routed, and brokered communication patterns

Ability to handle data in motion, data at rest, and distributed computations within a single
framework

As a result of this evaluation, Zenoh was selected as the first non-DDS protocol to be natively
supported in ROS 2. Zenoh addresses many of the limitations of DDS and meets most of the
identified requirements. It offers a more efficient discovery mechanism, better support for het-
erogeneous networks, improved performance in challenging network conditions, and aims for
simplicity in configuration and use.

The selection of Zenoh as an alternative middleware for ROS 2 represents a significant shift
in the robotics community’s approach to communication middleware. It reflects the evolving
needs of robotic systems, particularly in scenarios involving large-scale deployments, heteroge-
neous networks, and resource-constrained devices.

This transition to supporting alternative middlewares like Zenoh in ROS 2 opens new possibil-
ities for robotics applications. It potentially allows for more efficient communication in diverse
environments, from cloud-based robot fleets to swarm robotics applications, and could facilitate
better integration of robotics with emerging Iol and edge computing paradigms.

3.3.2 Zenoh Overview

Zenoh is a communication protocol designed to meet the evolving needs of modern robotics
and distributed systems by providing a unified framework for managing data in motion, data
at rest, and computations. It integrates publish/subscribe and query paradigms, supporting
various communication models including peer-to-peer, routed, and brokered topologies [50].

One of Zenoh's key features is its flexibility in network configurations, which addresses scalabil-
ity issues inherent in traditional DDS implementations. Unlike DDS, which relies on multicast
UDP for discovery and can lead to quadratic scaling problems in large networks, Zenoh can use
a unicast-based discovery mechanism using a gossip protocol [50]. This approach reduces dis-
covery overhead by allowing each node to communicate its presence to a single entity, avoiding
the need for widespread broadcasting.

The Zenoh router is required only during the startup of ROS nodes to facilitate initial discov-

Enhancing Communication Security in ROS 2 page. 25

ery and interconnectivity. Once nodes establish peer-to-peer communication, the router is no
longer a single point of failure and can be restarted or reconfigured without disrupting ongo-
ing communications. This design contrasts with ROS 1, where the ROS master was essential for
maintaining communication channels.

Zenoh is engineered for high throughput and low latency, making it suitable for resource-
constrained environments common in robotics. Its architecture features minimal wire overhead
(4-6 bytes) and supports communication locality, which reduces the energy footprint of data
transmission.

Additional features of Zenoh include downsampling capabilities, allowing users to reduce data
rates by sampling messages at lower frequencies. This flexibility aids in managing bandwidth
and processing resources both across communication bridges and within individual robots
[50]. Zenoh also provides access control mechanisms, such as allow or deny lists, enabling
fine-grained control over data flows and enhancing system security.

Zenoh has been adopted in various applications, including robotics, autonomous vehicles, inter-
net gaming, and telecommunications. In robotics, it facilitates robot-to-robot communication,
internet-scale monitoring, real-time teleoperation, and vehicle-to-anything (V2X) communica-
tion, as demonstrated by its use in initiatives like CARMA and the Indy Autonomous Challenge
[50].

3.3.3 zenoh-bridge-ros2dds: Zenoh Bridge for ROS 2 over DDS

While Zenoh can serve as a complete middleware replacement for DDS in ROS 2, an alternative
approach involves using the zenoh-bridge-ros2dds [51] [52], which bridges ROS 2 communi-
cation over DDS using Zenoh without replacing the underlying middleware. This bridge allows
existing ROS 2 applications to benefit from Zenoh'’s networking capabilities, particularly in chal-
lenging network environments.

The Zenoh Bridge for ROS 2 over DDS serves as an intermediary solution that enhances ROS
2 communications by leveraging Zenoh's efficient networking capabilities without entirely re-
placing the underlying DDS middleware. This bridge addresses several networking challenges
inherent in traditional DDS implementations, thereby improving the scalability and reliability
of robotic communication frameworks.

It is available in two primary forms:

e zenoh-plugin-ros2dds: A dynamic library loaded by a Zenoh router, integrating ROS 2
communications within an existing Zenoh infrastructure.

e zenoh-bridge-ros2dds: A standalone executable that facilitates the bridging process in-
dependently of the Zenoh router, suitable for decentralized deployments or resource-
constrained environments.

Both forms share identical features and configurations, offering flexibility in deployment based
on specific network architectures and requirements.

The zenoh-bridge-ros2dds operates by intercepting all ROS 2 communications that utilize DDS
and routing them over Zenoh. This approach offers several advantages:

Enhancing Communication Security in ROS 2 page. 26

e Enhanced Network Performance: By leveraging Zenoh'’s efficient networking protocols,
the bridge improves communication over networks with limited multicast support, such
as WiFi or large institutional networks [49].

e Reduced Discovery Overhead: The bridge mitigates the quadratic scaling issues of DDS
discovery by utilizing Zenoh’s gossip-based discovery mechanism. This approach signifi-
cantly reduces the amount of discovery traffic, enhancing scalability in large systems [49].

e Seamless Integration: Existing ROS 2 nodes and tools can operate without modification,
as the bridge transparently handles communication over Zenoh while maintaining com-
patibility with DDS-based nodes.

e Fault Tolerance: The Zenoh router used by the bridge is not a single point of failure. Once
nodes are interconnected in peer-to-peer mode, the router can be restarted or reconfigured
without disrupting ongoing communications [49].

e Flexible Deployment: The bridge supports various network configurations, making it
suitable for multi-robot systems and remote monitoring applications where network con-
ditions are unpredictable or suboptimal.

Using the zenoh-bridge-ros2dds provides operational benefits without requiring significant
changes to existing ROS 2 systems:

e Maintains DDS Features Locally: Local ROS 2 nodes continue to use DDS and its Qual-
ity of Service (QoS) settings, preserving real-time capabilities and other DDS-specific fea-
tures within the robot or system.

e Transparent to ROS 2 Tools: All ROS 2 topics, services, and actions are visible across
bridges, ensuring compatibility with tools like rviz2 and ros2 command-line utilities.

e Namespace Configuration: The bridge allows setting a ROS namespace at the bridge level,
simplifying multi-robot deployments by avoiding the need to configure namespaces on
each node individually.

e Access Control: Zenoh’s access control mechanisms enable fine-grained control over data
flows, allowing for the implementation of allow or deny lists for enhanced security.

The zenoh-bridge-ros2dds serves as a solution for enhancing ROS 2 communication over DDS
by leveraging Zenoh'’s efficient networking capabilities. It addresses key challenges associated
with DDS in complex or constrained network environments without necessitating significant
alterations to existing ROS 2 applications. By focusing on networking improvements and main-
taining DDS compatibility, the bridge facilitates more robust and scalable robotic systems suited
for modern distributed applications.

3.3.4 rmw_zenoh: Zenoh ROS 2 middleware

An alternative to using Zenoh as a bridge is to adopt it as a full ROS 2 middleware through the
rmw_zenoh implementation [53]. This approach replaces DDS entirely, allowing ROS 2 nodes to
communicate directly over Zenoh.

The rmw_zenoh implementation uses the C bindings for Zenoh, ensuring compatibility and per-

Enhancing Communication Security in ROS 2 page. 27

formance [49]. Although Zenoh is implemented in Rust, this detail is completely hidden be-
hind the RMW (ROS Middleware) layer, providing a seamless integration with ROS 2’s client
libraries.

Key features and considerations of rmw_zenoh include:

e Full Middleware Replacement: By replacing DDS, rmw_zenoh allows all nodes to com-
municate over Zenoh, without the need for DDS dependencies.

e Visibility of Nodes: With rmw_zenoh, all nodes are visible everywhere in the network,
enhancing discovery and communication [49].

e Service Communication: The implementation relies on Zenoh’s query mechanisms to
enable service communications between nodes [49].

e Data Handling: Each node caches its publications, similar to DDS, avoiding the potential
overwrites that can occur with bridges caching data from multiple publishers on the same
topic [49].

e Downsampling Capabilities: rmw_zenoh supports downsampling within the robot, offer-
ing more generalized and flexible control over data rates compared to the bridge [49].

There has been discussion about whether to implement the RMW API directly in Rust or use
the C/C++ bindings. Some suggest that using Rust directly could be beneficial in terms of
performance and development time [47].

The adoption of rmw_zenoh represents a more profound shift from DDS, potentially offering
greater performance improvements and simplifications in configuration and deployment. How-
ever, it also requires thorough testing and validation to ensure compatibility and stability within
the ROS 2 ecosystem.

3.3.5 Comparison with DDS

The study [54] evaluated the performance of three ROS 2 middlewares (FastRTPS, CycloneDDS,
and Zenoh) over a mesh network with a dynamic topology, focusing on a scenario of exploring
extreme extra-terrestrial environments using a multi-robot system (MRS).

Zenoh emerged as the most promising solution for using ROS 2 on a mesh network in this
scenario, particularly excelling in:

e Reduced delay

o Better reachability

e Lower CPU usage

e Competitive performance on data overhead and RAM usage
Key findings for Zenoh compared to the DDS implementations:

e Reduced delay by 76% compared to FastRTPS and 69.86% compared to CycloneDDS

Enhancing Communication Security in ROS 2 page. 28

o Increased reachability by 146.93% compared to FastRTPS and 58.17% compared to Cy-
cloneDDS

e Reduced CPU usage by 41.27% compared to FastRTPS and 39.76% compared to CycloneDDS
e Slightly higher RAM usage (60.50% increase vs FastRTPS, 86.03% increase vs CycloneDDS)

e Mixed results on data overhead (4.36% higher than FastRTPS, 48.14% higher than Cy-
cloneDDS)

Zenoh performed particularly well for small and medium-sized messages, while its advantages
were less pronounced for larger messages.

The study emphasized that the choice of middleware should depend on the specific require-
ments of the mission. For scenarios prioritizing power consumption and network reachability,
Zenoh appears to be the best choice. However, if data throughput is the primary concern, Cy-
cloneDDS might be more suitable. The researchers noted that Zenoh’s performance with very
large messages (beyond 64 KB) needs further investigation.

The study highlighted the importance of considering factors like reachability, data overhead,
and CPU usage in extra-terrestrial exploration scenarios, where power consumption and main-
taining consistent connectivity are important.

These conclusions provide a comparison of the ROS 2 middlewares, with a particular focus on
their performance in challenging, dynamic network environments relevant to space exploration
and multi-robot systems.

3.4 Communicating ROS 2 Over the Internet

As robotic systems become increasingly distributed and interconnected, the need to extend ROS
communication beyond local networks has become essential. This section explores the chal-
lenges and solutions for enabling ROS to operate effectively over the Internet, focusing on key
networking issues and the various approaches developed to address them.

3.4.1 Challenges in Internet-based ROS Communication

Two significant challenges in extending ROS communication over the Internet are the lack of
multicast support and the prevalence of Network Address Translation (NAT).

Multicasting Limitations Multicast, a method for efficient group communication, is not widely
supported on the public Internet, which poses problems for ROS’s discovery mechanisms.

Network Address Translation (NAT) Issues NAT, while essential for IPv4 address conserva-
tion and network security, complicates direct peer-to-peer connections often required in robotics
applications.

To overcome these challenges, several strategies have been developed, including the use of relay
servers, ICE (Interactive Connectivity Establishment) protocols, VPN solutions, application-
layer protocol adaptations, and cloud-based architectures. These approaches aim to facilitate
ROS communication across diverse network environments, balancing factors such as latency,
scalability, and ease of deployment.

Enhancing Communication Security in ROS 2 page. 29

3.4.2 Solutions for Internet-enabled ROS Communication

ROS Bridges rosbridge [55] implements a JSON-based protocol that facilitates communication
between ROS 2 and ROS 1 systems, as well as web clients. This protocol extends ROS function-
ality to web-based applications through a standardized interface, enabling the development of
web applications that can interact with ROS systems without direct ROS implementation.

The rosbridge suite consists of three main components: alibrary for interpreting JSON-formatted
strings and executing ROS operations, a server that exposes this functionality, and a service
provider for system meta-information. It supports multiple transport layers, primarily Web-
Sockets and TCP, allowing for adaptation to various network environments.

Key features of the rosbridge protocol include support for topic, service, and action operations,
message fragmentation for large data transmission, compression for efficient data handling,
and configurable status messaging. These features enable robust and flexible communication
between ROS and web-based systems.

Manzi et al. [32] demonstrate the effectiveness of this approach through a cloud-based system
that enables real-time, full-duplex communication between a ROS-based robot and a control
platform. Their architecture, utilizing Robot Web Tools and a rosbridge server, showcases how
this technology can address network accessibility challenges and facilitate secure robot connec-
tions to cloud platforms without direct network integration.

By providing a standardized interface, rosbridge simplifies the integration of web technologies
with ROS-based robotic systems across various network configurations, making it a valuable
tool for internet-based robotic applications.

RTPS Relay Another approach to enable ROS communication over the Internet is the use of
RTPS Relays. The RTPS Relay is a service designed to forward RTPS messages between partici-
pants, facilitating communication even when they are behind NAT firewalls or in environments
without multicast support [56, 57]. By acting as an intermediary, the RTPS Relay allows par-
ticipants to discover each other and exchange messages over unicast UDP, which is generally
supported across networks and compatible with NAT devices.

The RTPS Relay operates by intercepting RTPS datagrams from participants and forwarding
them to other relays or participants based on an association table. This mechanism addresses
the limitations of multicast-dependent discovery protocols in DDS by providing a unicast-based
solution that can traverse NAT boundaries. In cloud deployments where multicast is unavail-
able, the RTPS Relay solves the bootstrapping problem by serving as a well-known point for
discovery and communication.

While the RTPS Relay enhances connectivity in distributed systems, it introduces additional in-
frastructure requirements and may impact latency and scalability depending on network con-
ditions and relay configurations. Careful deployment and potential load balancing strategies
are necessary to ensure that the relay does not become a bottleneck or single point of failure in
the communication architecture.

Interactive Connectivity Establishment (ICE) Interactive Connectivity Establishment (ICE)
is a protocol adapted for use in DDS implementations to enable direct peer-to-peer network
connections between hosts separated by NAT firewalls [56, 57]. ICE serves as an optimization

Enhancing Communication Security in ROS 2 page. 30

technique in scenarios where relay servers would otherwise be necessary.

The core concept of ICE involves discovering and exchanging potential connection points be-
tween peers, then attempting to establish direct connections. In DDS systems, ICE can be ap-
plied to various types of endpoints, enhancing connectivity in distributed robotic systems de-
ployed across diverse network environments.

By implementing ICE, DDS systems can overcome NAT-related communication barriers, en-
abling more efficient peer-to-peer connections and reducing reliance on relay servers. This ap-
proach can improve latency and scalability by minimizing the need for intermediary services
in the communication path.

Zenoh As mentioned before in Sections 3.3.3 and 3.3.4, Zenoh offers two main approaches for
enhancing ROS 2 communication over the internet:

e zenoh-bridge-ros2dds: A bridge that routes ROS 2 communications over Zenoh without
replacing the underlying DDS middleware.

o rmw_zenoh: A full Zenoh implementation as an alternative ROS 2 middleware.

Both approaches aim to improve discovery mechanisms, reduce overhead, and enhance perfor-
mance in challenging network environments. Zenoh'’s efficient protocol and flexible architec-
ture make it particularly suitable for large-scale robotic deployments and scenarios involving
heterogeneous networks. By using Zenoh, ROS 2 systems can potentially overcome many of
the networking limitations associated with traditional DDS implementations.

WebRTC WebRTC (Web Real-Time Communication) is a technology that enables direct peer-
to-peer communication between web browsers or applications without the need for plugins or
additional software installations. It has been successfully applied in robotics for various pur-
poses, including video streaming from robots and implementing teleoperations for ROS robots.
For ROS 1, the webrtc_ros project [58] provides a solution for streaming ROS image topics using
WebRTC, demonstrating the potential of this technology in robotic applications. While initially
developed for ROS 1, similar approaches can be adapted for ROS 2 to enable efficient, low-
latency communication over the internet.

Virtual Private Networks (VPNs) VPNs offer a secure method for connecting ROS systems
over the Internet by creating an encrypted tunnel between networks. This approach can be
particularly useful for security-critical applications in robotics [24].

Enhancing Communication Security in ROS 2 page. 31

4 Security in ROS 2

4.1 Overview of Security Considerations in Robotics

As robotics systems become increasingly ubiquitous and integral to various industries, the need
to incorporate robust cybersecurity measures has never been more important. The rapid deploy-
ment of robotic technologies often prioritizes functionality and time-to-market, inadvertently
sidelining essential security mechanisms during development, deployment, and operational
phases [59]. This oversight renders contemporary robotic systems susceptible to cyber-attacks,
compromising not only data integrity and privacy but also the physical safety of environments
where these robots operate. Cyber-physical systems, which merge computational processes
with physical actions, present unique security challenges that necessitate comprehensive pro-
tection strategies from the earliest design stages [60]. Moreover, the reliance on communication
protocols such as the Data Distribution Service (DDS) within frameworks like ROS 2 introduces
additional vulnerabilities, particularly in internet-enabled deployments where multicast and
network address translation (NAT) can complicate secure communications [61]. The advent of
post-quantum cryptography emphasizes the need for quantum-resistant encryption schemes
to protect command and control mechanisms in mobile and autonomous robotic systems [62].
Addressing these security considerations is essential to ensure the safe integration of robotic
technologies in the economy.

4.2 Post-Quantum Cryptography

Post-Quantum Cryptography (PQC), also referred to as quantum-resistant cryptography, is an
emerging field aimed at developing cryptographic systems that can withstand attacks from both
classical and quantum computers. The standardization process for PQC is ongoing, with al-
gorithms focusing on two main areas: Key Encapsulation Mechanisms (KEM) for secure key
exchange and encryption [63], and digital signature schemes [64].

Current PQC algorithms are primarily based on five mathematical approaches: lattices, mul-
tivariate polynomials, error-correcting and error-detecting codes, hash-based signatures, and
isogenies of elliptic curves. Notable progress has been made in standardization efforts, with
NIST approving several algorithms. Kyber [65], a lattice-based KEM, and Dilithium [66], a
lattice-based signature scheme, have been standardized. Additionally, SPHINCS+ [67], a state-
less hash-based signature algorithm, has received approval.

These post-quantum algorithms exhibit significantly different characteristics compared to tra-
ditional cryptographic methods, particularly in terms of key sizes and the length of encrypted
or signed data. As the field evolves, new algorithms may be standardized, necessitating a flex-
ible approach to implementation. The ultimate goal is to develop crypto-agile APIs that allow
seamless integration of various PQC algorithms into applications, regardless of the size of cryp-
tographic materials, ensuring long-term security in the face of advancing quantum computing
capabilities.

The integration of PQC into established security protocols is an important step in preparing
systems. A relevant example of this integration process can be seen in the efforts to incorpo-
rate PQC into Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS).
These efforts serve as valuable case studies, offering insights that can be applied to other security
protocols, particularly in the context of DDS security (given its similarity).

Enhancing Communication Security in ROS 2 page. 32

Recent research highlights the importance of introducing PQC into robotic systems [62].

421 Integrating Post-Quantum Cryptography in TLS/DTLS

The integration of PQC into established security protocols like Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) is an important step in preparing for the quan-
tum era. TLS 1.2 [68] and DTLS 1.2 [69] utilize a handshake process for peer authentication, al-
gorithm negotiation, and shared secret computation. These protocols rely on X.509 certificates,
cipher suites, and key exchange methods such as Diffie-Hellman. The handshake involves a
series of exchanges, including ClientHello/ServerHello messages with nonces, certificate and
signature exchanges, and Diffie-Hellman-based key derivation using HMAC.

Significant advancements have been made in the more recent TLS 1.3 [70] and DTLS 1.3 [71]
specifications. These versions enhance both security and performance by employing only mod-
ern, secure cryptographic algorithms and streamlining the handshake process. TLS 1.3 intro-
duces improvements such as Elliptic Curve Diffie-Hellman (ECDHE) for forward-secret key
exchange, ChaCha20-Poly1305 for authenticated encryption, and an updated key derivation
process based on the HKDF scheme.

The integration of post-quantum primitives into the TLS handshake process has been the subject
of several studies [72, 73, 74]. Proposals include replacing RSA/ECDSA signatures with post-
quantum alternatives and substituting Diffie-Hellman key exchange with KEM operations. Bos
etal. [72] demonstrated the feasibility of replacing Diffie-Hellman with KEM in TLS 1.2 and pro-
vided a security proof for this approach. For TLS 1.3, a hybrid approach has been proposed [75],
combining post-quantum algorithms with traditional schemes like ECDH. This hybrid model
offers quantum resistance while maintaining pre-quantum security assurances during the tran-
sition period.

Recent years have seen significant progress in implementing PQC in widely-used cryptographic

libraries. The Open Quantum Safe project has developed a fork of OpenSSL [76] that incorpo-

rates quantum-resistant algorithms for key exchange and digital signatures in TLS 1.2 and 1.3.

This implementation utilizes the libogs library [77], which provides a comprehensive collection

of post-quantum cryptographic algorithms. Furthermore, the development of ogs-provider [78],
an OpenSSL 3 provider, has expanded the availability of quantum-resistant algorithms in the

OpenSSL ecosystem. In the realm of datagram-based communication, wolfSSL has introduced

support for post-quantum cryptography in DTLS 1.3 [79], enabling the use of quantum-resistant

algorithms in DTLS1.3.

4.3 ROS 2 / DDS Security
4.3.1 Overview

The evolution of security measures in the Data Distribution Service (DDS) reflects the grow-
ing importance of robust cybersecurity in distributed systems. Initially, DDS security relied on
Transport Layer Security (TLS) or Datagram TLS (DTLS) protocols to ensure data integrity and
confidentiality, primarily due to the absence of a dedicated security framework within the DDS
standards [80, 81].

Various DDS-compliant products incorporated security mechanisms based on these protocols.
For instance, RTI DDS employed DTLS for notification encapsulation, while OpenSplice DDS

Enhancing Communication Security in ROS 2 page. 33

utilized domain partitioning for access control. eProsima Fast DDS and RTT Connext extended
support to secure TCP transports with TLS [82, 83]. However, the implementation of TLS was
not standardized across all DDS implementations [84].

These initial approaches had limitations, particularly in supporting multicast communications
due to DTLS’s inherent client/server structure. This shortcoming highlighted the need for a
more comprehensive DDS security specification. Soroush et al. conducted a comparative study
of DDS security implemented over secure TLS/DTLS transports against RT1’s beta version of
the DDS Security Specification, further emphasizing this need [85].

In response to these challenges, the DDS-Security specification was developed [86]. This spec-
ification extends the core DDS standard by introducing predefined security features through a
Service Plugin Interface (SPI) framework. The DDS-Security model is designed to work over
any transport protocol while maintaining configurable Quality of Service (QoS) settings, which
are essential for real-time and mission-critical applications. It also offers interoperability across
vendor implementations.

A standout feature of DDS-Security is its implementation of mutual authentication, where both
the publisher and subscriber authenticate each other. This bidirectional verification enhances
security by ensuring that all communicating parties are trusted and authorized, a significant
advancement over many traditional security models.

The DDS-Security specification defines five key security plugins:

1. Authentication: This plugin, DDS: Auth:PKI-DH, verifies the identity of domain partici-
pants using a trusted Certificate Authority (CA). It employs RSA or ECDSA signature
algorithms (with 2048-bit and 256-bit NIST P-256 curve key sizes, respectively) and uses
DHE or ECDHE for key exchange in a 3-message handshake protocol.

2. Cryptography: The DDS:Crypto: AES-GCM-GMAC plugin manages encryption, signing, and
hashing operations. It ensures data confidentiality and integrity using AES in Galois
Counter Mode (AES-GCM) and Galois Message Authentication Code (AES-GMAC).

3. Access Control: This component regulates permissions for DDS operations, allowing for
fine-grained control over different applications within a DDS domain.

4. Logging: While not universally implemented, this plugin facilitates the auditing of security-
related events, enhancing the ability to monitor and respond to potential security inci-
dents.

5. Data Tagging: This optional feature allows for the addition of metadata tags to data sam-
ples, providing an extra layer of information management.

These security features address several potential vulnerabilities in DDS systems, including unau-
thorized subscriptions and publications, data tampering, replay attacks, and unauthorized data
access. The design of these plugins was driven by key requirements such as scalable perfor-
mance, system robustness, ease of use, and compatibility with existing security infrastructures,
while maintaining the data-centric nature of DDS and avoiding the introduction of centralized
components that could become single points of failure.

Enhancing Communication Security in ROS 2 page. 34

The DDS-Security model offers significant advantages over the earlier TLS-based approaches.
Notably, it provides mutual authentication, requiring both communicating parties to authenti-
cate each other, and supports secure multicast communication, enabling scalable one-to-many
communication—a feature that TLS does not inherently support. The pluggable nature of the
Security Plugins also allows for the integration of custom encryption or signing algorithms,
offering flexibility beyond the fixed set of algorithms provided by TLS [84].

The introduction of this standardized security framework marks a significant advancement in
the security capabilities of DDS, providing a more uniform and comprehensive approach to
securing DDS-based communications across different vendor implementations.

4.3.2 Authentication Process in DDS Security

The authentication process in DDS security is an important component that ensures the identity
and trustworthiness of participants in a DDS domain. This process is particularly significant in
the context of encrypted communication and the integration of post-quantum cryptography.
The authentication workflow can be summarized in the following high-level steps:

1. Discovery: Participants discover each other through the DDS discovery protocol, exchang-
ing initial identity and permissions tokens.

2. Identity Validation: Each participant validates the other’s identity using the received to-
kens.

3. Handshake Initiation: One participant initiates a handshake request, generating a mes-
sage token.

4. Handshake Exchange: Participants exchange a series of handshake messages, each con-
taining cryptographic material for authentication.

5. Authentication Completion: Both participants process the received messages, verifying
the authenticity of the other party.

6. Shared Secret Establishment: Upon successful authentication, a shared secret is estab-
lished between the participants.

7. Permission Verification: Participants retrieve and verify each other’s permissions creden-
tials.

This process ensures mutual authentication, where both the publisher and subscriber verify
each other’s identity. This bidirectional authentication is a key feature that distinguishes DDS
security from many traditional security models, such as those commonly used in HTTPS where
typically only the server authenticates to the client.

Figure 3 illustrates a simplified version of this authentication workflow. The process involves
multiple message exchanges, ensuring that both participants can verify each other’s credentials
before establishing a secure communication channel.

Enhancing Communication Security in ROS 2 page. 35

sd DDS::Securily\-RemnteParticipan[/

aces % % % %
:Authentication

Participantl DDS-Discovery DDS-Protocol Participant2
I

| |
: : dla:nueredpam:clpam(Dammpaml,
| | ldentityTokenlj PermissonsTokenl)

| 1
. | . validate_remote_identity()
discoveredParticipant(Participant2,
IdentityToken2, PermissionsT oken2)
validate!_remote_identity():

|
VALIDATION_PENDING_HANDSHAKEI MESSAGE
VALIDATION_PENDING_HANDSHAKE_REQUEST

fon;

«interface»
Authentication

]

I

I

I I
begin_hiandshake_requesi{out: messageTokenl): I
1

fan

1
process_handshake().
VALIDATION_OK_FINAL_MESSAGE

-
L

I
I
I
I
I
VALIDA}'IC‘)NipENDINGﬁHANDSHAKEiMESSAGE r:

tend(messageTokedl)

= = — =

begin_| _reply(nul:mesmgej[cl@nz,|n:

U L

I
sehd(messageToken2)

messageTokenl): 1
VALIDATION_PENDING_HANDSHAKE_MESSAGE
-l

[

TG

1

|

]

|

|

|

:
send(T4mn3]

B}

process_handshake(): OK

get_shared_secret(): SharedSecret T

get_peer_permissions_credential_toke:
Boolean

A |

1
1
1
| get_shared_secret(): SharedSecret

get_peer_pemnissions_credential_to
Boolean

Y o N S

!

I —
Sy
--2d

Figure 3: DDS authentication workflow (image taken from DDS Security Specification).

4.3.3 Comparison with TLS (HTTPS)

While both DDS Security and TLS aim to secure communications, their approaches to authen-
tication and communication models differ significantly:

e Mutual vs. One-Way Authentication:

— DDS Security: Implements mutual authentication, requiring both communicating
parties (publishers and subscribers) to present and verify each other’s certificates.
This ensures that both entities are trusted and authorized.

- TLS (HTTPS): Typically implements one-way authentication, where only the server
presents a certificate to authenticate itself to the client. The client does not present a
certificate unless client authentication is specifically configured.

e Communication Model:

— DDS Security: Designed for multicast and publish/subscribe communication pat-
terns, making it suitable for distributed and real-time systems like robotics.

— TLS (HTTPS): Primarily designed for unicast client-server communication, which
is more suitable for web browsing and similar applications.

e Security Plugins and Flexibility:

— DDS Security: Utilizes a pluggable architecture through Security Plugins, allow-
ing for the integration of custom encryption or signing algorithms, including post-
quantum cryptographic methods.

Enhancing Communication Security in ROS 2 page. 36

— TLS (HTTPS): Offers a fixed set of cryptographic algorithms, with limited flexibility
for custom integrations.

e Key Exchange Mechanism:

— DDS Security: Often employs Diffie-Hellman (DH) or Elliptic Curve Diffie-Hellman
(ECDH) for key exchange, supporting both traditional and post-quantum crypto-
graphic algorithms.

— TLS (HTTPS): Primarily uses DH, ECDH, or RSA for key exchange, with limited
support for post-quantum algorithms.

These differences highlight DDS Security’s suitability for complex, distributed systems requir-
ing robust, two-way authentication and flexible security configurations, which are essential in
environments like robotics and IloT.

4.3.4 Post-Quantum Cryptography: PQSec-DDS

The integration of Post-Quantum Cryptography (PQC) into the Data Distribution Service (DDS)
represents a significant advancement in securing robotic systems and Industrial Internet of
Things (IloI') applications against future quantum threats. Our previous work, PQSec-DDS
[87], is one of the pioneering efforts in this domain, addressing the need for quantum-resistant
security in DDS-based communications.

PQSec-DDS leverages the DDS Security Specification’s Service Plugin Interface (SPI) framework
to integrate custom security plugins, focusing primarily on the Authentication plugin. This
approach allows for the seamless incorporation of post-quantum cryptographic algorithms into
the existing DDS security architecture.

The authentication process (shown in Figure 4) has been adapted to incorporate quantum-
resistant algorithms. Specifically:

e The handshake messages now include post-quantum key encapsulation mechanisms (KEMs)
for key exchange.

e Digital signatures used in the authentication process are replaced with post-quantum sig-
nature schemes.

e The shared secret establishment phase now uses quantum-resistant methods to derive
encryption keys.

These modifications ensure that the authentication process remains secure even in the face of
potential quantum computing threats, while maintaining the core principles of mutual authen-
tication and secure key establishment that are central to DDS security.

The successful completion of this authentication process enables subsequent encrypted commu-
nication between DDS participants. It ensures that not only is the data protected from eaves-
dropping through encryption, but also that the identities of the communicating parties are ver-
ified, preventing unauthorized data injection or access.

Key aspects of PQSec-DDS include:

Enhancing Communication Security in ROS 2 page. 37

Bob Alice

begin_handshake_request()

Bdh/ Bcert,Bdom_perm.Brand

-
-

begin_handshake_reply()

AdhrAcertrAdom_perms Asig=s19(Brand:Arand)
BrandrArandrAsig

-
-

process_handshake()

Bsig=sia(Brand-Arand) Bsig

process_handshake()
get_shared_secret() get_shared_secret()

Figure 4: DDS Authentication handshake with mutual authentication between two domain par-
ticipants, Alice and Bob. The discovery mechanism of the participants is omitted for clarity.

e Crypto-Agility: The plugin design facilitates the integration of various post-quantum al-
gorithms, allowing for flexibility and future-proofing against evolving cryptographic stan-
dards.

e Authentication Handshake Modification: PQSec-DDS adapts the DDS authentication
handshake to use post-quantum key encapsulation mechanisms (KEMs) and signature
schemes, as illustrated in Figure 5.

e Library Integration: The implementation utilizes the libogs library and the Open Quan-
tum Safe’s ogs-provider, enabling the use of standardized post-quantum cryptographic
primitives.

Figure 5 depicts the integration of post-quantum KEMs and signatures into the DDS Authen-
tication handshake. The blue highlights indicate the key changes required to transition from
classical to post-quantum cryptography.

The PQSec-DDS plugin demonstrates the feasibility of integrating PQC into DDS, paving the
way for quantum-resistant secure communication in robotic and IIol systems. However, it’s
important to note that this field is still in its early stages, and further research is needed to fully
understand the performance implications and practical challenges of deploying PQC in real-
world DDS applications.

Further research is needed to fully understand the performance implications and practical chal-
lenges of deploying PQC in real-world DDS applications. Future work should focus on:

o Integrate PQC into different DDS implementations.
e Benchmarking the integration of PQC into Cyclone DDS and with different DDS vendors.

e Conducting network benchmarks with a focus on scalability, particularly with a large
number of publishers and subscribers.

Enhancing Communication Security in ROS 2 page. 38

Bob Alice

begin_handshake_request()
(Bpk,Bsk)=KEM.Keygen()

Bpk/BcertsBdom_perm:Brand

=

begin_handshake_reply()

ActrAcert.Adom_perms Asig=PQsi0(Brand,Arand)
Act.Ags=KEM.Encaps(Bpk)

BrandrArandr#sig

-

process_handshake()
Bsig=PQsid(Brand.Arand)
Bss=KEM.Decaps(Act, Bsk) Bsig

=
-

process_handshake()
Bss=get_shared_secret() Ass=get_shared_secret()

Figure 5: Integration of Post-Quantum KEMs and signatures into DDS Authentication hand-
shake with mutual authentication. The discovery mechanism of domain participants is omitted
for clarity. The required changes are highlighted in blue.

e Comparing performance with alternative ROS2 middlewares to provide a comprehensive
understanding of the impact of PQC on different DDS implementations.
4.3.5 Comparison with TLS (HTTPS)

While both DDS Security and TLS aim to secure communications, their approaches to authen-
tication and communication models differ significantly:

e Mutual vs. One-Way Authentication:

— DDS Security: Implements mutual authentication, requiring both communicating
parties (publishers and subscribers) to present and verify each other’s certificates.
This ensures that both entities are trusted and authorized.

- TLS (HTTPS): Typically implements one-way authentication, where only the server
presents a certificate to authenticate itself to the client. The client does not present a
certificate unless client authentication is specifically configured.

e Communication Model:

— DDS Security: Designed for multicast and publish/subscribe communication pat-
terns, making it suitable for distributed and real-time systems like robotics.

- TLS (HTTPS): Primarily designed for unicast client-server communication, which
is more suitable for web browsing and similar applications.

e Security Plugins and Flexibility:

— DDS Security: Utilizes a pluggable architecture through Security Plugins, allow-
ing for the integration of custom encryption or signing algorithms, including post-
quantum cryptographic methods.

Enhancing Communication Security in ROS 2 page. 39

— TLS (HTTPS): Offers a fixed set of cryptographic algorithms, with limited flexibility
for custom integrations.

e Key Exchange Mechanism:

— DDS Security: Often employs Diffie-Hellman (DH) or Elliptic Curve Diffie-Hellman
(ECDH) for key exchange, supporting both traditional and post-quantum crypto-
graphic algorithms.

— TLS (HTTPS): Primarily uses DH, ECDH, or RSA for key exchange, with limited
support for post-quantum algorithms.

These differences highlight DDS Security’s suitability for complex, distributed systems requir-
ing robust, two-way authentication and flexible security configurations, which are essential in
environments like robotics and IloT.

44 Zenoh Security

Zenoh'’s security architecture is designed to ensure data integrity, confidentiality, and authen-
tication across various network environments. At its core, Zenoh leverages Transport Layer
Security (TLS) as its primary security mechanism, with additional support for the QUIC pro-
tocol.

4.4.1 Transport Layer Security (TLS) in Zenoh

Zenoh implements TLS [88] as its fundamental security protocol, offering two main configura-
tion modes:

e Server-side Authentication: In this mode, clients validate the server’s TLS certificate, mir-
roring the typical web browser-server interaction. This provides a basic level of security
by ensuring the server’s identity.

e Mutual Authentication (mTLS): This more secure mode requires both server-side and
client-side authentication, ensuring that both parties in the communication are verified.

The TLS implementation in Zenoh is highly flexible, allowing for easy configuration through
JSON-based files. This approach enables users to specify TLS certificates, private keys, and
other security parameters. Zenoh supports both self-managed certificates and integration with
established Certificate Authorities, including Let’s Encrypt.

A notable feature of Zenoh’s TLS implementation is its support for IP-based certificates. This
functionality, introduced in recent versions, allows for generating and using certificates asso-
ciated with IP addresses, not just domain names. This enhancement significantly increases
deployment flexibility, especially in environments where DNS-based certificates may not be
feasible.

The Zenoh Charmander 0.7.2-rc release [89] further improved TLS support by introducing Let’s
Encrypt support for cloud deployments and enhancing IP-based certificate handling. These
updates demonstrate Zenoh’s commitment to providing up-to-date security options that cater
to various deployment scenarios, from local networks to cloud-based systems.

Enhancing Communication Security in ROS 2 page. 40

4.4.2 QUIC Protocol Support

In addition to standard TLS over TCP, Zenoh supports the QUIC protocol [90]. QUIC is a UDP-
based, stream-multiplexing, encrypted transport protocol that natively embeds TLS for encryp-
tion, authentication, and confidentiality.

It's important to note that QUIC in Zenoh uses the same TLS configuration as TLS over TCP.
The primary difference lies in the transport layer, not in the security features. As of the current
implementation, Zenoh supports server-side authentication in QUIC, mirroring the typical web
browser-server interaction. The process for generating and managing TLS certificates for QUIC
is identical to that used for TLS over TCP, simplifying configuration across different transport
protocols.

4.4.3 Rustls: The Core TLS Library

At the heart of Zenoh’s TLS implementation is Rustls, a modern TLS library written in Rust.
Rustls was chosen for its strong security properties, performance, and compatibility with Zenoh’s
Rust-based architecture.

Rustls provides several key advantages:

e Memory Safety: Being written in Rust, Rustls offers strong guarantees against common
security vulnerabilities related to memory management.

e Modern Cryptography: Rustls is designed to avoid deprecated or insecure cryptographic
algorithms and protocols, ensuring that only up-to-date and secure methods are used.

e Performance Optimization: Rustls is highly optimized, aligning well with Zenoh'’s focus
on efficient data distribution.

e Flexible Cryptographic Backends: Rustls supports various cryptographic backends, al-
lowing Zenoh to adapt to different regulatory or performance requirements.

The integration of Rustls ensures that all TLS connections in Zenoh, whether over TCP or as
part of QUIC, benefit from a modern, secure, and efficient implementation. This is important
for maintaining the security and integrity of data as it flows through Zenoh networks, especially
in distributed and potentially untrusted environments.

In summary, Zenoh'’s security framework, built on the foundation of Rustls and enhanced with
features like Let’s Encrypt support and IP-based certificates, provides a flexible solution for
securing data communication in diverse network environments. This approach ensures that
Zenoh can meet the security requirements of a wide range of applications, from local develop-
ment to large-scale, distributed systems in cloud environments.

4.4.4 Post-Quantum Cryptography

As Zenoh relies on Rustls for TLS transport, the integration of Post-Quantum Cryptography
(PQC) in Zenoh is closely tied to PQC support in Rustls. Recent developments in this area
present both opportunities and challenges for enhancing Zenoh’s security against potential
quantum threats.

Enhancing Communication Security in ROS 2 page. 41

PQC Supportin Rustls Therustls-post-quantumcrate introduces experimental Post-Quantum
Cryptography (PQC) support within Rustls [91]. This crate implements a hybrid key exchange
mechanism, combining classical and post-quantum algorithms to defend against both current
and future quantum adversaries [92]. At its core is the X25519Kyber768Draft00 algorithm [93],
which merges the well-established classical X25519 algorithm with Kyber768Draft00, a post-
quantum key encapsulation mechanism (KEM). This hybrid approach aims to maintain secu-
rity even if one component is compromised, providing protection against both classical and
quantum attacks. However, as a pre-standardization implementation, users should be aware of
potential interoperability issues. The crate can be incorporated into Rustls as either a default
or custom crypto provider, offering flexibility in integration. To utilize this PQC support in
a Rust-based application, developers need to configure Rustls to use the rustls-post-quantum
provider at the application level. This involves creating a custom CryptoProvider with the hy-
brid key exchange and installing it as the default provider. While this process offers enhanced
security, it requires careful implementation and consideration of the experimental nature of the

technology.

use rustls::crypto::{aws_lc_rs, CryptoProvider};
use rustls_post_quantum: :X25519Kyber768Draft00;

// Create a custom CryptoProvider with hybrid key exchange
let parent = aws_lc_rs::default_provider();
let my_provider = CryptoProvider {
kx_groups: vec![
&X25519Kyber768Draft00,
aws_lc_rs: :kx_group: :X25519,
1,
. .parent

};

// Install the custom provider as the default
rustls_post_quantum: :provider() .install_default() .unwrap();

Implications for Zenoh The development of PQC support in Rustls presents promising op-
portunities for the integration of PQC into Zenoh'’s security. However, the practical integration
of the rustls-post-quantum provider requires explicit enabling at the application level, necessi-
tating modifications to Zenoh’s codebase.

Looking ahead, while the potential for improved security is significant, the path to incorporating
PQC into Zenoh remains a subject for future research and development.

4.5 SROS2: Secure Robot Operating System

SROS2 (Secure Robot Operating System 2) [94, 34, 95] is a suite of security tools and libraries
designed to bolster the security of ROS 2 systems. Recognizing the increasing importance of
cybersecurity in robotics, SROS2 aims to provide robust security measures that are seamlessly
integrated into the ROS 2 development process.

Enhancing Communication Security in ROS 2 page. 42

4.5.1 SROS2 Architecture and Features

SROS2 leverages the security capabilities of the underlying Data Distribution Service (DDS)
middleware used in ROS 2. By building upon DDS-Security, SROS2 introduces authentication
and access control mechanisms for ROS 2 nodes and topics.

A key component of SROS?2 is its integration with the ROS Client Library (RCL), which man-
ages the security files required by DDS-Security for each domain participant. These security
artifacts include certificates and keys necessary for authenticating participants and encrypting
communications. SROS2 simplifies the generation and management of these artifacts through
dedicated tools.

The concept of enclaves is central to SROS2’s approach. Enclaves are logical groupings of nodes
that share a common security context. Developers can assign nodes to specific enclaves, and
SROS2 will handle the configuration and distribution of the necessary security files. This orga-
nization aids in managing complex systems by structuring security settings hierarchically.

To implement fine-grained security policies, SROS2 provides tools for generating governance
and permissions files:

e Governance File: Defines the security policies for the DDS domain, including encryption
requirements and access control settings.

e Permissions File: Specifies the access rights of each domain participant, controlling which
nodes can publish or subscribe to particular topics or services.

SROS2 supports two security strategies:

e Permissive Mode: If security artifacts are missing for a node, it runs without security
features enabled.

e Enforce Mode: The node fails to run if the required security files are absent, ensuring strict
security compliance.

The SROS2 command-line interface (CLI) enhances usability by providing commands like ros2
security. This tool assists users in creating keystores, generating keys and certificates, and man-
aging security artifacts, abstracting the complexities of Public Key Infrastructure (PKI) and
DDS-Security configurations.

By integrating these security features through environment variables and command-line ar-
guments, SROS2 allows developers to enhance security without significant alterations to their
existing codebases.

4.5.2 Current Limitations and Challenges

Despite its advancements, SROS2 encounters several limitations:

o Interoperability Issues: Secure communication between different DDS vendor implemen-
tations is currently unsupported. Since DDS-Security implementations can be vendor-
specific, this limitation affects heterogeneous systems where nodes might use different
DDS vendors.

Enhancing Communication Security in ROS 2 page. 43

o Complexity in Security Management: Setting up and managing security artifacts requires
an understanding of PKI and DDS-Security. While SROS2 provides tools to ease this pro-
cess, the learning curve remains steep for developers unfamiliar with cybersecurity prin-
ciples.

e Artifact Management Overhead: In large or distributed systems, keeping security arti-
facts like certificates and keys updated across all nodes is challenging. Any lapses can
compromise the system’s security and functionality.

e Static Graph Modeling: SROS2’s reliance on static snapshots of the computation graph
may overlook dynamic resource access events, such as transient service clients or action
requests. This oversight can lead to incomplete security policies, leaving vulnerabilities
unaddressed.

e Enclave Configuration Complexity: Deciding how to partition nodes into enclaves re-
quires careful consideration of security requirements and trust boundaries. The lack of
automated tools or clear guidelines makes this process complex and potentially error-
prone.

e Middleware Compatibility: SROS2 is primarily designed for the default DDS middle-
ware. Limited compatibility with other communication middlewares can hinder integra-
tion with non-ROS systems or specialized applications requiring different middleware
solutions.

Addressing these challenges is important for the evolution of SROS2. Efforts are underway
to improve interoperability between DDS implementations, enhance the user-friendliness of
security tools, and support more dynamic system architectures. Overcoming these hurdles will
significantly strengthen the security of ROS 2-based robotic systems, particularly as they are
deployed in increasingly sensitive and mission-critical environments.

Enhancing Communication Security in ROS 2 page. 44

5 Enhancing ROS 2 Security with Post-Quantum Cryptography

This section presents an analysis of the implementation of Post-Quantum Cryptography (PQC)
integration into ROS 2. This work addresses the need for quantum-resistant security measures
in robotic systems, focusing on two main approaches to enhance ROS 2’s cryptographic capa-
bilities.

First, we analyze the integration of PQC using our custom plugin, PQSec-DDS, developed for
Cyclone DDS, alongside a modified version of SROS2. This approach focuses on adapting the
core cryptographic functionalities of DDS to support post-quantum algorithms while maintain-
ing compatibility with current ROS 2 security management.

Secondly, we explore the integration of PQC into ROS 2 systems using Zenoh. We analyze two
scenarios:

e As a bridge for wide-area network (WAN) communications with the Zenoh bridge.

e As a native middleware for ROS 2 with the new rmw_zenoh, providing an alternative ap-
proach to implementing PQC directly within the entire communication layer.

This work is supported by the following open-source repositories, which provide the necessary
implementations and modifications for integrating Post-Quantum Cryptography into ROS 2:

e PQSec-DDS [87]: A custom plugin developed for Cyclone DDS that integrates post-
quantum cryptography algorithms into the DDS Security specification.

e PQC-enhanced SROS2 [96]: A fork of the original SROS2 implementation, extended to
support post-quantum cryptography using the Open Quantum Safe (OQS) provider for
OpenSSL.

e PQC-enabled Zenoh [97]: A fork of the Zenoh middleware, modified to incorporate post-
quantum cryptography algorithms through the rustls-post-quantum provider for Rustls,
enabling quantum-resistant TLS connections.

51 Extending SROS2 for PQC Support

Our extension of the original SROS2 implementation [98] is publicly available as an open-source
contribution in a fork [96]. This fork demonstrates a practical integration of PQC into the exist-
ing SROS2 infrastructure, providing a reference implementation for potential future incorpora-
tion into the main SROS2 codebase and facilitating community review and further development.

The original SROS2 module is written in Python and utilizes the cryptography library [99] for
its cryptographic operations. This library provides a set of cryptographic primitives and high-
level functions for Python developers. However, it currently does not support PQC. Hence,
we made direct OpenSSL calls, specifically using the Open Quantum Safe (OQS) provider for
OpenSSL [78] that integrate the cryptographic library libogs into OpenSSL [77]. This approach
allowed us to leverage post-quantum algorithms that are not yet available in standard Python
cryptographic libraries. The integration involved creating wrapper classes and functions to in-
terface with OpenSSL’s PQC implementations, ensuring that the existing SROS2 architecture
could seamlessly incorporate these new quantum-resistant algorithms.

Enhancing Communication Security in ROS 2 page. 45

The first step in integrating PQC support was to extend the SROS2 command-line interface. We
introduced a new parameter, -pq-algorithm, to allow users to specify a post-quantum algo-
rithm when creating keystores or enclaves. This modification enables seamless integration of
PQC options into existing SROS2 workflows. For example:

ros2 security create_keystore /path/to/keystore --pg-algorithm dilithium3
ros2 security create_enclave /path/to/keystore my_enclave \
--pg-algorithm dilithium3

The primary modifications were made to the core cryptographic module, utilities.py. The
main high level changes involved:

e Key and Certificate Generation: The build_key_and_cert function was updated to sup-
port post-quantum algorithms when specified and available. It now includes logic to gen-
erate PQ keys and certificates using direct OpenSSL calls when appropriate.

e S/MIME Signing: The create_smime_signed_file function was enhanced to support
post-quantum signatures, ensuring that S/MIME signing operations leverage post-quantum
cryptographic methods when enabled. This implementation follows the approach out-
lined by the Open Quantum Safe project for CMS and S/MIME operations using post-
quantum algorithms [100]. The integration utilizes the OQS provider with OpenSSL 3,
allowing for the creation and verification of quantum-safe digital signatures in the Cryp-
tographic Message Syntax (CMS) format, which is the foundation of S/MIME.

e Provider Integration: Integration with the Open Quantum Safe (OQS) provider was es-
tablished to facilitate post-quantum cryptographic operations. This involved configur-
ing OpenSSL to use the OQS provider and ensuring that cryptographic calls are routed
through this provider.

e Fallback Mechanism: A fallback mechanism was implemented to revert to traditional
cryptographic methods if the post-quantum provider is unavailable, ensuring compati-
bility.

An example of the modified logic in utilities.py:

def build_key_and_cert(subject_name,
*’
ca=False,
ca_key=None,
issuer_name=’’,

pg-algorithm="default’

K
use_pq = pq_algorithm != ’default’ and is_provider_available(0QS_PROVIDER_NAME)
if use_pq:
Use post-quantum cryptographic algorithms
private_key = generate_pq_key(pq_algorithm=pq_algorithm)
... PQ certificate generation logic
else:

Fallback to traditional cryptographic algorithms

Enhancing Communication Security in ROS 2 page. 46

private_key = ec.generate_private_key(ec.SECP256R1(),
cryptography_backend ()
)

... Traditional certificate generation logic

return (cert, private_key)

The centralized handling of cryptographic operations in utilities.py allowed for minimal
changes in other dependent modules, while still extending PQC support throughout the SROS2
system. Key modules affected include:

e enclave.py: Functions for enclave creation and management, such as create_enclave
and _create_key_and_cert, now seamlessly incorporate PQC capabilities through their
use of the updated utility functions.

e _keystore.py: Keystore operations, including CA certificate generation and governance
file signing, leverage PQC when enabled without requiring direct modifications to the
module itself.

e _permission.py: The creation and signing of permission files now benefit from PQC sup-
port, ensuring quantum-resistant security for these components when the feature is acti-
vated.

This approach ensures a consistent and user-friendly integration of PQC options across the en-
tire SROS2 ecosystem. From programmatic APIs to command-line tools and build system inte-
grations, the implementation maintains a uniform interface while providing enhanced security
options. This design simplifies the adoption of PQC within existing ROS 2 workflows and also
facilitates future expansions and modifications to the security framework.

5.1.1 Compatibility with PQSec-DDS

The PQC-enhanced SROS2 framework is designed to work in conjunction with PQC-enabled
DDS implementations, specifically PQSec-DDS [87], a post-quantum cryptography plugin for
the CycloneDDS middleware. This compatibility allows for a comprehensive post-quantum
security solution in ROS 2 systems.

Complementary Roles SROS2 and PQSec-DDS serve complementary roles in providing post-
quantum security:

e SROS2: Manages security artifacts (certificates, keys, etc.) and supports post-quantum
signatures for these artifacts.

e PQSec-DDS: Handles secure communication at the DDS level, implementing both post-
quantum Key Encapsulation Mechanisms (KEMs) and signatures for actual data exchange.

This combination ensures that both the security infrastructure (managed by SROS2) and the
data communication channels (secured by PQSec-DDS) are resistant to quantum attacks.

Enhancing Communication Security in ROS 2 page. 47

5.1.2 Testing and Validation

To fully validate the post-quantum security enhancements, it is necessary to test the integration
of PQC-enhanced SROS2 with CycloneDDS and the PQSec-DDS plugin. This testing ensures
that the entire stack, from security artifact generation to secure communication, is utilizing post-
quantum cryptography. A detailed documentation can be found in the sros2_pgsecdds.md file
of our repository [96].

Testing Setup The testing environment requires the following components:
e PQC-enhanced SROS2 fork
e CycloneDDS middleware
e PQSec-DDS plugin for CycloneDDS

e Necessary dependencies: libogs, ogs-provider

Testing Procedure The high-level steps for testing include:
1. Setting up the environment with all necessary dependencies.
2. Building and configuring the PQSec-DDS plugin for CycloneDDS.
3. Building the PQC-enhanced SROS2 fork.
4. Generating security artifacts using SROS2 with PQ algorithms.
5. Configuring CycloneDDS to use the PQSec-DDS plugin.

6. Running test nodes (talker and listener) with PQ-secured communication.

Key Test Scenarios A specific test scenario was developed to ensure the correct functioning
of the integrated system:

e Generating a keystore with post-quantum algorithms:

ros2 security create_keystore demo_keystore --pg-algorithm dilithium3

e Creating enclaves with post-quantum security:

ros2 security create_enclave demo_keystore /talker_listener/talker \
--pg-algorithm dilithium3

ros2 security create_enclave demo_keystore /talker_listener/listener \
--pg-algorithm dilithium3

e Secure communication between nodes using PQC:

Enhancing Communication Security in ROS 2 page. 48

ros2 run demo_nodes_cpp talker \

--ros-args --enclave /talker_listener/talker
ros2 run demo_nodes_py listener \

--ros-args --enclave /talker_listener/listener

This validation process verifies the generation of security artifacts using PQ algorithms, correct
utilization of the PQSec-DDS plugin, secure node communication with PQC, and fallback to
traditional cryptography when necessary.

5.2 Secure Communication with the Zenoh Bridge

Having explored the integration of PQC into ROS 2 through our custom PQSec-DDS plugin
and modified SROS2, we now turn our attention to the second approach: leveraging Zenoh for
secure, quantum-resistant communication. This section focuses on utilizing Zenoh as a bridge
for wide-area network (WAN) communication in ROS 2 systems, examining how post-quantum
cryptography can be integrated into this setup.

In this context, two primary approaches for securing communication emerge, each with its own
set of advantages and considerations, particularly in relation to DDS security and post-quantum
readiness. A relevant aspect of these approaches is the authentication model employed, which
builds upon the DDS authentication process discussed in Section 4.3.2.

5.2.1 Approach 1: Transporting Encrypted DDS Messages over Zenoh

This approach involves encrypting ROS 2 messages at the DDS level using SROS2 before they
are transmitted through the Zenoh bridge. Key characteristics include:

e End-to-End Encryption: Messages are encrypted by the ROS 2 nodes before reaching the
Zenoh bridge and remain encrypted until they reach their destination nodes.

o Certificate Distribution: Requires distribution of SROS2 certificates to all participating
ROS 2 nodes, including those on separate machines connected via Zenoh.

e Zenoh Transport Options: The Zenoh bridge can use TCP, TLS, or QUIC for transport,
adding an optional layer of transport security.

e Post-Quantum Considerations: With our PQC-enhanced SROS2, this method can utilize
post-quantum algorithms for the DDS-level encryption, making the entire communication
chain quantum-resistant. Additionally, the TLS-enabled Zenoh transport can be secured
with post-quantum providers.

e Mutual Authentication Impact: Leveraging DDS’s mutual authentication ensures that
both the publisher and subscriber verify each other’s identities across the internet. This
bidirectional verification enhances security but requires robust certificate management
and synchronization across all remote nodes.

This method maintains the security model of SROS2 across the Zenoh bridge, ensuring that
messages remain confidential and integrity-protected throughout their transport. However, it
necessitates careful management of certificates across all nodes in the system, which can be
operationally intensive in large-scale or dynamic environments.

Enhancing Communication Security in ROS 2 page. 49

5.2.2 Approach 2: Transporting Unencrypted DDS Messages over Encrypted Zenoh

In this approach, ROS 2 messages are transmitted unencrypted at the DDS level but are secured
by encrypting the Zenoh communication layer. Key aspects include:

e Transport-Level Encryption: Security is provided by the Zenoh layer, typically using TLS
or QUIC protocols.

e Simplified ROS 2 Configuration: Does not require SROS2 setup for ROS 2 nodes, simpli-
fying the configuration of individual nodes.

e Centralized Security Management: Security is managed at the Zenoh bridge level, po-
tentially simplifying certificate management for large-scale systems.

e Post-Quantum Adaptability: Requires integration of post-quantum algorithms at the
Zenoh level to achieve quantum resistance.

o Authentication Options: Zenoh supports both one-way and mutual authentication (mTLS)
[88]. While one-way authentication is common, where only the Zenoh bridge authenti-
cates to the ROS 2 nodes, mutual authentication can be implemented for enhanced secu-
rity.

It’s important to note that Zenoh’s support for mutual authentication (mTLS) provides an op-
tion for bidirectional verification similar to the DDS approach. This feature requires proper
configuration of certificates for both the client and server sides of the Zenoh communication
[88]. The implementation of mTLS in Zenoh can significantly enhance the security posture,
addressing some of the concerns associated with one-way authentication.

This method offloads the encryption responsibility to the Zenoh layer, which can be advan-
tageous in scenarios where configuring individual ROS 2 nodes with SROS2 is impractical or
when a unified security approach across different types of data (not just ROS 2 messages) is
desired.

5.2.3 Comparison and Operational Implications

The selection between transporting encrypted DDS messages over Zenoh and transporting un-
encrypted DDS messages over encrypted Zenoh hinges on the specific security requirements,
scalability needs, and operational constraints of the system, as summarized in Table 1.

e Encrypted DDS over Zenoh aligns closely with the post-quantum enhancements imple-
mented in SROS2, providing robust end-to-end security through mutual authentication.
This approach is ideal for scenarios demanding high security and trust between all com-
municating parties, despite the increased complexity in certificate management.

e Unencrypted DDS over Encrypted Zenoh offers a streamlined configuration and cen-
tralized security management, making it suitable for large-scale or heterogeneous sys-
tems where managing individual node security is impractical. However, it necessitates
additional efforts to incorporate post-quantum algorithms at the transport layer to ensure
quantum resistance.

In the context of our post-quantum security enhancements, the first approach allows immedi-

Enhancing Communication Security in ROS 2

page.

50

Encrypted DDS over Zenoh

Unencrypted DDS over Encrypted Zenoh

Encryption Scope
End-to-end security at message level

Encryption Scope
Security at transport level

Authentication Model Authentication Model
Mutual Authentication: Both publisher | Flexible Authentication: Supports both
and subscriber authenticate each other via | one-way and mutual authentication

SROS2 certificates

(mTLS) at the Zenoh level

Certificate Management
Requires distribution and management of
SROS2 certificates across all ROS 2 nodes

Certificate Management

Centralized certificate management at
Zenoh bridges; can be extended to nodes
if using mTLS

Transport Flexibility

Supports multiple Zenoh transport options
(TCP/TLS/QUIC), allowing layered secu-
rity

Transport Flexibility
Utilizes Zenoh's transport-level security
(TLS/QUIC)

Post-Quantum Integration

Integrated at DDS level with PQC-
enhanced SROS2 and optional PQC in
Zenoh transport

Post-Quantum Integration
Requires separate PQC integration in
Zenoh transport layer

Operational Complexity
Higher due to certificate management and

Operational Complexity
Variable: Lower with one-way auth, mod-

erate with mTLS

synchronization across all ROS 2 nodes

Table 1: Comparison of Secure Communication Approaches with Zenoh

ate utilization of our PQC-enabled SROS2, ensuring that all DDS communications are inher-
ently quantum-resistant. The second approach, while simplifying node configurations, would
require extending post-quantum integrations to the Zenoh transport layer, presenting a promis-
ing direction for future research and development.

5.3 Secure Communication with the Zenoh Middleware

Beyond bridging ROS 2 communication over Zenoh, an alternative approach involves using
Zenoh as a native middleware for ROS 2 nodes. This section explores how secure communica-
tion is achieved when ROS 2 nodes communicate directly over Zenoh, both in local and remote
environments. The integration is in our Zenoh fork [97]. Further documentation can be found
in the test_pq_ros2.md

Utilizing Zenoh as the middleware layer in ROS 2 replaces the default DDS middleware, allow-
ing nodes to communicate using Zenoh protocols directly. This integration offers several bene-
fits, including the elimination of the DDS-Zenoh bridging requirement, which reduces latency
and complexity. Zenoh's support for various transport protocols such as TCP, UDP, and QUIC
provides flexibility, optimizing performance across different network environments. Moreover,
Zenoh efficiently handles communication over local and wide-area networks, enhancing scala-
bility for distributed systems.

When Zenoh is employed as the middleware, the security mechanisms provided by DDS and
SROS?2 are no longer directly applicable. Instead, security must be managed within the Zenoh
framework. Zenoh supports Transport Layer Security (TLS) for encrypting communications

Enhancing Communication Security in ROS 2 page. 51

between nodes and offers mutual TLS authentication (mTLS), ensuring that both clients and
servers authenticate each other. This bidirectional verification enhances trust and security across
the network. Additionally, Zenoh’s use of Rustls allows for the integration of post-quantum
cryptography (PQC) algorithms, providing quantum-resistant security at the transport layer.

5.3.1 Modifications to Zenoh for PQC Support

To enable Post-Quantum Cryptography (PQC) within Zenoh, specific modifications are re-
quired at the application level. Our work, documented in our Zenoh fork [97], focuses on in-
tegrating PQC support by leveraging recent developments in Rustls, the TLS library used by
Zenoh for secure communications.

For this We incorporate the rust1ls-post-quantumcrate [91], which provides experimental PQC
support within Rustls. This has to be done at the application level, we create and install a custom
CryptoProvider that includes the hybrid key exchange algorithm X25519Kyber768Draft00 [93].

The details of our implementation and testing procedures are documented in the test_pq_ros2.md
file within our repository [97].

5.3.2 Leveraging SROS2 for Certificate Generation and Mutual Authentication

Although SROS2 is designed around DDS security and does not natively support non-DDS mid-
dlewares like Zenoh, we can harness SROS2’s capabilities for certificate generation to facilitate
mutual authentication within Zenoh'’s both TLS and mTLS setup. Here we provide the instruc-
tion for testing the later. By using SROS2 tools to generate the necessary X.509 certificates, we
maintain a consistent certificate management process across the system.

The steps involve:

e Using SROS2 for Certificate Generation: Utilize SROS2’s generate_artifacts command
to create certificates for each Zenoh participant, including nodes and routers. This pro-
vides a familiar and standardized method for certificate generation.

e Configuring Zenoh with Generated Certificates: Configure Zenoh’s nodes and routers
to use the certificates generated by SROS2 for mutual TLS authentication. This involves
specifying the paths to the certificates and keys in Zenoh’s configuration files.

e Ensuring Certificate Compatibility: Since both Zenoh and SROS2 use standard X.509
certificates, the certificates generated by SROS2 are compatible with Zenoh’s TLS imple-
mentation.

By integrating SROS2’s certificate management with Zenoh’s mTLS capabilities, we streamline
the security setup process and enable mutual authentication between Zenoh participants.

5.3.3 Implementing Secure Communication over Zenoh
To secure ROS 2 communication over Zenoh with PQC and mTLS, follow these steps:

e Install Zenoh and RMW Packages:

— Install the Zenoh router and client libraries from our fork [97]

Enhancing Communication Security in ROS 2 page. 52

— Install the rmw_zenoh_cpp package for ROS 2 integration
e Generate PQC-Enabled TLS Certificates:
— Use SROS2’s certificate generation tools:

ros2 security create_keystore /keystore \
--pg-algorithm dilithium3

ros2 security create_enclave /keystore zenoh_router \
--pg-algorithm dilithium3

ros2 security create_enclave /keystore zenoh_client \
--pg-algorithm dilithium3

— Certificates will be located in /keystore/enclaves/

e Configure Zenoh Router with mTLS: Edit the Zenoh router configuration file:

{
"mode": "router",
"listen": {
"endpoints": ["tls/localhost:7447"]
3,
"transport": {
"link": {
"tls": {
"root_ca_certificate": \
"/keystore/enclaves/zenoh_client/cert.pem",
"client_auth": true,
"server_private_key": \
"/keystore/enclaves/zenoh_router/private/key.pem",
"server_certificate": \
"/keystore/enclaves/zenoh_router/cert.pem"
}
}
}
}

e Configure Zenoh Clients:

— Set up client configuration:

{
"mode": "client"
"connect": {
"endpoints": ["tls/localhost:7447"]
1,
"transport": {
"link": {

B

Enhancing Communication Security in ROS 2 page. 53

"tls": {

"root_ca_certificate": \
"/keystore/enclaves/zenoh_router/cert.pem",

"client_auth": true,

"client_private_key": \
"/keystore/enclaves/zenoh_client/private/key.pem",

"client_certificate": \
"/keystore/enclaves/zenoh_client/cert.pem"

e Set Up ROS 2 Nodes with Zenoh:
- Configure ROS 2 nodes to use Zenoh:

export RMW_IMPLEMENTATION=rmw_zenoh_cpp
export ZENOH_CONFIG=/path/to/zenoh_client_config.json

e Launch Nodes and Router:
— Start the Zenoh router with PQC and mTLS enabled

- Launch ROS 2 nodes, ensuring they use the Zenoh middleware and establish secure,
quantum-resistant connections

5.3.4 Testing and Validation

Testing and validation involve verifying that nodes can establish PQC-secured connections both
locally and remotely. Perform local testing to ensure secure communication between nodes
on the same machine or local area network (LAN). Conduct remote testing over wide area
networks (WAN) to confirm that PQC-enabled TLS encryption and mutual authentication are
maintained across different network environments. Utilize Zenoh'’s built-in logging and mon-
itoring tools or network analyzers to confirm that data transmission is encrypted using PQC
algorithms.

5.3.5 Advantages and Considerations

Using Zenoh as the native middleware for ROS 2 with PQC and mTLS offers several advan-
tages. It provides quantum-resistant security at the transport layer, enhancing the overall secu-
rity of the system against future quantum threats. Leveraging SROS2 for certificate generation
streamlines the security setup process, allowing us to reuse existing tools and practices. Mu-
tual authentication ensures that both clients and servers are authenticated, enhancing trust and
security across the network.

However, there are considerations to be aware of:

e PQC Maturity: The integration of PQC algorithms into Rustls and Zenoh is still evolving,

Enhancing Communication Security in ROS 2 page. 54

potentially affecting stability and support.

e Operational Overhead: Managing and distributing PQC-enabled certificates introduces
additional complexity, especially in large deployments.

e SROS2 Limitations: While SROS2 assists with certificate generation, its other security fea-
tures are not directly applicable to Zenoh, requiring adjustments in security management
strategies.

Enhancing Communication Security in ROS 2 page. 55

6 Conclusions and Future Work

This thesis has explored the integration of Post-Quantum Cryptography (PQC) into ROS2, ad-
dressing the need for quantum-resistant security in robotic systems. Our work has focused
on two main approaches: enhancing SROS2 with PQC capabilities and adapting Zenoh for
quantum-resistant communication. Through these efforts, we have made several contributions
to the field of robotics security:

e Extended SROS2 to support PQC by integrating the Open Quantum Safe (OQS) provider
for OpenSSL, enabling the generation of quantum-resistant keys and certificates.

e Modified Zenoh to incorporate PQC algorithms, leveraging Rustls to establish quantum-
resistant TLS connections.

e Demonstrated compatibility between our PQC-enhanced SROS2 and our previously de-
veloped PQSec-DDS.

e Established secure, quantum-resistant communication channels between ROS 2 nodes us-
ing Zenoh both as a native middleware with mTLS and as a bridge with DDS security.

These contributions represent a significant step towards preparing ROS2 and its associated mid-
dleware for the post-quantum transition.

Throughout this thesis we gained important insights that shed light on the challenges and op-
portunities in implementing PQC in robotics systems. We found that the integration of PQC
into DDS closely mirrors that of TLS/DTLS, allowing lessons from these protocols to be applied
in the robotics domain. The DDS Security Specification SPI's API design proved advantageous,
facilitating the creation of external plugins and enabling the crypto-agility necessary for PQC
adoption. However, we also noted that not all open-source DDS vendors currently provide
straightforward external plugin integration, which could potentially complicate PQC adoption
in some implementations.

Our work with Zenoh revealed several important insights. One of the key advantages of Zenoh
is its utilization of popular security mechanisms based on the TLS and QUIC transports. This
approach eliminates the need for an additional security specification, unlike DDS which re-
quires its own security standard. Consequently, Zenoh can potentially benefit more readily from
advancements in these widely-used protocols. However, Zenoh'’s reliance on Rustls, rather than
OpenSSL, presents a current limitation. While OpenSSL has made significant progress in PQC
integration through projects like Open Quantum Safe, the PQC support in Rustls is still in a more
experimental stage. This dependence on Rustls currently constrains full PQC support in Zenoh,
particularly for quantum-resistant signatures. More broadly, we observed that the experimen-
tal nature of PQC integration in fundamental cryptographic libraries currently bottlenecks the
transition of dependent systems to quantum-resistant security, with Rustls-dependent systems
like Zenoh facing additional challenges in this regard.

Our work enhances the security infrastructure of ROS2 against potential quantum attacks, pro-
viding a foundation for quantum-resistant robotics applications. Despite these advancements,
several challenges and areas for future work remain:

e Develop tools for unified security management across different middleware platforms

Enhancing Communication Security in ROS 2 page. 56

(DDS and Zenoh), including contributions to SROS2 to accommodate this unified ap-
proach.

e Further enhance PQC support within middleware platforms, particularly Zenoh.

e Conduct comprehensive benchmarking of PQC integration in Cyclone DDS within ROS2,
focusing on scalability and performance comparisons with alternative ROS2 middlewares
and traditional cryptography.

In conclusion, this thesis demonstrates significant progress in preparing ROS2 and DDS-based
robotic systems for the post-quantum era. Our work on integrating PQC into SROS2, Zenoh,
and DDS lays a strong foundation for quantum-resistant security in robotics. While challenges
remain, particularly in terms of standardization, performance optimization, and full integration
across all components, the path forward is clear.

As quantum computing continues to advance, the importance of quantum-resistant security
in robotics cannot be overstated. Our research provides a step forward towards ensuring that
robotic systems remain secure in the face of emerging quantum threats, paving the way for the
long-term viability and trustworthiness of robotic applications across various domains.

Enhancing Communication Security in ROS 2 page. 57

References

[1]

(2]

[10]

[11]

[12]

[13]

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

Open Robotics. ROS - Robot Operating System. https://www.ros.org, 2024. ROS is a
set of software libraries and tools for building robot applications, offering a wide range
of drivers, algorithms, and developer tools. All components are open source. Accessed:
September 2024.

Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.
Robot operating system 2: Design, architecture, and uses in the wild. Science robotics,
7(66):eabm6074, 2022.

Hodei Olaizola. Alias Robotics asegura wuna prestigiosa financiaciéon
del Consejo Europeo de Innovacién. https://news.aliasrobotics.com/
asegura-unada-prestigiosa-financiacion-del-eic/, March 2024. Alias Robotics,
Robot cybersecurity news. Accessed: March 2024.

Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th annual symposium on foundations of computer science, pages 124-134. Ieee,
1994.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212-219, 1996.

M. Mosca and M. Piani. Global Risk Institute: Quantum Threat Time-
line Report 2022. https://globalriskinstitute.org/publication/
2022-quantum-threat-timeline-report/, 2022. Accessed: 6 march 2024.

Daniel] Bernstein and Tanja Lange. Post-quantum cryptography. Nature, 549(7671):188-
194, 2017.

National Cyber Security Centre (NCSC). Quantum security technologies. https://www.
ncsc.gov.uk/pdfs/whitepaper/quantum-security-technologies.pdf, Mar 2020. Ac-
cessed: 6 march 2024.

National Security Agency (NSA). Quantum key distribution (qkd)
and quantum cryptography (qc). https://www.nsa.gov/Cybersecurity/
Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/. Accessed: 2024-02-
15.

NSA CISA and NIST. Quantum-readiness: Migration to post-quantum cryp-
tography. https://media.defense.gov/2023/Aug/21/2003284212/-1/-1/0/
CSI-QUANTUM-READINESS.PDF, Aug 2023. Accessed: 15 february 2024.

Centro Criptolégico Nacional (CCN)-PYTEC. Recomendaciones para una transicién
postcuantica segura, December 2022. CCN-TEC 009.

French Cybersecurity Agency (ANSSI), Federal Office for Information Security (BSI),

https://www.ros.org
https://news.aliasrobotics.com/asegura-unada-prestigiosa-financiacion-del-eic/
https://news.aliasrobotics.com/asegura-unada-prestigiosa-financiacion-del-eic/
https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/
https://www.ncsc.gov.uk/pdfs/whitepaper/quantum-security-technologies.pdf
https://www.ncsc.gov.uk/pdfs/whitepaper/quantum-security-technologies.pdf
https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/
https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/
https://media.defense.gov/2023/Aug/21/2003284212/-1/-1/0/CSI-QUANTUM-READINESS.PDF
https://media.defense.gov/2023/Aug/21/2003284212/-1/-1/0/CSI-QUANTUM-READINESS.PDF

Enhancing Communication Security in ROS 2 page. 58

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Netherlands National Communications Security Agency (NLNCSA), and Swedish
Armed Forces Swedish National Communications Security Authority. Position paper
on quantum key distribution. Technical report, January 2024.

National Cyber and Information Security Agency (NUKIB). Let-
ter of Support to the DPosition Paper on Quantum Key Dis-
tribution. https://nukib.gov.cz/en/infoservis-en/news/

2163-letter-of-support-to-the-position-paper-on-quantum-key-distribution/,
September 2024. NUKIB expresses support for the transition to post-quantum cryptog-
raphy and the continued research on quantum key distribution. Accessed: September
2024.

National Institute of Standards and Technology (NIST). Announcing Issuance of Fed-
eral Information Processing Standards (FIPS) FIPS 203, Module-Lattice-Based Key-
Encapsulation Mechanism Standard, FIPS 204, Module-Lattice-Based Digital Signature
Standard, and FIPS 205, Stateless Hash-Based Digital Signature Standard, August 2024.

Deployment of Post Quantum Cryptography in systems in industrial sectors.
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/
opportunities/topic-details/digital-eccc-2024-deploy-cyber-06-pqcindustry,
January 2024. Call for proposals under the Digital Europe Programme (DIGITAL). Call
ID: DIGITAL-ECCC-2024-DEPLOY-CYBER-06-PQCINDUSTRY. Deadline: March 26,
2024. Accessed: September 2024.

Post-quantum cryptography transition. https://ec.europa.eu/info/
funding-tenders/opportunities/portal/screen/opportunities/topic-details/
horizon-c13-2024-cs-01-02, June 2024. Call for proposals under the Horizon Europe
Programme (HORIZON). Call ID: HORIZON-CL3-2024-CS-01-02. Deadline: November
20, 2024. Accessed: September 2024.

M Diaz-Cacho, A Barreiro, and Matias Garcia Rivera. Bidireccionalidad y eficiencia en
el transporte de datos de teleoperacion a través de redes ip. Revista Iberoamericana de
Automadtica e Informdtica Industrial RIAI, 7(2):99-110, 2010.

Ronald L Krutz. Securing SCADA systems. John Wiley & Sons, 2015.

KS Manoj. Industrial automation with SCADA: concepts, communications and security. Notion
Press, 2019.

Giinter Niemeyer, Carsten Preusche, Stefano Stramigioli, and Dongjun Lee. Telerobotics.
Springer handbook of robotics, pages 1085-1108, 2016.

Dezhen Song, Ken Goldberg, and Nak-Young Chong. Networked robots. In Springer
Handbook of Robotics, pages 1109-1134. Springer, 2016.

JM Azorin Poveda. Control bilarteral por convergencia de estados de sistemas teleoper-
ados con retardos en las transmisién. Universidad Miguel Hernandez, Elche, 2003.

Beatriz Ferndndez Muro. Securing communications in surgery robots. 2018.

https://nukib.gov.cz/en/infoservis-en/news/2163-letter-of-support-to-the-position-paper-on-quantum-key-distribution/
https://nukib.gov.cz/en/infoservis-en/news/2163-letter-of-support-to-the-position-paper-on-quantum-key-distribution/
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/digital-eccc-2024-deploy-cyber-06-pqcindustry
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/digital-eccc-2024-deploy-cyber-06-pqcindustry
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl3-2024-cs-01-02
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl3-2024-cs-01-02
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl3-2024-cs-01-02

Enhancing Communication Security in ROS 2 page. 59

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

George Kokkonis, Kostas E Psannis, Sotirios Kontogiannis, Petros Nicopolitidis, Manos
Roumeliotis, and Yutaka Ishibashi. Interconnecting haptic interfaces with high update
rates through the internet. Applied System Innovation, 1(4):51, 2018.

Raul Wirz, Raul Marin, José M Claver, Manuel Ferre, Rafael Aracil, and Josep Ferndn-
dez. End-to-end congestion control protocols for remote programming of robots, us-
ing heterogeneous networks: A comparative analysis. Robotics and Autonomous Systems,
56(10):865-874, 2008.

Jean-Philippe Vasseur and Adam Dunkels. Interconnecting smart objects with ip: The next
internet. Morgan Kaufmann, 2010.

George Bekey and Junku Yuh. The status of robotics. IEEE Robotics & Automation Maga-
zine, 15(1):80-86, 2008.

Ivan Mezei, Veljko Malbasa, and Ivan Stojmenovic. Robot to robot. IEEE robotics & au-
tomation magazine, 17 (4):63-69, 2010.

Lynne E Parker, Daniela Rus, and Gaurav S Sukhatme. Multiple mobile robot systems.
Springer handbook of robotics, pages 1335-1384, 2016.

J Ernesto Solanes, Adolfo Munoz, Luis Gracia, Ana Marti, Vicent Girbés-Juan, and Josep
Tornero. Teleoperation of industrial robot manipulators based on augmented reality. The
International Journal of Advanced Manufacturing Technology, 111:1077-1097, 2020.

Alessandro Manzi, Laura Fiorini, Raffaele Limosani, Peter Sincak, Paolo Dario, and Fil-
ippo Cavallo. Use case evaluation of a cloud robotics teleoperation system (short paper).
In 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), pages 208-211.
IEEE, 2016.

Ratul Lozano Teruel. Real-time haptic communications for immersive telerobotics. 2022.

Victor Mayoral-Vilches, Ruffin White, Gianluca Caiazza, and Mikael Arguedas. Sros2:
Usable cyber security tools for ros 2. In 2022 IEEE / RS] International Conference on Intelligent
Robots and Systems (IROS), pages 11253-11259. IEEE, 2022.

William Woodall. ROS on DDS. https://design.ros2.org/articles/ros_
on_dds.html, Jun 2014. ROS 2 Design Article. GitHub: ros2/design, commit
12f61b14698b80170824c699c70608d9ded3a6d?. Available at https://github.com/
ros2/design/blob/12f61b14698b80170824c699c70608d9ded3abd7/articles/020_
ros_with_dds.md.

ROS Wiki. ROS Technical Overview. https://wiki.ros.org/R0S/Technicall,
200verview, 2014. Accessed on 2024-03-25.

ROS Wiki. TCPROS. http://wiki.ros.org/ROS/TCPROS, 2013. Accessed on 2024-03-25.

Data Distribution Service Version 1.4. https://www.omg.org/spec/DDS/1.4/, March
2015. Describes the Data-Centric Publish-Subscribe (DCPS) model for efficient and ro-
bust data delivery.

https://design.ros2.org/articles/ros_on_dds.html
https://design.ros2.org/articles/ros_on_dds.html
https://github.com/ros2/design/blob/12f61b14698b80170824c699c70608d9ded3a6d7/articles/020_ros_with_dds.md
https://github.com/ros2/design/blob/12f61b14698b80170824c699c70608d9ded3a6d7/articles/020_ros_with_dds.md
https://github.com/ros2/design/blob/12f61b14698b80170824c699c70608d9ded3a6d7/articles/020_ros_with_dds.md
https://wiki.ros.org/ROS/Technical%20Overview
https://wiki.ros.org/ROS/Technical%20Overview
http://wiki.ros.org/ROS/TCPROS
https://www.omg.org/spec/DDS/1.4/

Enhancing Communication Security in ROS 2 page. 60

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Gerardo Pardo-Castellote. OMG Data-Distribution Service: Architectural Overview.
Real-Time Innovations, Inc., 2024. Contact email: gerardo@rti.com.

DDS Interoperability Wire Protocol Version 2.5. https://wuw.omg.org/spec/
DDSI-RTPS/2.5/, April 2022. Describes the Real-Time Publish Subscribe Protocol for DDS
interoperability.

OpenDDS Developers. Introduction to OpenDDS. https://opendds.readthedocs.io/
en/dds-3.29.1/devguide/introduction.html#introduction-what-is-opendds,

2024. OpenDDS Documentation. GitHub: OpenDDS/OpenDDS, commit
d80b91eab4ed0458fb173db21277a8a2f9%ec7134. Available at https://github.com/
OpenDDS/0penDDS/blob/d80b91eab4ed0458fb173db21277a8a2f9ec7134/docs/
devguide/introduction.rst.

ROS 2 Documentation. Different ROS 2 Middleware Vendors. https://docs.ros.org/
en/jazzy/Concepts/Intermediate/About-Different-Middleware-Vendors.html,
2024. ROS 2 Documentation. GitHub: ros2/ros2_documentation, commit
5cdc08c88a3abfa44a8424d6b466al2ebbb7253e. Available at https://github.com/
ros2/ros2_documentation/blob/5cdc08c88a3abfad4a8424d6b466al2ebbb7253e/
source/Concepts/Intermediate/About-Different-Middleware-Vendors.rst.

Katherine Scott, Chris Lalancette, and Audrow Nash. 2021 ROS Middleware Evalua-
tion Report. https://osrf.github.io/TSC-RMW-Reports/humble/, October 2021. ROS 2
Middleware evaluation reports for each ROS release. GitHub: osrf/TSC-RMW-Reports,
Available at https://github.com/osrf/TSC-RMW-Reports.

eProsima. 2022 Fast DDS Performance Testing. https://eprosima.com/index.
php/company-all/news/298-2022-fast-dds-performance-testing, December 2022.
eProsima’s performance testing of Fast DDS, focusing on latency and throughput, com-
pared with other DDS implementations. Location: Madrid, December 2022.

eProsima. Fast DDS vs Cyclone DDS: Benchmarking DDS Implemen-
tations. https://eprosima.com/index.php/resources-all/performance/
fast-dds-vs-cyclone-dds-performance, December 2022. eProsima presents a

comparison between Fast DDS and Eclipse Cyclone DDS, focusing on latency and
throughput performance. Updated: 21st December 2022.

eProsima. Fast DDS vs OpenDDS: Benchmarking DDS Implementa-
tions. https://eprosima.com/index.php/resources-all/performance/
fast-dds-vs-opendds-performance, December 2022. eProsima presents a comparison
between Fast DDS and OpenDDS, focusing on latency and throughput performance.
Updated: 21st December 2022.

Open Robotics. ROS 2 Alternative Middleware Report. Technical report, Open Robotics,
September 2023. Accessed on 2024-03-25.

Phani Gangula. ROS-2 communication optimisation using Zenoh ROS2 Bridge. Presen-
tation at ROSConDE 2023, November 2023. Senior Solutions Architect, Zettascale. Email:
Phani@zettascale.tech.

https://www.omg.org/spec/DDSI-RTPS/2.5/
https://www.omg.org/spec/DDSI-RTPS/2.5/
https://opendds.readthedocs.io/en/dds-3.29.1/devguide/introduction.html#introduction-what-is-opendds
https://opendds.readthedocs.io/en/dds-3.29.1/devguide/introduction.html#introduction-what-is-opendds
https://github.com/OpenDDS/OpenDDS/blob/d80b91ea64ed0458fb173db21277a8a2f9ec7134/docs/devguide/introduction.rst
https://github.com/OpenDDS/OpenDDS/blob/d80b91ea64ed0458fb173db21277a8a2f9ec7134/docs/devguide/introduction.rst
https://github.com/OpenDDS/OpenDDS/blob/d80b91ea64ed0458fb173db21277a8a2f9ec7134/docs/devguide/introduction.rst
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://github.com/ros2/ros2_documentation/blob/5cdc08c88a3abfa44a8424d6b466a12ebbb7253e/source/Concepts/Intermediate/About-Different-Middleware-Vendors.rst
https://github.com/ros2/ros2_documentation/blob/5cdc08c88a3abfa44a8424d6b466a12ebbb7253e/source/Concepts/Intermediate/About-Different-Middleware-Vendors.rst
https://github.com/ros2/ros2_documentation/blob/5cdc08c88a3abfa44a8424d6b466a12ebbb7253e/source/Concepts/Intermediate/About-Different-Middleware-Vendors.rst
https://osrf.github.io/TSC-RMW-Reports/humble/
https://github.com/osrf/TSC-RMW-Reports
https://eprosima.com/index.php/company-all/news/298-2022-fast-dds-performance-testing
https://eprosima.com/index.php/company-all/news/298-2022-fast-dds-performance-testing
https://eprosima.com/index.php/resources-all/performance/fast-dds-vs-cyclone-dds-performance
https://eprosima.com/index.php/resources-all/performance/fast-dds-vs-cyclone-dds-performance
https://eprosima.com/index.php/resources-all/performance/fast-dds-vs-opendds-performance
https://eprosima.com/index.php/resources-all/performance/fast-dds-vs-opendds-performance

Enhancing Communication Security in ROS 2 page. 61

[49] Julien Enoch and Yadunund Vijay. From zero to deployment, ros 2 and zenoh. Webinar
presentation slides, 2024. Accessed: September 9, 2024.

[50] Zenoh. What is Zenoh? https://zenoh.io/docs/overview/what-1is-zenoh/,
2024. Zenoh Documentation. GitHub: atolab/zenoh-web, commit
9b62ef9c£f39894e50dc9730dd7d9bala7bd8a7ec. Available at https://github.com/
atolab/zenoh-web/blob/master/content/docs/overview/what-is-zenoh.md.

[51] Eclipse Zenoh Developers. Zenoh Plugin for ROS 2 DDS. https://github.com/
eclipse-zenoh/zenoh-plugin-ros2dds, 2024. Accessed: September 2024.

[52] Eclipse Zenoh Team. Integrating ROS2 with Eclipse Zenoh. https://zenoh.io/blog/
2021-04-28-ros2-integration/, 2024. Zenoh Blog. Available at https://zenoh.io/
blog/2021-04-28-ros2-integration/.

[53] rmw_zenoh Developers. ROS 2 RMW Implementation using Zenoh. https://github.
com/ros2/rmw_zenoh, 2024. Accessed: September 2024.

[54] Loick Pierre Chovet, Gabriel Manuel Garcia, Abhishek Bera, Antoine Richard, Kazuya
Yoshida, and Miguel Angel Olivares-Mendez. Performance comparison of ros2 middle-
wares for multi-robot mesh networks in planetary exploration, 2024.

[55] RobotWebTools. rosbridge_suite: Server implementations of the rosbridge v2 protocol.
https://github.com/RobotWebTools/rosbridge_suite, 2024. Accessed: 2024-03-19.

[56] Object Computing, Inc. OpenDDS Developer’s Guide. Object Computing, Inc., December
2022. Accessed: [Insert access date here].

[57] OpenDDS Developers. Internet-Enabled RTPS. https://opendds.
readthedocs.io/en/latest-release/devguide/internet_enabled_rtps.html,
2024. OpenDDS Documentation. GitHub: OpenDDS/OpenDDS, commit

83ab8c139083aa47eb7d55ec664b27742c254a45. Available at https://github.com/
OpenDDS/0penDDS/blob/83ab8c139083aa47eb7d55ec664b27742c254a45/docs/
devguide/internet_enabled_rtps.rst.

[58] RobotWebTools. webrtc_ros: Streaming of ROS Image Topics using WebRTC. https:
//github.com/RobotWebTools/webrtc_ros, 2024. GitHub repository for webrtc_ros, of-

fering WebRTC-based streaming solutions for ROS image topics. Last accessed: Septem-
ber 2024.

[59] Quanyan Zhu, Stefan Rass, Bernhard Dieber, Victor Mayoral Vilches, et al. Cybersecurity
in robotics: Challenges, quantitative modeling, and practice. Foundations and Trends® in
Robotics, 9(1):1-129, 2021.

[60] Quanyan Zhu, Stefan Rass, Bernhard Dieber, and Victor Mayoral Vilches. An introduc-
tion to robot system cybersecurity. arXiv preprint arXiv:2103.05789, 2021.

[61] Justin Wilson. Interoperable internet-enabled dds applications. https:
//objectcomputing.com/resources/publications/mnb/2019/06/20/
interoperable-internet-enabled-dds-applications, 2019. Accessed: Septem-

https://zenoh.io/docs/overview/what-is-zenoh/
https://github.com/atolab/zenoh-web/blob/master/content/docs/overview/what-is-zenoh.md
https://github.com/atolab/zenoh-web/blob/master/content/docs/overview/what-is-zenoh.md
https://github.com/eclipse-zenoh/zenoh-plugin-ros2dds
https://github.com/eclipse-zenoh/zenoh-plugin-ros2dds
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://github.com/ros2/rmw_zenoh
https://github.com/ros2/rmw_zenoh
https://github.com/RobotWebTools/rosbridge_suite
https://opendds.readthedocs.io/en/latest-release/devguide/internet_enabled_rtps.html
https://opendds.readthedocs.io/en/latest-release/devguide/internet_enabled_rtps.html
https://github.com/OpenDDS/OpenDDS/blob/83ab8c139083aa47eb7d55ec664b27742c254a45/docs/devguide/internet_enabled_rtps.rst
https://github.com/OpenDDS/OpenDDS/blob/83ab8c139083aa47eb7d55ec664b27742c254a45/docs/devguide/internet_enabled_rtps.rst
https://github.com/OpenDDS/OpenDDS/blob/83ab8c139083aa47eb7d55ec664b27742c254a45/docs/devguide/internet_enabled_rtps.rst
https://github.com/RobotWebTools/webrtc_ros
https://github.com/RobotWebTools/webrtc_ros
https://objectcomputing.com/resources/publications/mnb/2019/06/20/interoperable-internet-enabled-dds-applications
https://objectcomputing.com/resources/publications/mnb/2019/06/20/interoperable-internet-enabled-dds-applications
https://objectcomputing.com/resources/publications/mnb/2019/06/20/interoperable-internet-enabled-dds-applications

Enhancing Communication Security in ROS 2 page. 62

ber 2024.

[62] Richa Varma, Chris Melville, Claudio Pinello, and Tuhin Sahai. Post quantum secure com-
mand and control of mobile agents inserting quantum-resistant encryption schemes in
the secure robot operating system. International Journal of Semantic Computing, 15(03):359—
379, 2021.

[63] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, Richard Davis, and Scott Si-
mon. NIST SP 800-56B Rev. 2. Recommendation for Pair-Wise Key-Establishment Using
Integer Factorization Cryptography, 2019.

[64] NIST. FIPS 186-5. Digital Signature Standard (DSS), 2023.

[65] National Institute of Standards and Technology. Draft fips (federal information process-
ing standards) 203, module-lattice-based key-encapsulation mechanism standard. Tech-
nical report, NIST, Information Technology Laboratory, 2003.

[66] National Institute of Standards and Technology. Draft fips (federal information process-
ing standards) 204, module-lattice-based digital signature standard. Technical report,
NIST, Information Technology Laboratory, 2003.

[67] National Institute of Standards and Technology. Draft fips (federal information process-
ing standards) 205, stateless hash-based digital signature standard. Technical report,
NIST, Information Technology Laboratory, 2003.

[68] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2. RFC
5246, IETF, Aug 2008.

[69] E.Rescorla and N. Modadugu. Datagram transport layer security version 1.2. RFC 6347,
IETE, Jan 2012.

[70] Eric Rescorla. The transport layer security (tls) protocol version 1.3. RFC 8446, IETF,
2018.

[71] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The datagram transport
layer security (dtls) protocol version 1.3. RFC 9147, IETF, Apr 2022. Obsoletes RFC 6347.

[72] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key
exchange for the tls protocol from the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, pages 553-570. IEEE, 2015.

[73] Kevin Biirstinghaus-Steinbach, Christoph Kraufs, Ruben Niederhagen, and Michael
Schneider. Post-quantum tls on embedded systems: Integrating and evaluating kyber
and sphincs+ with mbed tls. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, pages 841-852, 2020.

[74] Thom Wiggers. Post-Quantum TLS. Ph.d. thesis, Radboud University, 2024.

[75] Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hybrid key exchange in tls 1.3. Technical
report, Internet-Draft, Internet Engineering Task Force (IETF) Network Working Group,
Sep 2023. Draft-letf-Tls-Hybrid-Design-09.

Enhancing Communication Security in ROS 2 page. 63

[76] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet and the
open quantum safe project. In Selected Areas in Cryptography (SAC) 2016, volume 10532
of Lecture Notes in Computer Science, pages 1-24. Springer, oct 2017.

[77] Open Quantum Safe Project. libogs: Library for quantum-resistant cryptographic algo-
rithms. https://github.com/open-quantum-safe/libogs, 2024. Accessed: 2024-03-21.

[78] Open Quantum Safe Project. OpenSSL 3 provider containing post-quantum algorithms.
https://github.com/open-quantum-safe/oqgs-provider, 2024. Accessed: 2024-03-21.

[79] wolfSSL. DTLS 1.3 support for Post-Quantum Cryptography. https://www.wolfssl.
com/dtls-1-3-support-post-quantum-cryptography/, January 2023. Do you want to
start using wolfSSL's DTLS 1.3 implementation?

[80] Christian Esposito and Mario Ciampi. On security in publish/subscribe services: A sur-
vey. IEEE Communications Surveys & Tutorials, 17(2):966-997, 2014.

[81] Thomas White, Michael N Johnstone, and Matthew Peacock. An investigation into some
security issues in the dds messaging protocol. 2017.

[82] eProsima. 6.7. TLS over TCP — Fast DDS 2.13.1 documentation, 2023. Accessed: 2024-02-15.

[83] Real-Time Innovations, Inc. RTI TLS Support Release Notes, Version 7.2.0. Technical
report, Real-Time Innovations, Inc., October 2023. © 2010-2023 Real-Time Innovations,
Inc. All rights reserved.

[84] Real-Time Innovations. RTI Security Plugins User’s Manual: Choosing the Right Technology
to Protect Your Data. Accessed: 6 march 2024.

[85] Hamed Soroush, David Arney, and Julian Goldman. Toward a safe and secure medical
internet of things. IIC J. Innov, 2(1):4-18, 2016.

[86] DDS Security Version 1.1. https://www.omg.org/spec/DDS-SECURITY/1.1/
About-DDS-SECURITY, July 2018. OMG Document Number: formal/2018-04-01.

[87] Javier Blanco-Romero, Vicente Lorenzo, Florina Almenares, Daniel Diaz Séanchez, and
Adrian Serrano Navarro. Pgsec-dds: Integrating post-quantum cryptography into dds
security for robotic applications. Jornadas Nacionales de Investigacion en Ciberseguridad
(JNIC) (9°. 2024. Sevilla) (2024), pp. 396-403., 2024.

[88] Eclipse Zenoh. TLS authentication. https://zenoh.io/docs/manual/
tls/, 2024. Zenoh Documentation. GitHub: atolab/zenoh-web, commit
ed0fdc49e19c6d8cd27c3fa92741a9f09a39¢741. Available at https://github.com/
atolab/zenoh-web/blob/ed0fdc49e19c6d8cd27c3fa92741a9f09a39e741/content/
docs/manual/tls.md.

[89] Eclipse Zenoh. Zenoh charmander grows stronger. https://zenoh.io/blog/
2023-06-05-charmander2/, 2023. Zenoh Blog. Accessed on 2024-03-25.

[90] Eclipse Zenoh. QUIC transport. https://zenoh.io/docs/manual/
quic/, 2024. Zenoh Documentation. GitHub: atolab/zenoh-

https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/oqs-provider
https://www.wolfssl.com/dtls-1-3-support-post-quantum-cryptography/
https://www.wolfssl.com/dtls-1-3-support-post-quantum-cryptography/
https://www.omg.org/spec/DDS-SECURITY/1.1/About-DDS-SECURITY
https://www.omg.org/spec/DDS-SECURITY/1.1/About-DDS-SECURITY
https://zenoh.io/docs/manual/tls/
https://zenoh.io/docs/manual/tls/
https://github.com/atolab/zenoh-web/blob/ed0fdc49e19c6d8cd27c3fa92741a9f09a39e741/content/docs/manual/tls.md
https://github.com/atolab/zenoh-web/blob/ed0fdc49e19c6d8cd27c3fa92741a9f09a39e741/content/docs/manual/tls.md
https://github.com/atolab/zenoh-web/blob/ed0fdc49e19c6d8cd27c3fa92741a9f09a39e741/content/docs/manual/tls.md
https://zenoh.io/blog/2023-06-05-charmander2/
https://zenoh.io/blog/2023-06-05-charmander2/
https://zenoh.io/docs/manual/quic/
https://zenoh.io/docs/manual/quic/

Enhancing Communication Security in ROS 2 page. 64

[93]

[95]

[96]

[97]

[98]

[99]

[100]

web, commit 842232f6ef125df4f4346bdedaf2bb55b8d99df8. Available at
https://github.com/atolab/zenoh-web /blob/master/content/docs/manual/quic.md.

rustls Developers. Post-Quantum Provider in rustls. https://github.com/rustls/
rustls/tree/main/rustls-post-quantum, 2024. GitHub: rustls/rustls, branch main,
last accessed September 2024. Available at https://github.com/rustls/rustls/tree/
main/rustls-post-quantum.

rustls Developers. rustls-post-quantum Documentation. https://docs.rs/
rustls-post-quantum/latest/rustls_post_quantum/, 2024. Documentation for
rustls-post-quantum crate, version 0.1.0. Last accessed September 2024. Available at
https://docs.rs/rustls-post-quantum/latest/rustls_post_quantum/.

Bas Westerbaan and Douglas Stebila. X25519Kyber768Draft00 Hybrid Post-
Quantum Key Agreement. Internet-Draft draft-tls-westerbaan-xyber768d00-03,
Internet Engineering Task Force (IETF), September 2023. Expired and archived.
Last updated March 2024. Available at https://datatracker.ietf.org/doc/
draft-tls-westerbaan-xyber768d00/03/.

Kyle Fazzari. ROS 2 DDS-Security integration. https://design.ros2.org/
articles/ros2_dds_security.html, Jul 2019. ROS 2 Design Article. GitHub:
ros2/design, commit 12{61b14698b80170824c699c70608d9ded3a6d?. Available at https:
//github.com/ros2/design/blob/12f61b14698b80170824c699c70608d9ded3a6d7/
articles/180_ros2_dds_security.md.

Open Robotics. Setting up security. https://docs.ros.org/en/
jazzy/Tutorials/Advanced/Security/Introducing-ros2-security.html,
2024. ROS 2 Documentation. GitHub: ros2/ros2_documentation, commit

0684{6b32045113b5a16496¢78f2b49d8bce452d. Available at https://github.com/ros2/
ros2_documentation/blob/0684f6b32045113b5a16496c78£2b49d8bce452d/source/
Tutorials/Advanced/Security/Introducing-ros2-security.rst.

Javier Blanco-Romero. Sros2 with post-quantum cryptography support. https://
github.com/fj-blanco/sros2, 2024.

Javier Blanco-Romero. Zenoh PQ branch. https://github.com/fj-blanco/zenoh/
tree/pq, 2024. GitHub repository branch for post-quantum cryptography enhancements
in Zenoh.

SROS2 Developers. Sros2 github repository. https://github.com/ros-sros2/sros2,
2023. Accessed: October 2023.

Python Cryptographic Authority. cryptography, 2024.

Open Quantum Safe. S/MIME message signing - Cryptographic
Message Syntax (CMS). https://github.com/open-quantum-safe/
ogs-provider/blob/c9b8056cbe3bbalabc151b0a8af6albb8ce32fb6/USAGE.
md#smime-message-signing----cryptographic-message-syntax-cms,

2024. OQS Provider Documentation. GitHub: open-quantum-safe/oqs-
provider, commit c9b8056cbe3bbalabc151b0a8af6al5b8ce32fb6. Avail-

https://github.com/rustls/rustls/tree/main/rustls-post-quantum
https://github.com/rustls/rustls/tree/main/rustls-post-quantum
https://github.com/rustls/rustls/tree/main/rustls-post-quantum
https://github.com/rustls/rustls/tree/main/rustls-post-quantum
https://docs.rs/rustls-post-quantum/latest/rustls_post_quantum/
https://docs.rs/rustls-post-quantum/latest/rustls_post_quantum/
https://docs.rs/rustls-post-quantum/latest/rustls_post_quantum/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/03/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/03/
https://design.ros2.org/articles/ros2_dds_security.html
https://design.ros2.org/articles/ros2_dds_security.html
https://github.com/ros2/design/blob/12f61b14698b80170824c699c70608d9ded3a6d7/articles/180_ros2_dds_security.md
https://github.com/ros2/design/blob/12f61b14698b80170824c699c70608d9ded3a6d7/articles/180_ros2_dds_security.md
https://github.com/ros2/design/blob/12f61b14698b80170824c699c70608d9ded3a6d7/articles/180_ros2_dds_security.md
https://docs.ros.org/en/jazzy/Tutorials/Advanced/Security/Introducing-ros2-security.html
https://docs.ros.org/en/jazzy/Tutorials/Advanced/Security/Introducing-ros2-security.html
https://github.com/ros2/ros2_documentation/blob/0684f6b32045113b5a16496c78f2b49d8bce452d/source/Tutorials/Advanced/Security/Introducing-ros2-security.rst
https://github.com/ros2/ros2_documentation/blob/0684f6b32045113b5a16496c78f2b49d8bce452d/source/Tutorials/Advanced/Security/Introducing-ros2-security.rst
https://github.com/ros2/ros2_documentation/blob/0684f6b32045113b5a16496c78f2b49d8bce452d/source/Tutorials/Advanced/Security/Introducing-ros2-security.rst
https://github.com/fj-blanco/sros2
https://github.com/fj-blanco/sros2
https://github.com/fj-blanco/zenoh/tree/pq
https://github.com/fj-blanco/zenoh/tree/pq
https://github.com/ros-sros2/sros2
https://github.com/open-quantum-safe/oqs-provider/blob/c9b8056cbe3bba1a6c151b0a8af6a15b8ce32fb6/USAGE.md#smime-message-signing----cryptographic-message-syntax-cms
https://github.com/open-quantum-safe/oqs-provider/blob/c9b8056cbe3bba1a6c151b0a8af6a15b8ce32fb6/USAGE.md#smime-message-signing----cryptographic-message-syntax-cms
https://github.com/open-quantum-safe/oqs-provider/blob/c9b8056cbe3bba1a6c151b0a8af6a15b8ce32fb6/USAGE.md#smime-message-signing----cryptographic-message-syntax-cms

Enhancing Communication Security in ROS 2 page. 65

able at https://github.com/open-quantum-safe/ogs-provider/blob/
c9b8056cbe3bbalabc151b0a8af6albb8ce32fb6/USAGE . md.

https://github.com/open-quantum-safe/oqs-provider/blob/c9b8056cbe3bba1a6c151b0a8af6a15b8ce32fb6/USAGE.md
https://github.com/open-quantum-safe/oqs-provider/blob/c9b8056cbe3bba1a6c151b0a8af6a15b8ce32fb6/USAGE.md

	Glossary
	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives
	Master Thesis Structure

	Networked Robotics: Applications and Communication Requirements
	Control Systems
	Telerobotics
	Telemetry
	Multi-Robot Systems and Robot-to-Robot (R2R) Communication
	Common Protocols and Technologies in Robotic Networking
	Challenges in Robotic Networking

	ROS Communication Stack: Middleware, Protocols, and Internet Connectivity
	ROS 1: XMLRPC and TCPROS/UDPROS
	XMLRPC for Node Discovery and Negotiation
	TCPROS and UDPROS
	Communication Flow in ROS 1

	Data Distribution Service (DDS) in ROS 2
	ROS 1 to ROS 2 Transition: The Case for DDS
	DDS Architecture and Key Features
	ROS 2 DDS Middleware Implementations

	Zenoh
	A Need for an Alternative Middleware?
	Zenoh Overview
	zenoh-bridge-ros2dds: Zenoh Bridge for ROS 2 over DDS
	rmw_zenoh: Zenoh ROS 2 middleware
	Comparison with DDS

	Communicating ROS 2 Over the Internet
	Challenges in Internet-based ROS Communication
	Solutions for Internet-enabled ROS Communication

	Security in ROS 2
	Overview of Security Considerations in Robotics
	Post-Quantum Cryptography
	Integrating Post-Quantum Cryptography in TLS/DTLS

	ROS 2 / DDS Security
	Overview
	Authentication Process in DDS Security
	Comparison with TLS (HTTPS)
	Post-Quantum Cryptography: PQSec-DDS
	Comparison with TLS (HTTPS)

	Zenoh Security
	Transport Layer Security (TLS) in Zenoh
	QUIC Protocol Support
	Rustls: The Core TLS Library
	Post-Quantum Cryptography

	SROS2: Secure Robot Operating System
	SROS2 Architecture and Features
	Current Limitations and Challenges

	Enhancing ROS 2 Security with Post-Quantum Cryptography
	Extending SROS2 for PQC Support
	Compatibility with PQSec-DDS
	Testing and Validation

	Secure Communication with the Zenoh Bridge
	Approach 1: Transporting Encrypted DDS Messages over Zenoh
	Approach 2: Transporting Unencrypted DDS Messages over Encrypted Zenoh
	Comparison and Operational Implications

	Secure Communication with the Zenoh Middleware
	Modifications to Zenoh for PQC Support
	Leveraging SROS2 for Certificate Generation and Mutual Authentication
	Implementing Secure Communication over Zenoh
	Testing and Validation
	Advantages and Considerations

	Conclusions and Future Work

