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Abstract: A theoretical and experimental characterization of the optical modes of dispersionless
ring cavities incorporating phase modulators (PM) and/or frequency shifters (FS) is presented.
Using linear operator theory, the exact response of these cavities to arbitrary modulating
waveforms and optical inputs is computed and shown to be a filtering process that selects a
certain class of fields, invariant under multiple roundtrips, which are identified with the cavity’s
optical modes. The different types of PM/FS cavity modes are analyzed. This approach also
leads to a representation of these cavities as unmodulated resonators preceded and followed by
complementary phase modulations, which are linearly related to the imparted intracavity phase
modulation or frequency shift. The theory is experimentally validated by the external injection
of engineered phase and frequency modulated cavity modes in an Er:fiber PM fiber loop, and
also compared with the emission modes of FM lasers and CW frequency-shifted feedback lasers.
These results provide a unified view for the linear analysis of systems employing PM/FS active
cavities or resonators, of interest in the field of photonic signal generation and processing.

1. Introduction

An ample variety of optical systems uses as a key building block an optical resonator or active
cavity incorporating a phase modulator or a frequency shifter. Leveraging the large modulation
bandwidth attainable after multiple recirculations, optical frequency combs have been generated
in active phase-modulated (PM) fiber loops [1–4], resonant phase modulators [5–8] and integrated
PM ring resonators [9–15]. Recirculating PM fiber loops or ring resonators have also been used
as photonic analogs of numerous dynamical systems, such as kicked rotors [16] and random
walks or Bloch oscillations modeled as tight-binding hamiltonians in the synthetic dimension of
frequency [17–23]. In the time domain, amplified PM and frequency-shifting (FS) fiber loops
are actively explored as wideband photonic signal generators and processors [24–30].

In a different context, the incorporation of frequency shifters and phase modulators in an active
cavity has long been known to result in particular types of laser emission. In the case of phase
modulators, when the driving frequency is tuned to the cavity’s free spectral range (FSR) or to
one of its harmonics, the resulting FM-modelocked emission sets in the form of chirped pulses.
When the driving departs from the tuned frequency, typically at relative values below the 1%, the
emission is no longer pulsed but of constant amplitude. In this, so called, FM laser regime, the
emission features a wide sinusoidal instantaneous frequency which broadens the optical spectrum
in a distribution that follows the Bessel functions [31, 32]. If, in turn, a frequency shifting device
is placed inside the laser cavity, the emission of the resulting frequency-shifted feedback (FSF)
laser appears devoid of spectral structure [33, 34]. The output is understood as composed of
linearly chirped waves that are continuously generated from ASE and regeneratively amplified as
they shift in frequency through the spectral net gain region. Such a description is referred to
as the moving comb model of CW FSF laser emission [35–39]. With increasing pump powers,
lasers of this type also show Q-switched and modelocked regimes [40, 41].

The description of these systems usually relies on the concrete type of application. In
PM loops and cavities, the response is described as a series of delayed and phase-modulated
replicas of the input [1, 25]. The frequency domain, in turn, is best suited to the analysis of
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synthetic dynamical systems [20,21]. FM lasers were initially described in the frequency domain
through coupled-mode equations [31,32]. In the time domain, they have been described using
Haus’ master equation [42] and also the Maxwell-Bloch equations subject to a periodic phase
perturbation, either numerically [43] or through Floquet analysis [44]. In these descriptions, exact
solutions are scarce, with some exception such as the modal solution of FM lasers [31, 32, 42].

In this paper, we address the linear analysis of optical ring cavities incorporating phase
modulation and/or frequency shifting. This exploration is motivated, on the one hand, by the
wide variety of photonic processors incorporating PM/FS cavities that would benefit from a
compact description at system’s level and, on the other, by the quest of optical generators of
user-defined, reconfigurable optical waveforms. Our approach relies on the observation that, for
both passive and active PM/FS ring cavities operated below threshold, the recirculation process
can be considered devoid of nonlinear propagation and gain saturation effects. If, in addition, the
cavity is dispersionless, the linear recirculation admits an exact solution that accounts for arbitrary
inputs and arbitrary phase modulation profiles or frequency shifting. The theory is solved in
Section 2 in operator formalism, which is a convenient tool for the identification of the PM/FS
cavity modes from the complete set of eigenfunctions. These modes are phase-modulated fields
carried by the axial modes of the unmodulated resonator, invariant under multiple roundtrips and
of minimum bandwidth. In that section we also analyze the different families of cavity modes
that can be generated. This approach leads to an alternative representation of PM/FS cavities as
unmodulated resonators sandwiched by complementary phase modulations, linearly related by a
recursive formula to the imparted intracavity phase modulation or frequency shift and coincident
with the modal phase of the PM/FS cavity mode. In Section 3, we experimentally validate the
theory in a PM Er:fiber loop through the external injection of different PM cavity modes. We
also present the characterization of single and multimode FM and CW FSF laser emission and its
relationship with the cavity modes using digital correlation techniques, analyzing the limitations
of standard spectrotemporal characterization tools for the modal analysis of these lasers. Finally,
we end in Section 4 with our conclusions. Preliminary results were presented in [45].

Particular forms of our results have been described in the rich literature of PM/FS cavities
and FM/FSF lasers. An operator theory of PM cavities was developed in [46] for the analysis
of the broadband light generated by sinusoidal phase modulation, of which the present theory
represents the exact solution in the dispersionless limit. The recursive formula (7) that defines
the modal phase was used in studies of electro-optical tunable microchip FM lasers [43], of
SOA-based fiber FM lasers [47] and, more recently, of electro-optically phase modulated ring
resonators [48]. A similar recursive relationships, but defined in frequency, was employed [49]
to describe the operational principle of FM lasers. In [48] it was also introduced an equivalent
representation of the PM resonator that is here generalized to PM/FS cavities. Self-consistency
arguments, equivalent to our definition of cavity modes, were also used in [49], and in [35], for
the determination of FM and FSF laser emission modes, respectively. Our results unify these
descriptions in a common framework that applies to FS and PM cavities, or combination of both,
providing a deeper understanding of their response to general input waves and complementing
the different approaches used in the analysis of the corresponding laser emission.

2. Theory

Let us consider the recirculation of an optical field in a dispersionless ring cavity or resonator with
roundtrip time 𝜏𝑐 and FSR 𝜔𝑐 = 2𝜋/𝜏𝑐 in a single spatial mode, where it recursively undergoes
phase modulation or frequency shifting. The modulation is assumed lumped and described by a
multiplying term exp( 𝑗𝜑(𝑡)). In the case of PM cavities, 𝜑(𝑡) = 𝜋𝑉 (𝑡)/𝑉𝜋 where 𝑉 (𝑡) is the
driving voltage and 𝑉𝜋 the modulator’s half-wave voltage. As any dc bias in the driving voltage
can be absorbed in the definition of 𝜏𝑐 we may assume that 𝜑(𝑡) is dc-free. In the case of FS
cavities, 𝜑(𝑡) = Ω𝑠𝑡 where Ω𝑠 is the shifting frequency.
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Fig. 1. (a) Scheme of a phase modulated resonator. (b) Equivalent representation.

As is shown in Fig. 1(a), which follows the notation of [25], optical fields 𝐸in (𝑡) and 𝐸out (𝑡)
are respectively injected and extracted from the resonator through a linear 2 × 2 passive network
described by a transmission matrix with entries 𝑡𝑖 𝑗 (𝑖, 𝑗 = 1, 2). The intracavity field, referred
to the network’s output (out1), is denoted by 𝐸𝑐 (𝑡) so that the corresponding input (in1) is
𝜌𝑒 𝑗 𝜑 (𝑡 )𝐸𝑐 (𝑡 − 𝜏𝑐) with 𝜏𝑐 the roundtrip time and 𝜌 < 1 the roundtrip amplitude decay factor,
excluding the injection/extraction network loss. Then, the network equations are:

𝐸𝑐 (𝑡) = 𝑡11𝜌𝑒
𝑗 𝜑 (𝑡 )𝐸𝑐 (𝑡 − 𝜏𝑐) + 𝑡12𝐸in (𝑡)

𝐸out (𝑡) = 𝑡21𝜌𝑒
𝑗 𝜑 (𝑡 )𝐸𝑐 (𝑡 − 𝜏𝑐) + 𝑡22𝐸in (𝑡) (1)

The first of these equations represents a boundary condition for the intracavity field, which will
be presented as:

𝐸𝑐 (𝑡) = 𝜌𝑒 𝑗 𝜑 (𝑡 )𝐸𝑐 (𝑡 − 𝜏𝑐) + 𝐸𝑠 (𝑡) (2)

with 𝜌 = 𝑡11𝜌 < 1 the total roundtrip amplitude attenuation factor and 𝐸𝑠 (𝑡) = 𝑡12𝐸in (𝑡) the
seed field. The second equation in (1) gives the output 𝐸out (𝑡) in terms of the input 𝐸in (𝑡), the
intracavity field 𝐸𝑐 (𝑡), and the characteristics of the injection/extraction network. The problem
is reduced to the analysis of (2), which represents a linear, time-variant system with input 𝐸𝑠 (𝑡)
and output 𝐸𝑐 (𝑡).

Let us define the unitary operator𝑈 = 𝑒𝑖𝜑 (𝑡 )𝑇 composition of the intracavity phase modulation
and the time translation by the cavity’s roundtrip time, 𝑇𝐸 (𝑡) = 𝐸 (𝑡 − 𝜏𝑐). Then, (2) writes
(𝐼 − 𝜌𝑈)𝐸𝑐 (𝑡) = 𝐸𝑠 (𝑡), with 𝐼 the identity operator. The solution to this equation can be written
as a Neumann series:

𝐸𝑐 (𝑡) = (𝐼 − 𝜌𝑈)−1𝐸𝑠 (𝑡) =
∞∑︁
𝑛=0

𝜌𝑛𝑈𝑛𝐸𝑠 (𝑡) (3)

which is convergent for 𝜌 < 1 since 𝑈 is unitary. We now compute the eigenfunctions of unitary
𝑈, with phase eigenvalues denoted for convenience in terms of an arbitrary frequency 𝜔 as
𝑒− 𝑗𝜔𝜏𝑐 . The eigenvalue equation writes:

𝑒 𝑗 𝜑 (𝑡 )𝐸𝜔 (𝑡 − 𝜏𝑐) = 𝑒− 𝑗𝜔𝜏𝑐𝐸𝜔 (𝑡) (4)

To solve this functional equation we first notice that the amplitude of 𝐸𝜔 (𝑡) is periodic with period
𝜏𝑐. Moreover, the multiplication of any solution of (4) by a periodic phase term is also a solution.
This implies that 𝐸𝜔 (𝑡) is the product of an arbitrary periodic complex field 𝐸𝑝 (𝑡) = 𝐸𝑝 (𝑡 + 𝜏𝑐)
times an unknown phase term, denoted as 𝑒 𝑗Φ(𝑡 )+ 𝑗𝜔𝑡 , and so the form of the eigenfunctions is:

𝐸𝜔 (𝑡) = 𝑒 𝑗Φ(𝑡 )+ 𝑗𝜔𝑡𝐸𝑝 (𝑡) (5)

Substitution of this ansatz in (4) requires that Φ(𝑡) verifies

Φ(𝑡) = Φ(𝑡 − 𝜏𝑐) + 𝜑(𝑡) + 2𝜋𝑛 (6)
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with 𝑛 integer. Nonetheless, and without loss of generality, function Φ(𝑡) can be determined as:

Φ(𝑡) = Φ(𝑡 − 𝜏𝑐) + 𝜑(𝑡) (7)

a linear recursion that represents a finite-time integrator. Indeed, a solution Φ(𝑡) of (7) gives rise
to a solution Φ(𝑡) = Φ(𝑡) − 𝑛𝜔𝑐𝑡 of (6) and conversely. The additional phase term 𝑒− 𝑗𝑛𝜔𝑐𝑡 is
periodic with period 𝜏𝑐 and can be absorbed in 𝐸𝑝 (𝑡). For the same reason, we exclude additive
periodic terms from the admissible solutions of (7). These mathematical constraints lead to an
unambiguous definition of optical modes, as will be explained below. Without reference to these
constraints, (7) has been introduced as a means to solve (2) in [47, 48].

Equation (7) also implies that 𝑈 = 𝑒 𝑗 𝜑 (𝑡 )𝑇 is unitarily equivalent to the temporal translation,
𝑈 = 𝑒 𝑗 𝜑 (𝑡 )𝑇 = 𝑒 𝑗Φ(𝑡 )𝑇𝑒− 𝑗Φ(𝑡 ) , and therefore solution (3) can be written as

𝐸𝑐 (𝑡) = 𝑒 𝑗Φ(𝑡 ) (𝐼 − 𝜌𝑇)−1𝑒− 𝑗Φ(𝑡 )𝐸𝑠 (𝑡) (8)

The resolvent operator is diagonal in the Fourier basis, where 𝑇 = 𝑒− 𝑗𝜔𝜏𝑐 with 𝜔 the optical
frequency:

(1 − 𝜌𝑇)−1 =
1

1 − 𝜌𝑒− 𝑗𝜔𝜏𝑐
≡ 𝐻𝑅 (𝜔) (9)

In this formula, we have defined the optical transfer function of the unmodulated ring resonator
𝐻𝑅 (𝜔), which represents its filtering characteristics as resonances centered at equispaced optical
frequencies multiples of the cavity’s FSR. Changing to the Fourier domain to describe the
response of the unmodulated ring, the general solution (8) can be explicitly written in terms of
the seed as:

𝐸𝑐 (𝑡) =
∬

𝑑𝜔

2𝜋
𝑑𝑡′

𝑒 𝑗𝜔 (𝑡−𝑡 ′ )+ 𝑗 (Φ(𝑡 )−Φ(𝑡 ′ ) )

1 − 𝜌𝑒− 𝑗𝜔𝜏𝑐
𝐸𝑠 (𝑡′) (10)

Also, solution (8) can be transferred to in/out fields using the second equation in (1):

𝐸out (𝑡) =𝑒 𝑗Φ(𝑡 )
[
𝑡21𝑡12
𝑡11

𝜌𝑇

1 − 𝜌𝑇
+ 𝑡22

]
𝑒− 𝑗Φ(𝑡 )𝐸in (𝑡) (11)

The term in brackets represents the filtering properties of an unmodulated ring resonator with
an injection/extraction network 𝑡𝑖 𝑗 . Thus, (11) shows that the PM/FS cavity is equivalent to an
unmodulated cavity preceded and followed by complementary modulations exp(± 𝑗Φ(𝑡)), which
are responsible for a unitary change in the field’s description. This implies that the system can be
represented in a form where modulation and cavity act independently [48], as is schematically
shown in Fig. 1(b).

It can be straightforwardly shown that the eigenfunctions (5) are also eigenfunctions of the
linear system (8) with eigenvalue 𝐻𝑅 (𝜔): if a PM/FS cavity is seeded with 𝐸𝜔 (𝑡), its intracavity
field 𝐸𝑐 (𝑡) equals the seed field times factor 𝐻𝑅 (𝜔). By analogy with a standard ring cavity or
resonator, we can ascribe the modal content of the PM/FS resonator to those fields with maximum
transmission or, equivalently, with maximum eigenvalue max|𝐻𝑅 (𝜔) | = (1 − 𝜌)−1 [46]. These
modes are waves phase-modulated by Φ(𝑡) and carried by the axial modes of the unmodulated
resonator. A convenient description of the modal content of a high-Q PM/FS resonator is thus:

𝐸𝑚 (𝑡) = 𝑒 𝑗Φ(𝑡 )𝐸𝑝 (𝑡) = 𝑒 𝑗Φ(𝑡 )
∑︁
𝑘

𝐴𝑘𝑒
𝑗𝑘𝜔𝑐𝑡 (12)

with 𝐴𝑘 arbitrary complex constants. For this reason, Φ(𝑡) will be referred to as the modal
phase function. Again in analogy with an unmodulated ring resonator, these modes can also
be determined as those eigenfunctions with eigenvalue one, or simply fields invariant under
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a lossless roundtrip, 𝑒 𝑗 𝜑 (𝑡 )𝐸𝑚 (𝑡 − 𝜏𝑐) = 𝐸𝑚 (𝑡). Now we can clarify the constraints imposed
during the derivation of (7): a phase term 𝑒− 𝑗𝑛𝜔𝑐𝑡 added to 𝑒 𝑗Φ(𝑡 ) in (12) simply shifts
the modal index 𝑘 , and a resonant phase term, namely periodic with period 𝜏𝑐, represents a
redefinition in the modal amplitudes of the unmodulated resonator. Indeed, using the Fourier
series exp( 𝑗Φ𝑝 (𝑡)) =

∑
𝑛 𝐶𝑛 exp( 𝑗𝑛𝜔𝑐𝑡) in the sum of (12) we find:

𝑒 𝑗Φ𝑝 (𝑡 )
∑︁
𝑘

𝐴𝑘𝑒
𝑗𝑘𝜔𝑐𝑡 =

∑︁
𝑘,𝑛

𝐶𝑛𝐴𝑘−𝑛𝑒
𝑗𝑘𝜔𝑐𝑡 ≡

∑︁
𝑘

𝐵𝑘𝑒
𝑗𝑘𝜔𝑐𝑡 (13)

In both cases no generality is gained as compared with (12). The modes of the PM/FS cavity
are thus the fields 𝐴𝑘𝑒

𝑗Φ(𝑡 )+ 𝑗𝑘𝜔𝑐𝑡 with 𝑘 positive integer and Φ(𝑡) given by (7) and free of
additive resonant terms. In physical terms, this means that the modes are phase modulated
waves of minimum bandwidth carried by the axial modes of the unmodulated resonator, as the
multiplication by any resonant phase modulation term exp( 𝑗Φ𝑝 (𝑡)) would always increase the
modal bandwidth. This definition is consistent with the modes of unmodulated resonators, which
are recovered when 𝜑(𝑡), and thus Φ(𝑡), vanishes.

The phase modulation Φ(𝑡) that precedes and comes after the unmodulated resonator in the
equivalent model of Fig. 1(b) coincides with the modal phase. Due to the linearity of (7), if the
intracavity PM/FS modulation is composed of several additive terms, say 𝜑(𝑡) = 𝜑1 (𝑡) + 𝜑2 (𝑡),
one can choose equivalent representations where only a part of 𝜑(𝑡), say 𝜑1 (𝑡), is extracted from
the loop through the corresponding (partial) modal phase Φ1 (𝑡). We also note that, after taking
the derivative, we can present (7) in terms of the instantaneous modal frequency 𝜔𝑖 (𝑡) = 𝑑Φ/𝑑𝑡
as [49]:

𝜔𝑖 (𝑡) = 𝜔𝑖 (𝑡 − 𝜏𝑐) +
𝑑𝜑

𝑑𝑡
(14)

indicating that 𝜔𝑖 (𝑡) is increased in each roundtrip by the Doppler frequency shift imparted by
the intracavity modulator. Due to the similarity with (7), the analysis of PM/FS cavities from the
perspective of frequency modulation is thus similar. We now proceed to compute and analyze
the solutions of (7) for the concrete cases of PM and FS cavities. In the Appendix, we present
an additional property of (7) that allows for the extension of the range of available solutions to
modulation function incorporating resonant modulations.

2.1. Phase-modulated cavities

The modal phase function of a PM cavity can be derived from (7) using Fourier theory. We
denote by 𝜑(Ω𝑚) and Φ̂(Ω𝑚) the Fourier transforms of 𝜑(𝑡) and Φ(𝑡), respectively, where the
modulation frequency is denoted by Ω𝑚. Then, (7) can be solved in terms of a modulation
transfer function [48],

𝐻M (Ω𝑚) =
Φ̂(Ω𝑚)
𝜑(Ω𝑚)

=
1

1 − 𝑒− 𝑗Ω𝑚𝜏𝑐
(15)

provided that Ω𝑚 is off-resonance (Ω𝑚𝜏𝑐/2𝜋 not integer). In the simplest example of sinusoidal
phase modulation, the phase function is 𝜑(𝑡) = 𝜇 cos(Ω𝑚𝑡 + 𝜃) with 𝜇 the modulation index and
𝜃 a constant phase. The solution to (7) writes:

Φ(𝑡) = 𝛽 sin(Ω𝑚 (𝑡 + 𝜏𝑐/2) + 𝜃) (16)

with a modulation index given by:

𝛽 =
𝜇

2 sin( 1
2Ω𝑚𝜏𝑐)

(17)

It is illustrative to compare this result with the oscillation modes of an FM laser as [31, 32, 42] or
with the broadband light generated in a sinusoidal PM cavity as described in [46]. In these cases,
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Fig. 2. Blue: amplitude of the modulation transfer function 𝐻𝑀 (Ω𝑚). Yellow:
approximation near dc as an integrator with time constant 𝜏𝑐 . Orange: amplitude of the
transfer function of an integrator with time constant Δ𝜏 ≪ 𝜏𝑐 . Green: spectral lines
of a waveform with a frequency close to the FSR. The circled numbers refer to the
different regimes explained in the text.

the phase modulator is driven by a sinusoidal waveform at a frequency Ω𝑚 close to the cavity’s
FSR 𝜔𝑐 or to one of its harmonics,

Ω𝑚 = 𝑘𝜔𝑐 ± ΔΩ𝑚 (18)

with 𝑘 positive integer and 0 < ΔΩ𝑚 ≪ 𝜔𝑐. In the present formalism, the PM cavity modes are
sinusoidal phase-modulated fields given by (16) which, in the limit ΔΩ ≪ 𝜔𝑐, are:

Φ(𝑡) ≃ ± 𝜇

ΔΩ𝑚𝜏𝑐
sin(Ω𝑚𝑡 + 𝜃) (19)

in agreement with the form of FM laser modes and sinusoidal broadband light. The generality
of the present approach is apparent as it extends the modal concept to general off-resonance
phase modulations of arbitrary functional form. In this regard, several families of modes can
be identified in different regimes of the transfer function 𝐻M (Ω𝑚), which we describe next in
separate paragraphs.

• Referring to Fig. 2, if the bandwidth of the input phase function 𝜑(𝑡) is ≪ 𝜔𝑐, and thus its
spectral content is contained in region 1 , the transfer function behaves as 𝐻M (Ω𝑚) ≃ 1/ 𝑗Ω𝑚𝜏𝑐
and represents an integrator with time constant 1/𝜏𝑐. This approximation is plotted with a yellow
line in Fig. 2. In this region, (7) can be approximated as

𝜏𝑐
𝑑Φ

𝑑𝑡
= 𝜑(𝑡) (20)

and so the modal phase has an instantaneous frequency that follows the shape of the imparted
phase function.

• If the imparted phase function 𝜑(𝑡) is periodic with a fundamental frequency Ω𝑚 close
to the FSR or to one of its harmonics, as given by (18), then the spectral content of 𝜑(𝑡)
consists of frequencies 𝑘Ω𝑚 with 𝑘 = ±1, · · · ± 𝑁 integers, depicted in Fig. 2 as green spectral
lines marked with 2 . Assume also that 𝑁ΔΩ𝑚 ≪ 𝜔𝑐, so all spectral components are close
to the corresponding FSR harmonics. At this set of frequencies, the modulation transfer
function (15) gives 𝐻𝑀 (𝑘Ω𝑚) ≃ ±1/ 𝑗 𝑘ΔΩ𝜏𝑐, and so it acts as an integrator with time constant
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Δ𝜏 = ±ΔΩ𝑚𝜏𝑐/Ω𝑚. The modal phase function is thus determined by the equation

Δ𝜏
𝑑Φ

𝑑𝑡
= 𝜑(𝑡) (21)

The modes of the FM laser (19) are recovered from (21) for 𝜑(𝑡) = 𝜇 cos(Ω𝑚𝑡 + 𝜃), and are
generalized in this regime to arbitrary periodic functions. As in regime 1 , the instantaneous
modal frequency follows the imparted phase 𝜑(𝑡), but the frequency excursion now entails a
factor 1/Δ𝜏, which represents an enhancement by Ω𝑚/ΔΩ𝑚 with respect to regime 1 . For
arbitrary periodic PM waveforms, this regime was identified in [47] and more recently exploited
in [30] for signal generation applications.

• If the spectral content of the applied phase function 𝜑(𝑡) is located near semi-integer values of the
FSR, (1/2+ 𝑘)𝜔𝑐 with 𝑘 integer, the transfer function is approximately flat with 𝐻M (Ω𝑚) ≃ 1/2
and the modal phase function is halved with respect to the applied phase. This regime is depicted
as region 3 in Fig. 2.

2.2. Frequency-shifting cavities

In FS cavities, the field undergoes a frequency shift exp( 𝑗𝜑(𝑡)) = exp( 𝑗Ω𝑠𝑡) in each recirculation,
where Ω𝑠 is the shifting frequency. The solution to (7) is a linearly chirped function:

Φ(𝑡) = Ω𝑠

2𝜏𝑐
𝑡 (𝑡 + 𝜏𝑐) (22)

According to the equivalent representation of Fig. 1(b), the FS cavity can be understood as an
unmodulated ring resonator preceded and followed by complementary chirp modulations or time
lenses. In this regard, signal processors employing chirp modulation followed by a resonator
and direct detection such as those in [50, 51] are functionally similar to FS cavities. The modal
content of the FS cavity can be described as

𝐸𝑚 (𝑡) = 𝑒
𝑗
Ω𝑠
2𝜏𝑐 𝑡

2+ 𝑗
Ω𝑠
2 𝑡

∑︁
𝑘

𝐴𝑘𝑒
𝑗𝑘𝜔𝑐𝑡 (23)

namely, as a set of linearly chirped functions carried by evenly spaced in frequency.
When the cavity is operated above threshold, (23) constitutes the basis of the moving comb

model of the laser emission. According to this model, the output is continuously driven by
spontaneous emission, which is regeneratively amplified in the spectral net gain region while it is
shifted in frequency in multiple recirculations. In this process, the chirped mode is selected from
ASE by the filtering properties of the cavity. The amplification ceases when the chirped mode
exits the gain region and the mode becomes below threshold. This results in a representation
similar to (23) but with the constant amplitudes 𝐴𝑘 substituted by envelopes 𝐴𝑘 (𝑡) slowly varying
at the roundtrip time scale and with a duration equal to the transit time in the spectral net gain
region [37–39].

3. Experimental setup and results

3.1. Modes of a PM fiber loop

A first experiment was designed to provide direct evidence in a PM fiber loop of the modal
decomposition (12), the modulation transfer function (15), and the equivalent model in Fig. 1(b).
The experimental setup is shown in Fig. 3. The fiber loop (FSR = 6.903 MHz) is shown in
red, and includes a phase modulator (𝑉𝜋 = 4.7 V) driven by an arbritrary waveform generator
(AWG1), a PZT fiber stretcher (Idil Fibres Optiques) for active stabilization, filter couplers for
power injection and extraction, an isolator to ensure unidirectional recirculation, a home-made
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Fig. 3. Experimental setup.

EDFA consisting of 60 cm of highly-doped fiber (Liekki Er80/8) pumped at 980 nm and offering
up to ∼ 19 dB of gain and a noise figure < 3.5 dB, and a flat-top tunable filter (EXFO XTM-50)
centered at 1550 nm to prevent the loop from lasing at 1532 nm. The system was based on
polarization-maintaining components, except the EDFA. A polarization controller, not shown in
the figure, was placed before the filter to adjust the recirculating state of polarization. Active
stabilization for CW injection was provided by an error signal measured after tapping the loop’s
output and measuring the intensity at photodiode PD1 followed by electrical lowpass filtering.

Additional elements for signal injection and analysis are also shown in blue in the figure. A
tunable single-wavelength fiber laser at ∼ 1550 nm with a linewidth < 100 Hz (NKT Koheras
E15) is used for injection and heterodyne measurement of the loop’s output. The injected
field is engineered through a fiber-coupled acousto-optics frequency shifter (AOFS) (AA Opto)
controlled through a second arbitrary waveform generator (AWG2). The AOFS allows for
implementing both frequency upshift and frequency modulation and sinusoidal phase modulation
in the 80 ± 5 MHz range through the driving waveform. The heterodyne measurements were
carried out by a 40-GHz photodiode (PD2) followed by a 6-GHz real time oscilloscope (LeCroy
SDA 6000A). For intensity measurements, a low bandwidth photodiode followed by a 5-MHz
digitizer (Digilent) is used. In our third experiment, the intracavity PM was substituted by the
AOFS, as is shown in the figure. The loop’s output power ranges between −16 dBm and −13
dBm, depending on the concrete experiment.

With the loop operating below threshold, the seed wavelength was scanned using a ramp signal
spanning ∼ 65 MHz at a frequency of 120 Hz. Switching transients, however, reduce the linear
sweep range to an excursion of ∼ 56 MHz with a quasi-static sweep rate 𝛾 = 8.093 kHz/μs,
sufficient to clearly scan 7 cavity resonances. In Fig. 4(a) we depict the output intensity of
the unmodulated loop when neither the internal nor the external PM are applied, in a range
where three consecutive spectral resonances are swept. They present a low finesse F = 13
corresponding to a single-pass roundtrip amplitude decay factor 𝜌 = 0.782, as is inferred from
the fit in Fig. 4(d).

We analyzed the loop’s output intensity in different situations of internal (intraloop) PM and
with externally injected PM fields engineered through the AOFS. Fig. 4(b) shows the effect of an
internal sinusoidal PM exp( 𝑗𝜑(𝑡)) with modulation index 𝜇 = 1 rad and modulation frequency
𝑓𝑚 = Ω𝑚/2𝜋 = 300 kHz, in the absence of external PM. In this instance, the resonance shows
amplitude modulation (AM) at two distinct frequencies: 𝑓𝑚 on the resonance’s slopes and 2 𝑓𝑚 at
the center. This phenomenon is evident in the high-resolution trace of Fig. 5(a). This trace can
be straightforwardly analyzed from the equivalent model of Fig. 1(b). There, the unmodulated
cavity acts on a PM wave with sinusoidal modulation exp(− 𝑗Φ(𝑡)) and index 𝛽 = 3.674 rad,
as given by (17). As intensity measurements are insensitive to the output PM in Fig. 1(b), the
depicted trace can be interpreted as the effect of a discriminator on a swept PM wave, with a
high phase-to-amplitude conversion to the fundamental 𝑓𝑚 at the resonance’s slopes and a lower

8



Fig. 4. Wavelength sweep with (a) internal and external (AOFS) sinusoidal phase
modulations off, (b) internal on and external off, and (c) internal on and external on
after fine tuning the delay. (d) and (e), zoom of a single resonance (blue) and fitted
shape (orange) when (d) both internal and external phase modulations are off and (e)
both are on. The difference in the traces is barely perceptible.

conversion to the second harmonic 2 𝑓𝑚 at the resonance’s peak.
Afterwards, the input wavelength was phase modulated in the AOFS by exp( 𝑗Φ(𝑡)) to

compensate for the input modulation exp(− 𝑗Φ(𝑡)) in the equivalent model, and so let the swept
wavelength pass through an unmodulated loop. The AOFS driving waveform was then fine tuned
in delay, a procedure that synchronizes the compensating PM exp( 𝑗Φ(𝑡)) and the internal phase
modulation. The result is shown in Fig. 4(c), where the PM-AM conversion ripples are now
absent and the resonances of an unmodulated resonator, zoomed in (e), recovered.

According to (12), this compensation means that we have seeded the PM loop with one of
its optical modes, which therefore passes through the resonator unaltered up to a constant. To
check this view, we switched off the wavelength sweep and fixed it at 1550 nm, providing
active stabilization of the cavity at this wavelength. Then, we connected the heterodyne path
in Fig. 3 and retrieved the heterodyne spectrum of the output, shown in Fig. 5(b) with a blue
trace. Comparison with the corresponding spectrum of the externally engineered compensating
input field (orange trace) shows the coincidence of both. The spectra appear centered at 80 MHz
due to the frequency shift imparted by the AOFS, which allows for the direct visualization of
the double-sided PM spectra and so to extract the modulation index 𝛽 by fitting the spectral
lines to the Bessel functions 𝐽2

𝑘
(𝛽) (𝑘 = 0,±1,±2, . . . ). This yields a value 𝛽 = 3.622 again

in agreement with the theory. This result not only evidences the excitation of the PM cavity
mode, but also confirms the presence of the PM factor exp( 𝑗Φ(𝑡)) at the output of the equivalent
model of Fig. 1(b). Finally, we extracted the modulation transfer function 𝐻𝑀 (Ω𝑚) as the ratio
of modal 𝛽 and intraloop 𝜇 modulation indices for different values of 𝑓𝑚. The comparison of the
experimental values (dots) and the modulation transfer function is shown in Fig. 5(c). Notably,
this procedure allows for the validation of (17) within the complete first FSR and in a range of
relative modulation indices spanning more than two orders of magnitude, surpassing the value
obtained in previous studies of DFB FM lasers [52] and integrated PM resonators [48].

The final part of this experiment aimed at illustrating the injection of non-sinusoidal PM modes.
We employed a square signal as intraloop PM 𝜑(𝑡) with 𝑓𝑚 = 20 kHz and peak phase values
±𝜇 = ±0.278 rad. This signal in entirely contained in region 1 of Fig. 2, and so the instantaneous
frequency of the modal phase function Φ(𝑡), as given by (20), switches ±𝜇/2𝜋𝜏𝑐 = ±305 kHz
above and below the swept carrier. This binary FM mode can be externally injected using the
AOFS as a frequency modulator, with a driving frequency that switches between these two
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Fig. 5. (a) High-resolution trace of a resonance in Fig. 4(b). (b) Optical heterodyne
spectra of (blue) the loop’s output, (orange) the 1550-nm input wavelength phase
modulated in the AOFS, and (purple dots) fitted values of the Bessel functions. The
orange trace is upshifted by 100 kHz to ease the comparison. (c) PM transfer function:
experimental (dots) and theory (blue trace).

Fig. 6. (a) Intensity of a wavelength sweep with internal square phase modulation
on and external (AOFS) modulation off. Red and yellow bands are included in the
first peak to help visualize the two interleaved resonaces. (b) Intensity of a wavelength
sweep with both internal and external square frequency modulations, after fine tuning
the delay. (c) and (d), spectrograms of the heterodyne signal of (c) the loop’s output
and (d) the 1550-nm input wavelength frequency modulated in the AOFS.

frequencies above and below 80 MHz. In Fig. 6(a) we show the output intensity observed when
only the internal PM is activated. According to the equivalent model of Fig. 1(b), this trace can be
interpreted as the transit through an unmodulated cavity of two time-interleaved wavelength-swept
carriers separated by ±305 kHz, resulting in the observed pair of time-interleaved resonances. If
the AOFS is now turned on and the delay of the frequency switching tuned, we recover the initial
resonances as is shown in Fig. 6(b). The glitches appearing in the otherwise smooth trace are
due to the AOFS switching time. Under these conditions, but now with the wavelength fixed
and the loop stabilized, we retrieved the optical field’s spectrogram from the heterodyne signal
to compare the injected seed, measured after the AOFS and shown in Fig. 6(c), with the loop’s
output field, depicted in Fig. 6(d). In both cases we observe the same ±305 kHz frequency
excursion. The coincidence of these spectrograms shows again the injection of a cavity mode,
here in the form of two switched frequencies.

3.2. FM laser modes

A second set of experiments were aimed at exploring the FM laser emission modes and its
relationship with the PM cavity modes. We refer loosely here as a FM laser to any non-
modelocked emission of a PM active cavity above threshold, although strictly speaking FM laser
were originally driven by sinusoidally PM with modulation frequency near the FSR or one of
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Fig. 7. Narrowband multimode FM laser emission. (a) Spectrogram of the heterodyne
signal when the local oscillator was placed ∼ 1.5 GHz below the FM laser emission
peak. (b) Spectrum of the heterodyne signal, showing the multiple modal spectra
separated by an FSR. (c) Comparison of (blue) the normalized modal spectrum of
the triangular FM laser mode centered at 1.522 GHz and (orange dots) the spectrum
predicted by the theory (triangular frequency modulation with 𝑓𝑚 = 100 kHz and
excursion ±1.1 MHz).

its harmonics. A first demonstration was targeted to show a narrowband multimode FM laser
emission. With the fiber loop pumped above threshold, the internal PM 𝜑(𝑡) was configured
as a triangular wave with peak phase excursion ±𝜇 = ±1 rad at a repetition rate 𝑓𝑚 = 100 kHz.
From the point of view of cavity modes, this waveform is contained in region 1 of Fig. 2
and therefore the modal phase function Φ(𝑡) entails an instantaneous frequency that deviates
±𝜇/2𝜋𝜏𝑐 = ±1.10 MHz from each axial mode of the unmodulated cavity. The FM laser emission
was multimodal with significant mode competition, as expected due to the flat top character of
the intracavity filter [31,46]. The spectrotemporal characteristics of the laser emission modes
coincide with the PM cavity modes, as could be directly visualized through the spectrogram
of the heterodyne signal shown in Fig. 7(a). Note the coincidence in phase of the frequency
excursions in different modes, in agreement with (12). In Fig. 7(b) we show the optical spectrum
as retrieved from the heterodyne signal. Here, the different groups of modal spectra, mutually
separated by an FSR, are clearly discernible. The modal spectrum is zoomed and compared in
Fig. 7(c) with the triangular phase-modulated modal spectrum of the corresponding PM cavity
mode, with an excellent agreement.

We then addressed the generation of wideband singlemode emission with different internal
phase modulation functions 𝜑(𝑡) in regime 2 of Fig. 2. In this case, the tunable flat-top filter
was substituted by a Gaussian apodized fiber Bragg grating (Technica) with Bragg wavelength
1550.24 nm and width 1.6 nm (FWHM) to favor singlemode emission. The PZT actuator was
also removed from the loop. This resulted in an FSR that changed slightly to 7.760 MHz. We
first introduced sinusoidal PM near the FSR and recovered the basic phenomenology already
described in similar FM fiber lasers [47, 53], in particular the induction of FM modelocking for
deviations with respect to the FSR of up to a few kHz [53] and FM laser operation with spectral
width of up to 6 GHz [47], in our case limited by the heterodyne detection bandwidth. Afterwards,
we introduced a triangular phase modulation, now with a modulation frequency slightly deviated
from the sixth FSR harmonic ( 𝑓𝑚 = 46.600 MHz) and with an excursion ±𝜇 = ±0.47 rad. The
observed laser emission was singlemode and followed a triangular excursion in instantaneous
frequency, as shown in the heterodyne trace depicted in Fig. 8(a) and the spectrogram in Fig. 8(b).
The first trace also evidences the presence of AM due to PM-AM conversion in the slopes of
the intracavity Gaussian filter [42]. The heterodyne optical spectrum, shown in Fig. 8(c), is
then expected to be distorted as compared with the spectrum of a cavity mode with triangular
instantaneous frequency and excursion±(𝜇/2𝜋𝜏𝑐) ( 𝑓𝑚/Δ 𝑓𝑚), as described by (21), since filtering
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Fig. 8. Wideband singlemode FM laser emission. (a) Heterodyne signal when the
local oscillator was placed ∼ 1.2 GHz below the emission peak. (b) Spectrum of the
heterodyne signal (blue) and spectrum of a triangular FM with 𝑓𝑚 = 46.600 MHz and
excursion ±894 MHz (orange dots). (c) Spectrogram of the heterodyne signal.

effects are not included in our theory. In this figure we also show with dots the result of the best
fit of the experimental data with a spectrum of this form, where the overall agreement is good but
not exact. The fitted excursion of ±894 MHz is indeed higher than the estimate provided by the
theory, ±676 MHz.

We finally point out that, in general and in contrast with the optical spectrum, the spectrogram
does not permit to elucidate the single or multimode character of the FM laser, as it is limited
by the time-frequency resolution limit of spectral analysis. In the spectrogram, it is necessary
to choose time bins of duration Δ𝑡 ≪ 1/ 𝑓𝑚 to clearly resolve the internal structure of the
instantaneous frequency within a modulation period, and we also need a spectral resolution
Δ𝜈 < FSR = 1/𝜏𝑐 to resolve adjacent axial modes. As both scales are related by Δ𝑡Δ𝜈 ∼ 1, it is
thus necessary that 𝑓𝑚𝜏𝑐 ≪ 1, and this limits the use of the spectrogram as a complete modal
characterization tool to the regime 1 of Fig. 2. A similar problem limits the detection of the
chirped modes of FSF lasers by spectral analysis to the regime of small frequency shifts, defined
by the condition 𝑓𝑠𝜏𝑐 < 1 where 𝑓𝑠 = Ω𝑠/2𝜋 is the shifting frequency [36, 39].

3.3. FSF laser modes

In final experiment, we validated the model (23) of CW FSF laser emission. We substituted the
internal phase modulator in Fig. 3 by the AOFS, driven by at shifting frequency 𝑓𝑠 = 80 MHz.
The FSR changed to a value of 8.426 MHz and the peak of the CW FSF emission showed at
1550.07 nm. In this configuration, the laser is similar to that used in our previous study [54]. The
local oscillator was tuned to the emission peak and the heterodyne signal, plotted in Fig. 9(a),
recorded. As expected, the spectrogram did not show any clear evidence of decomposition
(23) since the laser operated in the regime of large frequency shifts 𝑓𝑠𝜏𝑐 ≃ 9.5. To detect the
modal structure, we numerically constructed a complex representation of the optical field by
removing the dc component of the heterodyne signal and performing a Hilbert transform to get
the quadrature component. Then, we conducted a blind search of chirp components by a digital
cross-correlation of the optical field with linearly chirped test functions 𝐸𝛾 (𝑡) = exp

(
𝑗𝜋𝛾𝑡2

)
of

variable rate 𝛾. The result is shown in Fig. 9(b), where the presence of chirped functions only
at the expected rate 𝛾 = 𝑓𝑠/𝜏𝑐 = 674 MHz/μs is apparent. According to (23), the result of the
cross-correlation for this chirp rate should be:

𝑅 (𝑢) =
∫

𝑑𝑡𝐸𝛾 (𝑡 + 𝑢/2)∗ 𝐸𝑚 (𝑡 − 𝑢/2) =
𝜏𝑐

𝑓𝑠

∑︁
𝑘

(−1)𝑘 𝐴𝑘𝛿 (𝑢 − 𝑘/ 𝑓𝑠) (24)

comprising a set of amplitudes 𝐴𝑘 evenly spaced in the temporal lag variable 𝑢 with separation
1/ 𝑓𝑠 . This structure is clearly visible in the experimental cross-correlation depicted in Fig. 9(c).
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Fig. 9. CW FSF laser emission. (a) DC-subtracted heterodyne signal. (b) Color
map of the cross-correlation of the heterodyne signal and linear chirp functions of
variable chirp rate 𝛾, in relative units 𝛾𝜏𝑐/ 𝑓𝑠 . (c) Zoom of the cross correlation with
a linear chirped function with rate 𝛾 = 𝑓𝑠/𝜏𝑐 . (d) Distribution histogram of random
intensities and, with red dots, best fit to a negative exponential function exp(−𝑠𝐼𝑘/𝐼),
with 𝑠 = 1.090.

From this trace, a statistical test of the modal structure was devised after noticing that the random
amplitudes 𝐴𝑘 , which are polarized in the present setup, are created by spontaneous emission
events. The distribution of the intensities 𝐼𝑘 = |𝐴𝑘 |2 relative to the mean 𝐼 should therefore be
negative exponential exp(−𝐼𝑘/𝐼) [55], in agreement with the experiment as shown in Fig. 9(d).

It is remarkable that a linear theory (23) is so neatly reflected in the CW FSF laser output, as
this indicates that nonlinear dynamical effects are, if not absent, not relevant. The first point
here is that the saturation dynamics is determined by the gain’s recovery time, which is of the
order of ms in an Er:fiber laser [54]. This time scale is large compared with the roundtrip
time, which is sub-μs. Therefore, the regeneratively amplified, frequency-shifted recirculation
of ASE that generates the chirped modes is a linear process that follows adiabatically the gain
dynamics. Moreover, in the experiment, the local oscillator in the heterodyne interferometer
was placed at the emission peak, where gain equals loss [40] and the chirps flow with almost
constant amplitudes 𝐴𝑘 , as described by (23). This result represents the first, to the best of
our knowledge, direct validation of the moving comb model in the regime of large frequency
shifts, as the original study focused on the complementary region [36]. We finally mention that
hybrid modes implemented as an intracavity combination of frequency shift and sinusoidal phase
modulation have been demonstrated in [45].

4. Conclusion

We have presented a linear operator theory that accounts of the response of dispersionless PM
and FS cavities or resonators under arbitrary optical inputs and modulation profiles. The PM/FS
cavity has been described as a filter that selects a certain class of fields, invariant under multiple
roundtrips, which have been identified with the PM/FS cavity modes. The optical modes have
been shown to correspond to the axial modes of the unmodulated ring cavity, phase modulated
by the solution of the linear equation (7) with minimum spectral width. This approach extends in
a consistent way the modal concept to PM/FS cavities and resonators, and leads to a system’s
level equivalence, and thus independent of the technology, of PM/FS cavities or resonators with
resonators preceded and followed by modal phase modulations.

The theory has been experimentally validated through the external injection of sinusoidal PM
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and binary FM modes in an Er:fiber PM fiber loop. The cavity modes have also been compared
with the emission modes in a FM and a FSF Er:fiber laser, showing the effects of finite gain
bandwidth and mode competition in the FM laser and the chirped structure of the FSF laser
emission. In the analysis, the limitations of the spectrogram as a characterization tool in the
regime of large phase modulation frequency or frequency shift have been identified. These
results provide a unified view of the modal structure of cavities and resonators incorporating
phase modulation and/or frequency shift as well as general tools for its linear analysis of interest
in the fields of photonic signal generation and processing.
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Appendix. Modulation with resonant components

Solutions to (7) when the phase function 𝜑(𝑡) contains resonant components, namely, periodic
components with period equal to the roundtrip time 𝜏𝑐, can be obtained using the following result.
Given a solution Φ𝜃 (𝑡) of (7) obtained from an input phase function 𝜑𝜃 (𝑡) that depends on a
continuous parameter 𝜃, this solution gives rise to a family of solutions Φ𝛼(𝑡 ) (𝑡) corresponding
to 𝜑𝛼(𝑡 ) (𝑡) where the parameter is substituted by a function 𝛼(𝑡) periodic in the roundtrip time,
𝛼(𝑡) = 𝛼(𝑡 + 𝜏𝑐). Explicitly,

Φ𝛼(𝑡−𝜏𝑐 ) (𝑡 − 𝜏𝑐) + 𝜑𝛼(𝑡 ) (𝑡) = Φ𝛼(𝑡 ) (𝑡 − 𝜏𝑐) + 𝜑𝛼(𝑡 ) (𝑡) = Φ𝛼(𝑡 ) (𝑡) (25)

where the first equality follows from the assumed periodicity of 𝛼(𝑡) and the second because
Φ𝜃 (𝑡) is a solution of (7) with 𝜑𝜃 (𝑡) for any value of 𝜃. In words, a resonant function can
substitute for any parameter in a given solution of (7).

Let us use this property to determine the solution for resonant modulations, where 𝜑(𝑡) is
itself periodic with period 𝜏𝑐. To this end, consider that we introduce in the optical cavity a
constant, wavelength independent, phase 𝜑(𝑡) = 𝜃. This type of phases appear, for instance, as
the Fresnel reflection phase in mirrors incorporated in a laser ring cavity, and simply shift in
frequency the position of resonances defined by the ring resonator. The corresponding modal
solution to (7) is Φ(𝑡) = 𝜃𝑡/𝜏𝑐. If we apply the previous property to this situation, the solution
corresponding to a resonant modulation 𝜑(𝑡) = 𝛼(𝑡) is given by:

Φ(𝑡) = 𝛼(𝑡) 𝑡

𝜏𝑐
(26)

as is immediate to check. As an application example, we compute the intracavity field for resonant
modulation when the seed field is monochromatic, 𝐸𝑠 (𝑡) = 𝐸0𝑒

𝑗𝜔0𝑡 . In this case, the Neumann
series (3) can be summed since 𝑇 commutes with 𝑒 𝑗 𝜑 (𝑡 ) , and yields [1, 25]:

𝐸𝑐 (𝑡) = 𝐸0

∞∑︁
𝑛=0

𝜌𝑛𝑒 𝑗𝑛𝛼(𝑡 )+ 𝑗𝑛𝜔0𝑡 =
𝐸0

1 − 𝜌 𝑒 𝑗𝜔0𝑡+ 𝑗 𝛼(𝑡 ) (27)

The same expression is obtained using (26) in (8) due to the unitary equivalence 𝑒 𝑗Φ(𝑡 )𝑇𝑒− 𝑗Φ(𝑡 ) =
𝑒𝑖𝜑 (𝑡 )𝑇 .

As said, the result can be applied to any parameter in a known solution, therefore introducing
resonant components in the corresponding mode. Consider, for instance, sinusoidal PM and
suppose that we provide a resonant modulation to the driving phase, 𝜑(𝑡) = 𝜇 cos(Ω𝑚𝑡 + 𝛼(𝑡)).
The modal phase function then writes:

Φ(𝑡) = 𝛽 sin(Ω𝑚 (𝑡 + 𝜏𝑐/2) + 𝛼(𝑡)) (28)

thus describing the same mode but incorporating the applied resonant modulation in the phase.
Another example is provided by the amplitude of any driving waveform since, if Φ(𝑡) is a solution
of (7) for given 𝜑(𝑡), so is 𝜇Φ(𝑡) for 𝜇𝜑(𝑡) with 𝜇 an arbitrary constant. Then, the above derived
property indicates that the modal phase function for a drive of the form 𝜑(𝑡) = 𝛼(𝑡)𝜑(𝑡) with
𝛼(𝑡) = 𝛼(𝑡 + 𝜏𝑐) periodic, is Φ̃(𝑡) = 𝛼(𝑡)Φ(𝑡).
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