IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 30 May 2025, accepted 17 June 2025, date of publication 20 June 2025, date of current version 8 July 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3581961

==l APPLIED RESEARCH

Performance, Limitations, and Design Issues of
the Integration of a Hardware-Based IME Module
With HEVC Video Encoder Software

OTONIEL LOPEZ-GRANADO"1, HECTOR MIGALLON"“1, ESTEFANIA ALCOCER!,
ROBERTO GUTIERREZ “2, GLENN VAN WALLENDAEL 3, (Member, IEEE),
AND MANUEL P. MALUMBRES ', (Senior Member, IEEE)

! Computer Engineering Department, Miguel Herndndez University of Elche, 03202 Elche, Spain
2Communication Engineering Department, Miguel Hernandez University of Elche, 03202 Elche, Spain
3Department of Electronics and Information Systems, Ghent University, 9052 Ghent, Belgium

Corresponding author: Otoniel Lépez-Granado (otoniel @umbh.es)

This work was supported by MCIN/AEI/10.13039/501100011033 and by “ERDF a way of making Europe” under Grant
PID2021-1236270B-C55.

ABSTRACT High Efficiency Video Coding (HEVC) was designed to improve on its predecessor, the
H264/AVC standard, by doubling its compression efficiency. As in previous standards, motion estimation
is critical for encoders to achieve significant compression gains. However, the cost of accurately removing
temporal redundancy in video is prohibitive, especially when encoding very high resolution video sequences.
To reduce the overall video encoding time, we have proposed the implementation of an HEVC motion
estimation block in hardware, which can achieve significant speed-ups. However, when the IP hardware
is integrated into a software platform, there are several constraints and limitations that reduce its impact on
the overall encoding time. In this paper, we analyse these issues in detail to identify the main bottlenecks
of the overall software/hardware encoding system. From this analysis, we propose a final integration of the
hardware motion estimation module with a hardware unit combined with the slice-based parallel version of
the HEVC encoding software. The resulting integrated version is able to achieve the best performance in
terms of global speed-up, up to 149.63x compared to the sequential version of the HEVC encoder using the
full search motion estimation algorithm.

INDEX TERMS Video coding, HEVC, FPGA, integer motion estimation, inter prediction, SAD architecture,
asymmetric partitioning.

I. INTRODUCTION delivering the same video quality with just half of the

The The Joint Collaborative Team on Video Coding (JCT-
VC) launched the High Efficiency Video Coding (HEVC)
standard [1] to replace the previous H.264/AVC [2] stan-
dard to cope with the demands of the audiovisual and
entertainment industry by, for example, providing support
for ultra-high definition (UHD) content with high dynamic
range (HDR) and high frame rate (HFR) extensions, among
others. The HEVC standard improves the coding efficiency
with respect to its predecessor, H.264/AVC (high profile),

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

required bit rate [3]. Although HEVC is not the latest video
standard to be released, it is the de facto industry standard.
For example, Digital Terrestrial Television (DTT) broadcasts
in both Europe and the US are based on HEVC, albeit
with different standards. More recently, Twitch, a streaming
platform primarily focused on video games, announced at
TwitchCon in San Diego in September 2024 that it would
implement HEVC for all of its users in an attempt to improve
the quality of real-time video broadcasts, which is the aim of
this work.

In terms of complexity, the HEVC encoder is much more
complex than the H.264AVC encoder [4], and as in the

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

113390

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 13, 2025

https://orcid.org/0000-0002-6968-061X
https://orcid.org/0000-0002-4937-0905
https://orcid.org/0000-0002-6391-2168
https://orcid.org/0000-0001-9530-3466
https://orcid.org/0000-0001-6493-5057

O. Lépez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

previous standard, motion estimation (ME) is by far the most
computationally intensive encoding tool, consuming about
90% of the total encoding time [5]. The huge increase in
complexity compared to its predecessor is mainly due to an
increasing number of Coding Tree Unit (CTU) partitioning
modes. Thus, taking into account the increased number of
potential reference frames and the computational complexity
of the HEVC variable block size motion estimation (VBSME)
module, performing motion estimation with the HEVC
encoder is a computationally demanding task that needs to be
offloaded in order to work in practical applications. To reduce
the overall complexity, two approaches can be used based
on the design of dedicated (a) hardware or (b) software
accelerators.

Most state-of-the-art hardware accelerator proposals focus
on speeding up the ME process to reduce the overall
complexity of the encoder by means of field-programmable
gate array (FPGA) accelerators. In HEVC, the module
responsible for the motion estimation process is called the
integer motion estimation (IME) module. The core of IME
is based on a motion search algorithm, the full search (FS)
algorithm, which is the one that achieves the best performance
using a greedy approach. This algorithm searches for the
motion of a given block or prediction unit (PU) at all positions
of a predefined search area in a given reference frame. Thus,
the result of the FS algorithm will be the closest block to the
original in the reference frame. The resulting candidate will
minimise the residual error (minimum bit rate) and provide
the corresponding motion vector (MV).

Although the FS algorithm is computationally expensive
in software designs (there are faster proposals that obtain
a similar performance), there are many proposals that use
this algorithm in the design of hardware accelerators due to
the repetitive patterns and well-identified processing tasks
within the IME process. For example, the authors of [5], [6],
[7], [8], [9], [10], and [11] present IME hardware modules
based on the FS algorithm. In [5], the authors propose a sum
of absolute differences (SAD) unit in a FPGA device that
is able to check all the partition modes of a CTU except
the asymmetric ones. The processing capabilities of their
design allow this approach to run as fast as 30 frames per
second (fps) for 2K video formats when the search area
is reduced below the size recommended by the standard.
Another IME hardware accelerator is proposed in [7]. In this
work, all partitioning modes are supported but with a search
area size reduction to £23 pixels. This approach is able to
run at 30 fps with HD video formats. In [8], the authors
propose a hardware architecture that supports all partitioning
blocks with search areas of up to 256 x 256 pixels and
analyse the impact of the search area size on the IME module
performance. They showed an implementation running at
57 fps with a 720p video resolution, using a 64 x 64 search
area and only one reference frame. In [10], the authors
present a hardware architecture for IME computation using
16 x 16 pixels CTUs and a search area of 16 pixels. The
authors integrated their IME architecture into Kvazaar HEVC

VOLUME 13, 2025

encoder software running in a standalone board supported
package (BSP) methodology [12]. In [11] authors propose
IME and ASIC architecture for a fast hybrid pattern search
algorithm for 32 x 32 CTUs that uses fixed search patterns
(Square, Hexagonal) and local refinement patterns (two,
three, and four-pointed) with a limited and fixed number of
search points, reducing hardware complexity. It starts from
the center, expanding outward in grids, and applies early
termination beyond distance four, eliminating raster scans.

In [13] and [14], the authors present hardware implementa-
tions of other suboptimal motion search strategies called fast
ME algorithms, such as diamond search (DS) or TZSearch
(TZS). In [13], two hardware DS algorithms (sequential and
parallel) for a CTU size of 64 x 64 and a search area of
144 x 144 pixels are proposed. The parallel version is able to
compute eight SADs corresponding to each block position in
the DS at the same time. That architecture is able to compute
a full-HD resolution video sequence at 30 fps running
at 198.733 MHz. However, this implementation does not
support asymmetric partitioning. In [14], the authors present
a hardware implementation of the TZSearch algorithm. The
main advantage of this architecture is the small area used
in the FPGA, but at the cost of not supporting asymmetric
partitioning. In [15], the authors proposed a memory-aware
fractional ME (FME) architecture supporting only four PU
sizes for the HEVC video coding standard. The architecture
was described in VHDL and the synthesis results were
obtained for 45nm Nangate standard ASIC cells, achieving
60 frames per second at 2160p video resolution.

In [16] and [17], the authors propose a new hardware
architecture that implements the IME module of the HEVC
encoder using the FS algorithm. Their design provides two
innovative techniques: (a) anew SAD adder tree structure and
(b) a special memory scan order. The proposed design is able
to achieve encoding speeds of 116 fps and 30 fps with 2K
and 4K video formats, respectively. In [18] author proposes a
similar IME architecture for HEVC encoder achieving 10fps
at4K resolution. The proposed architecture organizes on-chip
memory into Horizontal RAM, Vertical RAM, and a Row
Buffer to enable efficient data reuse. This structure minimizes
external memory access and supports continuous Full Search
scanning with reduced latency and hardware cost. Recently,
in [19], the authors present a ME hardware for the versatile
video coding standard (VVC) using 64 x 64 systolic array
and using the same snake scan order than the one proposed
in [17] and an adder tree block. The proposed hardware is
able to compute 30fps for 1080p resolution for a CTU size
of 128 x 128 pixels, reusing Motion Vector (MV) from the
64 x 64 ones and a search area of 128 x 128 pixels. In [20],
the authors proposed an efficient hardware architecture for
integer motion estimation (IME) in the Versatile Video
Coding (VVC) standard, targeting the high computational
complexity associated with large search areas and variable
block sizes. Its design introduces two key innovations: a
data reuse strategy based on overlapping 8x8 sub-blocks
across search points, and an early termination mechanism

113391

IEEE Access

O. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

using thresholds derived from previously computed SAD
values. The early termination strategy reduces the motion
estimation a 70%, reducing the computational overhead.
The architecture supports all PU sizes defined in VVC and
can process 8K (7680x4320) resolution video sequences at
60 frames per second, operating at 182.99 MHz. In [21],
the authors introduced an interpolation-free FME algorithm
for VVC, designed to reduce hardware complexity while
maintaining coding efficiency. By using a rate distortion-
based error surface model and eliminating iterative inter-
polation, their hardware achieves 8K@60fps throughput.
In [22], the authors developed a high-throughput hardware
architecture for affine motion estimation in VVC based
on an iterative refinement method with parallel pipelining.
The design integrates motion vector adaptation and edge-
based gradient analysis to improve prediction accuracy while
maintaining low latency. It supports 4K@60fps real-time
processing using a 64 x 64 search window size.

Many of these works that propose the computation of IME
on an FPGA using a full search algorithm, especially those
related to the VVC standard, introduce early termination
techniques to reduce the computational cost, thus trying to
make the FPGA implementation feasible. Moreover, none
of these studies perform a practical feasibility analysis
using OpenCL or similar tools. However, some contributions
as in [23] and [24] have conducted comparative analyses
of IME implementations developed as GPU kernels and
those implemented as FPGA IPs, highlighting the big
differences between both approaches in terms of energy
efficiency.

Furthermore, in [25], the authors propose an approach that
utilises both CPU and GPU resources via OpenCL. In [26],
the authors investigate the feasibility of using OpenCL as an
alternative to VHDL for FPGA development, evaluating an
implementation of the Block Matching Motion Estimation
module. They conclude that OpenCL results in greater
resource and performance overheads than low-level HDL-
based implementations.

Another way to reduce the overall complexity of the HEVC
encoder is through software acceleration techniques (i.e.
multithreading). There are many previous works concerning
HEVC software accelerators [27], [28], [29], [30], [31], [32],
[33], [34], [35] that range from the acceleration of a specific
coding tool [28], [34], [35] to the acceleration of the overall
HEVC encoding process [27], [29], [30], [31]. We will focus
on the latter set of acceleration approaches.

In particular, we will exploit the intrinsic spatial paral-
lelism of the HEVC video encoding process by dividing each
video frame into slices. Each slice will consist of a set of
consecutive CTUs in scan order. The idea is to encode each
frame using one thread per slice. Thus, assuming that the
encoding of one slice does not depend on the others, all
slices of a frame would be computed at the same time. This
approach is also known as slice-based parallel encoding. In a
previous work, we proposed a slice-based parallel version of
the HEVC encoder [30] which is able to work with different

113392

encoding modes to achieve speed-ups of up to 9.3x and 8.7x
using a 12-core parallel platform for the all intra (AI) and
random access (RA) coding modes, respectively.

After analysing the related works of the state-of-the-art,
we noticed that none of them analyse the performance of
their IME hardware proposals when integrated into the video
encoder software (HEVC, VVC, etc.) showing the effects
of integration as API and data transfer overheads. Indeed,
most of the proposals only describe and evaluate the HW
unit alone without taking into account their performance
when integrated with a software video encoder. So, no details
are given about memory transfers between HW device
and CPU, the overhead introduced by APIs like OpenCL,
synchronization issues, etc.

In this work, we propose an HEVC encoder that inte-
grates both hardware (HW) and software (SW) acceleration
techniques to analyse the behaviour of the overall video
coding system, identifying the main performance limitations
found in the integration process. First, we will deploy up
to four HW units, which are spatially replicated on an
FPGA board, to accelerate the HEVC IME coding tool. This
allows all HW units to be used simultaneously (independent
hardware resources). Second, we will use several threads to
encode each frame using our slice-based, parallel version
of the HEVC reference software. Once the hybrid HEVC
accelerated encoder has been developed, we will first analyse
the acceleration provided by HW and SW alone to expose
the benefits and limitations found. Based on these results,
we will then determine the optimal configuration for the
final HW/SW integrated accelerator through performance
testing. To the best of our knowledge, this is the first study to
fully integrate the HEVC video encoder with both hardware
(FPGA) and software (parallel slice-based) accelerators.

The main contributions of this work are the following.
Firstly, we integrate and evaluate an FPGA-based integer
motion estimation (IME) hardware module within a standard
HEVC encoder. This addresses a gap in prior research,
which has typically overlooked the impact of software-
hardware interaction. Secondly, we identify and quantify key
limitations that arise from real-world integration, such as
memory transfer delays and OpenCL communication over-
heads. Third, we explore hardware parallelisation strategies
using multiple IME units and analyse their effectiveness
within the slice-based parallelism of the HEVC encoder.
Our findings provide new insight into the performance and
scalability challenges of deploying hardware acceleration in
practical video coding environments.

The rest of the paper is organised as follows. In Section II,
we define the proposed hybrid software/hardware video
accelerator architecture, explaining how the integration
of both HW and SW was done after evaluating their
performance behaviour. Section III describes the experi-
mental tests designed to evaluate the final, fully integrated
hardware/software version of the proposed method. Finally,
in Section V, some conclusions and future work are
discussed.

VOLUME 13, 2025

O. Lépez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

Il. PROPOSED SOFTWARE-HARDWARE VIDEO
ACCELERATOR ARCHITECTURE

In this section, we will describe the proposed HEVC inte-
grated accelerator architecture, explaining both the hardware
and software accelerators and showing their potential benefits
and limitations. Then, we will describe the integration
framework driven by OpenCL [36], where we show how
HEVC software is able to initialise the HW platform based
on Xilinx FPGA boards and invoke the HW kernel process
to perform IME operations. Finally, having analysed the
behaviour of the hardware and software approaches, we will
determine the optimal configuration for the HEVC integrated
accelerator, which will be evaluated in the next section.

One of the main novelties included in HEVC is the quad-
tree structure for picture partitioning, known as Coding Tree
Unit (CTU) [3]. This structure can be partitioned further into
coding units (CUs), prediction units (PUs), and transform
units (TUs) (see Fig. 1). PUs are the elements that store
the prediction information, such as motion vectors (MVs).
PU sizes can range from 64 x 64 to 8 x 8, either symmetrical
or asymmetrical. HEVC defines eight possible partitions for
each CU size, including square partitioning (2Nx2N and
NxN), vertical and horizontal splitting (2NxN and Nx2N),
and asymmetric splitting, where the CU is divided into two
rectangular areas of sizes 1/4 and 3/4 in each of the four
directions (2NxnU, 2NxnD, nLx2N, and nRx2N). A further
description of HEVC CTU partitioning can be found in [37].
Each time a partition is tested for a particular candidate CU,
a motion estimation process (IME operation) is performed
to determine its rate distortion (R/D) cost. A 64 x 64 pixel
CTU can be partitioned into a large number of possible
partitions, all of which must be evaluated to determine the
CTU partitioning scheme that provides the best R/D cost.
Consequently, the overall complexity of the CTU motion
estimation process is too high, which is the motivation for
designing faster approaches for the partition process and low-
complexity IME alternatives.

Depth0
(64x64)

Depth 1
(32x32)

Depth2 TU
(16x16)

Depth3
(8x8)

FIGURE 1. Relationship between CUs, PUs and TUs.

A. IME HARDWARE MODULE DESCRIPTION
Here, we provide an overview of our IME hardware design.
It is based on the FS algorithm (the one offering optimal

VOLUME 13, 2025

motion search performance), and it is able to evaluate all
possible partitions of a CTU to provide the final partitioning
set with the best R/D performance. The IME module consists
of (a) two internal memory areas, one for storing the pixels
of the current CTU and the other for storing the search
area pixels from the selected reference frame, (b) a memory
area for storing the difference between current and predicted
blocks (residual error), (c) a SAD adder tree unit, and (d)
a comparator unit that stores the minimum SAD and the
corresponding MV of every single partition block, as shown
in Fig. 2. Further details regarding the architecture and
functionality of the base IME module can be found in [17].

SAD HEVC
Shift Internal | _Input
Module
Registers |Memory| BRAMs
Snake
Reference Scan
search area
Current
Distortion cTu
)
SAD Adder
Tree
y
Output Minimum SADs
| Comparator | > & Optimal MVs

FIGURE 2. Hardware IME module.

In this work, the proposed IME hardware module has
been configured to operate with CTUs of 64 x 64 pixels
and a maximum search area size of 192 x 192 pixels
which corresponds to a search range of 128 x 128 pixels.
We have used a Xilinx Alveo U280 FPGA card from Xilinx,
specially suited for datacenters, to accommodate up to four
IME units that are able to work at the same time (by using
different memory banks and direct memory access (DMA)
channels). The Xilinx Alveo U280 FPGA accelerator card
includes 8 GB HBM2 and 32 GB DDR4 external memory,
a 16-lane PCI Express, and a custom-built UltraScale+
XCU280 FPGA device. The XCU280 FPGA uses AMD
stacked silicon interconnect (SSI) technology to increase the
density by combining multiple super logic regions (SLRs)
into one device. An SLR is a physical section of the FPGA
with a specific amount of resources and connections. Fig. 3
shows the SLRs and the connected external devices. The
Ultrascale+ XCU280 FPGA comprises three SLRs, with the
bottom SLR (SLRO) including a high bandwidth memory
(HBM) controller to interface with the HBM2 subsystem
through 32 pseudo-channels (PCs) each with direct access
to 256 MB of storage (8 GB in total). Each 256-bit PC
operates at 450 MHz, yielding a maximum bandwidth of
14.4 GB/s. The full system can thus achieve a theoretical
bandwidth of 460.8 GB/s. The bottom SLR also connects to
16 lanes of the PCI Express (PCle) that can operate at up

113393

IEEE Access

O. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

to 16 GT/s (Gen4). Both SLRO and SLR1 connect to a 64-bit,
2400 MT/s DIMM with 16 GB DDR4 and error correcting
code (ECC), for a total of 32 GB of DDR4. Table 1 lists the
allocation of memory resources and the available resources
for each SLR.

GTY
SLR2
2
s 2
X86 Host |« >y O e 2 SLR1
) 0
e =
=
=)
3
g GTY -
G
H SLRO [&v|2
g GTY
4GB HBM 4GBHBM
Xilinx Alveo U280

FIGURE 3. XCU280 floor-plan with super logic regions and external
memory devices.

HBM[0] —] [~ =] Wr_ptr_mem
TTT HEVC
HBM][1] . 111 - ME 1
— JWE—{wr
LILIL!
111
ImE—-
HBM[2 — B
2l TTT HEVC
111 ME 2
HBM([3] - . [
Xs6 ||= TTT
Host|- pcre |
— . f ==l Wr_ptr_mem
HBM[4] — HEVC
HBM[5| . 111 - ME 3
— . [———| Rd_ptr_mem
LILIL!
111
—IWE——
HBM[6] I I~
TTT HEVC
111 ME 4
HBM[7] - |-
S | =l Rd_ptr_mem
LILIL!
Programmable Logic (PL)

FIGURE 4. Memory distribution of hardware ME units.

In Fig. 4, a diagram of the memory banks assigned to each
HW unit is shown. As can be seen, there are HBM banks
that act as an interface with the PCle-DMA host channels
to accommodate data transfers between the host (CPU) and
HW unit (FPGA). The HW unit will receive both CTU and
SA pixels in the corresponding input HBM memory buffer

113394

TABLE 1. Platform resource availability for each SLR.

Resources SLRO SLR1 SLR2
HBM2 32x256MB - -
DDR4 16GB 16GB -
CLB LUT 386K 364K 381K
CLB register 773K 729K 763K
Block-RAM36 600 576 600
Ultra RAM 320 320 320
DSP-48 2664 2784 2856

(Rd ptr) to perform the motion estimation operation. Thus,
when the read operation is signalled, the HW unit will start to
copy the CU and SA pixels to its own Block-RAM36 memory
areas. Then, full search motion estimation is carried out to
compute the SAD and MV of each possible PU, and they
are stored in the corresponding Block-RAM36 memory area.
In order to complete the IME operation, the HW unit will
copy the final result into the output HBM buffer (Wr ptr),
signalling the write operation to start the corresponding DMA
transfer to the host. In Table 2 we show the FPGA resources
required by the implementation of four different Intellectual
Property cores (IPs) that will map one, two, three, or four HW
units. Although four HW units can fit in the U280 board (there
is enough space), there is a limitation imposed by the FPGA
board design that splits the overall implemented silicon area
into two different SLRs. Thus, we have to map up to two HW
units in SLRO, so the last two HW units should be placed in
SLR1. This implies some overhead penalties for the HW units
allocated in SLR1, since accesses to the HBM buffers need to
cross SLRO area.

TABLE 2. Resource utilisation of implemented hardware unit.

Resources 1 HW Unit 2 HW Units 3 HW Units 4 HW Units
CLB LUT 175K(15%) 350K (30%) 525K (46%) 701K (61%)
CLB register 174K 350K 524K 699K
Block-RAM36 48 (2.7%) 96 (5.4%) 144 (8.1%) 192 (10.8%)
Power (W) 8.5 10.5 11.9 12.9
Freq. (MHz) 249 247 192 176

B. SLICE-BASED PARALLEL HEVC ENCODER

The HEVC standard enables a video frame to be divided into
a set of consecutive CTUs (slices). Each slice is configured
independently (i.e. there is no data dependency between
slices), enabling all the slices in a frame to be encoded
simultaneously.

Each slice contains the same number of CTUs, except for
the final slice, which may contain fewer CTUs if the total
number of CTUs is not a multiple of the number of slices
(see Fig. 5).

Each slice contains a data header with specific coding
parameters about the slice (starting and ending CTU id,
QP value, etc.). This extra information affects the compres-
sion performance since slice headers represent a bitstream
overhead that reduces the overall compression ratio. In our
proposal, the number of slices in the parallel algorithm is

VOLUME 13, 2025

0. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

determined by the number of available encoding processes
(threads). Each encoding process calculates the location and
size of its corresponding slice (i.e. the start and end CTUs
in the frame) following a static allocation scheme. The final
slice will either equal or be smaller than the others.

This slice partitioning aims to achieve a balanced com-
putational load, assigning to each process the same (or a
similar) amount of data. Depending on the video sequence
resolution to be encoded, there may be CTUs at the right-hand
or bottom edges of a frame with fewer than 4096 (64 x 64)
pixels. Figs. 5a and 5b show two different partition schemes
for encoding an 832 x 480 pixel video sequence, where
the total number of CTUs is 104 (13 x 8). Fig. 5a shows
partitioning into two slices of 52 CTUs each, while Fig. 5b
shows partitioning into six slices, where the first five slices
contain 18 CTUs each and the last slice contains 14 CTUs.
In the last slice, only the first CTU has 4096 (64 x 64) pixels,
and the remaining 13 CTUs have only 2048 (64 x 32) pixels.

The encoding process for each video frame is described
below: (a) The current frame is loaded into shared memorys;
(b) each process immediately starts encoding its assigned
slice once the frame has loaded; (c) once one process has
finished encoding its slice, it waits for the others to finish;
(d) once all processes have finished encoding their slices, the
output bitstream is written in order. Further details regarding
the architecture and functionality of the proposed slice-based
algorithm can be found in [30].

C. OPENCL INTEGRATION

In this subsection, we describe the integration of both accel-
erators: the IME hardware and slice-based parallel coding
accelerators. First, we will determine the communication
framework between the host device (CPU) and the hardware
device (FPGA). We will use the OpenCL [36] framework to
allow the HEVC encoder to use our IME hardware module
implemented on the FPGA device as a generic co-processor.
OpenCL defines an API that allows programs running on the
host to launch kernels on the computing devices and manage
their memory, which is (at least conceptually) separate from
the host memory.

Thus, on the one side, we have the slice-based HEVC
parallel encoder version, defined in Section II-B, where each
process (thread) will compute a single slice of one frame.
One slice is composed of a predefined number of CTUs
that will be encoded in raster order. When a single CTU is
encoded, just before starting the encoding process, the HEVC
encoder will send to the IME Hardware module the CTU and
SA pixels of the selected reference frame to perform the FS
motion estimation. As a result, the IME hardware module
will provide the SADs and MVs of all possible partition
blocks to the HEVC encoder, and they will be saved in a
lookup table for later use. At this point the HEVC encoder
starts the CTU encoding process with a recursive approach
to exhaustively test the different partitions in order to find
the partition set that provides the best R/D performance.
During this high-resource-consumption process, every time

VOLUME 13, 2025

832 (13 CTUs)

Slice #1

480 (8 CTUs)

Slice #2

(a) Partitioning into two slices

832 (13 CTUs)

Slice #1

480 (8 CTUs)

Slice #5

Slice #6

(b) Partitioning into six slices

FIGURE 5. Slice partitioning of an 832 x 480 frame.

that an IME operation is required for a particular partition
block, we will obtain its corresponding MV and SAD from
the lookup table where IME results were previously stored.
As a consequence, we save a huge amount of computation
time by avoiding calling the software IME process during the
recursive CTU encoding process.

Algorithm 1 Invoking IME Operation From HEVC Encoder

1: procedure ComputeSad (CTU, SA)

2: n = GetHwUnit () // Find one free HW unit

3: inputOCLBuffer[n] = CTU + SA // Copy CTU and SA
pixels to the OpenCL input buffer of HW unit ‘n’

4: EnqueueMem (inputOCLBuffer[n]) // Map input buffer
into the FPGA device buffer (HBM) of HW unit ‘n’

5: EnqueueTask (n) // Execution of IME in HW unit ‘n’

6: EnqueueMem (outputOCLBuffer[n]) / Map output
buffer into the FPGA device buffer (HBM) of HW unit
-

7. WaitForEvents () // Wait until all enqueued operations
are done

On the other hand, our IME hardware module, introduced
in Section II-A, may implement up to four independent
IME hardware units that are able to work in parallel. Each

113395

IEEE Access

O. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

hardware unit is composed of internal input buffers for storing
the CTU and SA pixels, and an output buffer for storing the
SADs and M Vs of all possible partitions. The communication
between the software (CPU) and the IME hardware module
(FPGA) is driven by the Xilinx DMA subsystem (XDMA) of
the FPGA device card. XDMA is used in conjunction with
the PCle IP block to provide high-performance data transfer
between the host memory and the card’s DMA subsystem.

In order to describe the SW/HW integration with OpenCL,
we have modified the HEVC encoder to include a new
software module that performs all the required functionalities
related to the OpenCL framework, including initialisation,
data transfer, and IME HW execution. Furthermore, some
additional buffers are required to properly accommodate the
input (CU and SA pixels) and output data (SAD and MV
lookup table) used in every CTU operation. In Algorithm 1,
we show the pseudo-code associated with a single IME
request at the beginning of CTU processing, as described
before. As can be seen, each HW unit of the IME IP module
will have its own input/output buffers on both the host (CPU)
and device (FPGA) sides, previously allocated in the OpenCL
initialisation procedure. As HW units have independent
buffers, the software may launch, at the same time, as many
IME operations as there are HW units available. Thus, if the
IME module only has one HW unit and the slice-based
encoder uses four slices/threads that compete for the HW
unit, the result will be serialised by the OpenCL framework.
However, if we have an IME IP module with four HW units,
the threads do not have to wait for their IME requests. Thus,
we achieve an additional hardware parallelisation when more
than one HW unit is available in the IME IP module.

Notice that our slice-based HEVC parallel encoder uses
as many threads as there are slices to encode a frame and
our IME IP module may execute as many IME operations as
there are HW units at the same time. It would be interesting
to evaluate the behaviour of both the SW and the HW
accelerators working alone to determine their limitations and
define the best configuration for the integrated version. In the
next section, we present the performance of the SW, HW and
integrated versions.

1. NUMERICAL EXPERIMENTS

In this section, we show the experimental tests that we
have designed to properly evaluate the HW/SW integration.
We have considered the HEVC Random Access (RA) coding
mode, where the first frame is encoded as an intra (I)
picture frame and the rest of the frames of every GOP
(Group of Pictures) are encoded as Inter picture frames
(B) using reference frames from the past and future with
respect to the coding order. Additionally, we have fixed
the search area range (SA) size to the one established by
the HEVC standard (128 x 128 pixels) and tested our
proposal over all the video sequences suggested by the HEVC
common conditions video set. All the tests were carried
out under HEVC HM 16.3 software reference model [38],
which was running on a shared memory parallel system

113396

equipped with two Intel(R) Xeon(R) Gold 6230 CPU @
2.10GHz processor with 20 cores each and 256GB RAM
installed. The operating system was CentOS Stream 8 with
kernel Linux 4.18.0-305.25.1.el18_4.x86_64. The 8.5.0 gcc
compiler version, the 4.5 OpenMP version and the Xilinx
Runtime 2.15.225 version were used. As mentioned above,
the system’s FPGA is the Xilinx A-U280-A32G-DEV-G.

The experimental tests will be organised as follows.

o First, we will evaluate a single IME HW unit by (i)
measuring the time required for both the input/output
data transfers and the CTU computation operations, (ii)
estimating the temporal cost of each pipeline stage of
our IME HW proposal, and (iii) estimating/measuring
the software overhead introduced by the OpenCL APIL

o After determining the performance behaviour of an IME
HW unit alone, we will study the integrated SW/HW
version by (i) evaluating the slice-based parallel version
with only one IME HW unit, analysing the impact
on performance as the number of threads increases,
and (ii) evaluating the behaviour of multiple IME HW
units (two, three, and four) in order to find potential
bottlenecks, overheads or limitations that may suggest
the most appropriate number of HW units.

« Additionally, we will perform a comparative study of
our IME HW unit and other SW motion estimation
algorithms in terms of the computational cost. We will
obtain the speed-ups provided by our HW approach and
the differences in terms of the coding performance.

« Finally, taking into account the previous evaluation
results, we will evaluate the proposed SW/HW inte-
grated version of the HEVC encoder using an IME HW
with one HW unit to encode all the video sequences from
the HEVC Common test conditions (CTC) set.

A. PROFILING OF AN IME HARDWARE MODULE

First, we performed a time profile of the proposed IME
HW module so as to measure the input/output data transfer
operations, the IME HW computing times and the overhead
introduced by the use of the OpenCL API. In Fig. 6,
we can see the time profile obtained from the Vitis Analyzer
tool during the encoding of one CTU of the Cactus video
sequence. In the left panel of Fig. 6, we can see the different
chronogram lines related to the execution of OpenCL API
calls (General and queue operations), Data Transfer (read
and write operations) and Kernel Enqueues (kernel execution
operations). As shown in algorithm 1, when a HW IME
operation is requested, three enqueue operations are launched
in the following order (a) enqueue the transfer from host
input buffer to FPGA (clEnqueueMigrateMemObjects), (b)
enqueue kernel execution order (clEnqueueTask), and (c)
enqueue the transfer from FPGA output buffer to the host
(clEnqueueMigrateMemODbjects). After enqueueing these
operations, we have to wait until their completion by means
of the c/WaitForEvents function. Meanwhile HEVC encoder
waits for completion, the operations are properly executed by
the OpenCL scheduler, as shown in Fig. 6, beginning with the

VOLUME 13, 2025

O. Lépez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

Name Value

HAL Host Trace
OpenCL Host Trace
OpenCL API Calls
General
lueue ox4a63680]
Data Transfer
Read
Parallel Read 1
Parallel Read 2
Write
Parallel Write 1
Parallel write 2
Copy 00
Kernel Enqueues
xilinx_u280_xd...3:HEVC:HEVC_MI

Kernel Enqueue 1

8, 706, 200.000 us 8, 706, 400. 000 us 8, 706, 600. 000

O . I I

Objects (FPGA - host)
DMA Transfer

Objects (host > FPGA)

© DMA Transfer
— =K
R

HW Unit #1 Kernel Execution

FIGURE 6. Vitis Analyzer profiling for Cactus video sequence using one IME HW unit (coding of one CTU).

CTU and search area data transfer to the FPGA, continuing
with the kernel execution and finishing with the transfer of
the SADs and MVs from FPGA to the host memory buffer.
For each CTU in a frame, this cycle of operations is repeated
as many times as the number of available reference frames
(different search areas).

lclock 1clock 12 clock 1 clock
Memory read Comparison
Shift registers| 64 PUs SAD Adder Tree P
block
load
16384
Memory read) times
Shift registers| 64 PUs SAD Adder Tree Comparison
block
load
63 clock
. . Memory read N
.Sh.lf.‘ registers Shift registers PUs SAD Adder Tree Comparison
initial preload block
load
16462 clock cycles

FIGURE 7. Pipeline process of the IME hardware module architecture.

In Fig. 7, the pipeline processing scheme of the IME
hardware module is shown. At first place, before starting
the computation process, we have to copy both CTU and
SA pixels from HBM to the FPGA memory. This operation
requires one clock cycle per pixel (40577 clocks). Then, the
internal processing to compute both SAD and MVs requires
16462 clocks. This value breaks down as follows: (a) 64 clock
cycles to load the shift registers with the CTU pixels, (b)
14 clock cycles to compute: the SAD between CTU and
the SA block at the first SA location (1 clock cycle), the
execution of the adder tree (12 clocks cycles), the comparator
stage to store the best SADs with their motion vectors (1
clock cycle), and, after the pipeline is full, (c) every clock
cycle will test a new position of the search area, so we will
need 16,383 additional clock cycles to complete the IME
operation. Finally, the results (SADs and MVs) stored in the

VOLUME 13, 2025

FPGA memory should be sent back to the host, requiring
one clock cycle to transfer the best SAD and MV of each
potential partition block (593 clocks). Therefore, the total
number of clock cycles to perform one IME operation will
be: 40577 + 16462 4 593 = 57632 clocks, which at a
frequency of 249 MHz, the overall HW processing time
of one CTU makes 231 us. Using the Vitis Analyzer tool,
we have confirmed that the total time required by the IME
HW to perform the motion/estimation process of a single
CTU is 231 pus on average.

B. ANALYZING THE OPENCL OVERHEAD

In order to measure the software overhead introduced by the
OpenCL API, we will also use the Vitis Analyzer tool since
it is able to register all the OpenCL activity during the HEVC
encoding process. In particular, in Table 3, we summarise
the computational time required by the OpenCL primitives
involved in the SAD computation of every single CTU during
the HEVC encoding of the first 200 frames of Cactus video
sequence.

For each OpenCL primitive we show the number of calls
(#CTUs), the total aggregated time (7ime), and the average
time per call (OneCTU). As shown in Algorithm 1, to perform
a single CTU_SAD operation we need to (a) copy the CTU
and SA pixels to the input buffer, (b) enqueue the input
buffer (order DMA transfer to FPGA), (c) enqueue the Kernel
execution order, (d) enqueue the output buffer (order the
DMA transfer to host), (d) wait for the completion of all
enqueued operations, and (e) release queueing resources and
store the SAD and MV results from output buffer to the
application buffer. So, taking into account the average time
of all the OpenCL functions and the additional house keeping
tasks (releasing resources and memory copy operations)
required to compute the SAD of a single CTU, the application
(HEVC encoder) will spend an average of 344 us. So,
if the IME HW model only requires 231 us, the overhead
introduced by the use of the OpenCL API will represent an
additional 49%.

113397

I EEEACC@SS 0. Lépez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

TABLE 3. OpenCL operation tasks.

API Name #CTUs Time (ms) OneCTU (us)
clEnqueueMigrateMemObjects (host-to-FPGA) | 386,580 1,271.46 3.29
clEnqueueTask 386,580 1,325.20 3.43
clEnqueueMigrateMemObjects (FPGA-to-host) | 386,580 283.75 0.73
clWaitForEvents 386,580 126,026.24 326.00

Finally, to get the whole picture about the OpenCL
overhead, the time required to perform the DMA transfer
operations between host and FPGA devices should be
determined. Again, the Vitis Analyzer tool is able to provide
detailed measures of the DMA memory transfers. The
obtained results show that the DMA transfer from the host
to HBM FPGA memory of the CTU and SA pixels requires
37 us (40577 bytes), whereas the time required to get
the SAD and MVs (DMA transference from HBM FPGA
memory to the host) is 31 us (4744 bytes). It should be note
that as the size of the DMA transfer data increases, so does the
DMA throughput, reducing the overhead of the DMA transfer
protocol (as expected). As it can be seen in Fig. 6, the first
DMA transfer (from host to FPGA) starts after enqueueing
the input buffer, and the second DMA transfer starts just after
finishing the kernel execution operation.

C. INTEGRATED VERSION EVALUATION

In order to determine the impact on application performance
of our integrated HW/SW accelerator we will analyse the
behaviour of using multiple hardware units in combination
with one or more software threads. We will use our integrated
version to encode the first 200 frames of Cactus video
sequence using the RA coding mode, a QP value of 32,
and a combination of HW units (1 to 4) and software
threads/slices (1 to 20). In Table 4, we show (a) the number of
hardware units in the IME HW module and its operating clock
frequency (b) the overall HEVC encoding time (Time), (b)
the average time to perform a single CTU_SAD computation,
(c) the average time to perform an IME operation over a
single location of the SA, (d) the acceleration factor with
respect to the HEVC encoding time with only one thread
(SW_SpUp), (e) the acceleration factor with respect to the
HEVC encoding time with only one HW unit (HW _SpUp),
and (f) the acceleration factor with respect to the CTU_SAD
time with only one HW unit (ACTU_SAD).

As can be seen, all integrated versions that use one,
two, three, or four hardware units obtain good SW speed-
ups (column SW_SpUp), which means that our slice-based
accelerator behaves in the same way, independently of
the available number of hardware units. However, when
comparing the behaviour of using different numbers of
hardware units with the same number of threads (column
HW_SpUp) we find that using more than one hardware
unit does not reduce the overall encoding time, what is an
unexpected result. After performing a detailed analysis of
these results, we believe there are at least two explanations:
(a) all hardware units are used at the same time in very

113398

few cases (only when working with the first CTU of every
frame of the video sequence), so hardware parallelism is
not properly exploited most of the time, and (b) due to the
implementation of the IP module in the selected FPGA board,
since the first two HW units fit in the SLRO area, meanwhile
the third and fourth HW units are allocated in the SLR1 area.
As shown in Fig. 3, only the SLRO area has direct access to
the HBM banks, so the hardware units allocated in other areas
need extra cycles to access HBM memory.

The first reason is the most relevant one here, since it
clearly justifies the low utilisation of hardware units. In Fig. 8,
we show the behaviour of the HW4 IME module (4 IME
hardware units) when the first 16 frames (just two GOPs)
of Cactus video sequence are encoded. Looking at ‘Kernels
Enqueues’ section (at the bottom of the figure), we can see
that only for the first CTU of every frame all four IME units
work in parallel. Remember that before start the encoding of
a new frame all coding threads perform a synchronisation
barrier to apply a filtering process just after decoding the
slices of actual frame (since it will be used as a reference
frame in the following). Additionally, we can also see that the
use of two or three HW units in parallel occurs just very few
times. This means that threads are quickly desynchronised
as they code the CTUs of their slices, and therefore, most
of the time only one hardware IME module will be used
at the same time (ie. there is no hardware parallelism).
At the other hand, in Table 4, we have included the average
CTU_SAD to determine the average time required by the
HEVC encoder to perform SAD computation of a single
CTU when using different versions of the IME HW module.
The ACTU_SAD column shows the relative increase in
CTU_SAD with respect to that observed with a single HW
Unit. Here we can conclude that these results are very similar
when using 2 HW units, but increase significantly for three
and four HW units. This effect is mainly due to the clock
frequency drop for the design of 3 and 4 HW units as
their design require the use of the SLR1 area, as mentioned
above.

InFig. 9, we show a comparison of the energy consumption
of different IME designs with one, two, three and four HW
units. Power consumption measurements (in watts) were
taken using the Vitis analyzer tool while encoding Cactus
video sequence using the HEVC integrated version. Note
that the obtained measures correspond to the total power
consumption of the U280 platform and the proposed IME
HW designs. As expected, the IME design with only one HW
Unit requires the least energy, being on average 8.5 W (see
Table 2).

VOLUME 13, 2025

0. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

Name Value

20. 000000000 S

40, 000000000 S

0. 000000000 S It

> HAL Host Trace
- OpenCL Host Trace
~ OpenCL API Calls
Parallel General 1
Parallel General 2
Parallel General 3
Parallel General 4

Queue 0x5bagde0
Queue 0xSbba310
Queue 0x5¢156b0
Queue 0x5c6b3c0

~ Data Transfer

v Read
Parallel Read 1
Parallel Read 2
Parallel Read 3
Parallel Read 4
v Write
Parallel Write 1 Bank4
Parallel Write 2
Parallel Write 3
Parallel Write 4
Parallel Write 5

Copy 00

+ Kernel Enqueues
xilinx_u280_xd...3:HEVC:HEVC_MI
Kernel Enqueue 1
Kernel Enqueue 2
Kernel Enqueue 3
Kernel Enqueue 4

/ wilinu 11700 vAma 201090 3

FIGURE 8. Vitis Analyzer profile of the first 16 frames of Cactus video sequence using an IME module with four

HW units.

14
T

= -
oy ~

Power Consumption - Platform + Hardware Accelerator (W)
=
S

— Wﬂf{bﬂ E il

—— L HW Unit
——2 HW Unit

3 HW Units
——4 HW Unit

| L | 1
20 25 30 35 40

Time (s)

FIGURE 9. Power consumption profile when coding Cactus Video sequence using one, two, three and four IME

HW units.

Thus, considering the observed software behaviour and
the hardware implementation issues found, we recommend
using the HEVC slice-based parallel version combined with
only one hardware IME module (HW1). This setup is the one
that provides the best trade-off among the speed-up, coding
performance, power consumption and FPGA area usage.

Following the above analysis on the use of several
hardware units, we proceed to perform an evaluation of the
parallel slice-based version of the HEVC encoder with a

VOLUME 13, 2025

single IME hardware module in terms of the speed-up, PSNR,
and bitrate for all video sequences of the HEVC common
test conditions (classes A+ to C). In Tables 6 and 7 we
show the encoding time (7ime), video quality (PSNR), and
bitrate for all video sequences encoded with RA coding mode
and a QP value of 32. As can be seen, the encoding time is
drastically reduced as the number of threads increases. The
maximum speed-up obtained was 13.5x, and it was obtained
for the NebutaFestival video sequence using 20 threads.

113399

IEEE Access

O. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

TABLE 4. Time profile using different Threads and HW Units (Cactus video sequence).

HW Unit Threads | Time(s) CTU_SAD(us) IME (us) SW_SpUp HW_SpUp ACTU_SAD
1 3,379.5 344,035 0,108 1.00x - -
2 1,773.0 359,766 0,136 1.91x - -
4 962.8 388,388 0,185 3.51x - -
HWI1 (249 MHz) 8 547.8 443,075 0,239 6.17x - -
12 413.6 530,569 0,286 8.17x - -
16 337.2 654,109 0,343 10.02x - -
20 301.1 788,649 0,403 11.22x - -
1 3,373.7 343,617 0,106 1.00x -0.17% -0.12%
2 1,763.5 360,313 0,144 1.91x -0.53% 0.15%
4 961.3 384,845 0,187 3.51x -0.15% -0.91%
HW2 (247 MHz) 8 548.9 442,305 0,236 6.15x 0.20% -0.17%
12 414.1 532,898 0,282 8.15x 0.12% 0.44%
16 338.6 651,251 0,340 9.96x 0.42% -0.44%
20 299.0 779,760 0,395 11.28x -0.71% -1.13%
1 3,411.0 412,166 0,109 1.00x 0.93% 19.80%
2 1,778.2 437,193 0,148 1.92x 0.29% 21.52%
4 972.7 471,405 0,183 3.51x 1.03% 21.37%
HW3 (192 MHz) 8 554.9 560,534 0,226 6.15x 1.29% 26.51%
12 416.6 680,632 0,285 8.19x 0.73% 28.28%
16 342.6 855,136 0,335 9.95x 1.62% 30.73%
20 303.1 1051,822 0,408 11.25x 0.67% 33.37%
1 3,415.7 437,171 0,108 1.00x 1.07% 27.07%
2 1,782.3 464,603 0,136 1.92x 0.53% 29.14%
4 973.8 503,222 0,182 3.51x 1.15% 29.57%
HW4 (176 MHz) 8 554.8 604,964 0,232 6.16x 1.27% 36.54%
12 419.7 741,479 0,277 8.14x 1.48% 39.75%
16 346.0 937,22 0,348 9.87x 2.61% 43.28%
20 305.5 1166,093 0,396 11.18x 1.48% 47.86%
TABLE 5. Comparison of the proposed architecture with state-of-the-art works.
Design [5] Proposed | [8] [7] [8] [19] [20]
Codec HEVC HEVC HEVC HEVC HEVC vvC vvC
Technology Virtex-7 Virtex-7 Virtex-5 Virtex-6 Virtex-7 Virtex-7 Virtex-7
CTU size 64x64 64x64 64x64 32x32 64x64 128x128 128x128
Search area 104x104 64x64 64x64 48x48 128x128 128x128 64x64
Clock (MHz) 458.7 247 150 110 323 253 182.9
AMP No Yes No Yes yes yes yes
Throughput 2K@30fps 4K@30fps | 720p@57fps 1080p@30fps | 4k@10fps 4k@30fps 8k60fps
Flip-Flops 39901 144302 199682 19744 107862 182327 30600
LUTs 24957 188664 210158 55346 120141 145606 85070
Memory (kB) 44 36 1229 148 36 468 80.03
Power(W) - 3.16 13.60 - 8.16 - -
m=Efiiciency —Bitrate Inc. for the rest of the video sequences, where the maximum

1,20 3,50

1,00

2,00

% Bitrate Inc.

0,20

0,00 .

2 4 8 12 16
Threads

FIGURE 10. Parallel Coding efficiency and bitrate overhead for
NebutaFestival video sequence.

Regarding PSNR, there is a negligible penalty as the number
of threads increases. For example in the BasketBallDrill test
sequence, the PSNR is reduced by 0.2% in the worst case
when 20 threads are used. A similar behaviour is obtained

113400

PSNR loss of 0.43% was obtained for the Kimono video
sequence when 20 threads were used. However, the bitrate
increment suffers a significant penalty as the number of
threads increases, being the maximum bitrate increment of
44.35%, and it was obtained for the Johnny video sequence
using 20 threads. As stated in [30], that increment is mainly
due to a) the extra headers introduced on each slice, and b) the
encoding performance losses caused by disabling the motion
prediction across slice boundaries. Furthermore, CABAC (the
HEVC entropy encoder) context models are not updated after
the computation of each slice but after the frame computation.
Thus, there is a trade-off between the acceleration and bitrate
increment that will be determined depending on the final
application requirements. We recommend using no more
than eight threads, with four threads representing the most
balanced proposal in terms of the acceleration (3.33x on
average) and bitrate increment (4.82% on average). It is also
worth noting that for high resolution video sequences (UHD
and beyond), the penalty in the bitrate is highly reduced,

VOLUME 13, 2025

O. Lépez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

TABLE 6. Evaluation results of the SW/HW integrated version with one IME hardware unit with the CTC video sequences.

Class Sequence Measure Threads
1 2 4 8 12 16 20
Time(s) 158244 81276 42617 22617 16543 13865 1172.11
, Speed-u y 1.95 371 7.00 957 1141 13.50
NebutaFestival PIS)NR(dI;) 2945 2945 2944 2943 2942 29.41 29.40
As Bitrate(Mb) 1949 1956 19.64 1976 19.87 19.98 20.07
Time(s.) 103125 54501 29894 16154 1191.0 10069 8429
SteamLocomotive | SPeed-up - 1.89 345 6.38 8.66 1024 12.23
PSNR(db) 3868 3866 38.64 3863 3861 38.60 38.59
Bitrate(Mb) 2.03 2.06 2.09 2.15 221 2.26 2.29
Time(s) 76907 24317 13426 7273 5417 4507 3782
Traffic Speed-up - 1.93 3.49 6.45 8.66 1041 12.40
PSNR(db) 36.54 3653 3652 3650 3649 36.48 36.48
A Bitrate(Mb) 1.58 1.60 1.63 1.65 1.67 1.69 1.71
Time(s.) 65188 33793 1909.6 10077 7499 6259 522.9
PeopleOnSitreet Speed-up - 1.93 3.49 6.45 8.66 1041 12.40
PSNR(db) 3414 3412 3411 3410 3408 34.08 34.07
Bitrate(Mb) 5.06 5.14 5.20 5.26 5.30 5.35 5.39
Time(s) 97851 51999 27784 14933 11122 9316 8004
BQTerrace Speed-up - 1.88 3.52 6.55 880 1050 12.23
PSNR(db) 33.84 3383 3381 3380 3379 3378 3377
Bitrate(Mb) 3.59 3.63 3.68 376 3.84 391 3.96
Time(s) 9478.6 5085.8 28850 15645 1I80.6 960.0 8268
. Speed-up - 1.86 328 6.06 8.03 9.87 11.46
BasketballDrive | pong (db) 3562 3560 3558 3557 3555 3553 35.53
Bitrate(Mb) 3.74 3.81 3.88 4.01 4.13 4.24 4.30
Time(s) 84682 44184 23866 13420 1019.7 8342 7298
B | Cactus Speed-up - 1.92 3.55 6.31 830 10.15 11.60
PSNR(db) 3493 3491 3488 3486 3485 34.83 34.83
Bitrate(Mb) 3.57 3.60 3.67 377 3.86 3.94 3.98
Time(s) 12680 23038 12318 6613 490.1 4087 3509
Kimono Speed-up § 1.85 3.46 6.45 871 1044 12.16
PSNR(db) 3739 3735 3732 3728 3726 3723 37.23
Bitrate(Mb) 1.29 1.31 1.34 1.38 1.42 1.46 1.48
Time(s) 70893 21384 11592 6315 4684 3945 336.7
ParkScene Speed-up - 1.91 3.53 6.47 873 1036 12.14
PSNR(db) 3488 3486 3484 3483 3481 34.80 34.79
Bitrate(Mb) 1.79 1.81 1.83 1.87 1.91 1.94 1.96
Time(s) 21437 11389 6879 3809 2906 2538 236.1
BOMall Speed-up y 1.88 3.12 5.63 738 8.45 9.08
PSNR(db) 3498 3493 3490 3486 3485 34.85 34.85
Bitrate(Mb) 1.18 1.22 1.27 1.35 1.40 1.43 1.46
Time(s) 18991 10192 5733 3190 2476 2192 2045
. Speed-up - 1.86 331 5.95 7.67 8.66 928
BasketballDrill 1 ponp (db) 3436 3435 3433 3430 3430 3429 3429
Bitrate(Mb) 1.09 111 1.15 1.21 1.25 1.28 1.30
Time(s) 20017 11127 6168 3348 2598 2302 2172
¢ | PartyScene Speed-up - 1.80 3.25 5.98 770 8.69 921
PSNR(db) 3167 3165 3162 3159 3159 3158 31.58
Bitrate(Mb) 1.97 2.00 2.04 2.09 2.13 2.15 2.18
Time(s) 14084 7803 4214 2276 1758 1529 1444
RaceHorsesC Speed-up y 1.80 3.34 6.19 8.01 921 975
‘ PSNR(db) 3290 3288 32.86 3282 3282 3281 32.81
Bitrate(Mb) 1.17 1.19 1.22 1.27 1.29 1.31 1.33
Time(s) 19129 10250 5762 3281 2527 2231 206.6
. Speed-up - 1.87 332 5.83 7.57 8.57 9.26
BasketDrillText | pong (db) 3428 3425 3424 3421 3420 3421 3420
Bitrate(Mb) 1.20 1.23 1.26 1.33 1.37 1.39 1.42

as in the NebutaFestival sequence (see Fig. 10) where the
maximum bitrate increment is 3.0%, whereas the acceleration
efficiency is the best one, as it is possible to increase the
number of threads for this kind of sequences.

D. COMPARISON AGAINST OTHER ME ALGORITHMS

We have also compared our IME HW ME proposal (FS —
HW1) with other ME algorithms available in the HEVC
reference software as (a) Full Search (FS), and (b) three fast

VOLUME 13, 2025

ME algorithms based on the 7ZSearch strategy with different
search patterns: diamond, selective, and enhanced diamond.
In order to evaluate their ME performance, we have encoded
16 frames of the Cactus video sequence using the RA coding
mode with a QP value of 32. The Cactus sequence with a
resolution of 1920 x 1080 has 510 CTUs per frame and
approximately 1479 PUs are evaluated per CTU, on average.
In Table 8 we show the results of the SW Slice-based
approach working with several ME algorithms in order to

113401

IEEE Access

O. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

TABLE 7. Computing time, speed-up, PSNR, and bitrate for video sequences (classes D to F) using HW2 IME module and RA configuration (QP=32).

Class Sequence Measure Threads
1 2 4 8 12 16 20

Time(s) 5073 2950 1646 1105 921 761 844

BOSquare Speed-up - 1.72 308 459 550 667 601
PSNR(db) 3200 3196 3193 3190 31.89 31.87 31.87

Bitrate(Mb) 0.44 0.45 048 051 054 057 0.59

Time(s) 5168 2838 1754 1174 982 809 872

Speed-up X 1.82 295 440 526 638 593

BasketballPass | ponp (db) 3354 3351 3347 3346 3345 3344 3344
b Bitrate(Mb) 0.47 0.49 052 055 058 061 063
Time(s) 7639 2578 1488 1005 858 701 773

BlowingBubbles | Speed-up E 1.80 312 462 540 662 6.0
PSNR(db) 3173 3168 3165 31.64 3163 3162 3162

Bitrate(Mb) 0.48 0.49 051 054 056 058 0.60

Time(s) 3442 2060 1134 750 637 502 545

RaceHorses Speed-up - 1.67 303 459 540 685 631
PSNR(db) 3227 3224 3219 3217 3215 3215 3215

Bitrate(Mb) 0.35 0.36 038 039 041 043 044

Time(s) 39265 20793 11498 6198 4473 3870 3423

KristenSara Speed-up - 1.89 341 634 878 10.14 1147
PSNR(db) 3927 3924 3922 39.18 39.15 39.15 39.15

Bitrate(Mb) 0.62 0.64 067 072 077 080 083

Time(s) 3742.8 20320 10872 5806 4302 3664 3282

Johnny Speed-up E 1.84 344 645 870 1021 11.40
PSNR(db) 3959 3958 39.56 39.52 39.50 39.49 39.50

E Bitrate(Mb) 0.43 0.45 047 052 057 060 063
Time(s) 38400 21084 11931 66L.I 4883 4124 3604

FourPeople Speed-up § 1.82 322 581 786 931 10.65
PSNR(db) 3820 3817 3815 3812 3809 38.09 38.08

Bitrate(M) 0.86 0.88 091 096 100 103 1.06

Time(s) T7781 9805 5285 2867 2112 1822 1616

SlideEditing Speed-up . 1.81 336 620 842 9761 11.00
PSNR(db) 3838 3837 3836 3832 3830 3828 38.28

Bitrate(M) 0.95 0.96 098 100 1.02 104 1.06

Time(s) 38776 20944 12076 6735 5151 4260 3736

ChinaSpeed Speed-up X 1.85 321 576 753 9.0 1038
PSNR(db) 3491 3491 34.89 3487 3486 3485 34.84

. Bitrate(Mb) 2.68 2.70 274 280 285 289 292
Time(s) 3379.8 1836.6 1000.1 5588 413.7 3555 32190

SlideShow Speed-up X 1.84 335 605 817 951 10.50
PSNR(db) 4227 4227 4228 4226 4224 4222 4222

Bitrate(Mb) 0.85 0.86 089 095 099 103 1.06

make a fair comparison between them. In particular, for each
ME algorithm we show (a) the overall encoding time (7ime),
(b) the average ME time of one CTU (ME/CTU)," and (c)
the speed-up of the CTU _SAD operation using as reference
the FS algorithm.

Itis important to take into account that when using our HW
IME module, (a) the IME /PU operation is very fast since it
consists on one memory access and very few computations,
and (b) the ME /CTU should also include the time required to
complete the CTU_SAD operation performed at the begging
of each CTU encoding (see Table 4) for each reference frame.

As can be seen, the proposed HW IME proposal is the
fastest one, speeding up the ME process by up to 679x
when compared with the SW FS version. However, the other
SW fast ME approaches are also competitive at the cost of
reducing the ME accuracy and increasing the bitrate obtained
by the Full Search versions.

INotice that the ME computing of one CTU may require up to four
reference frames, so the ME process is repeated so many times as the number
of reference frames needed. In general, most of the frames in the encoding
process use 4 reference frames per CTU.

113402

Finally, we have performed a complete evaluation of the
IME SW/HW integrated version by comparing it to the FS
algorithm of the HEVC reference software with all video
sequences of the HEVC common test conditions. In Table 9
we show the computing time, PSNR and bitrate of both the
HEVC using FS ME and our integrated SW/HW parallel
version using four threads/slices per frame and one HW
IME module. As can be seen, speed-ups of up to 149.63x
are obtained with a negligible PSNR loss and an average
bitrate increment of 6.1%. Additionally, if we focus on
high resolution video sequences like NebutaFestival, Traffic,
or PeopleOnStreet, the average bitrate increment is just
1.91%, with speed-ups of up to 136.45x. As previously stated,
the configuration that uses one HW unit and four threads
per frame shows the best trade-off between the encoding
acceleration and R/D performance penalty.

E. COMPARISON AGAINST OTHER STATE-OF-THE-ART
PROPOSALS

As previously mentioned, most state-of-the-art IME hardware
proposals are evaluated in isolation without considering their

VOLUME 13, 2025

O. Lépez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

TABLE 8. Performance evaluation of different ME algorithms and our IME
HW module.

ME Threads Time (s) ME/CTU (ms) CTU_SpUp

1 8089.40 1026.647 -

2 4268.61 1035.193 -

4 2283.14 1086.514 -

FS 8 1206.03 1114.553 -
12 859.40 1173.598 -

16 726.88 1322.881 -

20 634.00 1411.241 -

1 626.22 50.244 20x

2 329.27 51.177 20x

4 182.00 54.201 20x

Selective 8 106.66 55.975 20x
12 78.73 59.201 20x

16 67.30 66.398 20x

20 58.32 70.876 20x

1 394.63 20.451 50x

2 206.27 20.368 51x

4 111.96 21.296 S51x

eDiamond 8 62.17 21.793 51x
12 45.44 22.899 51x

16 39.16 25.815 51x

20 34.83 27.410 51x

1 276.99 5.389 190x

2 145.67 5.552 187x

4 79.23 5.902 184x

Diamond 8 44.78 6.066 184x
12 33.25 6.401 183x

16 28.79 7.223 183x

20 25.78 7717 183x

1 252.45 1.511 679x

2 134.77 1.614 641x

4 74.28 1.780 604x

FS-HW1 8 42.93 2.095 532x
12 32.96 2.508 468x

16 28.28 3.078 430x

20 25.11 3.696 382x

integration into the reference encoder software. This means
that practical issues such as API interactions and data transfer
overheads are overlooked. The main results they provide are
about the performance of the HW design alone. So, we may
proceed to compare our HW IME proposal with the ones in
the literature trying to use the evaluation setups as close as
possible. For that purpose, we have emulated our IME HW
module over a Xilinx Virtex 7 FPGA, because the majority
of literature review use that technology. To accommodate
our IME HW setup to the ones found in the literature,
we have reduced the search area (SA) to 64 x 64 pixels. Also,
we have taken into account only the time required to compute
one CTU in the HW module (no data transfer overheads
considered).

In Table 5, we compare our proposal with other ones from
the literature by means of several features that determine the
IME HW module setup (i.e. CTU and SA sizes, Technology,
etc.) and its performance (ie, throughput, FPGA resources).
The most complete FS HW proposals are the ones that include
the computation of the asymmetric partitions (AMP) like our
proposal and the ones in [7], [18], [19], and [20]. As can be
seen, our proposal is highly competitive as it is able to achieve
an encoding speed of 30fps for 4k videos using a search area
of 64 x 64 pixels. However it requires a significant amount
of FPGA resources in a similar way than the one proposed
in [19]. Although the proposal presented in [20] obtains better
results in terms of throughput, this is mainly due to the early

VOLUME 13, 2025

termination algorithm of the motion estimation. However,
none of the above state-of-the-art proposals integrates their
IME into the encoder software.

To the best of our knowledge, there are hardly any FPGA-
based IME integration in HEVC software using OpenCL.
Specifically, the only work we have found that uses OpenCL
to evaluate an integration of the motion estimation kernel
is the one proposed by Castro et al. in [26]. As reported
in [26], an algorithm for block matching motion estimation
based on the H.264 video coding standard that uses only
fixed 16 x 16 blocks is presented and implemented on
an Intel Stratix 10 FPGA using OpenCL. The performance
analysis focuses solely on the kernel itself, disregarding its
full integration within the encoder and the cost of transferring
the 16 x 16 blocks to the FPGA. However, our proposal is
based on the HEVC standard. It uses variable block sizes
ranging from 8 x 8 to 64 x 64 and incorporates asymmetric
partitioning across a 128 x 128 search area, as well as
a significant number of partition units per CTU. In terms
of performance, both approaches produce similar results,
but a fair comparison cannot be made given the significant
differences between them, as previously mentioned.

IV. DISCUSSION

After the evaluation and the analysis of the results obtained
in previous sections, we summarise the main hardware and
software limitations found.

o First, as described in Section III-A, one of the main
bottlenecks found in the IME HW module design is the
time required to perform memory transfer operations
to copy both the CTU and the SA pixels from
FPGA HBM memory to the internal FPGA memory
banks (40577 clock cycles) and send the ME results
(SADs&MVs) back to the HBM memory (593 clock
cycles). As the time required to compute ME and
obtain the SAD and MVs of all partitions of a given
CTU requires only 16462 clock cycles, the memory
transfer operations represent the 71% of the overall
time that IME HW module requires to compute process
one CTU. So, assuming an operating frequency of
IME HW module of 249 MHz, from the 231 us to
perform the whole ME process of a CTU (including
memory transfers), only 66 s correspond with the ME
computation.

« Besides, the HEVC encoder uses the OpenCL interface
to communicate with the IME HW module at the
FPGA device. To compute the SADs&MVs for a
single CTU with one reference frame, the HEVC
encoder spends 344 us, on average, as described in
Section III-B. So, if the time required by the IME HW
module is about 231 us, the overhead introduced by
OpenCL is 113 us, what represents an extra overhead
of 49%.

The delay chain of computing operations is represented
in Table 10, based on the analysis of the IME HW
module and the OpenCL interface. As can be seen,

113403

IEEE Access

O. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

TABLE 9. Evaluation of SW FS version and the HW/SW proposal with four threads.

Video SW/HW ES SW FS
Sequence Total PSNR Bitrate Total PSNR Bitrate | Speed-up PSNR Bitrate
Time (s) (dB) (Mb) Time (s) (dB) (Mb)
NebutaFestival 4261.77 29.44 19.643 | 400876.0 29.43 19.442 94.06x -0,02% 1.03%
Traffic 1342.69 36.52 1.632 | 183217.0 36.55 1.584 136.45x 0.09% 3.04%
PeopleOnStreet 1909.64 34.11 5.204 | 201067.7 34.14 5.119 105.29x 0.10% 1.67%
BQTerrace 2778.43 33.81 3.687 | 365374.1 33.83 3.546 131.50x 0.06% 3.96%
BasketballDrive 2885.97 35.58 3.885 | 313520.6 35.63 3.583 108.64x 0.14% 8.42%
Cactus 2386.68 34.88 3.678 | 308749.8 34.94 3.579 129.36x 0.16% 2.78%
Kimono 1231.86 37.32 1.342 | 147229.5 37.40 1.312 119.52x 0.22% 2.26%
ParkScene 1159.24 34.84 1.836 | 147030.7 34.88 1.805 126.83x 0.11% 1.73%
BasketballDrill 573.33 34.33 1.154 60549.6 34.39 1.068 105.61x 0.17% 8.04%
BasketDrillText 576.24 34.24 1.267 60776.0 34.31 1.181 105.47x 0.19% 7.29%
BQSquare 164.64 31.92 0.480 16701.3 31.99 0.434 101.44x 0.19% 10.73%
BasketballPass 175.43 3347 0.529 14737.6 33.56 0.471 84.01x 028% 12.21%
BlowingBubbles 148.88 31.65 0.514 14211.9 31.75 0.476 95.46x 0.31% 8.00%
RaceHorses 113.48 32.19 0.380 9251.5 32.30 0.354 81.52x 0.34% 7.23%
KristenSara 1149.83 39.22 0.672 | 160404.3 39.27 0.623 139.50x 0.15% 7.83%
Johnny 1087.28 39.56 0.477 | 159718.1 39.60 0.439 146.90x 0.11% 8.63%
FourPeople 1193.12 38.15 0916 | 161274.3 38.20 0.868 135.17x 0.13% 5.49%
SlideEditing 528.56 38.36 0.980 79089.7 38.35 0.914 149.63x -0.02% 7.27%
ChinaSpeed 1207.66 34.89 2.746 | 122858.6 34.92 2.683 101.73x 0.08% 2.35%
SlideShow 1009.14 42.28 0.893 | 134642.1 42.45 0.792 133.42x 0.40% 12.76%
TABLE 10. Delay chain of SW & HW operations to compute SAD&MV of a CTU in us.
OpenCL IME HW Module (249 MHz) OpenCL
Device | OCL_Schedule | DMA (CTU&SAD) | HBMtoIP | ME | IPto HBM | DMA (SADS&MVs) | Other
Host 7.5 37 31 37.5
FPGA 162.6 66 2.4

of the total 344 s only 66 us (19%) are related to ME
computation; 233 us (68%) are related to DMA and
FPGA memory transfers; and 45 us (13%) are related
to other operations, such as OpenCL scheduling and
resource management (OpenCL events, HEVC input
and output buffers, etc.).

e When comparing the performance of the different
hardware designs with one, two, three or four IME
modules, we have found that the design that includes
only one HW unit is the one that provides the best trade-
off among the speed-up, coding performance, power
consumption and FPGA area usage. This is mainly due
to the intrinsic characteristics of the HEVC encoder
application. Although the parallel version of HEVC
based on slices has a good scalability in terms of
speed-up, the software only makes use of all hardware
units simultaneously a few times. This only occurs
at the beginning of each frame when all threads are
synchronised and use all the available hardware units
at the same time to compute the first CTU. However,
as the encoding process continues with the remaining
CTUs in the frame, the characteristics of the HEVC
encoder and the video sequence content (some CTUs are
more complex than others) cause the threads to become
desynchronised. Consequently, most of the time, only
one IME hardware unit is required at a time (there is no
hardware concurrency).

Finally, the hardware IME module could theoretically
achieve speeds of 15,152 CTU/s (29.7 fps for a 1080p video

113404

sequence). However, the limitations and issues described
above cause the total encoding time to increase drastically,
resulting in a maximum speed of 2,907 CTU/s (8.5 fps).

V. CONCLUSION

In this work, we have presented a full SW/HW integrated
version of the HEVC encoder software. The main building
blocks of the proposal are based on the HW IME module and
the slice-based parallel version of the HEVC encoder, which
were both proposed in previous works. In order to perform the
HW/SW integration, we have analysed some issues that limit
the overall performance of these modules when they work
together, such as the DMA transfer operations, the software
overhead provided by the OpenCL API, and the concurrent
behaviour of the HEVC slice-based encoder. The main results
have shown that a) in the HW IME module, using as many
HW units as possible does not mean that better performance
results will be obtained, mainly due to the HEVC slice-based
encoder behaviour where most of the time only one HW
unit is required at the same time; b) the DMA data transfer
operations are one of the main bottlenecks of the integrated
version that significantly reduces the great potential of the
IME HW proposal; and c) the use of OpenCL increases
the computation overhead even more, especially when the
number of threads increases.

After analysing all the impairments found in the integration
process, we have selected an integrated version that uses
an IME HW with only one HW units and a slice-based
SW encoder with no more than eight threads (four threads

VOLUME 13, 2025

O. Lépez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

IEEE Access

suggested). The performance behaviour of the integrated
version shows that the R/D coding performance is the same
as that of the FS SW version (optimal performance), and a
speed-up of up to 149.63x is achieved.

There are many tasks that must be completed to appropri-
ately design a more effective HW/SW version of the HEVC
encoder. The most important of these are as follows: a) reduce
the overhead of the OpenCL API by using a more optimised
API, such as the one provided by the FPGA vendor (Xilinx
XRT API); b) analyse other schemes to reduce the ratio
between data transfer times and CTU computation times so
that DMA transfer costs are hidden as much as possible; and
c) use different parallel encoding modes, such as chunks of
GOPs, or use multiple instances of the encoder to process
different video sequences simultaneously so that multiple
IME hardware units can be exploited to their fullest potential.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, Y.-K. Wang, and
T. Wiegand, High Efficiency Video Coding (HEVC) Text Specification
Draft 10, document JCTVC-L1003 of JCT-VC, Geneva, Jan. 2013.
ITU-T and ISO/IEC JTC 1, Advanced Video Coding for Generic
Audiovisual Services, Standard ITU-T Rec. H.264 ISO/IEC 14496-10,
version 16, 2012.

G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity
and implementation analysis,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 12, pp. 1685-1696, Dec. 2012.

A.Medhat, A. Shalaby, M. S. Sayed, M. Elsabrouty, and F. Mehdipour, “A
highly parallel SAD architecture for motion estimation in HEVC encoder,”
in Proc. IEEE Asia—Pacific Conf. Circuits Syst. (APCCAS), Nov. 2014,
pp. 280-283.

J.Byun, Y. Jung, and J. Kim, “Design of integer motion estimator of HEVC
for asymmetric motion-partitioning mode and 4K-UHD,” Electron. Lett.,
vol. 49, no. 18, pp. 1142-1143, Aug. 2013.

X. Yuan, L. Jinsong, G. Liwei, Z. Zhi, and R. K. F. Teng, “A high
performance VLSI architecture for integer motion estimation in HEVC,”
in Proc. IEEE 10th Int. Conf. (ASIC), Shenzhen, Oct. 2013, pp. 1-4.

T. D’huys, S. Momcilovic, F. Pratas, and L. Sousa, “Reconfigurable data
flow engine for HEVC motion estimation,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Paris, Oct. 2014, pp. 1223-1227.

P. Nalluri, L. N. Alves, and A. Navarro, “High speed SAD architectures
for variable block size motion estimation in HEVC video coding,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Paris, Oct. 2014, pp. 1233-1237.
B. Mohamed, A. Shalaby, and M. S. Sayed, “High-level synthesis
hardware accelerators of integer-pixel motion estimation of HEVC on SoC
FPGA platform,” in Proc. 2nd Eur. Middle East North Afr. Regional Conf.
Int. Telecommun. Soc. (ITS), Leveraging Technologies Growth, Feb. 2019.
S. Gogoi and R. Peesapati, “‘A hybrid hardware oriented motion estimation
algorithm for HEVC/H.265,” J. Real-Time Image Process., vol. 18, no. 3,
pp. 953-966, Jan. 2021.

Xilinx. (Jan. 5, 2020). Standalone-BSP Board Support Package.
[Online]. Available: https://www.xilinx.com/support/documentation-
navigation/design-hubs/dh0041-zc7000-video-and-imaging-kit-hub.html
R. Khemiri, H. Kibeya, H. Loukil, F. E. Sayadi, M. Atri, and N. Masmoudi,
“Real-time motion estimation diamond search algorithm for the new high
efficiency video coding on FPGA,” Anal. Integr. Circuits Signal Process.,
vol. 94, no. 2, pp. 259-276, Feb. 2018.

R. Haddar, A. Chaari, H. Kibeya, M. A. Ben Ayed, and N. Masmoudi,
“FPGA-based implementation of TZsearch algorithm for H.265/HEVC
standard,” in Proc. 18th Int. Conf. Sci. Techn. Autom. Control Comput.
Eng. (STA), Dec. 2017, pp. 605-610.

V. Afonso, H. Maich, L. Audibert, B. Zatt, M. Porto, L. Agostini, and
A. Susin, “Hardware implementation for the HEVC fractional motion
estimation targeting real-time and low-energy,” J. Integr. Circuits Syst.,
vol. 11, no. 2, pp. 106-120, Dec. 2020.

VOLUME 13, 2025

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

E. Alcocer, O. Lopez-Granado, M. P. Malumbres, and R. Gutierrez,
“Evaluation of an HEVC hardware IME module using a SoC platform,”
in Proc. Conf. Design Circuits Integr. Syst. (DCIS), Nov. 2016, pp. 1-6.
E. Alcocer, R. Gutierrez, O. Lopez-Granado, and M. P. Malumbres,
“Design and implementation of an efficient hardware integer motion
estimator for an HEVC video encoder,” J. Real-Time Image Process.,
vol. 16, no. 2, pp. 547-557, Apr. 2019.

L. D. Khai, “A fast and efficient data reuse scheme for HEVC integer
motion estimation hardware architecture,” J. Inf. Telecommun., vol. 9,
no. 1, pp. 73-90, Jan. 2025.

W. Ahmad, H. Mahdavi, and I. Hamzaoglu, “An efficient versatile video
coding motion estimation hardware,” J. Real-Time Image Process., vol. 21,
no. 2, Jan. 2024.

J. Zhang, Y. Zhang, and H. Zhang, “An efficient hardware architecture
of integer motion estimation based on early termination and data reuse
for versatile video coding,” Exp. Syst. Appl., vol. 242, May 2024,
Art. no. 122706.

S. Chen, L. Huang, Z. Zan, X. Zeng, and Y. Fan, “An interpolation-free
fractional motion estimation algorithm and hardware implementation for
VVC,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 33, no. 2,
pp. 395-407, Feb. 2025.

J. Hong, Z. Dong, M. Pang, Z. Kang, and P. Cao, “Hardware imple-
mentation of iterative method for enhanced affine motion estimation in
versatile video coding,” J. Real-Time Image Process., vol. 22, no. 1,
Feb. 2025.

M. Melo, G. Smaniotto, H. Maich, L. Agostini, B. Zatt, L. Rosa, and
M. Porto, “A parallel motion estimation solution for heterogeneous system
on chip,” in Proc. 29th Symp. Integr. Circuits Syst. Design (SBCCI),
Aug. 2016, pp. 1-6.

M. U. Shahid, A. Ahmed, M. Martina, G. Masera, and E. Magli, “Parallel
H.264/AVC fast rate-distortion optimized motion estimation by using a
graphics processing unit and dedicated hardware,” IEEE Trans. Circuits
Syst. Video Technol., vol. 25, no. 4, pp. 701-715, Apr. 2015.

J. Zhang, J.-F. Nezan, and J.-G. Cousin, “Implementation of motion
estimation based on heterogeneous parallel computing system with
OpenCL,” in Proc. IEEE 14th Int. Conf. High Perform. Comput. Commun.
IEEE 9th Int. Conf. Embedded Softw. Syst., Jun. 2012, pp. 41-45.

M. de Castro, R. R. Osorio, D. L. Vilarifio, A. Gonzalez-Escribano, and
D. R. Llanos, “Implementation of a motion estimation algorithm for Intel
FPGAs using OpenCL,” J. Supercomput., vol. 79, no. 9, pp. 98669888,
Jun. 2023.

S. Radicke, J.-U. Hahn, C. Grecos, and Q. Wang, “A multi-threaded
full-feature HEVC encoder based on wavefront parallel processing,” in
Proc. Int. Conf. Signal Process. Multimedia Appl. (SIGMAP), Aug. 2014,
pp. 90-98.

E. Ryu, J. Nam, S. Lee, H. Jo, and D.Sim, “Sample adaptive offset
parallelism in HEVC,” in Multimedia and Ubiquitous Engineering
(Lecture Notes in Electrical Engineering), vol. 240, 2013.

H. Migallén, V. Galiano, P. Pifiol, O. Lépez-Granado, and M. P. Malum-
bres, “Distributed memory parallel approaches for HEVC encoder,” J.
Supercomput., vol. 73, no. 1, pp. 164-175, Jan. 2017.

P. Pifiol, H. Migall6n, O. Lépez-Granado, and M. P. Malumbres, *“Slice-
based parallel approach for HEVC encoder,” J. Supercomput., vol. 71,
no. 5, pp. 1882-1892, May 2015.

H. Migallén, O. Loépez-Granado, V. Galiano, P. Pinol, and M. P.
Malumbres, “Shared memory tile-based vs hybrid memory GOP-based
parallel algorithms for HEVC encoder,” in Algorithms and Architectures

for Parallel Processing. Cham, Switzerland: Springer, pp. 521-528, 2016.

G. Cebrian-Marquez, J. L. Martinez, and P. Cuenca, “Inter and intra
pre-analysis algorithm for HEVC,” J. Supercomput., vol. 73, no. 1,
pp. 414432, Jan. 2017.

G. Cebrian-Mdrquez, J. L. Martinez, and P. Cuenca, “Adaptive inter CU
partitioning based on a look-ahead stage for HEVC,” Signal Process.,
Image Commun., vol. 76, pp. 97-108, Aug. 2019.

W.-G. Chen and X. Wang, ‘“Fast entropy-based CABAC rate esti-
mation for mode decision in HEVC,” SpringerPlus, vol. 5, no. 1,
Dec. 2016.

G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz, “Fast
HEVC encoding decisions using data mining,” IEEE Trans. Circuits Syst.
Video Technol., vol. 25, no. 4, pp. 660-673, Apr. 2015.

R. Tsuchiyama, T. Nakamura, T. lizuka, A. Asahara, and S. Miki, The
OpenCL Programming Book. Japan, Fixstars Corporation, 2009.

113405

IEEE Access

0. Lopez-Granado et al.: Performance, Limitations, and Design Issues of the Integration

[37] I.-K. Kim, J. Min, T. Lee, W.-J. Han, and J. Park, “Block partitioning
structure in the HEVC standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1697-1706, Dec. 2012.

[38] Fraunhofer-HHI. (2015). HEVC Reference Software (HM-16.3), 2015.
[Online]. Available: http://hevc.hhi.fraunhofer.de/svn/

OTONIEL LOPEZ-GRANADO received the M.S.
degree in computer science from the University of
Alicante, Spain, in 1996, and the Ph.D. degree in
computer science, in 2010. From 1997 to 2003,
he was a Programmer Analyst in an important
industrial informatics firm. In 2003, he joined
the Computer Engineering Department, Miguel
Herndndez University of Elche (UMH), Spain,
as an Assistant Professor. In 2020, he was pro-
moted to a Full Professor. From 2015 to 2024,
he lead the GATCOM Research Group (atc.umh.es), Miguel Herndndez
University of Elche. He is the author of more than 100 conference and journal
publications. His research and teaching activities are related to multimedia
networking (audio/video coding and network delivery).

HECTOR MIGALLON was born in Alicante,
Spain, in 1972. He received the M.S. degree in
physics from the University of Valencia, Spain,
in 1995, the Ph.D. degree in computer science
from Miguel Herndndez University of Elche,
Spain, in 2005, and the M.S. degree in electronic
engineering from the University of Valencia,
in 2011.

He is currently a member with the ““Architecture
and Computer Technology” Research Group,
Mlguel Herndndez University of Elche, and the ‘“‘High-Performance
Computing and Parallelism” Research Group, University of Alicante. His
main research interests include parallel algorithms for solving linear and
nonlinear systems, parallel algorithms for image and video processing,
parallel heuristic optimization algorithms, and parallel high-level interfaces
for heterogeneous platforms.

ESTEFANIA ALCOCER was born in Bigas-
tro, Spain, in 1986. She received the M.S.
degree in telecommunication engineering and the
Ph.D. degree in telecommunications from Miguel
Hernandez University of Elche, Elche, Spain, in
2010 and 2017, respectively. She joined the GAT-
COM Research Group as a Ph.D. Student, in 2012.
From 2013 to 2017, she was an Assistant Professor
with the Department of Physics and Computer
Architecture, Miguel Herndndez University of
Elche. Currently, she is a Teacher with the Secondary School, Torrevieja.
Her current research interests include image processing, the design of FPGA-
based systems, and video coding.

113406

ROBERTO GUTIERREZ was born in Orihuela,
Spain, in 1977. He received the M.Sc. degree
in telecommunication engineering and the Ph.D.
degree in electronic engineering from Universidad
Politécnica de Valencia, Spain, in 2003 and 2011,
respectively. He has been an Associate Professor
with the Department of Communication Engineer-
ing, Miguel Hernandez University of Elche, Elche,
since 2019. His current research interests include
the design of FPGA-based systems, computer
arithmetic, VLSI signal processing, and digital communications.

GLENN VAN WALLENDAEL (Member, IEEE)
received the M.Sc. degree in computer science
engineering from Ghent University, Belgium,
in 2008, and the Ph.D. degree from IDLab,
Ghent University, with the financial support of
the Research Foundation Flanders (FWO). Since
2019, he has been a Professor with Ghent Uni-
versity. His main research interests include the
efficient representation and compression of visual
information, including 360-degree video, light
field, virtual reality, and the different operations on these modalities,
such as (scalable) compression, transcoding, encryption, watermarking,
personalized delivery, and quality estimation.

MANUEL P. MALUMBRES (Senior Member,
IEEE) received the B.S. degree in computer
science from the University of Oviedo, Spain,
in 1986, and the M.S. and Ph.D. degrees in
computer science from the Technical University of
Valencia (UPV), in 1991 and 1996, respectively.
He is the author of more than 200 conference and
journal publications and several networking books
for undergraduate CS courses. His current research
and teaching activities are related to multimedia
networking (image/video coding and network delivery), wireless network
technologies (MANETs, VANETSs, and WSNs), and hardware acceleration
schemes for multimedia applications (multi/manythreads, GPUs, and
FPGAs).

VOLUME 13, 2025

