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ABSTRACT High Efficiency Video Coding (HEVC) was designed to improve on its predecessor, the
H264/AVC standard, by doubling its compression efficiency. As in previous standards, motion estimation
is critical for encoders to achieve significant compression gains. However, the cost of accurately removing
temporal redundancy in video is prohibitive, especially when encoding very high resolution video sequences.
To reduce the overall video encoding time, we have proposed the implementation of an HEVC motion
estimation block in hardware, which can achieve significant speed-ups. However, when the IP hardware
is integrated into a software platform, there are several constraints and limitations that reduce its impact on
the overall encoding time. In this paper, we analyse these issues in detail to identify the main bottlenecks
of the overall software/hardware encoding system. From this analysis, we propose a final integration of the
hardware motion estimation module with a hardware unit combined with the slice-based parallel version of
the HEVC encoding software. The resulting integrated version is able to achieve the best performance in
terms of global speed-up, up to 149.63x compared to the sequential version of the HEVC encoder using the
full search motion estimation algorithm.

INDEX TERMS Video coding, HEVC, FPGA, Integermotion estimation, Inter prediction, SAD architecture,
Asymmetric partitioning

I. INTRODUCTION

THE The Joint Collaborative Team on Video Coding
(JCT-VC) launched the High Efficiency Video Coding

(HEVC) standard [1] to replace the previous H.264/AVC [2]
standard to cope with the demands of the audiovisual and
entertainment industry by, for example, providing support
for ultra-high definition (UHD) content with high dynamic
range (HDR) and high frame rate (HFR) extensions, among
others. The HEVC standard improves the coding efficiency
with respect to its predecessor, H.264/AVC (high profile),
delivering the same video quality with just half of the required
bit rate [3]. Although HEVC is not the latest video standard
to be released, it is the de facto industry standard. For exam-
ple, Digital Terrestrial Television (DTT) broadcasts in both
Europe and the US are based on HEVC, albeit with different
standards. More recently, Twitch, a streaming platform pri-
marily focused on video games, announced at TwitchCon in

San Diego in September 2024 that it would implement HEVC
for all of its users in an attempt to improve the quality of real-
time video broadcasts, which is the aim of this work.

In terms of complexity, the HEVC encoder is much more
complex than the H.264AVC encoder [4], and as in the pre-
vious standard, motion estimation (ME) is by far the most
computationally intensive encoding tool, consuming about
90% of the total encoding time [5]. The huge increase in
complexity compared to its predecessor is mainly due to an
increasing number of Coding Tree Unit (CTU) partitioning
modes. Thus, taking into account the increased number of
potential reference frames and the computational complexity
of the HEVC variable block size motion estimation (VB-
SME) module, performing motion estimation with the HEVC
encoder is a computationally demanding task that needs to
be offloaded in order to work in practical applications. To
reduce the overall complexity, two approaches can be used
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based on the design of dedicated (a) hardware or (b) software
accelerators.

Most state-of-the-art hardware accelerator proposals focus
on speeding up the ME process to reduce the overall com-
plexity of the encoder by means of field-programmable gate
array (FPGA) accelerators. In HEVC, the module responsi-
ble for the motion estimation process is called the integer
motion estimation (IME) module. The core of IME is based
on a motion search algorithm, the full search (FS) algorithm,
which is the one that achieves the best performance using
a greedy approach. This algorithm searches for the motion
of a given block or prediction unit (PU) at all positions of
a predefined search area in a given reference frame. Thus,
the result of the FS algorithm will be the closest block to the
original in the reference frame. The resulting candidate will
minimise the residual error (minimum bit rate) and provide
the corresponding motion vector (MV).

Although the FS algorithm is computationally expensive
in software designs (there are faster proposals that obtain a
similar performance), there are many proposals that use this
algorithm in the design of hardware accelerators due to the
repetitive patterns and well-identified processing tasks within
the IME process. For example, the authors of [5]–[11] present
IME hardware modules based on the FS algorithm. In [5], the
authors propose a sum of absolute differences (SAD) unit in a
FPGA device that is able to check all the partition modes of a
CTU except the asymmetric ones. The processing capabilities
of their design allow this approach to run as fast as 30 frames
per second (fps) for 2K video formats when the search area
is reduced below the size recommended by the standard.
Another IME hardware accelerator is proposed in [7]. In this
work, all partitioning modes are supported but with a search
area size reduction to±23 pixels. This approach is able to run
at 30 fps with HD video formats. In [8], the authors propose
a hardware architecture that supports all partitioning blocks
with search areas of up to 256x256 pixels and analyse the im-
pact of the search area size on the IME module performance.
They showed an implementation running at 57 fps with a
720p video resolution, using a 64x64 search area and only one
reference frame. In [10], the authors present a hardware archi-
tecture for IME computation using 16x16 pixels CTUs and a
search area of ±16 pixels. The authors integrated their IME
architecture into Kvazaar HEVC encoder software running
in a standalone board supported package (BSP) methodology
[12]. In [11] authors propose IME and ASIC architecture for a
fast hybrid pattern search algorithm for 32x32 CTUs that uses
fixed search patterns (Square, Hexagonal) and local refine-
ment patterns (two, three, and four-pointed) with a limited and
fixed number of search points, reducing hardware complexity.
It starts from the center, expanding outward in grids, and
applies early termination beyond distance four, eliminating
raster scans.

In [13] and [14], the authors present hardware implementa-
tions of other suboptimal motion search strategies called fast
ME algorithms, such as diamond search (DS) or TZSearch
(TZS). In [13], two hardware DS algorithms (sequential and

parallel) for a CTU size of 64x64 and a search area of
144x144 pixels are proposed. The parallel version is able to
compute eight SADs corresponding to each block position in
the DS at the same time. That architecture is able to compute
a full-HD resolution video sequence at 30 fps running at
198.733 MHz. However, this implementation does not sup-
port asymmetric partitioning. In [14], the authors present a
hardware implementation of the TZSearch algorithm. The
main advantage of this architecture is the small area used
in the FPGA, but at the cost of not supporting asymmetric
partitioning. In [15], the authors proposed a memory-aware
fractional ME (FME) architecture supporting only four PU
sizes for the HEVC video coding standard. The architecture
was described in VHDL and the synthesis results were ob-
tained for 45nm Nangate standard ASIC cells, achieving 60
frames per second at 2160p video resolution.
In [16] and [17], the authors propose a new hardware

architecture that implements the IME module of the HEVC
encoder using the FS algorithm. Their design provides two
innovative techniques: (a) a new SAD adder tree structure and
(b) a special memory scan order. The proposed design is able
to achieve encoding speeds of 116 fps and 30 fps with 2K
and 4K video formats, respectively. In [18] author proposes a
similar IME architecture for HEVC encoder achieving 10fps
at 4K resolution. The proposed architecture organizes on-chip
memory into Horizontal RAM, Vertical RAM, and a Row
Buffer to enable efficient data reuse. This structure minimizes
external memory access and supports continuous Full Search
scanning with reduced latency and hardware cost. Recently,
in [19], the authors present a ME hardware for the versatile
video coding standard (VVC) using 64x64 systolic array
and using the same snake scan order than the one proposed
in [17] and an adder tree block. The proposed hardware is
able to compute 30fps for 1080p resolution for a CTU size
of 128x128 pixels, reusing Motion Vector (MV) from the
64x64 ones and a search area of 128x128 pixels. In [20], the
authors proposed an efficient hardware architecture for inte-
ger motion estimation (IME) in the Versatile Video Coding
(VVC) standard, targeting the high computational complexity
associated with large search areas and variable block sizes. Its
design introduces two key innovations: a data reuse strategy
based on overlapping 8Ö8 sub-blocks across search points,
and an early termination mechanism using thresholds derived
from previously computed SAD values. The early termination
strategy reduces the motion estimation a 70%, reducing the
computational overhead. The architecture supports all PU
sizes defined in VVC and can process 8K (7680Ö4320) reso-
lution video sequences at 60 frames per second, operating at
182.99 MHz. In [21], the authors introduced an interpolation-
free FME algorithm for VVC, designed to reduce hardware
complexity while maintaining coding efficiency. By using
a rate distortion-based error surface model and eliminating
iterative interpolation, their hardware achieves 8K@60fps
throughput. In [22], the authors developed a high-throughput
hardware architecture for affine motion estimation in VVC
based on an iterative refinement method with parallel pipelin-
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ing. The design integrates motion vector adaptation and edge-
based gradient analysis to improve prediction accuracy while
maintaining low latency. It supports 4K@60fps real-time pro-
cessing using a 64x64 search window size.

Many of these works that propose the computation of IME
on an FPGA using a full search algorithm, especially those
related to the VVC standard, introduce early termination
techniques to reduce the computational cost, thus trying to
make the FPGA implementation feasible. Moreover, none of
these studies perform a practical feasibility analysis using
OpenCL or similar tools. However, some contributions as
in [23] and [24] have conducted comparative analyses of
IME implementations developed as GPU kernels and those
implemented as FPGA IPs, highlighting the big differences
between both approaches in terms of energy efficiency.

Furthermore, in [25], the authors propose an approach that
utilises both CPU and GPU resources via OpenCL. In [26],
the authors investigate the feasibility of using OpenCL as an
alternative to VHDL for FPGA development, evaluating an
implementation of the Block Matching Motion Estimation
module. They conclude that OpenCL results in greater re-
source and performance overheads than low-level HDL-based
implementations.

Another way to reduce the overall complexity of the HEVC
encoder is through software acceleration techniques (i.e.
multithreading). There are many previous works concerning
HEVC software accelerators [27]–[35] that range from the
acceleration of a specific coding tool [28], [34], [35] to the
acceleration of the overall HEVC encoding process [27],
[29]–[31]. We will focus on the latter set of acceleration
approaches.

In particular, wewill exploit the intrinsic spatial parallelism
of the HEVC video encoding process by dividing each video
frame into slices. Each slicewill consist of a set of consecutive
CTUs in scan order. The idea is to encode each frame using
one thread per slice. Thus, assuming that the encoding of
one slice does not depend on the others, all slices of a frame
would be computed at the same time. This approach is also
known as slice-based parallel encoding. In a previous work,
we proposed a slice-based parallel version of the HEVC
encoder [30] which is able to work with different encoding
modes to achieve speed-ups of up to 9.3x and 8.7x using a
12-core parallel platform for the all intra (AI) and random
access (RA) coding modes, respectively.

After analysing the related works of the state-of-the-art,
we noticed that none of them analyse the performance of
their IME hardware proposals when integrated into the video
encoder software (HEVC, VVC, etc.) showing the effects of
integration as API and data transfer overheads. Indeed, most
of the proposals only describe and evaluate the HW unit alone
without taking into account their performance when inte-
grated with a software video encoder. So, no details are given
about memory transfers between HW device and CPU, the
overhead introduced by APIs like OpenCL, synchronization
issues, etc.

In this work, we propose an HEVC encoder that integrates

both hardware (HW) and software (SW) acceleration tech-
niques to analyse the behaviour of the overall video coding
system, identifying the main performance limitations found
in the integration process. First, we will deploy up to four
HW units, which are spatially replicated on an FPGA board,
to accelerate the HEVC IME coding tool. This allows all
HW units to be used simultaneously (independent hardware
resources). Second, wewill use several threads to encode each
frame using our slice-based, parallel version of the HEVC
reference software. Once the hybrid HEVC accelerated en-
coder has been developed, we will first analyse the acceler-
ation provided by HW and SW alone to expose the benefits
and limitations found. Based on these results, we will then
determine the optimal configuration for the final HW/SW
integrated accelerator through performance testing. To the
best of our knowledge, this is the first study to fully integrate
the HEVC video encoder with both hardware (FPGA) and
software (parallel slice-based) accelerators.
The main contributions of this work are the following.

Firstly, we integrate and evaluate an FPGA-based integer
motion estimation (IME) hardware module within a standard
HEVC encoder. This addresses a gap in prior research, which
has typically overlooked the impact of software-hardware in-
teraction. Secondly, we identify and quantify key limitations
that arise from real-world integration, such as memory trans-
fer delays and OpenCL communication overheads. Third,
we explore hardware parallelisation strategies using multiple
IME units and analyse their effectiveness within the slice-
based parallelism of the HEVC encoder. Our findings provide
new insight into the performance and scalability challenges
of deploying hardware acceleration in practical video coding
environments.
The rest of the paper is organised as follows. In Section II,

we define the proposed hybrid software/hardware video ac-
celerator architecture, explaining how the integration of both
HW and SW was done after evaluating their performance be-
haviour. Section III describes the experimental tests designed
to evaluate the final, fully integrated hardware/software ver-
sion of the proposed method. Finally, in Section V, some
conclusions and future work are discussed.

II. PROPOSED SOFTWARE-HARDWARE VIDEO
ACCELERATOR ARCHITECTURE
In this section, we will describe the proposed HEVC inte-
grated accelerator architecture, explaining both the hardware
and software accelerators and showing their potential benefits
and limitations. Then, we will describe the integration frame-
work driven by OpenCL [36], where we show how HEVC
software is able to initialise the HW platform based on Xilinx
FPGA boards and invoke the HW kernel process to perform
IME operations. Finally, having analysed the behaviour of
the hardware and software approaches, we will determine the
optimal configuration for the HEVC integrated accelerator,
which will be evaluated in the next section.
One of the main novelties included in HEVC is the quad-

tree structure for picture partitioning, known as Coding Tree
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FIGURE 1. Relationship between CUs, PUs and TUs.

Unit (CTU) [3]. This structure can be partitioned further into
coding units (CUs), prediction units (PUs), and transform
units (TUs) (see Fig. 1). PUs are the elements that store
the prediction information, such as motion vectors (MVs).
PU sizes can range from 64x64 to 8x8, either symmetrical
or asymmetrical. HEVC defines eight possible partitions for
each CU size, including square partitioning (2Nx2N and
NxN), vertical and horizontal splitting (2NxN and Nx2N),
and asymmetric splitting, where the CU is divided into two
rectangular areas of sizes 1/4 and 3/4 in each of the four
directions (2NxnU, 2NxnD, nLx2N, and nRx2N). A further
description of HEVC CTU partitioning can be found in [37].
Each time a partition is tested for a particular candidate CU,
a motion estimation process (IME operation) is performed
to determine its rate distortion (R/D) cost. A 64x64 pixel
CTU can be partitioned into a large number of possible
partitions, all of which must be evaluated to determine the
CTU partitioning scheme that provides the best R/D cost.
Consequently, the overall complexity of the CTU motion
estimation process is too high, which is the motivation for
designing faster approaches for the partition process and low-
complexity IME alternatives.

A. IME HARDWARE MODULE DESCRIPTION
Here, we provide an overview of our IME hardware design. It
is based on the FS algorithm (the one offering optimal motion
search performance), and it is able to evaluate all possible par-
titions of a CTU to provide the final partitioning set with the
best R/D performance. The IME module consists of (a) two
internalmemory areas, one for storing the pixels of the current
CTU and the other for storing the search area pixels from
the selected reference frame, (b) a memory area for storing
the difference between current and predicted blocks (residual
error), (c) a SAD adder tree unit, and (d) a comparator unit
that stores the minimum SAD and the corresponding MV of
every single partition block, as shown in Fig. 2. Further details
regarding the architecture and functionality of the base IME
module can be found in [17].

SAD HEVC 
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BRAMs
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Registers

Distortion

Input

Memory

Snake 

ScanReference 

search area
Current

CTU

SAD Adder

Tree

Comparator
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FIGURE 2. Hardware IME module.

In this work, the proposed IME hardware module has been
configured to operate with CTUs of 64x64 pixels and a max-
imum search area size of 192x192 pixels which corresponds
to a search range of 128x128 pixels. We have used a Xilinx
Alveo U280 FPGA card from Xilinx, specially suited for
datacenters, to accommodate up to four IME units that are
able to work at the same time (by using different memory
banks and direct memory access (DMA) channels). The Xil-
inx Alveo U280 FPGA accelerator card includes 8 GBHBM2
and 32 GB DDR4 external memory, a 16-lane PCI Express,
and a custom-built UltraScale+ XCU280 FPGA device. The
XCU280 FPGA uses AMD stacked silicon interconnect (SSI)
technology to increase the density by combining multiple su-
per logic regions (SLRs) into one device. An SLR is a physical
section of the FPGA with a specific amount of resources
and connections. Fig. 3 shows the SLRs and the connected
external devices. The Ultrascale+ XCU280 FPGA comprises
three SLRs, with the bottom SLR (SLR0) including a high
bandwidth memory (HBM) controller to interface with the
HBM2 subsystem through 32 pseudo-channels (PCs) each
with direct access to 256 MB of storage (8 GB in total).
Each 256-bit PC operates at 450 MHz, yielding a maximum
bandwidth of 14.4 GB/s. The full system can thus achieve
a theoretical bandwidth of 460.8 GB/s. The bottom SLR
also connects to 16 lanes of the PCI Express (PCIe) that
can operate at up to 16 GT/s (Gen4). Both SLR0 and SLR1
connect to a 64-bit, 2400 MT/s DIMM with 16 GB DDR4
and error correcting code (ECC), for a total of 32 GB of
DDR4. Table 1 lists the allocation of memory resources and
the available resources for each SLR.
In Fig. 4, a diagram of the memory banks assigned to each

HW unit is shown. As can be seen, there are HBM banks
that act as an interface with the PCIe-DMA host channels
to accommodate data transfers between the host (CPU) and
HW unit (FPGA). The HW unit will receive both CTU and
SA pixels in the corresponding input HBM memory buffer
(Rd ptr) to perform the motion estimation operation. Thus,
when the read operation is signalled, the HW unit will start to

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3581961

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



O. López-Granado et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

X86 Host

P
C

Ie
 x

1
6

P
C

Ie
 x

1
6

SLR2

SLR1

SLR0

GTY

GTY

GTY

GTY

GTY

GTY

GTY

GTY

GTY

GTY

4GBHBM4GB HBM

P
C

Ie

1
6

G
B

 D
D

R
4

1
6

G
B

 D
D

R
4

QSFP

Xilinx Alveo U280

X86 Host

P
C

Ie
 x

1
6

SLR2

SLR1

SLR0

GTY

GTY

GTY

GTY

GTY

GTY

4GBHBM4GB HBM

P
C

Ie

1
6

G
B

 D
D

R
4

1
6

G
B

 D
D

R
4

QSFP

Xilinx Alveo U280

FIGURE 3. XCU280 floor-plan with super logic regions and external
memory devices.
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FIGURE 4. Memory distribution of hardware ME units.

copy the CU and SA pixels to its own Block-RAM36memory
areas. Then, full search motion estimation is carried out to
compute the SAD and MV of each possible PU, and they are
stored in the corresponding Block-RAM36 memory area. In
order to complete the IME operation, the HW unit will copy
the final result into the output HBMbuffer (Wr ptr), signalling
the write operation to start the corresponding DMA transfer
to the host. In Table 2 we show the FPGA resources required
by the implementation of four different Intellectual Property
cores (IPs) that will map one, two, three, or four HW units.
Although four HW units can fit in the U280 board (there is
enough space), there is a limitation imposed by the FPGA

TABLE 1. Platform resource availability for each SLR.

Resources SLR0 SLR1 SLR2
HBM2 32x256MB - -
DDR4 16GB 16GB -
CLB LUT 386K 364K 381K
CLB register 773K 729K 763K
Block-RAM36 600 576 600
Ultra RAM 320 320 320
DSP-48 2664 2784 2856

board design that splits the overall implemented silicon area
into two different SLRs. Thus, we have to map up to two HW
units in SLR0, so the last two HW units should be placed in
SLR1. This implies some overhead penalties for the HWunits
allocated in SLR1, since accesses to the HBM buffers need to
cross SLR0 area.

TABLE 2. Resource utilisation of implemented hardware unit.

Resources 1 HW Unit 2 HW Units 3 HW Units 4 HW Units
CLB LUT 175K(15%) 350K (30%) 525K (46%) 701K (61%)
CLB register 174K 350K 524K 699K
Block-RAM36 48 (2.7%) 96 (5.4%) 144 (8.1%) 192 (10.8%)
Power (W) 8.5 10.5 11.9 12.9
Freq. (MHz) 249 247 192 176

B. SLICE-BASED PARALLEL HEVC ENCODER
TheHEVC standard enables a video frame to be divided into a
set of consecutive CTUs (slices). Each slice is configured in-
dependently (i.e. there is no data dependency between slices),
enabling all the slices in a frame to be encoded simultane-
ously.
Each slice contains the same number of CTUs, except for

the final slice, which may contain fewer CTUs if the total
number of CTUs is not a multiple of the number of slices (see
Fig. 5).
Each slice contains a data header with specific coding

parameters about the slice (starting and ending CTU id,
QP value, etc.). This extra information affects the compres-
sion performance since slice headers represent a bitstream
overhead that reduces the overall compression ratio. In our
proposal, the number of slices in the parallel algorithm is
determined by the number of available encoding processes
(threads). Each encoding process calculates the location and
size of its corresponding slice (i.e. the start and end CTUs
in the frame) following a static allocation scheme. The final
slice will either equal or be smaller than the others.
This slice partitioning aims to achieve a balanced com-

putational load, assigning to each process the same (or a
similar) amount of data. Depending on the video sequence
resolution to be encoded, there may be CTUs at the right-hand
or bottom edges of a frame with fewer than 4096 (64 × 64)
pixels. Figs. 5a and 5b show two different partition schemes
for encoding an 832 × 480 pixel video sequence, where
the total number of CTUs is 104 (13 × 8). Fig. 5a shows
partitioning into two slices of 52 CTUs each, while Fig. 5b
shows partitioning into six slices, where the first five slices
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contain 18 CTUs each and the last slice contains 14 CTUs. In
the last slice, only the first CTU has 4096 (64 × 64) pixels,
and the remaining 13 CTUs have only 2048 (64× 32) pixels.

The encoding process for each video frame is described
below: (a) The current frame is loaded into shared memory;
(b) each process immediately starts encoding its assigned
slice once the frame has loaded; (c) once one process has
finished encoding its slice, it waits for the others to finish;
(d) once all processes have finished encoding their slices, the
output bitstream is written in order. Further details regarding
the architecture and functionality of the proposed slice-based
algorithm can be found in [38].

(a) Partitioning into two slices

(b) Partitioning into six slices

FIGURE 5. Slice partitioning of an 832 × 480 frame.

C. OPENCL INTEGRATION
In this subsection, we describe the integration of both ac-
celerators: the IME hardware and slice-based parallel cod-
ing accelerators. First, we will determine the communication
framework between the host device (CPU) and the hardware
device (FPGA). We will use the OpenCL [36] framework to
allow the HEVC encoder to use our IME hardware module
implemented on the FPGA device as a generic co-processor.
OpenCL defines an API that allows programs running on the
host to launch kernels on the computing devices and manage

their memory, which is (at least conceptually) separate from
the host memory.
Thus, on the one side, we have the slice-based HEVC

parallel encoder version, defined in Section II-B, where each
process (thread) will compute a single slice of one frame.
One slice is composed of a predefined number of CTUs
that will be encoded in raster order. When a single CTU is
encoded, just before starting the encoding process, the HEVC
encoder will send to the IME Hardware module the CTU and
SA pixels of the selected reference frame to perform the FS
motion estimation. As a result, the IME hardware module will
provide the SADs and MVs of all possible partition blocks to
the HEVC encoder, and they will be saved in a lookup table
for later use. At this point the HEVC encoder starts the CTU
encoding process with a recursive approach to exhaustively
test the different partitions in order to find the partition set
that provides the best R/D performance. During this high-
resource-consumption process, every time that an IME opera-
tion is required for a particular partition block, we will obtain
its corresponding MV and SAD from the lookup table where
IME results were previously stored. As a consequence, we
save a huge amount of computation time by avoiding calling
the software IME process during the recursive CTU encoding
process.

Algorithm 1 Invoking IME operation from HEVC encoder
1: procedure ComputeSad (CTU, SA)
2: n = GetHwUnit ( ) // Find one free HW unit
3: inputOCLBuffer[n] = CTU + SA // Copy CTU and SA

pixels to the OpenCL input buffer of HW unit ’n’
4: EnqueueMem (inputOCLBuffer[n]) // Map input buffer

into the FPGA device buffer (HBM) of HW unit ’n’
5: EnqueueTask (n) // Execution of IME in HW unit ’n’
6: EnqueueMem (outputOCLBuffer[n]) // Map output

buffer into the FPGA device buffer (HBM) of HW unit
’n’

7: WaitForEvents ( ) // Wait until all enqueued operations
are done

On the other hand, our IME hardware module, introduced
in Section II-A, may implement up to four independent IME
hardware units that are able to work in parallel. Each hard-
ware unit is composed of internal input buffers for storing
the CTU and SA pixels, and an output buffer for storing the
SADs andMVs of all possible partitions. The communication
between the software (CPU) and the IME hardware module
(FPGA) is driven by the Xilinx DMA subsystem (XDMA) of
the FPGA device card. XDMA is used in conjunction with
the PCIe IP block to provide high-performance data transfer
between the host memory and the card’s DMA subsystem.
In order to describe the SW/HW integration with OpenCL,

we have modified the HEVC encoder to include a new soft-
ware module that performs all the required functionalities
related to the OpenCL framework, including initialisation,
data transfer, and IME HW execution. Furthermore, some
additional buffers are required to properly accommodate the
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input (CU and SA pixels) and output data (SAD and MV
lookup table) used in every CTU operation. In Algorithm
1, we show the pseudo-code associated with a single IME
request at the beginning of CTU processing, as described be-
fore. As can be seen, each HW unit of the IME IP module will
have its own input/output buffers on both the host (CPU) and
device (FPGA) sides, previously allocated in the OpenCL ini-
tialisation procedure. As HW units have independent buffers,
the software may launch, at the same time, as many IME
operations as there are HW units available. Thus, if the IME
module only has one HW unit and the slice-based encoder
uses four slices/threads that compete for the HW unit, the
result will be serialised by the OpenCL framework. However,
if we have an IME IP module with four HW units, the threads
do not have to wait for their IME requests. Thus, we achieve
an additional hardware parallelisation when more than one
HW unit is available in the IME IP module.

Notice that our slice-based HEVC parallel encoder uses
as many threads as there are slices to encode a frame and
our IME IP module may execute as many IME operations
as there are HW units at the same time. It would be inter-
esting to evaluate the behaviour of both the SW and the HW
accelerators working alone to determine their limitations and
define the best configuration for the integrated version. In the
next section, we present the performance of the SW, HW and
integrated versions.

III. NUMERICAL EXPERIMENTS
In this section, we show the experimental tests that we have
designed to properly evaluate the HW/SW integration. We
have considered the HEVC Random Access (RA) coding
mode, where the first frame is encoded as an intra (I) picture
frame and the rest of the frames of every GOP (Group of Pic-
tures) are encoded as Inter picture frames (B) using reference
frames from the past and future with respect to the coding
order. Additionally, we have fixed the search area range (SA)
size to the one established by the HEVC standard (128x128
pixels) and tested our proposal over all the video sequences
suggested by the HEVC common conditions video set. All
the tests were carried out under HEVC HM 16.3 software
referencemodel [39], which was running on a sharedmemory
parallel system equipped with two Intel(R) Xeon(R) Gold
6230 CPU @ 2.10GHz processor with 20 cores each and
256GB RAM installed. The operating system was CentOS
Stream 8 with kernel Linux 4.18.0-305.25.1.el8_4.x86_64.
The 8.5.0 gcc compiler version, the 4.5 OpenMP version
and the Xilinx Runtime 2.15.225 version were used. As
mentioned above, the system’s FPGA is the Xilinx A-U280-
A32G-DEV-G.

The experimental tests will be organised as follows.
• First, we will evaluate a single IME HW unit by (i)

measuring the time required for both the input/output
data transfers and the CTU computation operations, (ii)
estimating the temporal cost of each pipeline stage of
our IME HW proposal, and (iii) estimating/measuring
the software overhead introduced by the OpenCL API.

• After determining the performance behaviour of an IME
HW unit alone, we will study the integrated SW/HW
version by (i) evaluating the slice-based parallel version
with only one IME HW unit, analysing the impact on
performance as the number of threads increases, and
(ii) evaluating the behaviour of multiple IME HW units
(two, three, and four) in order to find potential bottle-
necks, overheads or limitations that may suggest the
most appropriate number of HW units.

• Additionally, we will perform a comparative study of
our IME HW unit and other SW motion estimation
algorithms in terms of the computational cost. We will
obtain the speed-ups provided by our HW approach and
the differences in terms of the coding performance.

• Finally, taking into account the previous evaluation re-
sults, we will evaluate the proposed SW/HW integrated
version of the HEVC encoder using an IME HW with
one HW unit to encode all the video sequences from the
HEVC Common test conditions (CTC) set.

A. PROFILING OF AN IME HARDWARE MODULE
First, we performed a time profile of the proposed IME
HW module so as to measure the input/output data transfer
operations, the IME HW computing times and the overhead
introduced by the use of the OpenCL API. In Fig. 6, we
can see the time profile obtained from the Vitis Analyzer
tool during the encoding of one CTU of the Cactus video
sequence. In the left panel of Fig. 6, we can see the different
chronogram lines related to the execution of OpenCL API
calls (General and queue operations), Data Transfer (read
and write operations) and Kernel Enqueues (kernel execution
operations). As shown in algorithm 1, when a HW IME
operation is requested, three enqueue operations are launched
in the following order (a) enqueue the transfer from host
input buffer to FPGA (clEnqueueMigrateMemObjects), (b)
enqueue kernel execution order (clEnqueueTask), and (c)
enqueue the transfer from FPGA output buffer to the host
(clEnqueueMigrateMemObjects). After enqueueing these op-
erations, we have to wait until their completion by means
of the clWaitForEvents function. Meanwhile HEVC encoder
waits for completion, the operations are properly executed by
the OpenCL scheduler, as shown in Fig. 6, beginning with the
CTU and search area data transfer to the FPGA, continuing
with the kernel execution and finishing with the transfer of
the SADs and MVs from FPGA to the host memory buffer.
For each CTU in a frame, this cycle of operations is repeated
as many times as the number of available reference frames
(different search areas).
In Fig. 7, the pipeline processing scheme of the IME hard-

ware module is shown. At first place, before starting the com-
putation process, we have to copy both CTU and SA pixels
from HBM to the FPGA memory. This operation requires
one clock cycle per pixel (40577 clocks). Then, the internal
processing to compute both SAD and MVs requires 16462
clocks. This value breaks down as follows: (a) 64 clock cycles
to load the shift registers with the CTU pixels, (b) 14 clock
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FIGURE 6. Vitis Analyzer profiling for Cactus video sequence using one IME HW unit (coding of one CTU).
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FIGURE 7. Pipeline process of the IME hardware module architecture.

cycles to compute: the SADbetweenCTU and the SA block at
the first SA location (1 clock cycle), the execution of the adder
tree (12 clocks cycles), the comparator stage to store the best
SADs with their motion vectors (1 clock cycle), and, after the
pipeline is full, (c) every clock cycle will test a new position of
the search area, sowewill need 16,383 additional clock cycles
to complete the IME operation. Finally, the results (SADs and
MVs) stored in the FPGA memory should be sent back to the
host, requiring one clock cycle to transfer the best SAD and
MV of each potential partition block (593 clocks). Therefore,
the total number of clock cycles to perform one IMEoperation
will be: 40577 + 16462 + 593 = 57632 clocks, which at a
frequency of 249 MHz, the overall HW processing time of
one CTU makes 231 µs. Using the Vitis Analyzer tool, we
have confirmed that the total time required by the IME HW
to perform the motion/estimation process of a single CTU is
231 µs on average.

B. ANALYSING THE OPENCL OVERHEAD

In order to measure the software overhead introduced by the
OpenCL API, we will also use the Vitis Analyzer tool since
it is able to register all the OpenCL activity during the HEVC

encoding process. In particular, in Table 3, we summarise
the computational time required by the OpenCL primitives
involved in the SAD computation of every single CTU during
the HEVC encoding of the first 200 frames of Cactus video
sequence.
For each OpenCL primitive we show the number of calls

(#CTUs), the total aggregated time (Time), and the average
time per call (OneCTU ). As shown inAlgorithm 1, to perform
a single CTU_SAD operation we need to (a) copy the CTU
and SA pixels to the input buffer, (b) enqueue the input buffer
(order DMA transfer to FPGA), (c) enqueue the Kernel exe-
cution order, (d) enqueue the output buffer (order the DMA
transfer to host), (d) wait for the completion of all enqueued
operations, and (e) release queueing resources and store the
SAD and MV results from output buffer to the application
buffer. So, taking into account the average time of all the
OpenCL functions and the additional house keeping tasks
(releasing resources and memory copy operations) required
to compute the SAD of a single CTU, the application (HEVC
encoder) will spend an average of 344 µs. So, if the IME HW
model only requires 231 µs, the overhead introduced by the
use of the OpenCL API will represent an additional 49%.
Finally, to get the whole picture about the OpenCL over-

head, the time required to perform the DMA transfer opera-
tions between host and FPGA devices should be determined.
Again, the Vitis Analyzer tool is able to provide detailed
measures of the DMAmemory transfers. The obtained results
show that the DMA transfer from the host to HBM FPGA
memory of the CTU and SA pixels requires 37 µs (40577
bytes), whereas the time required to get the SAD and MVs
(DMA transference from HBM FPGAmemory to the host) is
31 µs (4744 bytes). It should be note that as the size of the
DMA transfer data increases, so does the DMA throughput,
reducing the overhead of the DMA transfer protocol (as ex-
pected). As it can be seen in Fig. 6, the first DMA transfer
(from host to FPGA) starts after enqueueing the input buffer,
and the second DMA transfer starts just after finishing the
kernel execution operation.
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TABLE 3. OpenCL operation tasks.

API Name #CTUs Time (ms) OneCTU (µs)
clEnqueueMigrateMemObjects (host-to-FPGA) 386,580 1,271.46 3.29
clEnqueueTask 386,580 1,325.20 3.43
clEnqueueMigrateMemObjects (FPGA-to-host) 386,580 283.75 0.73
clWaitForEvents 386,580 126,026.24 326.00

FIGURE 8. Vitis Analyzer profile of the first 16 frames of Cactus video sequence using an IME module with four HW units.

FIGURE 9. Power consumption profile when coding Cactus Video sequence using one, two, three and four IME HW units.

C. INTEGRATED VERSION EVALUATION
In order to determine the impact on application performance
of our integrated HW/SW accelerator we will analyse the

behaviour of using multiple hardware units in combination
with one or more software threads. We will use our integrated
version to encode the first 200 frames of Cactus video se-
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TABLE 4. Time profile using different Threads and HW Units (Cactus video sequence).

HW Unit Threads Time(s) CTU_SAD(µs) IME (µs) SW_SpUp HW_SpUp ∆CTU_SAD

HW1 (249 MHz)

1 3,379.5 344,035 0,108 1.00x - -
2 1,773.0 359,766 0,136 1.91x - -
4 962.8 388,388 0,185 3.51x - -
8 547.8 443,075 0,239 6.17x - -
12 413.6 530,569 0,286 8.17x - -
16 337.2 654,109 0,343 10.02x - -
20 301.1 788,649 0,403 11.22x - -

HW2 (247 MHz)

1 3,373.7 343,617 0,106 1.00x -0.17% -0.12%
2 1,763.5 360,313 0,144 1.91x -0.53% 0.15%
4 961.3 384,845 0,187 3.51x -0.15% -0.91%
8 548.9 442,305 0,236 6.15x 0.20% -0.17%
12 414.1 532,898 0,282 8.15x 0.12% 0.44%
16 338.6 651,251 0,340 9.96x 0.42% -0.44%
20 299.0 779,760 0,395 11.28x -0.71% -1.13%

HW3 (192 MHz)

1 3,411.0 412,166 0,109 1.00x 0.93% 19.80%
2 1,778.2 437,193 0,148 1.92x 0.29% 21.52%
4 972.7 471,405 0,183 3.51x 1.03% 21.37%
8 554.9 560,534 0,226 6.15x 1.29% 26.51%
12 416.6 680,632 0,285 8.19x 0.73% 28.28%
16 342.6 855,136 0,335 9.95x 1.62% 30.73%
20 303.1 1051,822 0,408 11.25x 0.67% 33.37%

HW4 (176 MHz)

1 3,415.7 437,171 0,108 1.00x 1.07% 27.07%
2 1,782.3 464,603 0,136 1.92x 0.53% 29.14%
4 973.8 503,222 0,182 3.51x 1.15% 29.57%
8 554.8 604,964 0,232 6.16x 1.27% 36.54%
12 419.7 741,479 0,277 8.14x 1.48% 39.75%
16 346.0 937,22 0,348 9.87x 2.61% 43.28%
20 305.5 1166,093 0,396 11.18x 1.48% 47.86%

quence using the RA coding mode, a QP value of 32, and a
combination of HW units (1 to 4) and software threads/slices
(1 to 20). In Table 4, we show (a) the number of hardware
units in the IME HW module and its operating clock fre-
quency (b) the overall HEVC encoding time (Time), (b) the
average time to perform a single CTU_SAD computation,
(c) the average time to perform an IME operation over a
single location of the SA, (d) the acceleration factor with
respect to the HEVC encoding time with only one thread
(SW_SpUp), (e) the acceleration factor with respect to the
HEVC encoding time with only one HW unit (HW_SpUp),
and (f) the acceleration factor with respect to the CTU_SAD
time with only one HW unit (∆CTU_SAD).
As can be seen, all integrated versions that use one, two,

three, or four hardware units obtain good SW speed-ups
(column SW_SpUp), which means that our slice-based accel-
erator behaves in the sameway, independently of the available
number of hardware units. However, when comparing the
behaviour of using different numbers of hardware units with
the same number of threads (columnHW_SpUp) we find that
using more than one hardware unit does not reduce the overall
encoding time, what is an unexpected result. After performing
a detailed analysis of these results, we believe there are at
least two explanations: (a) all hardware units are used at the
same time in very few cases (only when working with the
first CTU of every frame of the video sequence), so hardware
parallelism is not properly exploited most of the time, and (b)
due to the implementation of the IP module in the selected
FPGAboard, since the first twoHWunits fit in the SLR0 area,
meanwhile the third and fourth HW units are allocated in the
SLR1 area. As shown in Fig. 3, only the SLR0 area has direct
access to the HBM banks, so the hardware units allocated in

other areas need extra cycles to access HBM memory.
The first reason is the most relevant one here, since it

clearly justifies the low utilisation of hardware units. In Fig. 8,
we show the behaviour of the HW4 IME module (4 IME
hardware units) when the first 16 frames (just two GOPs)
of Cactus video sequence are encoded. Looking at ’Kernels
Enqueues’ section (at the bottom of the figure), we can see
that only for the first CTU of every frame all four IME units
work in parallel. Remember that before start the encoding of
a new frame all coding threads perform a synchronisation
barrier to apply a filtering process just after decoding the
slices of actual frame (since it will be used as a reference
frame in the following). Additionally, we can also see that the
use of two or three HW units in parallel occurs just very few
times. This means that threads are quickly desynchronised
as they code the CTUs of their slices, and therefore, most of
the time only one hardware IME module will be used at the
same time (ie. there is no hardware parallelism). At the other
hand, in Table 4, we have included the average CTU_SAD to
determine the average time required by the HEVC encoder
to perform SAD computation of a single CTU when using
different versions of the IME HW module. The∆CTU_SAD
column shows the relative increase inCTU_SADwith respect
to that observed with a single HWUnit. Here we can conclude
that these results are very similar when using 2 HW units, but
increase significantly for three and four HW units. This effect
is mainly due to the clock frequency drop for the design of 3
and 4 HW units as their design require the use of the SLR1
area, as mentioned above.
In Fig. 9, we show a comparison of the energy consump-

tion of different IME designs with one, two, three and four
HW units. Power consumption measurements (in watts) were
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FIGURE 10. Parallel Coding efficiency and bitrate overhead for
NebutaFestival video sequence.

taken using the Vitis analyzer tool while encoding Cactus
video sequence using the HEVC integrated version. Note
that the obtained measures correspond to the total power
consumption of the U280 platform and the proposed IME
HW designs. As expected, the IME design with only one HW
Unit requires the least energy, being on average 8.5 W (see
Table 2).

Thus, considering the observed software behaviour and the
hardware implementation issues found, we recommend using
the HEVC slice-based parallel version combined with only
one hardware IME module (HW1). This setup is the one
that provides the best trade-off among the speed-up, coding
performance, power consumption and FPGA area usage.

Following the above analysis on the use of several hardware
units, we proceed to perform an evaluation of the parallel
slice-based version of the HEVC encoder with a single IME
hardware module in terms of the speed-up, PSNR, and bitrate
for all video sequences of the HEVC common test conditions
(classes A+ to C). In Tables 6 and 7 we show the encod-
ing time (Time), video quality (PSNR), and bitrate for all
video sequences encoded with RA coding mode and a QP
value of 32. As can be seen, the encoding time is drastically
reduced as the number of threads increases. The maximum
speed-up obtained was 13.5x, and it was obtained for the
NebutaFestival video sequence using 20 threads. Regarding
PSNR, there is a negligible penalty as the number of threads
increases. For example in the BasketBallDrill test sequence,
the PSNR is reduced by 0.2% in the worst case when 20
threads are used. A similar behaviour is obtained for the rest
of the video sequences, where the maximum PSNR loss of
0.43% was obtained for the Kimono video sequence when
20 threads were used. However, the bitrate increment suffers
a significant penalty as the number of threads increases,
being the maximum bitrate increment of 44.35%, and it was
obtained for the Johnny video sequence using 20 threads.
As stated in [30], that increment is mainly due to a) the
extra headers introduced on each slice, and b) the encoding
performance losses caused by disabling the motion prediction
across slice boundaries. Furthermore, CABAC (the HEVC

entropy encoder) context models are not updated after the
computation of each slice but after the frame computation.
Thus, there is a trade-off between the acceleration and bitrate
increment that will be determined depending on the final
application requirements. We recommend using no more than
eight threads, with four threads representing the most bal-
anced proposal in terms of the acceleration (3.33x on average)
and bitrate increment (4.82% on average). It is also worth
noting that for high resolution video sequences (UHD and
beyond), the penalty in the bitrate is highly reduced, as in the
NebutaFestival sequence (see Fig. 10) where the maximum
bitrate increment is 3.0%, whereas the acceleration efficiency
is the best one, as it is possible to increase the number of
threads for this kind of sequences.

D. COMPARISON AGAINST OTHER ME ALGORITHMS
We have also compared our IME HW ME proposal (FS −
HW1) with other ME algorithms available in the HEVC
reference software as (a) Full Search (FS), and (b) three
fast ME algorithms based on the TZSearch strategy with
different search patterns: diamond, selective, and enhanced
diamond. In order to evaluate their ME performance, we
have encoded 16 frames of the Cactus video sequence using
the RA coding mode with a QP value of 32. The Cactus
sequence with a resolution of 1920x1080 has 510 CTUs per
frame and approximately 1479 PUs are evaluated per CTU,
on average. In Table 8 we show the results of the SW Slice-
based approach working with several ME algorithms in order
to make a fair comparison between them. In particular, for
each ME algorithm we show (a) the overall encoding time
(Time), (b) the average ME time of one CTU (ME/CTU )
1, and (c) the speed-up of the CTU_SAD operation using as
reference the FS algorithm.
It is important to take into account that when using our HW

IME module, (a) the IME/PU operation is very fast since it
consists on one memory access and very few computations,
and (b) theME/CTU should also include the time required to
complete the CTU_SAD operation performed at the begging
of each CTU encoding (see Table 4) for each reference frame.
As can be seen, the proposed HW IME proposal is the

fastest one, speeding up the ME process by up to 679x when
compared with the SW FS version. However, the other SW
fast ME approaches are also competitive at the cost of reduc-
ing the ME accuracy and increasing the bitrate obtained by
the Full Search versions.
Finally, we have performed a complete evaluation of the

IME SW/HW integrated version by comparing it to the FS
algorithm of the HEVC reference software with all video
sequences of the HEVC common test conditions. In Table 9
we show the computing time, PSNR and bitrate of both the
HEVC using FS ME and our integrated SW/HW parallel
version using four threads/slices per frame and one HW

1Notice that the ME computing of one CTU may require up to four
reference frames, so the ME process is repeated so many times as the number
of reference frames needed. In general, most of the frames in the encoding
process use 4 reference frames per CTU.
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TABLE 5. Comparison of the proposed architecture with state-of-the-art works

Design [5] Proposed [8] [7] [18] [19] [20]

Codec HEVC HEVC HEVC HEVC HEVC VVC VVC
Technology Virtex-7 Virtex-7 Virtex-5 Virtex-6 Virtex-7 Virtex-7 Virtex-7
CTU size 64x64 64x64 64x64 32x32 64x64 128x128 128x128
Search area 104x104 64x64 64x64 48x48 128x128 128x128 64x64
Clock (MHz) 458.7 247 150 110 323 253 182.9
AMP No Yes No Yes yes yes yes
Throughput 2K@30fps 4K@30fps 720p@57fps 1080p@30fps 4k@10fps 4k@30fps 8k60fps
Flip-Flops 39901 144302 199682 19744 107862 182327 30600
LUTs 24957 188664 210158 55346 120141 145606 85070
Memory (kB) 44 36 1229 148 36 468 80.03
Power(W) - 3.16 13.60 - 8.16 - -

IME module. As can be seen, speed-ups of up to 149.63x
are obtained with a negligible PSNR loss and an average
bitrate increment of 6.1%. Additionally, if we focus on high
resolution video sequences like NebutaFestival, Traffic, or
PeopleOnStreet, the average bitrate increment is just 1.91%,
with speed-ups of up to 136.45x. As previously stated, the
configuration that uses one HW unit and four threads per
frame shows the best trade-off between the encoding accel-
eration and R/D performance penalty.

E. COMPARISON AGAINST OTHER STATE-OF-THE-ART
PROPOSALS
As previouslymentioned, most state-of-the-art IME hardware
proposals are evaluated in isolation without considering their
integration into the reference encoder software. This means
that practical issues such as API interactions and data transfer
overheads are overlooked. The main results they provide are
about the performance of the HW design alone. So, we may
proceed to compare our HW IME proposal with the ones in
the literature trying to use the evaluation setups as close as
possible. For that purpose, we have emulated our IME HW
module over a Xilinx Virtex 7 FPGA, because the majority
of literature review use that technology. To accommodate our
IME HW setup to the ones found in the literature, we have
reduced the search area (SA) to 64x64 pixels. Also, we have
taken into account only the time required to compute oneCTU
in the HW module (no data transfer overheads considered).

In Table 5, we compare our proposal with other ones from
the literature by means of several features that determine the
IME HW module setup (i.e. CTU and SA sizes, Technology,
etc.) and its performance (ie, throughput, FPGA resources).
Themost complete FSHWproposals are the ones that include
the computation of the asymmetric partitions (AMP) like our
proposal and the ones in [7], [18], [19] and [20]. As can be
seen, our proposal is highly competitive as it is able to achieve
an encoding speed of 30fps for 4k videos using a search area
of 64x64 pixels. However it requires a significant amount of
FPGA resources in a similar way than the one proposed in
[19]. Although the proposal presented in [20] obtains better
results in terms of throughput, this is mainly due to the early
termination algorithm of the motion estimation. However,

none of the above state-of-the-art proposals integrates their
IME into the encoder software.
To the best of our knowledge, there are hardly any FPGA-

based IME integration in HEVC software using OpenCL.
Specifically, the only work we have found that uses OpenCL
to evaluate an integration of the motion estimation kernel
is the one proposed by Castro et al in [26]. As reported
in [26], an algorithm for block matching motion estimation
based on the H.264 video coding standard that uses only fixed
16x16 blocks is presented and implemented on an Intel Stratix
10 FPGA using OpenCL. The performance analysis focuses
solely on the kernel itself, disregarding its full integration
within the encoder and the cost of transferring the 16x16
blocks to the FPGA. However, our proposal is based on the
HEVC standard. It uses variable block sizes ranging from 8x8
to 64x64 and incorporates asymmetric partitioning across a
128x128 search area, as well as a significant number of parti-
tion units per CTU. In terms of performance, both approaches
produce similar results, but a fair comparison cannot be made
given the significant differences between them, as previously
mentioned.

IV. DISCUSSION
After the evaluation and the analysis of the results obtained
in previous sections, we summarise the main hardware and
software limitations found.

• First, as described in Section III-A, one of the main
bottlenecks found in the IME HW module design is the
time required to perform memory transfer operations to
copy both the CTU and the SA pixels from FPGA HBM
memory to the internal FPGA memory banks (40577
clock cycles) and send the ME results (SADs&MVs)
back to the HBM memory (593 clock cycles). As the
time required to compute ME and obtain the SAD and
MVs of all partitions of a givenCTU requires only 16462
clock cycles, the memory transfer operations represent
the 71% of the overall time that IME HW module re-
quires to compute process one CTU. So, assuming an
operating frequency of IME HW module of 249 MHz,
from the 231 µs to perform the whole ME process of
a CTU (including memory transfers), only 66 µs corre-
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spond with the ME computation.
• Besides, the HEVC encoder uses the OpenCL interface

to communicate with the IME HWmodule at the FPGA
device. To compute the SADs&MVs for a single CTU
with one reference frame, the HEVC encoder spends
344 µs, on average, as described in Section III-B. So, if
the time required by the IME HW module is about 231
µs, the overhead introduced by OpenCL is 113 µs, what
represents an extra overhead of 49%.

The delay chain of computing operations is represented
in Table 10, based on the analysis of the IME HW
module and the OpenCL interface. As can be seen, of
the total 344 µs only 66 µs (19%) are related toME com-
putation; 233 µs (68%) are related to DMA and FPGA
memory transfers; and 45 µs (13%) are related to other
operations, such as OpenCL scheduling and resource
management (OpenCL events, HEVC input and output
buffers, etc.).

• When comparing the performance of the different hard-
ware designs with one, two, three or four IME modules,
we have found that the design that includes only one HW
unit is the one that provides the best trade-off among the
speed-up, coding performance, power consumption and
FPGA area usage. This is mainly due to the intrinsic
characteristics of the HEVC encoder application. Al-
though the parallel version of HEVC based on slices has
a good scalability in terms of speed-up, the software only
makes use of all hardware units simultaneously a few
times. This only occurs at the beginning of each frame
when all threads are synchronised and use all the avail-
able hardware units at the same time to compute the first
CTU. However, as the encoding process continues with
the remaining CTUs in the frame, the characteristics
of the HEVC encoder and the video sequence content
(some CTUs are more complex than others) cause the
threads to become desynchronised. Consequently, most
of the time, only one IME hardware unit is required at a
time (there is no hardware concurrency).

Finally, the hardware IME module could theoretically
achieve speeds of 15,152 CTU/s (29.7 fps for a 1080p video
sequence). However, the limitations and issues described
above cause the total encoding time to increase drastically,
resulting in a maximum speed of 2,907 CTU/s (8.5 fps).

V. CONCLUSION
In this work, we have presented a full SW/HW integrated
version of the HEVC encoder software. The main building
blocks of the proposal are based on the HW IME module and
the slice-based parallel version of the HEVC encoder, which
were both proposed in previous works. In order to perform the
HW/SW integration, we have analysed some issues that limit
the overall performance of these modules when they work
together, such as the DMA transfer operations, the software
overhead provided by the OpenCL API, and the concurrent
behaviour of the HEVC slice-based encoder. The main results

have shown that a) in the HW IME module, using as many
HW units as possible does not mean that better performance
results will be obtained, mainly due to the HEVC slice-based
encoder behaviour where most of the time only one HW unit
is required at the same time; b) the DMA data transfer opera-
tions are one of the main bottlenecks of the integrated version
that significantly reduces the great potential of the IME HW
proposal; and c) the use of OpenCL increases the computation
overhead even more, especially when the number of threads
increases.
After analysing all the impairments found in the integration

process, we have selected an integrated version that uses an
IME HW with only one HW units and a slice-based SW
encoder with no more than eight threads (four threads sug-
gested). The performance behaviour of the integrated version
shows that the R/D coding performance is the same as that of
the FS SW version (optimal performance), and a speed-up of
up to 149.63x is achieved.
There are many tasks that must be completed to appropri-

ately design a more effective HW/SW version of the HEVC
encoder. The most important of these are as follows: a) reduce
the overhead of the OpenCL API by using a more optimised
API, such as the one provided by the FPGA vendor (Xilinx
XRT API); b) analyse other schemes to reduce the ratio
between data transfer times and CTU computation times so
that DMA transfer costs are hidden as much as possible; and
c) use different parallel encoding modes, such as chunks of
GOPs, or use multiple instances of the encoder to process
different video sequences simultaneously so that multiple
IME hardware units can be exploited to their fullest potential.
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TABLE 6. Evaluation results of the SW/HW integrated version with one IME hardware unit with the CTC video sequences.

Class Sequence Measure Threads
1 2 4 8 12 16 20

A+

NebutaFestival

Time(s) 15824.4 8127.6 4261.7 2261.7 1654.3 1386.5 1172.11
Speed-up - 1.95 3.71 7.00 9.57 11.41 13.50
PSNR(db) 29.45 29.45 29.44 29.43 29.42 29.41 29.40
Bitrate(Mb) 19.49 19.56 19.64 19.76 19.87 19.98 20.07

SteamLocomotive

Time(s.) 10312.5 5450.1 2989.4 1615.4 1191.0 1006.9 842.9
Speed-up - 1.89 3.45 6.38 8.66 10.24 12.23
PSNR(db) 38.68 38.66 38.64 38.63 38.61 38.60 38.59
Bitrate(Mb) 2.03 2.06 2.09 2.15 2.21 2.26 2.29

A

Traffic

Time(s) 4690.7 2431.7 1342.6 727.3 541.7 450.7 378.2
Speed-up - 1.93 3.49 6.45 8.66 10.41 12.40
PSNR(db) 36.54 36.53 36.52 36.50 36.49 36.48 36.48
Bitrate(Mb) 1.58 1.60 1.63 1.65 1.67 1.69 1.71

PeopleOnStreet

Time(s.) 6518.8 3379.3 1909.6 1007.7 749.9 625.9 522.9
Speed-up - 1.93 3.49 6.45 8.66 10.41 12.40
PSNR(db) 34.14 34.12 34.11 34.10 34.08 34.08 34.07
Bitrate(Mb) 5.06 5.14 5.20 5.26 5.30 5.35 5.39

B

BQTerrace

Time(s) 9785.1 5199.9 2778.4 1493.3 1112.2 931.6 800.4
Speed-up - 1.88 3.52 6.55 8.80 10.50 12.23
PSNR(db) 33.84 33.83 33.81 33.80 33.79 33.78 33.77
Bitrate(Mb) 3.59 3.63 3.68 3.76 3.84 3.91 3.96

BasketballDrive

Time(s) 9478.6 5085.8 2885.9 1564.5 1180.6 960.0 826.8
Speed-up - 1.86 3.28 6.06 8.03 9.87 11.46
PSNR(db) 35.62 35.60 35.58 35.57 35.55 35.53 35.53
Bitrate(Mb) 3.74 3.81 3.88 4.01 4.13 4.24 4.30

Cactus

Time(s) 8468.2 4418.4 2386.6 1342.0 1019.7 834.2 729.8
Speed-up - 1.92 3.55 6.31 8.30 10.15 11.60
PSNR(db) 34.93 34.91 34.88 34.86 34.85 34.83 34.83
Bitrate(Mb) 3.57 3.60 3.67 3.77 3.86 3.94 3.98

Kimono

Time(s) 4268.0 2303.8 1231.8 661.3 490.1 408.7 350.9
Speed-up - 1.85 3.46 6.45 8.71 10.44 12.16
PSNR(db) 37.39 37.35 37.32 37.28 37.26 37.23 37.23
Bitrate(Mb) 1.29 1.31 1.34 1.38 1.42 1.46 1.48

ParkScene

Time(s) 4089.3 2138.4 1159.2 631.5 468.4 394.5 336.7
Speed-up - 1.91 3.53 6.47 8.73 10.36 12.14
PSNR(db) 34.88 34.86 34.84 34.83 34.81 34.80 34.79
Bitrate(Mb) 1.79 1.81 1.83 1.87 1.91 1.94 1.96

C

BQMall

Time(s) 2143.7 1138.9 687.9 380.9 290.6 253.8 236.1
Speed-up - 1.88 3.12 5.63 7.38 8.45 9.08
PSNR(db) 34.98 34.93 34.90 34.86 34.85 34.85 34.85
Bitrate(Mb) 1.18 1.22 1.27 1.35 1.40 1.43 1.46

BasketballDrill

Time(s) 1899.1 1019.2 573.3 319.0 247.6 219.2 204.5
Speed-up - 1.86 3.31 5.95 7.67 8.66 9.28
PSNR(db) 34.36 34.35 34.33 34.30 34.30 34.29 34.29
Bitrate(Mb) 1.09 1.11 1.15 1.21 1.25 1.28 1.30

PartyScene

Time(s) 2001.7 1112.7 616.8 334.8 259.8 230.2 217.2
Speed-up - 1.80 3.25 5.98 7.70 8.69 9.21
PSNR(db) 31.67 31.65 31.62 31.59 31.59 31.58 31.58
Bitrate(Mb) 1.97 2.00 2.04 2.09 2.13 2.15 2.18

RaceHorsesC

Time(s) 1408.4 780.3 421.4 227.6 175.8 152.9 144.4
Speed-up - 1.80 3.34 6.19 8.01 9.21 9.75
PSNR(db) 32.90 32.88 32.86 32.82 32.82 32.81 32.81
Bitrate(Mb) 1.17 1.19 1.22 1.27 1.29 1.31 1.33

BasketDrillText

Time(s) 1912.9 1025.0 576.2 328.1 252.7 223.1 206.6
Speed-up - 1.87 3.32 5.83 7.57 8.57 9.26
PSNR(db) 34.28 34.25 34.24 34.21 34.20 34.21 34.20
Bitrate(Mb) 1.20 1.23 1.26 1.33 1.37 1.39 1.42
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TABLE 7. Computing time, speed-up, PSNR, and bitrate for video sequences (classes D to F) using HW2 IME module and RA configuration (QP=32).

Class Sequence Measure Threads
1 2 4 8 12 16 20

D

BQSquare

Time(s) 507.3 295.0 164.6 110.5 92.1 76.1 84.4
Speed-up - 1.72 3.08 4.59 5.50 6.67 6.01
PSNR(db) 32.00 31.96 31.93 31.90 31.89 31.87 31.87
Bitrate(Mb) 0.44 0.45 0.48 0.51 0.54 0.57 0.59

BasketballPass

Time(s) 516.8 283.8 175.4 117.4 98.2 80.9 87.2
Speed-up - 1.82 2.95 4.40 5.26 6.38 5.93
PSNR(db) 33.54 33.51 33.47 33.46 33.45 33.44 33.44
Bitrate(Mb) 0.47 0.49 0.52 0.55 0.58 0.61 0.63

BlowingBubbles

Time(s) 463.9 257.8 148.8 100.5 85.8 70.1 77.3
Speed-up - 1.80 3.12 4.62 5.40 6.62 6.00
PSNR(db) 31.73 31.68 31.65 31.64 31.63 31.62 31.62
Bitrate(Mb) 0.48 0.49 0.51 0.54 0.56 0.58 0.60

RaceHorses

Time(s) 344.2 206.0 113.4 75.0 63.7 50.2 54.5
Speed-up - 1.67 3.03 4.59 5.40 6.85 6.31
PSNR(db) 32.27 32.24 32.19 32.17 32.15 32.15 32.15
Bitrate(Mb) 0.35 0.36 0.38 0.39 0.41 0.43 0.44

E

KristenSara

Time(s) 3926.5 2079.3 1149.8 619.8 447.3 387.0 342.3
Speed-up - 1.89 3.41 6.34 8.78 10.14 11.47
PSNR(db) 39.27 39.24 39.22 39.18 39.15 39.15 39.15
Bitrate(Mb) 0.62 0.64 0.67 0.72 0.77 0.80 0.83

Johnny

Time(s) 3742.8 2032.0 1087.2 580.6 430.2 366.4 328.2
Speed-up - 1.84 3.44 6.45 8.70 10.21 11.40
PSNR(db) 39.59 39.58 39.56 39.52 39.50 39.49 39.50
Bitrate(Mb) 0.43 0.45 0.47 0.52 0.57 0.60 0.63

FourPeople

Time(s) 3840.0 2108.4 1193.1 661.1 488.3 412.4 360.4
Speed-up - 1.82 3.22 5.81 7.86 9.31 10.65
PSNR(db) 38.20 38.17 38.15 38.12 38.09 38.09 38.08
Bitrate(M) 0.86 0.88 0.91 0.96 1.00 1.03 1.06

SlideEditing

Time(s) 1778.1 980.5 528.5 286.7 211.2 182.2 161.6
Speed-up - 1.81 3.36 6.20 8.42 9.761 11.00
PSNR(db) 38.38 38.37 38.36 38.32 38.30 38.28 38.28
Bitrate(M) 0.95 0.96 0.98 1.00 1.02 1.04 1.06

F

ChinaSpeed

Time(s) 3877.6 2094.4 1207.6 673.5 515.1 426.0 373.6
Speed-up - 1.85 3.21 5.76 7.53 9.10 10.38
PSNR(db) 34.91 34.91 34.89 34.87 34.86 34.85 34.84
Bitrate(Mb) 2.68 2.70 2.74 2.80 2.85 2.89 2.92

SlideShow

Time(s) 3379.8 1836.6 1009.1 558.8 413.7 355.5 321.9
Speed-up - 1.84 3.35 6.05 8.17 9.51 10.50
PSNR(db) 42.27 42.27 42.28 42.26 42.24 42.22 42.22
Bitrate(Mb) 0.85 0.86 0.89 0.95 0.99 1.03 1.06
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TABLE 8. Performance evaluation of different ME algorithms and our IME HW module.

ME Threads Time (s) ME/CTU (ms) CTU_SpUp

FS

1 8089.40 1026.647 -
2 4268.61 1035.193 -
4 2283.14 1086.514 -
8 1206.03 1114.553 -
12 859.40 1173.598 -
16 726.88 1322.881 -
20 634.00 1411.241 -

Selective

1 626.22 50.244 20x
2 329.27 51.177 20x
4 182.00 54.201 20x
8 106.66 55.975 20x
12 78.73 59.201 20x
16 67.30 66.398 20x
20 58.32 70.876 20x

eDiamond

1 394.63 20.451 50x
2 206.27 20.368 51x
4 111.96 21.296 51x
8 62.17 21.793 51x
12 45.44 22.899 51x
16 39.16 25.815 51x
20 34.83 27.410 51x

Diamond

1 276.99 5.389 190x
2 145.67 5.552 187x
4 79.23 5.902 184x
8 44.78 6.066 184x
12 33.25 6.401 183x
16 28.79 7.223 183x
20 25.78 7.717 183x

FS-HW1

1 252.45 1.511 679x
2 134.77 1.614 641x
4 74.28 1.780 604x
8 42.93 2.095 532x
12 32.96 2.508 468x
16 28.28 3.078 430x
20 25.11 3.696 382x

TABLE 9. Evaluation of SW FS version and the HW/SW proposal with four threads.

Video SW/HW FS SW FS
Sequence Total PSNR Bitrate Total PSNR Bitrate Speed-up PSNR Bitrate

Time (s) (dB) (Mb) Time (s) (dB) (Mb)
NebutaFestival 4261.77 29.44 19.643 400876.0 29.43 19.442 94.06x -0,02% 1.03%
Traffic 1342.69 36.52 1.632 183217.0 36.55 1.584 136.45x 0.09% 3.04%
PeopleOnStreet 1909.64 34.11 5.204 201067.7 34.14 5.119 105.29x 0.10% 1.67%
BQTerrace 2778.43 33.81 3.687 365374.1 33.83 3.546 131.50x 0.06% 3.96%
BasketballDrive 2885.97 35.58 3.885 313520.6 35.63 3.583 108.64x 0.14% 8.42%
Cactus 2386.68 34.88 3.678 308749.8 34.94 3.579 129.36x 0.16% 2.78%
Kimono 1231.86 37.32 1.342 147229.5 37.40 1.312 119.52x 0.22% 2.26%
ParkScene 1159.24 34.84 1.836 147030.7 34.88 1.805 126.83x 0.11% 1.73%
BasketballDrill 573.33 34.33 1.154 60549.6 34.39 1.068 105.61x 0.17% 8.04%
BasketDrillText 576.24 34.24 1.267 60776.0 34.31 1.181 105.47x 0.19% 7.29%
BQSquare 164.64 31.92 0.480 16701.3 31.99 0.434 101.44x 0.19% 10.73%
BasketballPass 175.43 33.47 0.529 14737.6 33.56 0.471 84.01x 0.28% 12.21%
BlowingBubbles 148.88 31.65 0.514 14211.9 31.75 0.476 95.46x 0.31% 8.00%
RaceHorses 113.48 32.19 0.380 9251.5 32.30 0.354 81.52x 0.34% 7.23%
KristenSara 1149.83 39.22 0.672 160404.3 39.27 0.623 139.50x 0.15% 7.83%
Johnny 1087.28 39.56 0.477 159718.1 39.60 0.439 146.90x 0.11% 8.63%
FourPeople 1193.12 38.15 0.916 161274.3 38.20 0.868 135.17x 0.13% 5.49%
SlideEditing 528.56 38.36 0.980 79089.7 38.35 0.914 149.63x -0.02% 7.27%
ChinaSpeed 1207.66 34.89 2.746 122858.6 34.92 2.683 101.73x 0.08% 2.35%
SlideShow 1009.14 42.28 0.893 134642.1 42.45 0.792 133.42x 0.40% 12.76%

TABLE 10. Delay chain of SW & HW operations to compute SAD&MV of a CTU in µs.

OpenCL IME HWModule (249 MHz) OpenCL
Device OCL_Schedule DMA (CTU&SAD) HBM to IP ME IP to HBM DMA (SADS&MVs) Other
Host 7.5 37 31 37.5
FPGA 162.6 66 2.4
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