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A B S T R A C T

Recent reports indicate that the prevalence of stroke has increased by 50% over the
last 17 years, and at present, 1 in 4 people are at risk of getting a stroke in their lifetime.
Hemiparesis is a common after-effect of stroke, leading to a decrease in limb function
and significantly affecting quality of life. However, personalized therapy adapted to
the needs of each patient can lead to the recovery of mobility of the affected limbs.

This doctoral thesis focuses on the study and modeling of user behavior to design and
adapt robotic rehabilitation systems to the user’s needs. First, an underwater sensor
system has been developed to measure the kinematics of the lower limbs. In addition,
a forces model acting during gait in aquatic environments has been developed with
the aim of designing and subsequently controlling a lower limb exoskeleton immersed
in water. Moreover, a Machine Learning model has been proposed to overcome the
difficulties encountered in measuring the vertical ground reaction force in an aquatic
environment. The model takes as inputs the kinematics of the lower limbs in the sagittal
plane and the vertical acceleration of the user. Furthermore, a Deep Learning model
has been developed to recognize a set of gait activities to generalize the previous model
and to adapt the assistance of a lower limb exoskeleton to different activities of daily
living. Also, in order to adapt and personalize robot-assisted upper limb therapies,
two approaches are presented. First, a method has been proposed to dynamically
adapt the difficulty of upper limb rehabilitation therapies. In addition, a method to
provide assistance according to the needs of each patient based on demonstrations by
an experienced therapist has been proposed.

Part of the main results of this thesis have been published in two journals included
in the Journal Citation Reports (JCR). The publication Estimating vertical ground reaction
forces during gait from lower limb kinematics and vertical acceleration using wearable inertial
sensors focuses on the development of a Machine Learning model to estimate the vertical
reaction force during gait using a motion capture system based on inertial sensors. The
publication Gait Activity Classification with Convolutional Neural Network using Lower Limb
Angle Measurements from Inertial Sensors focuses on the development of a classifier based
on a Deep Learning model to recognize activities of daily living during gait, employing
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techniques to understand the decision-making process and analyzing the feasibility of
adapting the model to multiple situations.
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R E S U M E N

Informes recientes señalan que la frecuencia de los accidentes cerebrovasculares
ha aumentado un 50 % durante los últimos 17 años y, en la actualidad, 1 de cada
4 personas están en riesgo de sufrir de ictus durante su vida. La hemiparesia es
una secuela común, y conlleva una disminución en la función de las extremidades y
afecta significativamente su calidad de vida. No obstante, una terapia personalizada
y adaptada a las necesidades de cada paciente puede llevar a la recuperación de la
movilidad de los miembros afectados.

Esta tesis doctoral se centra en el estudio y modelado del comportamiento del usuario
para diseñar y adaptar sistemas robóticos de rehabilitación a las necesidades de cada
usuario. En primer lugar, se ha desarrollado un sistema de sensores sumergible para
medir la cinemática de los miembros inferiores. Además, se ha desarrollado un modelo
de las fuerzas que actúan durante la marcha en entornos acuáticos con el objetivo de
diseñar y posteriormente controlar un exoesqueleto de miembro inferior sumergido en
agua. Asimismo, debido a las dificultades encontradas para medir la fuerza de reacción
vertical con el suelo en un entorno acuático, se ha propuesto un modelo de Machine
Learning que toma como entradas la cinemática de los miembros inferiores en el plano
sagital y la aceleración vertical del usuario. Además, con el fin de poder generalizar el
modelo anterior y poder adaptar la asistencia de un exoesqueleto de miembro inferior
a diferentes actividades de la vida diaria, se ha desarrollado un modelo de Deep
Learning para reconocer un conjunto de actividades de la marcha. Asimismo, con el
fin de adaptar y personalizar terapias de miembro superior asistidas con robots, se
han propuesto dos posibles soluciones. En primer lugar, se ha propuesto un método
que permite adaptar de forma dinámica la dificultad de terapias de rehabilitación de
miembro superior. Además, se ha propuesto un método para ofrecer asistencia según
la necesidad de cada paciente basado en demostraciones realizadas por un terapeuta
experimentado.

Parte de los resultados principales de la presente tesis se han publicado en dos
revistas incluidas en el Journal Citation Reports (JCR). La publicación Estimating vertical
ground reaction forces during gait from lower limb kinematics and vertical acceleration using
wearable inertial sensors se centra en el desarrollo de un modelo de Machine Learning

vii



para estimar la fuerza de reacción vertical durante la marcha empleando un sistema
de captura de movimiento basado en sensores inerciales. La publicación Gait Activity
Classification with Convolutional Neural Network using Lower Limb Angle Measurements
from Inertial Sensors se centra en el desarrollo de un clasificador basado en un modelo
de Deep Learning para reconocer actividades de la vida diaria durante la marcha,
empleando técnicas para comprender el proceso de decisión y analizando la viabilidad
de adaptar el modelo a múltiples situaciones.
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1
I N T R O D U C T I O N

1.1 the impact of human-robot interaction in rehabilitation

Recent reports indicate that the prevalence of stroke has increased by 50% over the
last 17 years, and at present, 1 in 4 people are at risk of getting a stroke in their lifetime
(Kalita et al., 2023). The United Nations’ World Population Prospects 2022 report
indicates that the proportion of individuals aged 65 or older is projected to increase
globally from 2022 to 2050 (Nations, 2017). In 2022, approximately one in ten individuals
worldwide fall into this age group. By 2030, this figure is anticipated to increment
to nearly 12%, and by 2050, it is expected to reach 16%. This population segment
is particularly susceptible to Acquired Brain Injury (ABI) such as a Cerebrovascular
Accident (CVA) or stroke. The risk of stroke doubles every decade after the age of 55,
and most cases of ABI or stroke lead to profound challenges in the affected individual’s
daily life, as they can result in cognitive, physical, emotional, or social impairments.
In most cases, a suitable rehabilitation program with appropriate intensity can aid
hemiparetic patients in regaining movement in their affected limbs (Kwakkel, 2006;
Winstein et al., 2016; Alessandro et al., 2020).

In this scenario, the use of robotic rehabilitation equipment has emerged as a
beneficial method to aid in the post-stroke motor recovery process. Such devices
can provide highly standardized and intensive therapy, and they also offer mechanisms
to monitor the patient’s recovery advancements. In the current landscape, there exists a
diverse array of robotic systems designed to assist human limb movements in Activity
of Daily Living (ADL). These systems can be broadly categorized into two types:
exoskeletons and end-effector systems (Oña et al., 2018). Exoskeletons are mechanical
structures with degrees of freedom that are aligned with the joints of the limb requiring
assistance or rehabilitation. This alignment enables direct control over the limb’s
movement. Notably, exoskeletons offer the advantage of complete determination of
the arm’s position, as the robot is specifically adjusted to the limb being rehabilitated.
In contrast, end-effector systems maintain the user’s grip at a single point, which
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simplifies the adjustment of the robot to the user, streamlining its usability. However,
this approach does not allow for a complete determination of the limb’s position that is
undergoing rehabilitation.

The spectrum of proposals for the design and control of rehabilitation robotics is
extensive and diverse, as evidenced by the literature (Qassim and Wan Hasan, 2020;
C. Liu et al., 2022; J. Zhou et al., 2021). Nonetheless, it is imperative to prioritize
the end-user to ensure the delivery of effective assistance. Initially, a comprehensive
understanding of the biomechanics of the limb requiring rehabilitation is crucial,
needing analysis of both its kinematics and dynamics (Hasan and Dhingra, 2022; L.
Zhou et al., 2017). Moreover, there is substantiated evidence within the scientific
community regarding the significant role of patient engagement in promoting neural
plasticity during motor relearning scenarios (Blank et al., 2014; Losey et al., 2018).
Additionally, various research studies underscore the necessity of personalizing therapy
to the patient’s needs to facilitate optimal recovery (Faria et al., 2020). Consequently,
it will be necessary to personalize the assistance of robotic rehabilitation systems
according to the needs of each patient.

The integration of Machine Learning methodologies has significantly influenced
their application in the context of robotic-assisted therapies (Fong et al., 2020b; Faria
et al., 2020; Ai et al., 2023). Given that rehabilitation robotic systems directly interact
with patients, they have are able to collect data related to the executed movements
(such as position, velocity, or tracking error) and other relevant physiological signals
during therapeutic exercises (such as motion capture, cardiovascular responses, or
electrodermal activity). Therefore, the acquired data can be used as valuable input for
Machine Learning models, enabling the study of user behavior, learning from historical
experiences, and dynamically adapting the assistance provided by robotic systems to
optimize patient outcomes.

1.2 motivation

As per scientific literature, the use of robotic systems has demonstrated a favorable
impact on rehabilitation therapies for both the upper and lower limbs. Nevertheless,
some studies centered on the effects of robot-assisted therapy reported that individuals
who suffered from severe spasticity, pain, and joint contractures were excluded from
the randomized controlled trials (Veerbeek et al., 2017). Hence, this is a challenge that
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is hindering the progress of robot-assisted therapies and their application to certain
patient groups.

In an attempt to overcome these problems, the SPLASH research project proposes to
perform robot-aided rehabilitation therapy in a supportive environment. Water therapy
has great advantages, including weightlessness or joint unloading, and has been shown
to be effective in the treatment of several disorders, such as arthritis (Roper et al., 2013),
or Spinal Cord Injuries (SCI) (Kesiktas et al., 2004).

It is essential to acknowledge that the execution of rehabilitation exercises during
immersion in the aquatic environment causes the occurrence of hydrodynamic forces.
Therefore, the design and control of robotic devices must be adapted and take into
account the aforementioned forces produced in the aquatic environment. A principal
force exerted on the limbs during aquatic immersion is the buoyancy force, which is an
upward force exerted by a fluid that opposes the weight of a partially or fully immersed
object. Additionally, the drag force emerges as a significant factor, acting in opposition
to the relative motion of an object traversing through the fluid.

In addition to the forces mentioned above, the Ground Reaction Forces (GRF) must
be considered when designing a lower limb rehabilitation device. Among these forces,
the Vertical Ground Reaction Force (vGRF) stands out due to its significant magnitude.
However, there is an important challenge: measuring vGRF can be financially costly,
especially when dealing with aquatic environments. Due to this limitation, one potential
solution is to develop a Machine Learning model. This model would use information
about the user’s movements (kinematics) and estimate the vGRF as its output.

It is worth noting that understanding the actions performed by the user, as well
as their state and behavior, is essential to adapt robotic systems to the needs of
each patient. Related to the rehabilitation of the lower limbs, different activities
for gait rehabilitation could be considered during aquatic therapies. Therefore, a
Human Activity Recognition (HAR) system could help to adapt the assistance of
exoskeleton-type rehabilitation devices.

Regarding upper limb rehabilitation, instead of using an upper limb exoskeleton, an
end-effector robotic device can also be employed. As introduced, these systems are an
easy-to-use solution to assist during upper limb rehabilitation, and they are commonly
used together with serious games to enhance patient engagement and motivation
(Heins et al., 2017; Catalán; Blanco-Ivorra, et al., 2023a). In this context, different
approaches can be considered to adapt the therapy. On the one hand, a Dynamic
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Difficulty Adjustment (DDA) system can be proposed to modulate the difficulty of the
serious games according to the users’ skills to provide an appropriate level of challenge
and keep motivation . On the other hand, the assistance provided by the robotic system
can be adapted to each patient by using an Assistance-As-Needed (AAN) intelligent
system.

In this thesis, diverse objectives are pursued within the field of rehabilitation and
assistive robotics context. First, a model that describes the forces during underwater
gait is proposed to study the effects on the human body and to design underwater
lower limb exoskeleton devices. In this context, Machine Learning models have been
trained to estimate the vGRF and recognize different gait ADLs, which can be used to
adapt the robotic systems accordingly. Additionally, a DDA system has been developed
to adapt the difficulty of serious games during upper limb rehabilitation exercises.
Finally, an AAN architecture has been proposed to perform assistance decision-making
during robot-aided rehabilitation therapies.

1.3 main contributions of the thesis

The present work contains diverse original contributions in the domain of
rehabilitation and assistive robotics. Specifically, it focuses on the development
of models to enhance the design and adaptability of robotic systems. The main
contributions are highlighted below:

The hydrodynamic forces acting on the human body during gait have been
modeled in order to design an exoskeleton-type device for assistance during
aquatic therapies

A Machine Learning model to estimate the vGRF during ground-level walking
from the lower limb joint angles has been trained. Two different models have
been compared and the impact of introducing vertical acceleration to estimate
this force has been evaluated

An adaptation of the model for estimating vGRF during diverse gait ADLs has
been proposed. In addition, the impact of knowing the performed ADLs has been
evaluated

A Deep Learning model has been trained to recognize different ADLs during gait
from the joint trajectories of the lower limbs. Diverse methods have been used to
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understand the decision-making of the model, and the impact of reducing the
number of inputs to adapt the model to different situations has been studied

A DDA system has been developed to adjust the difficulty of serious games and
has been evaluated with able-bodied users during five consecutive sessions. The
proposed system is based on a genetic algorithm that varies different parameters
of a game according to the user’s movements and the game score. In addition, the
psychophysiological state of the users has been evaluated using self-assessment
tests and several physiological signals.

An AAN architecture has been proposed to decide when to assist during upper
limb robot-assisted therapies. The architecture is based on demonstrations from a
therapist, which have been used to train a Deep Learning model. In addition, it
has been proposed to fine-tune the assistance model to each patient, evaluating
the impact on the model performance

1.4 thesis structure

This thesis is framed in the field of rehabilitation and assistance robotics and has
multiple objectives. The first objective is to present a model that describes the forces
that arise during walking in water, to study their effects on the human body, and to
design a robotic device that provides assistance during gait. With this purpose, several
Machine Learning models have been trained to estimate the vGRF and detect different
ADLs, which can be then used to adapt the robotic systems accordingly. Additionally,
it is intended to develop architectures that can adjust the difficulty of serious games
and provide assistance when necessary during robot-assisted upper limb rehabilitation
therapies.

Part of the results presented in this thesis have been published in a journal paper
included in the Journal Citation Reports (JCR).

This document consists of eight Chapters, and is structured as described below:

CHAPTER 1. Description of the impact of human-robot interaction in
rehabilitation scenarios, as well as the importance of Machine Learning models
for decision-making. The motivation of this doctoral thesis and a summary of the
main contributions are also presented.
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CHAPTER 2. A State of the Art review of methods used to perform biomechanical
analysis in aquatic environments, Machine Learning-based methods to estimate
the vGRF, methods used to perform HAR, systems proposed to adapt serious
games dynamically, and AAN methods with robots in rehabilitation scenarios are
reviewed.

CHAPTER 3. Description of the proposal and motivation of the SPLASH
project, detailing the sensor systems developed to analyze the biomechanics
of the lower limbs. An underwater motion capture system is also detailed, and
the theoretical calculations to estimate the forces involved during walking in an
aquatic environment are described.

CHAPTER 4. A model is presented for estimating the vGRF during ground-level
walking from the measurement of the flexion/extension angles of the lower limbs.
A feasibility study is also included to estimate the vGRF during different gait
ADLs.

CHAPTER 5. A model for recognizing different gait ADLs based on the joint
trajectories of the lower limbs in the sagittal plane is presented. In addition,
diverse techniques to understand the decision-making process of the model are
used.

CHAPTER 6. The development of a system for dynamically adapting the difficulty
of serious games with rehabilitation robots is described. The proposed method
has been evaluated during several consecutive sessions, and an analysis of the
psychophysiological state of the users is performed.

CHAPTER 7. An AAN method based on the demonstrations of a therapist is
presented to decide when to assist during robot-aided rehabilitation therapies.

CHAPTER 8. Conclusions obtained during the development of the doctoral thesis
and possible future work.

1.5 publications

The work carried out during the doctoral thesis has resulted in the following
publications:
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2
S TAT E O F T H E A RT

In this Chapter, a comprehensive State of the Art review has been conducted
to contextualize the main contributions of this thesis concerning existing research.
Firstly, an examination of studies focused on biomechanical analysis and modeling of
hydrodynamic forces during aquatic rehabilitation therapies are described. Secondly,
current research that estimates vGRF using Machine Learning is presented. Thirdly,
recent studies related to HAR during gait for the identification of different ADLs are
described. Fourthly, a review of studies presenting DDA systems to adapt serious
games during rehabilitation therapies is included. Finally, a section with a review of
AAN systems for robot-assisted upper limb rehabilitation therapies is presented.

2.1 biomechanical analysis and hydrodynamic forces modeling

during gait

As commented in Chapter 1 section 1.2, performing aquatic rehabilitation therapies
has great advantages such as joint unloading and a decrease of the apparent weight.
Due to these advantages, different authors have proposed diverse methods to analyze
both the kinematics and kinetics of the lower limbs during gait.

Concerning the kinematic analysis, D. Volpe et al. (Volpe et al., 2017) employed a
vision-based system fixed over the surface water to analyze the effects of hydrotherapy
in people with Parkinson’s disease. In that study, the authors performed a comparison
between underwater and on-land gait, and they showed a reduction in stride length,
cadence, and speed. Despite vision-based motion capture systems are considered
the gold standard, the equipment can be financially costly, data acquisition can be
time-consuming, and markers occlusions can be a source of error (Jakob et al., 2021). As
an alternative, Inertial Measurement Units (IMU) can be used to acquire kinematic data
during gait. C. Monoli et al. (Monoli et al., 2021) designed an underwater sensor for
gait analysis, validating their system with different vision-based systems (optoelectronic
and single camera) while measuring the knee angle during gait.

9
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Apart from analyzing the impact of immersion on lower limb kinematics, certain
studies delve deeper and suggest approaches for analyzing the effects of joint loading
by modeling the hydrodynamic forces. J. Lauer simulated the hydrodynamic forces
acting on the human body while performing rehabilitation exercises (flexion, abduction,
cycling) (Lauer, 2023). The author proposed a four-stage analysis workflow, which
are represented in Figure 2.1. First, a video-based 2D pose estimation was performed,
and estimated poses were then converted to 3D coordinates for body mesh estimation.
Then, this information was introduced to a fluid flow simulation software to estimate
the forces exerted on the user. Finally, the kinematics, hydrodynamic forces, and scaled
models are input into OpenSim, a musculoskeletal simulation software (Delp et al.,
2007), which can be used to estimate the lower limb joint forces and torques, as well as
the muscular activation.

Figure 2.1: Biomechanical analysis modeling process proposed by J. Lauer. Initially,
a video-based 2D pose estimation was conducted, and the estimated poses
were subsequently transformed into 3D coordinates for body mesh estimation.
Subsequently, this data was incorporated into a fluid flow simulation software to
calculate the forces exerted on the user. Finally, the kinematics, hydrodynamic forces,
and scaled models are input into OpenSim for further analysis. Source: (Lauer,
2023)
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Although diverse studies related to the analysis of underwater biomechanics have
been conducted, to the best of my knowledge only M. I. V. Orselli and M. Duarte
(Orselli and Duarte, 2011) estimated the internal net joint forces and torques on lower
limbs when walking in water. The authors took into account the buoyancy and the
drag forces generated by the movement of their bodies in the water. In addition, a force
plate was used to measure the vGRF, and a video camera was employed to perform a
2D gait analysis at the sagittal plane while walking at comfortable speeds on land and
in water at a chest-high level.

In conclusion, IMUs and vision-based methods have been used to analyze the
kinematics of the lower limbs during underwater gait. Nevertheless, an underwater
motion capture system composed of diverse IMUs can be more appropriate to perform
gait analysis whether a method that allows and easy placement and calibration
procedures is proposed. In addition, instead of relying on complex physical equations
to estimate joint loads, as suggested by M. I. V. Orselli and M. Duarte, an alternative
approach involves simplifying the modeling process. Specifically, one can provide a
detailed description of the forces exerted on the user during walking. By adopting a
methodology similar to the one proposed by J. Lauer, the estimation of the buoyancy
force, the drag force, and the vGRF can be introduced into a simulation software
such as OpenSim. The main advantage of this method relies on its flexibility: the
musculoskeletal models can be adapted based on the user’s physical characteristics,
enabling assessments of joint loads and muscular activity.

2.2 machine learning for vertical ground reaction force estimation

The advancement of Machine Learning algorithms has prompted researchers to
use these methods for the analysis of gait kinematics and the estimation of vGRF,
especially during ground-level walking. In (Oh et al., 2013; Choi et al., 2013) human
body kinematics together with artificial neural networks were used to predict vGRF.
Nonetheless, a significant limitation of this approach is the reliance on multiple infrared
cameras to collect motion capture data, which may constrain the space of analysis.

The exploration of IMUs for the estimation of vGRF has been a subject of research. E.
Sahabpoor and A. Pavic demonstrated the feasibility of estimating vGRF using a single
IMU to measure the vertical acceleration of the subject’s body mass (Shahabpoor and
Pavic, 2018). Their findings suggest that the placement of an IMU over the C7 vertebra
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results in the most accurate vGRF estimations. However, this method cannot determine
the force produced on the right and left lower limbs.

In contrast, other works propose to position IMUs directly on the lower limbs to
facilitate movement analysis. For instance, X. Jiang et al. used a Random Forest (RF)
algorithm to predict vGRF during gait, employing a single IMU to record acceleration
and gyroscope data (Jiang et al., 2020). F. J. Wouda et al. also used inertial sensors
over the lower limbs, placed on the pelvis and the shank (Wouda et al., 2018) (Figure
2.2). Firstly, the authors trained an artificial neural network to estimate the knee angle.
Then, an additional neural network was used to estimate the vGRF during running,
introducing the estimated knee angle and the vertical accelerations from the placed
IMUs as inputs of the model.

Figure 2.2: Experimental setup and IMU-based approach to estimate the vGRF during running
proposed by F. J. Wouda. First, the knee angle is estimated and later input together
with vertical accelerations to estimate the vGRF. Source: (Wouda et al., 2018)
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It is also noteworthy that the work presented by D. Liu et al. (D. Liu et al., 2022)
is the first study to estimate accurately the GRF during stair walking. The authors
acquired motion capture data with a set of infrared cameras to calculate the whole-body
kinematics and two force plates were embedded into the stair steps (Figure 2.3). With
this data, the authors trained a bidirectional Long Short-Term Memory (LSTM) model
to estimate the GRF with high accuracy.

Regarding the studies presented, the use of Machine Learning algorithms has been
shown to be feasible when estimating the vGRF by different approaches. When
performing a biomechanical analysis, the objective often extends beyond vGRF
measurements, since this force is typically measured together with the kinematics
of the lower limbs. Consequently, a Machine Learning model can be trained with the
kinematics of lower limb joints for the estimation of vGRF. It is also noteworthy that
the studies presented in this section extract different features directly from the raw
IMU signals. Hence, variations in device placement would affect negatively the vGRF
estimation accuracy. Additionally, as previously indicated, vertical acceleration has
been employed to estimate the vGRF due to the established correlation with lower limb
kinematics. Nevertheless, the combined impact of lower limb kinematics and vertical
acceleration on the prediction of vGRF remains unexamined.

It is also worth mentioning that there is a lack of studies that estimate the vGRF
during different scenarios (ground-level, ramp, and stairs). In this context, only the
study proposed by D. Liu et al. presented a method to estimate the GRF during stair

Figure 2.3: Experimental setup used by D. Liu et al. for whole-body kinematics and GRF
measurement. Source: (D. Liu et al., 2022)
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walking. However, as introduced, the main limitation of vision-based approaches could
limit the space of analysis. Therefore, IMU-based models to estimate the vGRF during
different tasks can be presented as an alternative approach.

2.3 human activity recognition during gait

HAR is a complex problem that has many practical applications such as
human-robot interaction, rehabilitation, or health monitoring (Yadav et al., 2021).
With recent advances in wearable technology and Machine Learning, analyzing human
biomechanics and recognizing different ADLs has become more affordable, accurate,
and feasible.

Diverse vision-based methods have been investigated for activity recognition and
adaptation of prosthetic limbs. In this context, H. A. Varol and Y. Massalin (Varol and
Massalin, 2016) investigated the feasibility of using a leg-mounted depth camera to
adapt lower limb prostheses. The authors used a Support Vector Machine (SVM) to
detect five different situations (standing, walking, level walking, stair climbing, and
stair descending). By contrast, B. Laschowski et al. (Laschowski et al., 2022) proposed
using a chest-mounted camera, which provides less relative body motion than lower
limb mounting. In that work, the authors used a Deep Learning model to analyze the
images from the camera to detect ground-level walking and ascending and descending
stairs (Figure 2.4).

The use of inertial sensors for HAR has been widely investigated in addition to
vision-based methods. C. Pham et al. (Pham et al., 2017) used accelerometers embedded
in shoe insoles to detect different activities, using the raw signals as inputs to a
Convolutional Neural Network (CNN) to detect six activities (running, walking, cycling,
kicking, standing, and jumping). The study presented by A. A. Badawi (Badawi et
al., 2018) used the public dataset HuGaDB (Chereshnev and Kertész-Farkas, 2018) to
classify different gait ADLs. A RF model was trained using as inputs different features
extracted from the accelerometer and gyroscope signals placed over the thigh, shin,
and foot. A Deep Learning approach was presented by I. H. Lopez-Nava et al. in
(Lopez-Nava et al., 2020) to avoid extracting features directly from the IMU signals. The
authors used a Two-dimensional Convolutional Neural Network (2D-CNN) to detect
ground-level walking, ascending/descending a ramp, and ascending/descending stairs
by transforming accelerometer and gyroscope signals from the OU-ISIR public dataset
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Figure 2.4: Automated locomotion mode recognition system for robotic leg prostheses and
exoskeletons proposed by B. Laschowski et al. A vision-based HAR approach is
used to adapt the lower limb assistive systems. Source: (Laschowski et al., 2022)

(Makihara et al., 2012). An alternative approach was presented by V. B. Semwal et
al. (Semwal et al., 2021), where a single IMU placed at the Center of Mass (COM)
of each participant was used to detect different gait activities (jogging, ground-level
walking, standing, and stair climbing). In that work, the authors proposed to use a
hybrid model based on ensemble learning. The main limitation of this method would
be its significant computational cost due to the ensemble learning architecture making
it impractical for real-time inference applications.

Although various methods have been proposed for HAR using wearable sensors,
certain limitations can be identified. Due to the need for image analysis to detect
user activity, vision-based techniques can be computationally costly. In contrast, using
IMUs appears to be cost-effective, and computationally affordable to allow HAR using
wearable devices. Nevertheless, in the proposed IMU-based methods, the accurate
placement of the devices is essential, since any error in the positioning of the IMU can
cause variations in the signals and reduce classification accuracy.

2.4 dynamic difficulty adjustment systems for serious games

DDA is a method of adjusting a game’s features in real-time based on the player’s
skill level (Dziedzic, 2016; Dziedzic and Włodarczyk, 2018). The goal of DDA is to
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enhance the player’s satisfaction by creating a state of "flow," a concept from flow
theory (Czikszentmihalyi, 1990). Flow refers to a state where the player is fully engaged
and enjoying the activity. DDA aims to provide the appropriate level of challenge for
the player to achieve this state. If the difficulty level exceeds the player’s ability, they
may feel anxious, while if their ability surpasses the difficulty, they may feel bored
(Csikszentmihalyi, 2000).

In the field of rehabilitation, one of the primary methods employed to adjust game
difficulty involves considering the game score. In this context, different approaches
have been proposed to adapt the game difficulty level based on the patient’s skills.
M. Goršič et al. (Goršič et al., 2017) presented a competitive rehabilitation game
that was dynamically adjusted based on individual patient scores. Specifically, the
difficulty level increased when users achieved a certain score rate and decreased vice
versa. Additionally, M. Pirovano et al. (Pirovano et al., 2014) proposed a system
architecture where therapists identify a game parameter directly related to the game’s
difficulty. Using therapist-defined score criteria, Bayesian optimization techniques were
implemented to adapt the difficulty level.

In addition to the assessment of exercise performance, an alternative approach for
adapting serious games involves the estimation of user preferences through the capture
of players’ emotions using biofeedback devices. For the implementation of these DDA
systems, physiological responses are typically correlated with user preferences as
determined by questionnaires (Byrne and Parasuraman, 1996). In this context, Verhulst
et al. acquired Electrodermal Activity (EDA) and Electrocardiography (ECG) data
from children diagnosed with cerebral palsy to adapt game difficulty according to
their emotional state (Verhulst et al., 2015). Building on this concept, Darzi and Novak
proposed a DDA system that adjusted a competitive rehabilitation game according
to diverse physiological signals, including ECG, Respiratory Frequency (RFQ), skin
conductance, and facial Electromiography (EMG) (Darzi and Novak, 2021). Within
the field of rehabilitation robotics, F. J. Badesa et al. proposed the use of Heart Rate
(HR), RFQ, and EDA to recognize three stress levels during robot-aided rehabilitation
therapies, as represented in Figure 2.5 (Badesa; Morales; N. Garcia-Aracil, et al., 2014;
Badesa; Morales; N. M. Garcia-Aracil, et al., 2016). Furthermore, Xu et al. proposed
to use features derived from ECG, facial EMG, RFQ, EDA, and game performance
metrics to identify anxiety levels in patients while using a robotic system for therapy
across three levels of exercise intensity (Xu et al., 2018). Although these studies show
that adapting exercises to the user’s emotions can help to maintain motivation, the
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Figure 2.5: DDA system proposed by J. Badesa et al. to adapt serious games during robot-aided
rehabilitation therapies. Diverse physiological signals were acquired to assess
the psychophysiological state of the user and change the game difficulty. Source:
(Badesa; Morales; N. Garcia-Aracil, et al., 2014)

main drawback of these methods is that they only guarantee adaptation to the user’s
emotions. Hence, they may not guarantee intensive therapy.

An alternative strategy for adapting rehabilitation games involves the modeling of
the user’s abilities. N. Hocine et al. (Hocine et al., 2015; Tresser et al., 2021) suggested
carrying out an initial assessment of the patient to establish a model of the reachable
space (Figure 2.6). Based on this evaluation, the DDA system positioned targets within
the patient’s ability range, changing the number of targets in each zone to preserve a
determined score level. By contrast, Andrade et al. proposed to dynamically model the
user’s behavior and skills (K. d. O. Andrade et al., 2016; K. O. Andrade et al., 2018).
The authors used a genetic algorithm to determine game parameters that optimize
performance in robotic rehabilitation therapies. Nevertheless, it is important to note
that the studies were validated with a virtual player, which does not demonstrate the
practicality of applying evolutionary algorithms with real users.

Despite various DDA approaches have been proposed in the literature, the State of
the Art review reveals that only the DDA system proposed by Xu et al. takes into
account the game score, the therapy performance, and the psychophysiological state of
the users. Nevertheless, a limitation of the method proposed is worth mentioning. The
system presented by Xu et al. is limited to selecting from only three difficulty levels.
Consequently, while the DDA system ensures that anxiety remains at an appropriate
level, there is no guarantee that the chosen difficulty level will consistently push users
to achieve their maximum performance.
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Figure 2.6: DDA system proposed by N. Hocine et al. to adapt rehabilitation games. The system
positioned targets within the patient’s ability range, changing the number of targets
in each zone to preserve a determined score level. Source: (Hocine et al., 2015;
Tresser et al., 2021)

It is also worth noting that DDA studies typically evaluate the behavior of the
method in a single session. However, the skills and abilities are expected to change over
different sessions in rehabilitation scenarios. Therefore, there is a need to develop a
method to adapt the game difficulty concerning the user’s abilities without performing
a recalibration for each therapy session. Furthermore, according to (Maier et al., 2019),
increasing the difficulty of rehabilitation exercises has shown beneficial effects on motor
recovery. Therefore, a decrease in the target score level between sessions can be used to
increase the difficulty of the game.

2.5 assistance-as-needed architectures for robot-aided

rehabilitation therapies

Recent applications of Machine Learning in rehabilitation robotics attempt to build
intelligent devices that can adjust assessment tasks or provide interventions based
on the features of a patient to build AAN systems (Ai et al., 2023). L. Luo et al.
presented a scheme called GAAN controller for upper extremity rehabilitation training
(Luo et al., 2019). The GAAN control paradigm includes a baseline controller and a
Gaussian Radial Basis Function (RBF) network. The baseline controller models the
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subject’s functional ability and provides appropriate task challenges. The weight
vectors of the RBF networks are updated based on a greedy strategy that allows the
networks to progressively learn the maximum forces provided by the subjects, to
encourage active engagement. An alternative AAN method was proposed by S. Pareek
et al. (Pareek; Nisar, et al., 2023), where Reinforcement Learning (RL) was used to
provide adaptive assistance during a handwriting rehabilitation task. The AAN method
provides real-time modulation of robotic support based on subject-tracking errors to
minimize robotic support. For the training of the RL agent, the authors used a virtual
patient for the generalization of the agent’s behavior in different situations. However,
the principal limitation of the study is that the proposed method was validated with
virtual patients and able-bodied humans.

Despite the great potential of the aforementioned AAN methods, the vast majority
of research does not focus on learning the actions and interventions demonstrated by
an experimented therapist. According to Fong et al., robots can learn from therapists’
movements or assistance criteria, combining the advantages of robotic systems with
the expertise and experience of human therapists (Fong et al., 2020a). With this in
mind, Learning from Demonstration (LfD) techniques could be applied to robot-aided
rehabilitation sessions. Specifically, LfD is a family of Machine Learning methods in
which a robot observes a task demonstration by a human operator and learns rules to
describe the desired task-oriented actions (Ravichandar et al., 2020).

Within the LfD field, M. Najafi et al.(Najafi et al., 2020) developed a force field-based
LfD method using a planar robot to assist patients (Figure 2.7). First, the therapist’s
movements and interaction forces are recorded while performing an exercise. Then,
a non-parametric potential field function is modeled using a convex optimization
algorithm. Finally, using the potential field function and a velocity field controller,
the robot mimics the therapist’s level of interaction. C. Lauretti et al. (Lauretti et al.,
2017) proposed a motion planning system for robotic devices to be used in either
assistive or rehabilitation scenarios. The system was developed based on dynamic
motor primitives for learning the therapist-demonstrated paths for activities of daily
living. C. Manuel Martínez et al. (Martinez et al., 2019) proposed an approach to deliver
rehabilitation using a Gaussian Mixture Model and Gaussian Mixture Regression-based
LfD framework. The rehabilitation exercises were performed collaboratively, with the
therapist performing motion commands to a master robot, which then delivered the
intervention, while the slave robot and the patients directly interacted with the physical
tasks according to their upper limb position and speed. S. Hu et al. (Hu et al., 2021)
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Figure 2.7: LfD architecture proposed by M. Najafi et al. The process involves recording the
movements and forces of the therapist. A non-parametric potential field function is
then created using a convex optimization algorithm and the robot uses the potential
field function and a velocity field controller to replicate the therapist’s interaction
level. Source: (Najafi et al., 2020)

proposed an LfD approach that allows a humanoid robot to work with people during
physical exercises. In this approach, the therapist first demonstrates the exercise by
teleoperating the robot to perform the task with the patient. Then, from the state of the
robot’s end effector, which includes its position and velocity, a model is fitted to infer
the robot’s effort (force output). This approach allows the robot to learn the exercises
and replicate the force interaction with the user.

However, it is worth mentioning that it is of particular interest to allow the patients to
perform the exercise by themselves and learn from the therapist the situations in which
assistance is needed, rather than using LfD techniques to replicate predetermined
assistance movements instructed by the therapist. With this methodology, the robotic
system would assist when necessary, encouraging the patient to perform the exercises.
Upon thorough review, it appears that the sole study presented by S. Pareek and T.
Kesavadas (Pareek and Kesavadas, 2020) proposes to employ this methodology (Figure
2.8). In that study, an AAN architecture based on a LSTM model was presented. A
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Figure 2.8: LfD architecture proposed by S. Pareek and T. Kesavadas, where a haptic device was
used to interact with the game and assist the user. Source: (Pareek and Kesavadas,
2020)

haptic device was used to perform exercises based on following different trajectories.
The force-based assistance could be enabled or disabled concerning the observed
movements. This information was then used as the demonstration phase to learn
when to assist. However, one of the primary limitations of the study proposed by S.
Pareek and T. Kesavadas is that the AAN proposed was validated with able-bodied
participants, and one of the authors acted as the therapist.
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3
AU T O - A D A P T I V E A N D M U LT I M O D A L R E H A B I L I TAT I O N
R O B O T I C S Y S T E M I N C O N T R O L L E D S U P P O RT I V E
E N V I R O N M E N T S

3.1 the splash project proposal

As introduced in Chapter 1 section 1.2, some studies that investigated the effects of
robot-assisted therapy reported that individuals who suffered from severe spasticity,
pain, and joint contractures were excluded from the randomized controlled trials
(Veerbeek et al., 2017). In the stroke patients case, spasticity is a relevant topic, arising
in about 30% of patients (Thibaut et al., 2013). Additionally, it has been shown that
the prevalence of spasticity does not differ between the upper and the lower limbs. In
SCI patients, spasticity affects about 70%, causing a considerable disability (Rekand
et al., 2012). Moreover, in individuals with SCI, the development of joint contractures
and stiffness is one of the most relevant complications, being reported at least one
joint contracture in about 66% of patients (Nas et al., 2015). A systematic review
summarized the effects of aquatic therapy on mobility in individuals with neurological
diseases and showed “fair” evidence that aquatic therapy increases dynamic balance
in participants with some neurological disorders (Marinho-Buzelli et al., 2015). One
randomized controlled trial and two before-and-after tests demonstrated “fair” evidence
for improvement of gait speed after aquatic therapy. In addition, water therapy has
been shown to be effective in the treatment of several disorders, such as arthritis (Roper
et al., 2013), or SCI (Kesiktas et al., 2004).

Within the SPLASH project, the use of robot-assisted therapies in a controlled
water environment has been proposed to address the challenge of clinical trials being
inaccessible to certain individuals. However, using rehabilitation robotic devices
in water presents challenges, and there have only been preliminary attempts to
demonstrate their use in aiding patients’ gait in such environments. A proof-of-concept
study with nine healthy subjects showed that a robotic orthosis immersed in water could
be viably and usefully used for this purpose (Miyoshi; Hiramatsu, et al., 2008). Another

23



3.1 the splash project proposal 24

study by the same authors presented an aquatic exercise device that applies assistive
or resistive forces to the limb, similar to aquatic elliptical bikes, for those with gait
disorders (Miyoshi; Komatsu, et al., 2015). However, the SPLASH concept goes beyond
the results reported on those studies. Specifically, it is proposed to understand, model
and objectively monitor how a subject performs rehabilitation therapies immersed in
water together with the development of a new rehabilitation robotic paradigm.

The envisioned architecture of the SPLASH project is represented in Figure 3.1,
and the following objectives need to be addressed for delivering aquatic robot-aided
therapies:

Understanding and modeling the human body effects of water immersion during
aquatic rehabilitation therapies.

Development of aquatic robotic devices based on a radically new type of actuators
that are able to exploit the properties of the aquatic medium to get the systems
more efficient and lighter than the application of the current actuator technologies

Development of an intelligent control system capable of understanding the user’s
motor abilities, intentions, and general physiological state to adapt the assistance
provided by the robotic devices according to the the patient’s needs

Figure 3.1: Envisioned architecture of the SPLASH project for the development of an aquatic
robot-aided rehabilitation environment.
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To fulfill the specified objectives, within the framework of the SPLASH project,
a multimodal underwater sensor system for user monitorization has been developed
(Figure 3.2). On the one hand, a set of EMG sensors are included to estimate muscle
activity. It is worth noting that the electronics responsible for data acquisition have
been encapsulated to ensure functionality during water immersion. Furthermore, to
safeguard against water interference, waterproof adhesive sheets have been strategically
positioned over each surface electrode to prevent water contact. On the other hand, a
motion capture system based on several XSens Dot IMUs was implemented to analyze
the kinematics during gait (see section 3.2). These wireless devices are IP68-protected
and allow synchronized data acquisition and storage. These sensors will be used to
study the effects of water on the human body and to develop and validate a model
capable of describing the forces exerted by the presence of water. A potential approach
is to use the methodology proposed by J. Lauer (Lauer, 2023), where the kinematics
of the human body together with the calculation of the forces exerted by the aquatic
environment were introduced into the OpenSim simulation software to estimate the
loads on the user’s joints.

The information provided by human kinetics and kinematics study will play a crucial
role in the subsequent design and control of an underwater lower limb exoskeleton,

Figure 3.2: Sensor system developed within the SPLASH project. An IMU-based motion capture
data was implemented using diverse XSens Dot devices. In addition, commercial
EMG sensors have been encapsulated to make them waterproof.
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which relies on an innovative hybrid actuator design. The proposed hybrid actuation
system will employ two actuators: a small electric motor, and a novel actuation system
based on a set of micro water jets in opposite directions (Figure 3.3). The plan is to use
a water-jet-based actuation system to provide a large torque contribution, while a small
electric actuator will provide a small torque contribution. This approach allows us to
use a low transmission, which keeps the actuator’s mechanical impedance low. This
hybrid actuator solution is a missing element in robotics, and it can innovate the way
robots for underwater applications are designed and built. It is noteworthy that this
actuator is not only designed for the development of active exoskeletons since it is also
conceived to be part of other robotic solutions. As shown in Figure 3.4, the proposed
hybrid actuator can be used to develop a lower limb exoskeleton or could also be part
of an end-effector upper limb rehabilitation robotic system.

The SPLASH project aims to propose robotic aquatic therapies for both upper and
lower limbs, as well as different types of robots. Therefore, the adaptive intelligent
architecture can be addressed from different approaches. Regarding a lower limb
exoskeleton, a possible adaptation of the device may be due to the gait activity
performed. In the SPLASH project, instead of only performing therapy on a submerged

Figure 3.3: The novel hybrid actuator proposed in the SPLASH project. The actuator is
composed of an electric motor and diverse waterjet nozzles to produce a rotational
movement.



3.1 the splash project proposal 27

Figure 3.4: Concepts of use of the hybrid actuator proposed in the SPLASH project. The actuator
can be used to develop an exoskeleton to assist during walking. In addition, it is
conceived for the development of an aquatic end-effector robot.

treadmill, it is proposed to generalize aquatic therapies to multiple activities. Figure 3.5
shows a concept of therapy with several ADLs, where the lower limb exoskeleton assists
the patient during ground-level, ramp, and stair walking. For this purpose, a classifier
based on a Deep Learning model has been developed in Chapter 5 to differentiate
between different activities.

In the context of upper limb rehabilitation, end-effector robots can be presented as
an alternative to exoskeletons. With this type of robot, robotic systems are commonly
employed together with serious games. In this thesis, two adaptation methods are
proposed to personalize therapy activities. The first method involves adjusting the

Figure 3.5: Concept of aquatic rehabilitation therapy with several ADLs, where the lower limb
exoskeleton assists the patient during ground-level, ramp, and stair walking.
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difficulty level of the games according to the user’s abilities. Specifically, a genetic
algorithm is proposed and detailed in Chapter 6. The second method relies on an AAN
system to decide when to assist during a point-to-point serious game. This method
is described in Chapter 7, and it is based on the therapist’s interventions. The system
incorporates a Deep Learning model that learns from the therapist’s interactions to
determine when the robot should provide assistance.

3.2 lower limbs angle measurement

As introduced in section 3.1, a set of XSens Dot IMUs has been used to develop an
underwater motion capture system. The system uses the method proposed by T. Seel et
al. to estimate the joint angles of the lower limbs during gait (Seel; Raisch, et al., 2014).
This method relies on the analysis of joint movements and can accurately obtain joint
angles, even at low acquisition rates (from 40 Hz) (Seel; Schauer, et al., 2012). In this
section, a description of the implemented method is detailed, including the calibration
and angle measurement processes.

3.2.1 Identification of the joint axis and position coordinates

The method used to develop a motion capture system avoids the need for an
algorithm that makes assumptions about the position and orientation of different
IMUs related to the user’s lower limb. Additionally, to estimate joint angles using
this algorithm, we rely on gyroscope and accelerometer data from the IMUs, which
eliminates the dependence on a uniform magnetic field. In this method, two IMUs
attached to the upper and lower segments of each joint are assumed, which measure
the accelerations a1(t), a2(t) ∈ R3 and the angular rates g1(t), g2(t) ∈ R3 at a sample
period ∆t.

The data from the gyroscope is employed to determine the unit direction vectors
j1, j2 ∈ R3 corresponding to the flexion/extension axes of the hip, knee, and ankle. It
is worth mentioning that vectors j1 and j2 remain constant and are only influenced by
the sensors’ orientation relative to the joint. Geometrically, g1(t) and g2(t) are only
differentiated by the angular velocity of the joint and a rotational matrix. As a result,
the length of their projections onto the plane of the joint remains consistent at every
moment, which can be described as:
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||g1(t)× j1||2 − ||g2(t)× j2||2 = 0 ∀t (3.1)

where || · ||2 is the Euclidean norm.

In addition to determining direction vectors, it is essential to calculate the joint center
position in the local coordinates of the IMUs. These vectors, denoted as o1, o2 ∈ R3

remain constant, and their values depend on the mounting position and orientation
relative to the leg segments. To compute these vectors, T. Seel et al.(Seel; Raisch, et al.,
2014) propose considering the acceleration of each sensor as a combination of two
components: the center of joint acceleration, and the acceleration due to the rotation
of the sensor around the joint center. Furthermore, the acceleration of the joint center
should be consistent in both IMU local frames. This consistency can be expressed
mathematically as:

||a1(t)− Γg1(t)(o1)||2 − ||a2(t)− Γg2(t)(o2)||2 = 0 ∀t (3.2)

Γgi(t)(oi) := gi(t)× (gi(t)× oi) + ġi(t)× oi , i = 1, 2

where Γgi(t)(oi) is the radial and tangential acceleration due to the IMU rotation
around the joint center.

All previously established constraints must be satisfied by any movement of the
joint. Therefore, j1, j2, o1, and o2 can be identified by minimizing the left side of the
Equations (3.1) and (3.2). To determine j1 and j2, the problem can be reduced to a
four-dimensional space by limiting the axis to a unit length. This allows us to represent
j1 and j2 using spherical coordinates.

j1 =




cos(ϕ1) · cos(θ1)

cos(ϕ1) · sin(θ1)

sin(ϕ1)


 , j2 =




cos(ϕ2) · cos(θ2)

cos(ϕ2) · sin(θ2)

sin(ϕ2)


 (3.3)

where ϕi and θi are inclination and azimuth. In addition, let the sum of squared
errors for N samples be defined as:
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Ψ(ϕ1, θ1, ϕ2, θ2) :=
N

∑
i=1

(||g1(ti)× j1||2 − ||g2(ti)× j2||2)2 (3.4)

In the same manner, o1 and o2 can also be estimated by:

Ψ(o1, o2) :=
N

∑
i=1

(||a1(ti)− Γg1(ti)(o1)||2 − ||a2(ti)− Γg2(ti)(o2)||2)2 (3.5)

In order to minimize Ψ(ϕ1, θ1, ϕ2, θ2) and Ψ(o1, o2) the Trust Region Reflective
algorithm have been applied (Byrd et al., 1988).

Once the IMUs are placed, the participants should execute diverse movements as a
calibration process to obtain o1, o2,j1, j2, as represented in Figure 3.6. First, to determine
the coordinates for the hip, knee, and ankle joints o1, o2 participants can be instructed
to execute random circling movements. Additionally, to estimate the coordinates of the
joint axes j1, j2, data from the participants’ walking patterns can be collected to identify
the primary axis of motion. In other words, these gait data are used to determine
flexion/extension axes of the hip, knee, and ankle joints.

Figure 3.6: The placement of inertial sensors on the human body and calibration movements
used to measure the angle of the lower limb joints. (a) Arbitrary movements are
performed to estimate the coordinates for the hip, knee, and ankle joint centers
position o1, o2 in the local coordinates of the IMUs. (b) Data collected during
gait are used to determine the unit direction vectors j1, j2 corresponding to the
flexion/extension axes of the hip, knee, and ankle.
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3.2.2 Flexion/extension angle measurement

After successfully determining the coordinates of the joint axes (j1, j2) and the joint
position coordinates (o1, o2), the angle of the lower limb joints can be measured from
accelerations and angular rate data from the placed IMUs. By employing the data
from the gyroscopes the flexion/extension angles can be calculated by integrating the
difference of the angular rates around the joint axis:

αgyr(t) =
∫ t

0
(g1(τ) · j1 − g2(τ) · j2)dτ (3.6)

Furthermore, the knowledge of the joint axis coordinates allows us to employ many
of the restrictive methods from the literature which require the sensor axes to coincide
with joint axes or segment axes, as detailed by T. Seel et al. (Seel; Raisch, et al., 2014).
In particular, an extension of the approach proposed in (K. Liu et al., 2009) has been
extended to three-dimensional space, where the measured accelerations are shifted
onto the joint axis by applying:

ã1 = a1(t)− Γg1(t)(o1), ã2 = a2(t)− Γg2(t)(o2) (3.7)

The flexion/extension angles can be estimated through the angle between ã1 and ã2

projections into the joint plane. Subsequently, for each local frame a pair of joint plane
axes x1, y1, x2, y2 ∈ R3 are defined:

x1 = j1 × c, y1 = j1 × x1, x2 = j2 × c, y2 = j2 × x2 (3.8)

where c ∈ R3 represents any vector that ensures none of the products to be zero.
Finally, the joint angle can be estimated through the accelerometer data:

αacc(t) = ∠

(
ã1(t) · x1

ã1(t) · y1


 ,


ã2(t) · x2

ã2(t) · y2



)

(3.9)

The resulting angle αacc is not affected by drift as αgyr since any integration has been
used to compute the angle. However, it is worth noting that αacc is affected by the
accelerometer noise. Furthermore, αgyr is accurate in short time scales despite the drift.
Therefore, it could be appropriate to combine both obtained angles using a standard
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tool of sensor fusion. In the proposed system, a complementary filter (Young, 2009) has
been used to fuse αacc and αgyr, and it is defined as:

α(t) = λ · αacc(t) + (1 − λ) · (α(t − ∆t) + αgyr(t)− αgyr(t − ∆t)) (3.10)

By using the filter defined above, the flexion/extension angles are estimated with a
sample period of ∆t = 0.016 (60 Hz) and λ = 0.02.

Finally, it is worth mentioning that the conducted study by T. Seel et al. and studies
presented by other authors (Kumar et al., 2018) have shown that this method presents a
Root Mean Squared Error (RMSE) between 3 to 5 degrees for the hip, knee, and ankle
flexion/extension movements. Consequently, it may be assumed that the accuracy of
this method is sufficient to conduct a satisfactory gait analysis.

3.3 forces modeling during underwater gait

As explained in section 3.1, understanding and modeling the forces exerted on
the human body during gait to design an active lower limb exoskeleton has been
investigated in the SPLASH project context. With this purpose, the motion capture
system implemented in section 3.1 can be used to model the hydrodynamic forces.

To facilitate the analysis and ensure that the suggested method is applicable for
designing and controlling an underwater exoskeleton, different reference systems have
been established in the lower extremities. This approach allows us to model the forces
applied during gait within the local reference systems of each segment, which can then
be transformed into a global reference frame.

In Figure 3.7 each of the reference systems has been represented. First, the global
reference system G has been defined at the hip joint, with a positive forward direction
in the X-axis. In addition, three reference systems have been placed at the hip H, knee
K, and ankle A joints following the Denavit-Hartenberg (DH) rules (Corke, 2007). Table
3.1 includes the DH parameters that solve the forward kinematics of the chain, where
Li, i ∈ {1, 2, 3} are the longitudes of the user-measured thighs, shanks, and feet.

The human lower limbs have been considered rigid bodies in the sagittal plane,
composed of three segments (the thigh, the shank, and the foot), and three net forces
have been taken into account (buoyancy force, drag force, and vGRF). In addition, it
should be noted that aquatic therapy is usually performed at chest level (Morer et al.,
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Figure 3.7: System references placed on the lower limb legs following the Denavit-Hartenberg
convention.

Table 3.1: Denavit-Hartenberg parameters to solve the forward kinematics of the leg kinematics
chain in the sagittal plane.

θ d a α

G-H -90
◦

0 0 0

H-K θhip 0 L1 0

K-A θknee 0 L2 0

A-dl θankle + 90
◦

0 L3 0

2020; Veldema and Jansen, 2021). Hence, apart from the lower limb segments, the
abdominopelvic volume has also been taken into account to estimate the buoyancy and
vGRF when walking underwater.
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3.3.1 Buoyancy force

The buoyancy force is an upward force exerted by a fluid that opposes the weight of
an immersed body, which can be defined in the system reference G as:

F⃗b = ρw · g · Vi · ŷ (3.11)

where ρw is the fluid density, g is the gravitational constant, Vi is the body segment
volume, and ŷ is the unitary vector in the Y-axis direction.

The estimation of F⃗b needs to account for the dimensions of each body segment and
the corresponding volume. There exists a proportional relationship between the size of
the human body segments, where anthropometric measurements can be regarded as
an essential parameter appropriate to determine the volume of each segment (Drillis
et al., 1964; Clauser et al., 1969; Xia et al., 2014). Concerning the study conducted by J.
Sendroy and H. A. Collison the human body volume can be estimated according to
height (H), weight (W), and body surface area (BSA) for male and female subjects as:

Vmale = BSA · 60.20 · (W/H)0.562 (3.12)

Vf emale = BSA · 62.90 · (W/H)0.578 (3.13)

where V is the total body volume in l, H is the height in cm, W is the weight in kg, and
BSA is the body surface area in m2. The DuBois formula can be used to estimate the
body surface area (DuBois, 1916) according to the height and weight:

BSA = 0.007184 · W0.425 · H0.725 (3.14)

Once the total body volume is estimated, the volume for the thigh, the shank, and the
foot can be estimated with the relative volumes defined by C. Clauser et al. (Clauser et
al., 1969). In addition, as the authors obtained the relative volume of the total trunk, the
abdominopelvic and the thorax volumes have been extracted from the study conducted
by W. Dempster et al. (Dempster and Gaughran, 1967). Apart from the segment body
volumes, COM positions must be estimated to determine the Fb application point. In
Table 3.2 the relative volumes of each segment to the total body volumes and the
relative COM positions to the total segment lengths are collected.
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Table 3.2: Volume ratios and relative COM distance to the proximal joint of each segment.

Volume Ratio COM Distance Ratio

Abdominopelvic (Dempster and Gaughran, 1967) 26.3% -
Thigh (Clauser et al., 1969) 10.3% 37.2%
Shank (Clauser et al., 1969) 4.3% 37.1%

Foot (Clauser et al., 1969) 1.5% 44.9%

After the COM pose of each segment is estimated in i-th the local reference system
(L,iTCOM,i), a transformation can be applied to determine the pose of each COM in the
global reference system:

GTCOM,i =
GTL,i · L,iTCOM,i (3.15)

3.3.2 Drag forces

Drag force FD refers to the resistance offered by a fluid to the motion of an object
moving through it and can be described as:

F⃗D = −CD · ρw · A⊥ · v2

2
v̂ (3.16)

where CD is the drag coefficient, ρw is the density of the water, A⊥ is the projection of
the area perpendicular to the velocity of the body, v is the body velocity, and v̂ is a unit
vector that indicates the direction velocity.

Each segment can be divided into an infinitesimal length dl for the analysis of drag
forces. Thus, applied to our problem, the drag force can also be defined as:

F⃗D = −
∫ l

0

CD · ρw

2
· v2 ·∅ · dl⊥v⃗dl (3.17)

where ∅ is the segment diameter and dl⊥v⃗dl is the differential length segment
perpendicular to its velocity.

Each of the lower limb dl will have a certain v⃗dl , which is assumed to be due to two
causes:
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User’s gait velocity (v⃗g). The subject imparts a certain velocity v⃗g to each lower
limb segment during underwater gait. This velocity will be assumed equal for
the entire human body.

Angular velocity of the joints (ωi). During gait, each lower limb joint has a
certain position θi and angular velocity ωi. This rotation will cause the different
dl to have a given tangential velocity v⃗t, depending on the distance to the rotation
axis of the joint.

Therefore, the estimation of both v⃗t and the forward velocity of the segment v⃗g are
required to estimate the velocity v⃗dl at each dl.

Using the IMU-based system developed to measure the joint angles of the lower
limbs, v⃗g can be estimated in the sagittal plane from the device placed over the pelvis
such that:

v⃗x = Kx +
∫ t

0
a⃗x (3.18)

v⃗y = Ky +
∫ t

0
a⃗y (3.19)

v⃗g = vx · x̂ + vy · ŷ (3.20)

Generally, v⃗dl can be expressed for the thigh, shank, and foot segments as:

v⃗dl,thigh = v⃗g + v⃗t,hip (3.21)

v⃗dl,shank = v⃗g + v⃗t,hip + v⃗t,knee (3.22)

v⃗dl, f oot = v⃗g + v⃗t,hip + v⃗t,knee + v⃗t,ankle (3.23)

where v⃗t,hip, v⃗t,knee, and v⃗t,ankle are the tangential velocities due to the hip, knee, and
ankle rotations.

Note that the velocities must all be expressed in the same reference frame. Therefore,
the following transformations must be applied to calculate each v⃗t in G:
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Gv⃗t,hip = GTH · (Hω⃗hip × H⃗rhip) (3.24)

Gv⃗t,knee =
GTK · (Kω⃗knee × K⃗rknee) (3.25)

Gv⃗t,ankle =
GTA · (Aω⃗ankle × A⃗rankle) (3.26)

Once the velocity v⃗dl is estimated, the unit vector v̂dl can be found by:

v̂dl =
v⃗dl

||⃗vdl ||
(3.27)

The projection of the area perpendicular to the velocity vector dA⊥ is required to
calculate the applied drag force at each dl. This projection can be deduced through
trigonometric methods, which are illustrated in Figure 3.8. First, the direction of d⃗l
needs to be known. This direction will be given in the form of a unit vector in the
local coordinate system, and will subsequently be transformed into G. Regarding the
segment, and according the DH reference frames, d⃗l can be expressed in the global
reference system as:

Figure 3.8: Representation of trigonometric methods used to calculate dl⊥ ˆvdl .
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d̂lthigh = GTdl · x̂ (3.28)

d̂lshank =
GTdl · x̂ (3.29)

d̂l f oot =
GTdl · ŷ (3.30)

After obtaining d̂l, the angle α between vectors d̂l and v⃗dl can be calculated as:

α = cos−1

(
d̂l · v̂dl

||d̂l|| · ||v̂dl ||

)
(3.31)

Finally, dA⊥ can be calculated by ∅ and d⃗l:

dA⊥ = ∅ · ||d⃗l|| · sin(α) (3.32)

3.3.3 Vertical ground reaction force

As introduced, the vGRF is the greatest magnitude of the GRF during gait. Hence, a
force plate to measure this force or a method to estimate the vGRF is needed to perform
an adequate underwater gait analysis. Due to the difficulties that can be caused by
using an underwater force plate, in this thesis a Machine Learning model is proposed
to estimate the vGRF.

The Machine Learning algorithm will use as inputs the kinematics of the lower limb
joints and the vertical acceleration measured at the C7 vertebra, which training and
evaluation can be found in Chapter 4. Data from a force plate embedded in a treadmill
and pressure insoles have been used to train the model, which results in:

v̂GRF = f (xkin) (3.33)

where v̂GRF is the output of the model (i.e. the estimated vGRF) and xkin is a vector
that contains data from the lower limb kinematics and the user’s vertical acceleration.
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It should be noted that the model has been trained without immersion. Hence, the
output v̂GRF is normalized to the user’s Body Weight (BW) to be later adapted to the
aquatic environment such that:

v̂GRFw = v̂GRF · (FBW − FB) · ŷ (3.34)

where v̂GRFw is the estimated vGRF during immersion expressed in G coordinates,
FBW is the user’s BW, and FB is the total buoyancy force exerted on the user.

3.4 conclusion

In this Chapter, the SPLASH project proposal has been presented, which intends
to address the limitations of robot-aided therapies caused by spasticity, pain, or
joint stiffness. As described in section 3.1, the SPLASH project aims to develop an
aquatic rehabilitation environment by understanding and modeling the effects of water
immersion, and developing aquatic rehabilitation devices together with intelligent
control systems to adapt the assistance provided by the robotic devices to the user’s
needs.

In this thesis, to study the effects of water immersion in human gait, an IMU-based
motion capture system has been developed to measure the lower limb flexion/extension
angles (section 3.2). Based on the measurement of the lower limb kinematics, a
model describing the buoyancy and drag forces during gait is described in section 3.3.
Moreover, a Machine Learning model has been developed to overcome the difficulties
encountered in measuring the vGRF in an aquatic environment (Chapter 4). In order to
generalize the aquatic therapies to diverse gait ADLs, a classifier has been developed
to detect a set of activities based on the trajectories of the lower limb angles (Chapter
5). Furthermore, two different approaches are presented to develop an intelligent
auto-adaptive control system for upper limb rehabilitation. First, a DDA system has
been developed to adapt the difficulty of serious games to the patient’s abilities (Chapter
6). Finally, a Deep Learning model has been developed to identify when assistance is
needed by learning from a therapist’s interventions (Chapter 7).
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4
V E RT I C A L G R O U N D R E A C T I O N F O R C E E S T I M AT I O N D U R I N G
G A I T F R O M L O W E R L I M B K I N E M AT I C S A N D V E RT I C A L
A C C E L E R AT I O N U S I N G W E A R A B L E I N E RT I A L S E N S O R S

4.1 introduction

As explained, there is a need to estimate the vGRF to carry out an appropriate gait
analysis due to the difficulties presented by employing an underwater force plate,
since it represents an important part of the pattern and magnitude of the mechanical
loading (Jacobs et al., 1972; Zadpoor and Nikooyan, 2012). It is noteworthy that three
main peaks can be distinguished in the vGRF during gait (Marasović et al., 2009).
First, the Loading Peak (LP) is produced, a local maximum corresponding to the
loading response. Second, a local minimum appears, corresponding to the Mid Stance
Peak (MP). Finally, a local maximum is produced during the terminal stance, named as
Terminal Stance Peak (TP). As the magnitude and timing of these peaks influence the
muscle and joint loads, the vGRF estimated signal must retain the highest accuracy at
these peaks.

With this purpose, different Machine Learning algorithms have been proposed and
analyzed to estimate the vGRF during gait. The IMU-based method presented in
Chapter 3, section 3.2 has been used to measure the kinematics of the lower limbs,
which data are used together with the vertical acceleration as inputs of the model. In
this context, a study has been conducted first to estimate the vGRF during ground-level
walking, with special emphasis on the importance of each of the inputs and the
estimation of the peaks. In addition, as it is intended to study the biomechanical effects
during different activities (Chapter 3, section 3.1), the estimation of the vGRF must be
evaluated and analyzed whether an adaptation of the algorithms is required.

41
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4.2 vertical ground reaction force estimation during ground-level

walking

4.2.1 Materials and Methods

4.2.1.1 Experimental sessions

In this section, the participants involved, the experimental setup, and the protocol
followed are detailed.

Twelve volunteer non-disabled users participated in the experimental sessions, ten
male and two female. The ages were between 23 and 52 years old (29.8 ± 7.4), with
heights ranging from 1.65m to 1.87m (176.2 ± 7.4cm) and weights from 56.1kg to 90.2kg
(76 ± 12.5kg). Written informed consent was obtained from the individuals before
participating in the sessions, and the study was approved by the INESCOP Footwear
Technology Center.

The devices involved in the experimental sessions are shown in Figure 4.1. The
IMU-based motion capture system described in Chapter 3, section 3.2 has been used to
acquire lower limb kinematics data at 60 Hz. An additional IMU was placed at the C7

vertebra to measure the vertical acceleration of the users, as proposed in (Shahabpoor

Figure 4.1: In the left image, the placement of the IMUs is represented, which are utilized to
measure the vertical acceleration (C7 IMU) and the joint angles of the lower limb
(hip, thigh, leg, and foot). The right image shows the treadmill h/p/cosmos 150/50,
which is employed for capturing the vGRF during gait.
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and Pavic, 2018). In addition, a treadmill model h/p/cosmos 150/50 with an embedded
force plate was used to measure the vGRF at 100 Hz.

Before starting the experimental session, IMUs were attached to the user’s back hip,
thigh, leg, and foot, and their height and weight were measured. The calibration data
was then collected to determine the joint angles of the lower limb. Initially, the user
was asked to perform arbitrary circling movements with the hip, knee, and ankle for
one minute to obtain the center position coordinates (o1, o2) of each joint. After that,
the user walked on a treadmill at a comfortable speed for another minute to obtain the
flexion/extension joint axis coordinates (j1, j2).

Once the calibration process was completed, the participants walked on the treadmill
at four different speeds, ranging from 1.5 km/h to 4.5 km/h, to cover a wide range of
normal gait speeds. For each speed, kinematics and vGRF data were recorded for 5

minutes. There was a 2-minute break between each activity for rest.

4.2.1.2 Acquired data and processing

In this section, the data acquisition process from each device and the
subsequent signal processing are described. The data processing pipeline is represented
in Figure 4.2.

The vGRF was captured using the plate-instrumented treadmill, which has been
normalized relative to the BW of each participant. Data from IMUs located at the hip,
thigh, shank, and foot were used to acquire accelerometer and gyroscope measurements
to estimate the lower limb joint angles in the sagittal plane. Following the computation
of the hip, knee, and ankle angles, a forward-backward low-pass filter was applied
(Gustafsson, 1996) with a 6 Hz cutoff frequency and the angular velocities for each joint
were calculated.

In addition, the acceleration and orientation of the IMU placed over the C7 vertebra
were acquired to estimate the vertical acceleration of the user (Esser et al., 2009). First,
the acceleration vector from the IMU system was transformed into the global system
by using the orientation. Finally, the gravity from the measured vertical acceleration
was removed by subtracting the Z-axis acceleration.

It is worth mentioning that identifying the onset and the end of the gait cycle is
commonly used to transform the data from the temporal domain to the gait cycle
domain (0-100%) when performing a gait analysis. Hence, all signals have been
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Figure 4.2: A treadmill and diverse IMUs were used to collect data to estimate the vGRF. The
IMUs were placed on the lower limbs to measure acceleration and angular velocity,
which allowed us to estimate the flexion/extension angles using the motion capture
system described in Chapter 3, section 3.2. In addition, an IMU placed over the
C7 vertebra was employed to measure the vertical acceleration of the users. The
foot-ground contact was detected using the anteroposterior acceleration measured
at the hip to compute the gait cycle. The vGRF was measured during gait and
normalized by the body weight of each user. To detect the ground-foot contact in
the force signal, the end of the stance phase (null force) was detected. The measured
vGRF and lower limb kinematics data were synced by using the gait cycle. The
flexion/extension joint angles and velocities, the vertical acceleration, and the gait
cycle have been used as inputs of the proposed models, and the measured vGRF
have been used as the ground truth values for model learning.

transformed into the gait cycle domain. With this purpose, the foot-ground contact
was detected by employing two different methods. First, the foot-ground contact
was identified in the IMU-based motion capture system by using the hip acceleration
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(Zijlstra and Hof, 2003). A forward-backward low-pass filter with a 2 Hz cutoff was
applied, and local maxima were used for ground-contact detection, which correspond
to the left and right ground foot contacts. The right foot contacts were used to calculate
the gait cycle as a matter of convention. Additionally, foot-ground contact was detected
in the vGRF signal when the force value started increasing.

Signal synchronization starts by detecting the initial ground-foot contact in the vGRF
and the IMU signals. Additionally, by using the foot-ground contact detection in both
systems, the beginning and the end of each step can be determined. For each step,
the vGRF and the lower limb kinematics data are labeled according to the gait cycle
percentage in which it occurs. Finally, to train the Machine Learning models, the vGRF
and leg kinematics data are synchronized from the gait cycle percentage in which they
occur, ensuring that each lower limb kinematics data is assigned a vGRF value.

Figure 4.3 represents the flexion/extension angles, the vertical acceleration, and the
vGRF acquired for each gait speed.

4.2.1.3 Selected Machine Learning algorithms

The vGRF can be estimated by using a regression model. In this study, a RF and
a Feedforward Neural Network (FNN) have been trained since their use has been
previously evaluated by other authors, but their performance has not been compared
(see Chapter 2, section 2.2).

RF models are composed of an ensemble of decision trees (Zhang and Ma, 2012).
Each tree is independently trained on a different subset of the data, and the final
output of the RF model is based on the most effective outcome produced by the trees.
The strength of RF models relies on their ability to make accurate predictions and to
achieve good generalization across different datasets. This is largely due to the bagging
approach they employ, which reduces variance and enhances the robustness of the
model. The SciKit Learn Python Library (Pedregosa et al., 2011) was used to train the
RF models. The training process involved the creation of 170 decision trees, each with a
maximum depth of 35. The trees were configured to require at least one sample at the
leaf nodes and a minimum of two samples to split an internal node. For determining
the best split at each node, the models considered a number of inputs equal to the
base-2 logarithm of the total number of inputs.

FNN models refer to a type of artificial neural network consisting of neurons that
take in an input signal, which is processed by an activation function to generate an
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Figure 4.3: The flexion/extension angles of the hip, knee, and ankle are represented in the first,
second, and third rows, respectively. The measured vertical acceleration at the C7

vertebra is shown in the fourth row, and the measured vGRF is presented in the fifth
row. These data are represented across different gait speeds ranging from 1.5 to 4.5
km/h and they are standardized based on the gait cycle.

output signal (Svozil et al., 1997; Sharma et al., 2017). These neurons are organized
into layers, with the first layer called the input layer, the last layer known as the
output layer, and the layers between them known as hidden layers. Each neuron
in a specific layer is connected to all the neurons in the next layer through weight
coefficients. The optimization of the neural network’s weights is typically performed
via back-propagation, which utilizes a non-linear optimization technique like the
gradient descent algorithm (Andrychowicz et al., 2016). The Keras Python Library
(Gulli and Pal, 2017a) has been used to train the FNN models. The architecture of the
FNN models trained is composed of an input layer with a number of neurons equal to
the number of inputs, five hidden layers with ten neurons, and an output layer with
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one neuron. The Rectified Linear Unit (ReLu) has been used as the activation function,
the Adam algorithm has been used to optimize the network weights (Kingma and Ba,
2014), and the RMSE serves as the loss function. To mitigate the risk of overfitting,
the dropout regularization technique is applied (Srivastava et al., 2014). Additionally,
in line with best practices for using dropout, a weight constraint is enforced on each
hidden layer, ensuring that the weight norms do not surpass a threshold of four.

It must be noted that the RF and FNN hyperparameters have been tuned to achieve
the best performance based on the RMSE with the training data.

4.2.1.4 Preprocessing and training

To train the RF and FNN models the flexion/extension angles and the angular
velocities of the hip, knee, and ankle, the vertical acceleration measured at the C7

vertebra, and the instant of the gait cycle were introduced as inputs. Additionally, the
measured vGRF with the treadmill was used as the ground truth value.

Data collected from the participants was divided into three different datasets to
evaluate the performance of the RF and FNN models. Data from ten users have
been randomly divided to evaluate the accuracy of the models by cross-validation:
80% of the data was used for training the models and the remaining 20% was used for
validation (intra-participant data). Additionally, the performance of the models has
been evaluated on users who were not part of the learning process (inter-participant
data) using data from two additional participants.

Before training the models, the training dataset was used to build a scaler, which
normalized the input values within the range of 0 to 1. This scaler has also been
employed to normalize the validation and inter-participants dataset to evaluate the
accuracy of the regression models.

As previously introduced, one of the primary objectives of this study is to investigate
the impact of vertical acceleration and lower limb kinematics when estimating the
vGRF. To analyze these contributions, two different training approaches have been
conducted for each model, using the following inputs:

Training 1 (FNN-Kinematics, RF-Kinematics). Joint angles, angular velocities,
and gait cycle.

Training 2 (FNN-C7, RF-C7). Joint angles, angular velocities, vertical acceleration,
and gait cycle.
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4.2.1.5 Performance evaluation of the trained models

The performance of the RF and FNN models has been evaluated as follows:

vGRF RMSE. A lower RMSE in the estimation of the vGRF signal has been
considered as a better performance of the models.

vGRF Normalized Root Mean Squared Error (NRMSE). The NRMSE is defined
as (Shahabpoor and Pavic, 2018):

NRMSE =
RMSE

maxvGRFmeasured − minvGRFmeasured
(4.1)

A lower NRMSE in the estimation of the vGRF signal has been considered as a
better performance of the model.

Correlation. A higher correlation (ρ) between the ground truth and the estimated
vGRF signal has been considered as a better performance of the models. The
Person’s correlation coefficient has been used to calculate the correlation between
estimated and ground truth data.

LP, MP, and TP RMSE. A lower RMSE between ground truth and estimated
vGRF peaks has been considered as a better performance of the models. To
identify the LP and TP in gait analysis, the local maxima during the first and
second periods of foot support were detected. For determining the MP, it was
specifically looked for the local minimum value situated between the LP and TP
peaks.

LP, MP, and TP delay. When the delay or advance between ground truth and
estimated vGRF peaks is close to zero, it has been considered as a better model
performance. The delay is calculated as the difference between the estimated and
measured peaks. Specifically, a positive value means that the estimated peak lags
behind the measured peak, and a negative value indicates that the estimated peak
occurs earlier than the measured peak.

4.2.1.6 Statistical data analysis

Statistical data analysis was conducted to evaluate the accuracy of the models in
estimating vGRF with intra and inter-participant datasets. Initially, a comparative of
the four trained models (FNN-Kinematics, FNN-C7, RF-Kinematics, and RF-C7) was
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performed in terms of RMSE. Subsequently, the FNN and RF models with a lower
RMSE were selected, and a comparison of vGRF estimations and peak reproduction
accuracy was carried out using both the intra and inter-participant datasets.

In the statistical analysis, a normality test was performed using the
Kolmogorov-Smirnov test (Berger and Y. Zhou, 2014). The results of the test showed
that data distribution was not normal (p > 0.05).

The Friedman test was used to study the differences between the accuracy of the
models (Sheldon et al., 1996). In the post-hoc analysis, pairwise comparisons have
been studied by the Wilcoxon signed-rank test with the zero-method proposed by Pratt
(Pratt, 1959).

4.2.2 Results

4.2.2.1 Feature importance

The impact of the angles, the angular velocities, the vertical acceleration, and the gait
cycle on the training of the RF and FNN models have been studied by applying the
method known as feature permutation (Altmann et al., 2010). Feature permutation is
a technique that quantifies the increase in the prediction error when an input feature
is randomly shuffled. Hence, the dependency of the vGRF prediction on each input
can be quantified. The feature permutation results are represented in Figure 4.4, which
shows the increase of the RMSE in the vGRF estimation when a feature is shuffled with
the FNN-C7 model and the RF-C7 model.

The results of the feature permutation analysis suggest that the gait cycle has the
most substantial impact on the performance of the model, as shown by an increment
of 0.2590 BW in the RMSE for the FNN-C7 model and 0.1927 BW in the RF-C7 model.
Concerning the kinematics of the lower limb joints, the knee and ankle angles can be
identified as the most critical inputs influencing the FNN-C7 model, followed by the
angular velocities of the hip and knee. By contrast, the training of the RF-C7 model
demonstrates a higher importance of the hip, knee, and ankle angles, surpassing their
respective angular velocities. In both models, the feature permutation results suggest
that the ankle angular velocity has a low significance compared to the kinematics of
the hip and knee.
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Figure 4.4: Feature importance calculated with feature permutation for the (a) FNN-C7 model
and (b) RF-C7 model

It is worth mentioning that feature permutation results suggest that vertical
acceleration has a low impact on the training of the models compared to the lower
limb kinematics. In the FNN-C7 model, the vertical acceleration has the second lowest
importance, and in the RF-C7 model, it has the lowest relevance.

4.2.2.2 Validation and test results

The performance of the RF and FNN models has been evaluated with the intra
and inter-participant data by calculating the RMSE for each of the recorded steps.
The mean and standard deviations of the RMSE results are represented in Figure 4.5,
where Figure 4.5.a show the RMSE with the intra-participants, and 4.5.b the results
with the inter-participants. Furthermore, Table 4.1 and Table 4.2 collect the intra and
inter-participant RMSE results.

The statistical analysis revealed significant differences in the performance of the
models when evaluated with validation data across different gait speeds (Friedman
test p < 0.0001 for all speeds). In pairwise comparisons, no significant difference
was observed in model accuracy when users’ vertical acceleration was included as an
input for each gait speed (p > 0.05). However, the inclusion of vertical acceleration
led to a significant reduction in global RMSE when using the FNN models (p < 0.05).
Comparing the FNN and RF performance, a significant reduction in RMSE is observed
when employing the RF models with intra-participant data for global RMSE across all
gait speeds. Although there was no statistical significance, a reduction of the RMSE
errors in the RF training when the vertical acceleration is included can be observed,
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Figure 4.5: Mean RMSE and standard deviation for each of the FNN and RF models trained.
Different gait speeds and the global RMSE are represented when the models are
evaluated with the (a) intra-participants and (b) inter-participants.

particularly at gait speeds of 3.5 and 4.5 km/h. This can also be noticed when using the
FNN models. However, when employing a FNN model, the inclusion of the vertical
acceleration negatively impacted performance at 1.5 km/h.

The analysis of RMSE obtained with inter-participant data shows that there is no
significant difference in the accuracy of the models. The Friedman test for global
RMSE yields a p = 0.24, and at speeds of 1.5 km/h, 2.5 km/h, 3.5 km/h, and 4.5
km/h the p-values are p = 0.80, p = 0.80, p = 0.17, and p = 0.24, respectively.
However, including vertical acceleration leads to a reduction in errors in both models.
Additionally, the FNN and RF models produce similar RMSE results.

The results suggest that both the FNN-C7 and RF-C7 models have higher accuracy in
terms of RMSE. Consequently, both models are deeply analyzed in the next section.

4.2.2.3 Validation and test vGRF signal reconstruction

Figure 4.6 represents the measured vGRF, together with the vGRF predictions made
by the FNN-C7 and RF-C7 models. The represented graphs include the median
vGRF throughout the gait cycle, with the shaded regions indicating the range of vGRF
from the first to the third quartile.

Table 4.3 collects the correlation (ρ) and NRMSE between the ground truth and
predicted vGRF using the selected models with the intra and inter-participant data.
In addition, Figure 4.7 presents heatmaps representing the average magnitude errors
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Table 4.1: For each training of the FNN and RF models, the table shows the mean (standard
deviation) RMSE (BW) and the global RMSE for each model with the intra-participant
data. Additionally, the table lists the RMSE errors obtained for each gait speed.

FNN - Kinematics (a) FNN - C7 (b) RF - Kinematics (c) RF - C7 (d)

Global 0.076 (0.039) ∗∗∗c,d
0.072 (0.040) ∗∗∗c,d

0.037 (0.027) ***a,b,d
0.036 (0.026) ***a,b,c

1.5 km/h 0.070 (0.027) ***c,d
0.073 (0.030) ***c,d

0.030 (0.014) ***a,b ∗d,
0.030 (0.015) ***a,b ∗c,

2.5 km/h 0.067 (0.020) ***c,d
0.062 (0.020) ***c,d

0.033 (0.013) ***a,b,d
0.032 (0.013) ***a,b,c

3.5 km/h 0.067 (0.030) ***c,d
0.064 (0.030) ***c,d

0.036 (0.023) ***a,b,d
0.035 (0.023) ***a,b,c

4.5 km/h 0.095 (0.050) ***c,d
0.086 (0.056) ***c,d

0.045 (0.038) ***a,b,d
0.044 (0.037) ***a,b,c

Statistical differences are represented by * ( p <= 0.05), ** (p <= 0.01), *** (p <= 0.001), and ****
(p <= 0.0001).

Table 4.2: For each training of the FNN and RF models, the table shows the mean (standard
deviation) RMSE (BW) and the global RMSE for each model with the inter-participant
data. Additionally, the table lists the RMSE errors obtained for each gait speed.

FNN - Kinematics FNN - C7 RF - Kinematics RF - C7

Global 0.077 (0.022) 0.074 (0.028) 0.083 (0.026) 0.077 (0.024)

1.5 km/h 0.069 (0.030) 0.070 (0.029) 0.070 (0.029) 0.067 (0.030)

2.5 km/h 0.062 (0.014) 0.062 (0.013) 0.074 (0.029) 0.072 (0.027)

3.5 km/h 0.075 (0.010) 0.068 (0.010) 0.082 (0.012) 0.075 (0.018)

4.5 km/h 0.096 (0.014) 0.092 (0.025) 0.102 (0.019) 0.087 (0.019)
No statistical differences were found.

and delays associated with the characteristic peaks for both intra-participant and
inter-participants. Furthermore, the Appendix A provides detailed information on the
magnitude error and delay of these peaks, together with pairwise comparison results
between the chosen models (FNN-C7 and RF-C7).

The analysis of the intra-participant data shows that ρ values for the vGRF
reconstruction ranged from 0.9676 to 0.9886 when using the FNN-C7 model, and
exhibited coefficients from 0.9966 to 0.9988 with the RF-C7 model. Moreover, the
NRMSE results range from 0.0399 BW to 0.0651 BW for the FNN-C7 model, and from
0.0127 BW to 0.0210 BW for the RF-C7 model. However, when predicting vGRF with
the inter-participants, the correlation is reduced, with ρ values ranging between 0.9705

and 0.9876 for the FFN-C7 model, and between 0.9746 and 0.9849 for the RF-C7 model.
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Figure 4.6: The ground truth and estimated vGRF (intra-participants and inter-participants)
have been represented according to the gait cycle (%) for different gait speeds. The
median values have been represented, and the values between the first and third
quartiles have been colored. The first row shows the measured vGRF, the second
row shows the estimated vGRF using the selected FNN model (Training 2, FNN-C7),
and the third row shows the estimated vGRF using the selected RF model (Training
2, RF-C7). These vGRF representations include all participant users.

In terms of NRMSE, the values ranged from 0.0560 BW to 0.0853 BW with the FNN-C7

model, and from 0.0691 BW to 0.0792 BW with the RF-C7 model.

The analysis of the vGRF peaks shows statistically significant differences across all
the characteristic peaks (p < 0.0001). As represented in Figure 4.7.a, the RF-C7 model
consistently produced smaller peak magnitude RMSE compared to the FNN-C7 model.
Specifically, the RF-C7 achieves magnitude errors lower than 0.0210 BW for the LP,
0.0161 BW for the MP, and 0.0171 BW for the TP. In contrast, the FNN-C7 model
errors reached up to 0.0900 BW in the LP, 0.0793 BW for the MP, and 0.0491 BW for
the TP. By contrast, in the evaluation of the models with the inter-participant data,
the statistical analysis indicates differences in the prediction of the peak magnitude
errors between models except for the MP at 3.5 km/h (p = 0.1825) and TP at 4.5 km/h
(p = 0.0834). For the FNN-C7 model, the errors range from 0.0206 BW to 0.0619 BW in
the LP, 0.0263 BW to 0.0810 BW for the MP, and 0.0249 BW to 0.0922 BW for the TP.
By contrast, the RF-C7 model errors range from 0.0225 BW to 0.0611 BW for the LP,
0.0399 BW to 0.0983 BW for the MP, and 0.0316 BW to 0.1256 BW for the TP.
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Table 4.3: Correlation (ρ) and NRMSE results obtained between the ground truth and estimated
vGRF with the inter-participant data using the FNN-C7 and RF-C7 models.

Model Gait Speed (km/h) ρ NRMSE

Intra-participants FNN-C7 1.5 0.9817 0.0483

2.5 0.9886 0.0399

3.5 0.9847 0.0449

4.5 0.9676 0.0651

RF-C7 1.5 0.9988 0.0118

2.5 0.9987 0.0127

3.5 0.9980 0.0155

4.5 0.9966 0.0210

Inter-participants FNN-C7 1.5 0.9777 0.0718

2.5 0.9876 0.0560

3.5 0.9859 0.0604

4.5 0.9705 0.0853

RF-C7 1.5 0.9776 0.0716

2.5 0.9797 0.0708

3.5 0.9797 0.0691

4.5 0.9746 0.0792

The timing delay of the predicted vGRF peaks with the intra-participants shows that
the lags achieved by the RF-C7 model are nearly 0%, with mean lags lower than 0.18%
(advance in LP at 1.5 km/h). By contrast, the timing errors with the FNN-C7 range
from -0.21% to 1.6% in the LP, from -0.3% to 3.4% in the MP, and -0.92% to -3% in the
TP. The timing errors increased for both models with inter-participant data. The timing
errors obtained with the FNN-C7 model range from -0.84% to -2.2% in the LP, from
1.3% to 4.1% in the MP, and -2.3% to 0.73% in the TP, while the RF-C7 model errors
range from -2.3% to -4.9% in the LP, from -2.6% to 3% in the MP, and -2.4% to 5.4 in
the TP estimation.

4.2.3 Discussion

The implemented motion capture system described in section 3.2 was used to estimate
the joint angles. A significant advantage of this method relies on its independence from
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Figure 4.7: The vGRF peak errors for four gait speeds ranging from 1.5 km/h to 4.5 km/h have
been represented as heatmaps. (a) Mean magnitude errors of the vGRF (b) Mean
delays of the vGRF peaks
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the position and orientation of the IMUs. Consequently, variations in sensor placement
can be assumed to be unlikely to impact the accuracy of the estimated vGRF.

Two Machine Learning models have been trained and evaluated for estimating vGRF
during gait. Initially, feature importance was determined for both the FNN-C7 and
RF-C7 models to study the impact of each input (Figure 4.4). The results suggest that
the gait cycle has the highest impact in model training, underscoring a strong temporal
dependency in the vGRF estimation with the method proposed. This behavior can
be explained by considering that angle measurements, angular velocities, and vertical
accelerations may take the same values at different moments within the gait cycle,
whereas vGRF values differ. Additionally, the results suggest that the kinematics of the
hip and knee joints have a more relevant impact on the models than ankle kinematics.

While the strong relationship between vertical acceleration and vGRF was initially
emphasized , the subsequent analysis reveals an interesting pattern. When calculating
feature importance, it can be observed that vertical acceleration has a limited
influence on model training compared to the kinematics of the lower limbs. Despite the
vertical acceleration seems to have low relevance in the models, the results suggest
that this input could still impact the performance of the FNN and RF models (Figure
4.5, Table 4.1, and Table 4.2). Although no statistically significant differences were
observed, the results with both intra and inter-participant data suggest that including
vertical acceleration improves the performance of both models in terms of RMSE.
Interestingly, when vertical acceleration is introduced as input of the FNN models, the
RMSE appears to increase. In summary, while vertical acceleration is not crucial for
estimating vGRF using the proposed method (given accurate measurement of lower
limb kinematics), it may still enhance the performance of specific models.

Furthermore, when comparing the evaluation metrics of the four models trained
(FNN-Kinematics, FNN-C7, RF-Kinematics, and RF-C7) certain differences can be
observed concerning the RMSE. When using the validation data derived from the
intra-participants, the RMSE values for the RF models range from 0.030 BW to 0.045 BW,
which is approximately half the RMSE for the FNN models (0.067-0.095 BW). However,
when the models are evaluated with the inter-participant data, these differences are
not statistically significant, yielding comparable RMSE values across the four models.
Although an increase in the error with inter-participant data can be acceptable, this
increasing tendency of the RF models might indicate that they tend to overfit more
than the FNN models, which is a known problem in algorithms based on decision
trees (Dietterich, 1995). Despite the overfitting, the results suggest that the RF models
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achieve similar accuracy, with a global RMSE of 0.077 BW for the RF-C7 model, and
0.074 BW for the FNN-C7 model, which are the best FNN and RF models in terms of
RMSE.

A deeper analysis of the FNN-C7 and the RF-C7 (Table 4.3) shows that the
estimated vGRF is strongly correlated with the ground truth values for both intra
and inter-participants. In terms of RMSE, the RF-C7 model outperforms the FNN-C7

model in achieving higher ρ with intra-participant data. However, when considering
inter-participant data, the FNN-C7 correlations are higher than those achieved by the
RF-C7, specifically for gait speeds between 1.5 km/h and 4.5 km/h. The NRMSE results
follow a similar pattern. While the FNN-C7 model exhibits higher errors overall, it
performs better than the RF-C7 model for inter-participant data at gait speeds of 2.5
km/h and 3.5 km/h. In contrast, the RF-C7 model achieves lower errors for gait speeds
of 1.5 km/h and 4.5 km/h.

The estimated vGRF signals shown in Figure 4.6 indicate that both FNN-C7 and
RF-C7 are capable of accurately replicating the measured vGRF signals. It is worth
noting that these models can effectively distinguish between gait phases, as evidenced
by their ability to estimate the characteristic peaks and swing phase (vGRF = 0 BW)
from the graphs.

It is worth noting that the magnitude and timing of the vGRF peaks play a crucial role
in gait analysis. Consequently, a deeper analysis of these peaks is conducted (Figure
4.7, Appendix A). Comparing the two selected models, the RF-C7 model demonstrates
significantly higher accuracy than the FNN-C7 model in terms of magnitude errors
with intra-participant data across all gait speeds. However, when evaluating the models
with inter-participant data, the peak magnitude errors remain similar between both
RF-C7 and FNN-C7. Notably, the errors obtained with the FNN-C7 in the LP at 1.5,
2.5, and 4.5 km/h, and the TP at 1.5 and 2.5 km/h are lower with the inter-participant
data than the intra-participants. However, the RF-C7 model shows higher errors
for inter-participants across all peaks and gait speeds. These findings would be in
agreement with the previous observations related to RMSE and may be attributed to
the potential overfitting of the RF models.

According to the timing errors of the vGRF peaks, the RF-C7 model demonstrates
high accuracy in predicting the peak timings across all gait speeds using
intra-participant data, with a maximum lag of 0.18% of the gait cycle. In contrast,
the FNN-C7 model exhibits larger errors in peak timing, particularly in the MP with
mean delays up to 3.4%. Concerning the results obtained for the inter-participants,
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both models show delays and advances in peak estimation compared to the measured
vGRF. It must be noted that all the mean lags obtained with the RF-C7 are greater than
the FNN-C7 except for the MP peak at 1.5 and 2.5 km/h.

Concerning the results obtained, it can be highlighted that both the FNN-C7 and
RF-C7 models exhibit robustness and good accuracy in estimating vGRF when using
the method proposed in this thesis. This can be concluded by the RMSE and ρ obtained
with the proposed models, which are in a similar range as reported by other authors
when estimating the vGRF during gait. Specifically, in (Oh et al., 2013) the authors
reported an RMSE of 0.066 BW and ρ = 0.991 with intra-participants; in (Choi et
al., 2013) the authors obtained an RMSE of around 0.074 BW and ρ = 0.99 with
intra-participants; in (Jiang et al., 2020) the proposed models achieved an RMSE of
0.02 BW and ρ = 1.00 with intra-participants, and an RMSE of 0.10 BW and ρ = 0.97
with inter-participants. Although the RF model trained by Jiang et al. achieves higher
accuracy when evaluated with intra-participant data, the models presented in this
Chapter achieve a lower RMSE and higher ρ with inter-participant data. Hence, these
findings suggest that the FNN-C7 and RF-C7 models exhibit greater generalization
capabilities compared to those proposed by Jiang et al.

It is important to note that while both the FNN-C7 and RF-C7 models achieve high
accuracy compared to previous studies, the results show certain performance differences
between them. The RF-C7 model yields a lower mean RMSE with intra-participant
data, whereas the FNN-C7 model achieves a lower global RMSE compared to the RF
models when they are evaluated with inter-participants. In addition, while the ρ and
NRMSE show that a higher correlation and a lower error are obtained at 1.5 and 4.5
km/h with the RF-C7, better results are achieved at walking speeds of 2.5 and 3.5 km/h
with the FNN-C7 when evaluated with inter-participant data. For inter-participants,
the mean magnitude errors for characteristic peaks are comparable between the two
models. Moreover, the FNN-C7 model appears to surpass the RF-C7 in accurately
estimating the timing of the peaks. Given these variances, it can be inferred that the
FNN-C7 model surpasses the trained RF-C7 model in terms of accuracy.

4.2.4 Conclusions

In this Chapter, a method to estimate the vGRF during ground-level walking has
been presented. The IMU-based motion capture system presented in Chapter 3, section
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3.2 has been employed to estimate the kinematics of the lower limbs and the vertical
acceleration of the users. Two different Machine Learning models were evaluated for
estimating the vGRF: FNN and RF models.

The findings indicate that the trained models are significantly impacted by
the temporal variable (gait cycle). While the vertical acceleration has only a minor
influence on the training of the FNN and RF models compared to other inputs, the
results suggest that its inclusion can improve the performance of the models. Notably,
in the case of the FNN and RF models, incorporating this input seems to enhance
performance.

Additionally, the accuracy achieved with the method proposed for estimating the
vGRF is accurate for performing a biomechanical analysis. This can be assumed since
the vGRF estimates, including peak RMSE values, are aligned with the accuracy range
reported in comparable studies, and even the results suggest that a lower RMSE is
obtained in the estimation of vGRF. Furthermore, the RMSE, ρ, and the accuracy in
the characteristic peaks point to the FNN-C7 model as the most accurate among the
Machine Learning models that were trained.

4.3 feasibility study for estimating vertical ground reaction force

during different gait activities of daily living

In this section, a feasibility study for estimating the vGRF during different gait
activities has been conducted. Based on the methodology described in the preceding
section, the IMU-based motion capture system has been used to acquire data from
the lower limb kinematics and vertical acceleration to be used as inputs of a Machine
Learning model. As the FNN-C7 has been shown to achieve the highest performance
for ground-level walking vGRF estimation, an adaptation of this model is proposed to
estimate this force during different gait ADLs. In addition, it is discussed whether the
performance of the model proposed improves when the activity performed is known.
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4.3.1 Materials and Methods

4.3.1.1 Experimental sessions

Twelve users (nine male, three female) aged from 23 to 52 years old (29.8 ± 7.4),
with heights ranging from 165cm to 187cm (176.2 ± 7.4cm) and weights from 56.1kg
to 90.2kg (76 ± 12.5kg) were involved in the study. Written informed consent was
obtained from the individuals before participating in the sessions, and the study was
approved by the INESCOP Footwear Technology Center.

The performed gait ADLs together with the systems used to simulate the activities
are shown in Figure 4.8. A treadmill model h/p/cosmos 150/50 was used to simulate
three different scenarios: ground-level walking, ramp ascent walking, and ramp descent
walking. In addition, a stair treadmill was employed to simulate stair ascent climbing.

Lower limb kinematics were collected using four XSens Dot IMUs, and an additional
device was placed over the C7 vertebra to measure the vertical acceleration of the users
(see Chapter 3, section 3.2 and section 4.2). Moreover, the vGRF was measured by using
the force plate embedded in the h/p/cosmos 150/50 for ground-level, ramp ascent,

Figure 4.8: The performed gait activities and the experimental setup used to estimate the vGRF
are represented in the images.
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and ramp descent walking. During stair climbing, the pressure insoles model novel.de
pedar based on capacitive sensors were used to measure the vGRF.

After the placement of the aforementioned devices, and after calibration of the
implemented IMU-based motion capture and pressure insoles, the vGRF and the
flexion/extension angles of the hip, knee, and ankle were measured during different
gait ADLs according to the following protocol:

1. Ground-level walking at 4.5 km/h for 5 minutes.

2. 12% positive slope walking at 2.5 km/h for 5 minutes.

3. 12% negative slope walking at 2.5 km/h for 5 minutes.

4. Climbing stairs at 50 stairs/minute for 3 minutes.

The INESCOP Footwear Technology Center protocols for footwear certification were
followed to set the walking speeds and slope of the treadmill. The stair-climbing time
was shortened to 3 min to prevent excessive fatigue.

4.3.1.2 Acquired data and processing

The data acquisition process to estimate the vGRF during different gait activities
is based on the methodology described in section 4.2.1.2. Concerning the angle and
angular velocities of the lower limb joints in the sagittal plane, data from the IMUs
placed on the hip, the thigh, the shank, and the foot were employed. In addition, the
IMU placed at the C7 vertebra was used to measure the vertical acceleration of the
users during gait.

Regarding the vGRF, the force plate embedded in the h/p/cosmos treadmill was
used to measure the exerted force when the participants performed the ground-level
and ramp exercises. In the case of the stair walking, the pressure insoles were used
to estimate the vGRF. Despite the treadmill-embedded force plate provides the vGRF
magnitude during gait when employing the pressure insoles further processing is
required. According to the foot size, the pressure insoles are composed of a pressure
sensor matrix (Figure 4.9), where each sensor covers a certain area. Therefore, the
exerted vGRF can be estimated as:

vGRF(t) =
n

∑
i=1

Pi(t) · Ai (4.2)
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Figure 4.9: Representation of two pressure sensor matrices used to measure the vGRF during
ascent stairs. Each of the numeric values indicates the area covered by each sensor
in mm2.

where Pi is the pressure measured by each sensor and Ai is the sensor measurement
area.

In the same manner as described in section 4.2.1.2, the foot-foot ground contacts
have been detected in the motion capture system and the acquired vGRF in order to
calculate the gait cycle and subsequently synchronize all the signals. In Figure 4.10,
the flexion/extension angles, the vertical acceleration, and the vGRF signals have been
represented for each gait ADL.

4.3.1.3 Vertical Ground Reaction Force estimation architecture

Based on the analysis performed in section 4.2, the feasibility of estimating the vGRF
during different gait tasks using the FNN-C7 model architecture is studied. Therefore,
the flexion/extension angles of the hip, knee, and ankle, their angular velocities, the
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Figure 4.10: The flexion/extension angles of the hip, knee, and ankle are represented in the
first, second, and third rows, respectively. The measured vertical acceleration at the
C7 vertebra is shown in the fourth row, and the measured vGRF is presented in the
fifth row. These data are represented across the different gait activities performed
during the experimental sessions.

vertical acceleration measured at the C7 vertebra, and the gait cycle are introduced as
inputs.

As introduced in Chapter 2, section 2.2, there is a lack of studies proposing the
estimation of the vGRF during different gait ADLs. Hence, apart from introducing
kinematic measurements, it is intended to analyze whether the knowledge of the
performed ADL has a positive impact on the vGRF prediction. With this purpose,
three different approaches are proposed to estimate the vGRF, which are represented
in Figure 4.11:
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General model. Joint angles, angular velocities, vertical acceleration, and gait
cycle data from the four ADLs performed are used as inputs to train a general
FNN model.

Activity-labeled model. Joint angles, angular velocities, vertical acceleration, gait
cycle, and the current activity performed are used as inputs to train an FNN
model.

Ensembled models. Joint angles, angular velocities, vertical acceleration, and gait
cycle data from the four ADLs performed are used as inputs to four different
FNN models (i.e. one per ADL).

Before model training, data from ten users were randomly divided to evaluate the
accuracy of the models by cross-validation: 80% of the data was used for training and
the remaining 20% was used for validation (intra-participant data). Additionally, the
performance of the models has been evaluated on users who were not involved in the
learning process (inter-participant data) using data from the two remaining participants.
In addition, it is worth mentioning that the training dataset was used to build a scaler,
which normalized the input values of the Machine Learning models within the range
of 0 to 1. This scaler was also used to normalize the validation and inter-participants
dataset to evaluate the accuracy of the vGRF estimation models. Moreover, to train
the activity-labeled model, a OneHot encoder has been used to create four additional
inputs to indicate the ADL performed.

The Keras Python Library (Gulli and Pal, 2017a) has been used to train the FNN
models. The FNN models trained are composed of an input layer with a number
of neurons equal to the number of inputs, five hidden layers with ten neurons,
and an output layer with one neuron. The ReLu has been used as the activation
function, the Adam algorithm has been used to optimize the network weights, and
the RMSE serves as the loss function. Furthermore, the dropout regularization
technique is applied to avoid overfitting.

The performance of the proposed approaches to estimate the vGRF during different
gait ADLs has been evaluated as follows:

vGRF RMSE. A lower RMSE in the estimation of the vGRF signal has been
considered as a better performance of the models.

vGRF NRMSE. A lower NRMSE in the estimation of the vGRF signal has been
considered as a better performance of the model.
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Figure 4.11: Approaches proposed to estimate the vGRF during different gait activities. (a) A
general model is trained to estimate the vGRF (b) A classifier can be proposed
to introduce the performed activity to the model (c) A model per activity can be
trained, and a classifier selects the output of the model according to the activity
performed
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Correlation. A higher correlation (ρ) between the ground truth and the estimated
vGRF signal has been considered as a better performance of the models. The
Person’s correlation coefficient has been used to calculate the correlation between
estimated and ground truth data.

4.3.2 Results and Discussion

Table 4.4 collects the mean and standard deviation of the RMSE for each of the
performed activities when estimating the vGRF with the three proposed approaches
using the intra-participant and inter-participant data. In addition, these results are
represented in Figure 4.12.

Concerning the RMSE results, it can be observed that the knowledge of the performed
task reduces the error when estimating the vGRF for different gait ADLs. Generally,
using an FNN model without knowledge of the activity performed leads to a higher
RMSE in the vGRF estimation. Only when ascending a ramp, the general model
achieves a lower error than the ensembled approach for both intra and inter-participants.
In contrast, when the activity-labeled model and the ensembled architecture are
compared, similar RMSE results obtained are obtained. First, it can be observed that
the global RMSE obtained are lower with the activity-labeled using the intra-participant

Table 4.4: The table shows the mean (standard deviation) RMSE (BW) and the global RMSE
for each vGRF estimation approach and activity with the intra-participant and
inter-participant data.

Activity General Activity-labeled Ensembled

Intra-participants Global 0.0960 (0.0154) 0.0819 (0.0178) 0.0839 (0.0165)
Ground-level 0.0945 (0.0171) 0.0794 (0.0186) 0.0791 (0.0206)
Ascent ramp 0.0729 (0.0147) 0.0653 (0.0160) 0.0784 (0.0153)
Descent ramp 0.1218 (0.0289) 0.1062 (0.0297) 0.1020 (0.0309)
Ascent stairs 0.1084 (0.0203) 0.1029 (0.0210) 0.1078 (0.0183)

Inter-participants Global 0.1031 (0.0021) 0.0883 (0.0103) 0.0827 (0.0055)
Ground-level 0.1027 (0.0055) 0.0832 (0.0103) 0.0717 (0.0089)
Ascent ramp 0.0892 (0.0072) 0.0802 (0.0113) 0.0936 (0.0064)
Descent ramp 0.1132 (0.0167) 0.1073 (0.0183) 0.0964 (0.0193)
Ascent stairs 0.1194 (0.0012) 0.1070 (0.0070) 0.1148 (0.0262)
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Figure 4.12: Mean RMSE and standard deviation for each of the approaches proposed to
estimate the vGRF during different activities. The global RMSE and the errors
obtained for each of the activities are represented when the approaches are
evaluated with the (a) intra-participants and (b) inter-participants.

data, while the ensembled models achieve a lower RMSE with the inter-participant
data. Furthermore, on the one hand, the RMSE errors obtained with the activity-labeled
model are lower than the ensembled approach when ascending a ramp and ascending
stairs. On the other hand, the ensembled models achieve a lower RMSE during
ground-level walking and descending a ramp.

In addition, Table 4.5 collects the NRMSE and ρ values for each activity and
estimation approach. From these results can also be deduced that recognizing the
activity performed by the users would improve the vGRF estimation performance.
Furthermore, as for the RMSE, the ρ and NRMSE values are similar for the
activity-labeled and ensembled.

In addition, the ground truth and the estimated vGRF signals during gait are
represented in Figure 4.13 for each of the proposed approaches. The representation
of the vGRF signal also suggests that the knowledge of the activity performed can
improve the performance of Machine Learning models for estimating vGRF. However,
the graphs also reveal the main limitation of the trained FNN models. Although
ground-level walking allows for a faithful estimation of the characteristic peaks, there
is a noticeable decrease in accuracy for other tasks. This is especially evident when
descending a ramp, where the proposed models fail to estimate the LP accurately.
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Table 4.5: Correlation (ρ) and NRMSE results between the ground truth and estimated vGRF
with the intra-participant and inter-participant data for each of the prediction
architectures proposed.

Architecture Activity ρ NRMSE

Intra-participants General Ground-level 0.9603 0.0768

Ascent ramp 0.9837 0.0446

Descent ramp 0.9625 0.0773

Ascent stairs 0.9554 0.0691

Activity-labeled Ground-level 0.9639 0.0682

Ascent ramp 0.9850 0.0398

Descent ramp 0.9658 0.0676

Ascent stairs 0.9549 0.0663

Ensembled Ground-level 0.9626 0.06937

Ascent ramp 0.9848 0.0480

Descent ramp 0.9700 0.0657

Ascent stairs 0.9529 0.0689

Inter-participants General Ground-level 0.9511 0.1139

Ascent ramp 0.9782 0.0781

Descent ramp 0.9649 0.0995

Ascent stairs 0.9521 0.1045

Activity-labeled Ground-level 0.9603 0.9797

Ascent ramp 0.9792 0.0704

Descent ramp 0.9633 0.0941

Ascent stairs 0.9585 0.0943

Ensembled Ground-level 0.9740 0.0794

Ascent ramp 0.9759 0.0820

Descent ramp 0.9711 0.0851

Ascent stairs 0.9504 0.1033

While the results suggest that the errors committed are in a similar range, further
analysis is required to affirm that the estimation of the vGRF is accurate in the rest
of the gait ADLs using a FNN architecture. Nevertheless, the results of this study
suggest that it is feasible to develop a model that allows estimating the vGRF during
different tasks using IMUs. Furthermore, as introduced, there seems to be an absence
of research offering a methodology that facilitates the estimation of the vGRF across
different terrains. Therefore, it is also intended that the results of this study serve as a
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Figure 4.13: The ground truth and estimated vGRF have been represented according to the gait
cycle (%) for different gait activities. The median values have been represented, and
the values between the first and third quartiles have been colored. The first row
shows the measured vGRF, the second row shows the estimated vGRF using the
general model, the third row shows the estimated vGRF using the activity-labeled
model, and the fourth row represents the estimated vGRF using the ensembled
models approach. These graphs include all the participants.

baseline for the development of future Machine Learning models that allow estimating
the vGRF during different ADLs.

4.3.3 Conclusions

In this Chapter, based on the motion capture system (Chapter 3, section 3.2) and
the FNN models developed for estimating the vGRF during ground-level walking,
a feasibility study has been conducted to estimate this force during different gait
ADLs. Instead of only introducing kinematic data from the users, it has been evaluated
whether the knowledge of the performed activity has a positive impact on the vGRF
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estimation. With this purpose, three different Machine Learning approaches have been
evaluated.

The results suggest that a higher accuracy is achieved in the vGRF estimation when
the activity performed is known. Therefore, a classification system would help to
recognize the gait ADL performed by the user, and subsequently adapt the estimation
of the vGRF autonomously. In addition, although an acceptable accuracy seems to be
achieved with the FNN architecture, the accuracy when estimating the characteristic
peaks of the vGRF signal must be improved. Hence, as future work, it is intended to
evaluate different Machine Learning model architectures.



5
G A I T A C T I V I T Y C L A S S I F I C AT I O N W I T H A C O N V O L U T I O N A L
N E U R A L N E T W O R K U S I N G L O W E R L I M B A N G L E
M E A S U R E M E N T F R O M I N E RT I A L S E N S O R S

5.1 introduction

As introduced in Chapter 3, section 3.1, the SPLASH project proposes to develop an
underwater lower limb exoskeleton. In addition, it is intended to not only assist the
patient’s gait during ground-level scenarios but also it is proposed to generalize the
assistance to different gait ADLs. Therefore, there is a need to develop a system that
can recognize the performed activity, and adapt the assistance accordingly.

Furthermore, to study and understand the human lower limb kinetics during
underwater gait, either the measurement or the estimation of the vGRF is required to
understand the loads in the joints of the lower limbs. As described in Chapter 4, diverse
approaches have been evaluated to estimate the vGRF during gait in an attempt to
provide a solution to estimate the vGRF in those cases where using an underwater force
plate is a limitation. Hence, as concluded in Chapter 4, section 4.3, the knowledge of the
activity performed is required to maximize the performance in the vGRF estimation.

With this purpose, a Deep Learning model is presented in this Chapter to
autonomously classify different gait activities. The data collected during the
experimental sessions described in Chapter 4, section 4.3 have been used to develop the
model. The flexion/extension angle trajectories during each step have been introduced
as inputs of the models. Hence, as the inputs of the model are one-dimensional
windows, a One-dimensional Convolutional Neural Network (1D-CNN) is proposed
to recognize different gait ADLs. In addition, diverse techniques have been used to
understand the decision-making process of the model. Finally, possible variations of
the model inputs have been studied in order to adapt the model to multiple lower limb
exoskeletons or gait analysis scenarios.

71
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5.2 materials and methods

As introduced, the data acquired during the experimental sessions described in
Chapter 4, section 4.3.1.1 have been used to propose a Deep Learning-based classifier
approach. In this section, the Deep Learning model architecture, the methods use to
understand the model decision-making, the data processing, and the model training
are described.

5.2.1 Proposed Convolutional Neural Network architecture

As introduced, it is intended to develop a 1D-CNN to recognize four gait activities:
ground-level walking, ascending a ramp, descending a ramp, and ascending stairs.
Typically, the CNN models consist of two parts (Zhao et al., 2017a): the convolutional
and pooling layers, and the fully-connected layers or Multilayer Perceptron (MLP).

The CNN models have an input layer of Nxk, where N is the length of the univariate
time series and k is the number of input series. Subsequent to this layer, the model
employs convolution and pooling operations to extract deep features from the input
data. Within the convolutional layers, the model applies convolutional operations to the
temporal series data from the precedent layer using convolutional filters, also known as
kernels, creating an output known as a feature map. After the convolution operations,
a non-linear activation function is applied. In the pooling layers, the feature maps are
divided, and each segment is represented by its average or maximum value. Finally,
after the convolution and pooling layers, the original time series is represented by a
series of feature maps.

In the second part of the model, the feature maps are typically connected to a MLP.
These MLP layers perform the classification based on the features and filters learned
in the preceding layers. Alternatively, a Global Average Pooling (GAP) layer can
replace this step. The primary goal of the GAP layer is to generate one feature map
per class (Lin et al., 2013). This layer computes the average value for each feature
map, resulting in a vector that directly feeds into the softmax layer. Notably, the GAP
layer aligns well with the convolutional structure, establishing meaningful associations
between feature maps and distinct categories. Furthermore, it mitigates the risk of
overfitting since it lacks parameters for optimization
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The proposed architecture of the 1D-CNN model developed to recognize four gait
ADLs is a Fully-Convolutional Neural Network (FCN), which has been represented
in Figure 5.1. The model inputs are the normalized flexion/extension angles of the
hip, knee, and ankle, scaled according to their maximum and minimum values. The
architecture includes three convolutional layers, with each layer applying 64 filters of a
kernel size of 3. Padding is also utilized during the convolution processes to ensure the
resulting feature maps maintain a length N that matches the input length. Following
each convolutional layer, the ReLu function is employed as the activation function,
complemented by Batch Normalization. After the convolutional layers, a GAP layer
is connected to a dense layer consisting of four neurons, each corresponding to a gait
ADL, and uses the softmax function for activation. The hyperparameters of the model,
including the number of convolutional layers, filters, kernel size, and others, have been
tuned to optimize performance.

Figure 5.1: A FCN model is proposed to classify four gait activities based on data from the hip,
knee, and ankle flexion/extension joints. The input data are normalized between
their minimum and maximum values before being introduced to the model. The
model consists of three one-dimensional convolutional layers with a kernel size of
3 and 64 filters. Padding is applied to ensure that the feature maps have the same
length as the inputs. The ReLU activation function is used for the convolutional
layers, and batch normalization is applied. A GAP layer is used to reduce the
generated feature maps connected to the output layer.
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5.2.2 Data processing and model training

The data acquisition and processing pipeline is represented in Figure 5.2. The
accelerometer and gyroscope data from IMUs placed on the hip, thigh, shank, and foot
were used to estimate the flexion/extension angles of the hip, knee, and ankle using
the method described in Chapter 3, section 3.2. In addition, the acceleration of the hip
was used to detect the ground-foot contacts. These contacts are used to identify the
onset and end of each step and subsequently transform the data from the temporal to
the gait cycle domain (0-100%).

Furthermore, it is worth mentioning that the CNN models require a predetermined
window size for input. Given that the objective is to classify the activity performed by
the user, selecting a window size that encompasses 100 joint measurements derived
from the gait cycle appears to be a logical choice to classify each step within one of the
ADLs. Consequently, three different windows have been used as inputs of the model,
each containing 100 data points, which represent the flexion/extension angles of the
hip, knee, and ankle throughout a single step.

Figure 5.2: From the IMUs placed on the lower limbs, the acceleration and angular velocity were
used to measure the flexion/extension of the hip, knee, and ankle. Additionally,
foot-ground contact is detected using hip acceleration to calculate the gait cycle and
splitting the joint angles step by step. The gait cycle is used to represent each step in
a 100-size window (cycle-gait normalization). Finally, the normalized trajectories of
the hip, knee, and ankle are used as inputs for the model.
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The data collected from the twelve participants were divided into three different
datasets. The time series data from nine participants were randomly segmented by
individual steps for training and validating the accuracy of the model (intra-participant
evaluation): 80% for training and 20% for validation. The data from the remaining three
participants were utilized to evaluate the performance of the model with individuals
who were not part of the training process (inter-participant evaluation). Furthermore,
the training dataset was normalized by scaling the hip, knee, and ankle angle values
to a range from 0 to 1. This same normalization scaler was then applied to both
intra-participant and inter-participant datasets during the model evaluation phase.

The proposed 1D-CNN model has been developed and trained with the Keras Python
Library. The model was trained for 50 epochs and a batch size of 8. The Adam algorithm
was used as the optimizer to adjust the weights of the network, and the Categorical
Cross-Entropy (CE) was used as the loss function, which is defined as:

CE = −
C

∑
i

yi · log(ŷi) (5.1)

where yi is the actual class, ŷi is the CNN score for each class, and C is the number of
classes.

5.2.3 Model explainability

Machine Learning models are often perceived as ‘black boxes’ since their
decision-making processes are mostly not transparent to humans. However,
understanding this process can be critical in fields like healthcare. For this study,
it would be particularly valuable to comprehend the mechanisms by which our trained
CNN model differentiates among the four ADLs simulated in the experimental trials.

To address the challenge of model interpretability, various techniques have emerged
in an attempt to understand the decision-making process of black-box Machine
Learning models. One such method we employed is the Gradient-weighted Class
Activation-Map (Grad-CAM) algorithm, which was originally proposed for image
analysis. Grad-CAM provides visual explanations by highlighting important regions
in an image that contribute to a specific prediction. By extending Grad-CAM to time
series analysis using a 1D-CNN, the segments of joint trajectories that play a crucial
role in distinguishing different gait activities can be highlighted.
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In addition to the use of Grad-CAM, the representation of the feature map extracted
by the proposed 1D-CNN may provide information about the decision-making of the
model. With this purpose, the t-Distributed Stochastic Neighbor Embedding (t-SNE) has
been used to represent the 64-dimensional feature map, since this technique visualizes
high-dimensional data by giving each datapoint a location in a two or three-dimensional
map (Van der Maaten and Hinton, 2008).

5.3 results

5.3.1 Model evaluation

The performance of the proposed 1D-CNN model has been evaluated with data from
both intra-participants and inter-participants. The evaluation and inference process
was conducted on a PC with an Intel(R) Core(TM) i7-1165G7 @ 2.80GHz with 16 GB of
RAM, where each inference was completed in 1 ± 0.37 milliseconds. Furthermore, the
performance is compared with four State of the Art models proposed in recent works: a
Residual Network (ResNet) model (Wang et al., 2017a), a Time LeNet (t-LeNet) model
(Le Guennec et al., 2016), a Multi-scale Convolutional Neural Network (MCDCNN)
model (Zheng et al., 2016), and a Time Convolutional Neural Network (Time-CNN)
model (Zhao et al., 2017b). The accuracy and CE metrics for both intra-participant and
inter-participant data are collected in Table 5.1. The results indicate that the model
proposed achieves an accuracy of 99.65% and a CE of 0.0054 with intra-participant data,
and an accuracy of 99.56% and a CE of 0.0025 with inter-participant data.

Confusion matrices are shown in Figure 5.3 for both intra-participant and
inter-participant data to better understand the classification results. The findings
indicate that the CNN could sometimes misclassify ground-level walking, ascending
a ramp, and descending a ramp. Specifically, for intra-participant data, 99% of the
descent ramp steps are classified accurately, with 0.32% of the steps being confused with
ground-level walking and 0.97% confused with ascending a ramp. The inter-participant
results demonstrate similar trends, with 1.5% of the descent ramp steps being incorrectly
classified as ground-level walking.
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Table 5.1: Accuracy and Categorical Cross-Entropy (CE) obtained with the intra-participants
and inter-participants.

Model Dataset Accuracy(%) CE

Proposed 1D-CNN Intra-participants 99.65 0.0054

Inter-participants 99.56 0.0025

ResNet (Wang et al., 2017a) Intra-participants 100.00 0.0004

Inter-participants 99.46 0.0082

t-LeNet (Le Guennec et al., 2016) Intra-participants 99.98 0.0132

Inter-participants 99.21 0.0287

MCDCNN (Zheng et al., 2016) Intra-participants 99.98 0.0036

Inter-participants 99.46 0.0039

Time-CNN (Zhao et al., 2017b) Intra-participants 99.98 0.0003

Inter-participants 98.09 0.0102

5.3.2 Model interpretability

The t-SNE has been applied to project the 64-dimensional feature map obtained by
the convolutional layers into a two-dimensional graph. In Figure 5.4 the representation
of the generated feature maps for two intra-participants and two inter-participants are
represented using perplexity and early exaggeration values of 50. Different groups of
points (clusters) can be observed, where each point represents the feature map obtained
by the CNN for each step, and clusters indicate groups of similar steps.

The mean values of the hip, knee, and ankle trajectories have been represented
together with the class activation maps obtained with Grad-CAM for the last
convolutional layer in Figure 5.5. The activation map is visualized as a heatmap,
emphasizing the significant regions of the input data. Areas shaded in blue indicate
regions with less attention while those in red denote areas with lower attention. For
ground-level walking, the activation map reveals high activation during the terminal
stance phase (45%-65%), the swing phase, and at initial contact. The map for ascending
ramps shows pronounced activation during the loading response and mid-stance phase
(approximately 10%-50%), as well as during the terminal swing phase. In the case
of descending ramps, there is a notable activation during the terminal swing phase
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Figure 5.3: The confusion matrices obtained with the proposed CNN classifier show the results
for intra-participant and inter-participant scenarios. The rows of the matrix indicate
the actual ADLs performed, while the columns show the predicted activity. These
matrices include the four gait ADLs conducted in the experiment: ground-level
walking, ascending a ramp (Up), descending a ramp (Down), and climbing stairs.
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Figure 5.4: The two-dimensional representation of the feature map generated by the CNN
model proposed for two intra-participants and two inter-participants. The map was
created using the t-SNE embedding, and each activity was assigned a specific color:
blue for ground-level walking, red for ascending a ramp, green for descending a
ramp, and yellow for climbing stairs.

Figure 5.5: Mean trajectories of lower limb joints during four different gait activities are
presented alongside mean class activation maps. These maps were generated using
the Grad-CAM method, highlighting areas of low activation in blue and areas of
high activation in red.
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(75%-90%). Finally, for the ascending stairs activity, the map shows a strong activation
during the swing phase (70%-90%).

Moreover, the Grad-CAM technique can also offer insights into the misclassification
of certain steps. Figure 5.6 presents a pair of steps that were wrongly identified
as descending a ramp. The graph shows the joint angles and the class activation
maps, with the softmax probabilities for the true category and the predicted category
indicated.

5.3.3 Model adaption

To assess the adaptability of the CNN model, diverse models with the same proposed
architecture have been trained while varying the number of inputs. Specifically, seven
1D-CNN models have been trained for a different number of epochs, all following
the proposed architecture. The accuracy of these models is summarized in Table
5.2 and Table 5.3, categorized by the number of inputs and training epochs.

Using intra-participant data, the performance of the proposed 1D-CNN model varied
based on the number of joint angle inputs and the number of training epochs. For
the hip angle, accuracy ranged from 26.91% after 25 epochs to 97.82% following 200

epochs. Training with the knee angle ranged accuracies from 38.59% at 200

epochs to 93.21% after 250 epochs. When the ankle angle was used, accuracy ranged
from 43.64% with just 10 epochs to 99.91% by 250 epochs. Combining hip and knee
angles, the accuracy ranged from 38.41% at 10 epochs to 98.87% at 250 epochs. With

Figure 5.6: Examples of incorrect classifications with the model proposed. The representation
includes the class activation maps obtained with Grad-CAM and the mean joint
trajectories. Moreover, the softmax values for both the predicted and actual classes
are included.
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Table 5.2: Intra-participant accuracy (%) according to training epochs

Epochs

10 25 50 75 100 150 200 250

Hip, knee, and ankle 100.00 100.00 100.00 99.91 100.00 100.00 99.65 100.00

Hip 37.54 26.91 70.73 76.05 46.34 93.73 97.82 96.52

Knee 47.30 65.85 70.12 51.74 45.12 71.52 38.59 93.21

Ankle 43.64 57.49 81.10 86.24 60.28 96.43 44.16 99.91

Hip and knee 38.41 45.56 91.46 67.07 72.30 99.39 72.83 98.87

Hip and ankle 92.42 99.65 99.91 82.32 100.00 100.00 100.00 100.00

Knee and ankle 41.20 30.49 69.60 47.91 69.33 31.97 99.91 84.84

Table 5.3: Inter-participant accuracy (%) according to training epochs

Epochs

10 25 50 75 100 150 200 250

Hip, knee, and ankle 100.00 99.80 99.90 100.00 100.00 100.00 99.90 100.00

Hip 37.63 25.71 70.17 55.30 39.99 68.45 98.28 85.97

Knee 37.44 60.84 81.31 39.60 44.46 67.22 35.23 85.77

Ankle 37.24 46.37 89.11 85.33 59.67 98.18 34.44 97.55

Hip and knee 37.63 43.67 79.00 57.85 62.71 92.89 75.47 89.94

Hip and ankle 86.16 96.42 99.46 63.54 99.71 99.95 99.26 99.31

Knee and ankle 44.50 31.99 69.92 43.92 60.94 29.83 85.57 90.72

the hip and ankle angles, the accuracy ranged from 82.32% for 75 epochs to 100% for
epochs 100, 150, 200, and 250. Lastly, using both knee and ankle angles, the accuracy of
the model ranged from 30.49% at 25 epochs to 99.91% at 200 epochs.

With the inter-participant data, when the proposed model was trained with the hip
angle, the accuracy ranged from 25.71% for 25 epochs to 98.28% for 200 epochs. When
using the knee angle, the accuracy ranged from 35.23% for 200 epochs to 85.97% for 250

epochs. With the ankle angle, the accuracy ranged from 37.24% for 10 epochs to 98.18%
for 150 epochs. By using the hip and knee angles, the accuracy ranged from 37.63% for
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10 epochs to 89.94% for 250 epochs. When using the hip and ankle angles, the accuracy
ranged from 63.54% for 75 epochs to 99.95% for 150 epochs. Finally, with the knee and
ankle angles, the accuracy ranged from 29.83% for 150 epochs to 90.72% for 200 epochs.

5.4 discussion

A 1D-CNN model has been trained to recognize four different gait ADLs:
ground-level walking, ascending a ramp, descending a ramp, and ascending stairs.
The proposed 1D-CNN demonstrates promising results, achieving 99.65% accuracy for
intra-participants and 99.56% accuracy for inter-participants. Additionally, the results
summarized in Table 5.1 reveal that the proposed model outperforms other State of
the Art architectures when handling inter-participant data. It is worth mentioning
that accuracy and CE remain within a similar range across all trained models. This
suggests that introducing lower limb joint trajectories can be a robust approach for gait
ADLs recognition, surpassing previously proposed methods (see Chapter 2, section
2.3). Furthermore, the proposed 1D-CNN model demonstrates efficient computational
performance, with inference times of approximately 1 ms on a laptop. This suggests that
this model can be effectively employed for real-time HAR. Despite the high accuracy
achieved by the proposed CNN model for both intra-participants and inter-participants,
the confusion matrices reveal occasional misclassifications, particularly for ground-level
activities and walking on ramps. To address this, exploring t-SNE and Grad-CAM
methods could provide insights into the model’s behavior.

The projection of the 64-dimensional feature maps extracted has been represented
with data from four users in Figure 5.4. This graph represents diverse clusters, where
each data point symbolizes the feature map produced by the model at every step, and
the clusters correspond to sets of similar steps. Specifically, the feature maps for stair
climbing obtained by the proposed model are organized into four different clusters. The
remaining clusters are likely composed of one or two ADLs, which can be attributed to
the similarity in joint movement patterns observed during ground-level walking and
walking on a ramp (see Chapter 4, Figure 4.10). Moreover, the graph reveals that, while
some clusters contain two ADLs, they are grouped into four separate clusters, which
is aligned with the number of participants represented in the projection. This result
suggests that each participant exhibits a distinct walking pattern, leading to unique
feature maps from the CNN for each user. However, if t-SNE does not show a clear
separation of the extracted features, one might wonder why such a good classification
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result is achieved. This could be due to the ability of the model to discern nonlinear
boundaries, allowing ADLs to be separated in the 64-dimensional space.

The t-SNE embedding method provides insights into how the features extracted
by the CNN are grouped. However, this method cannot be used to determine which
segments of the joint trajectories play a crucial role in identifying the performed activity.
The Grad-CAM method can be used to highlight which parts of the joint trajectories
are critical to the proposed model to classify the different gait ADLs. Figure 5.5
represents the mean class activation maps together with the mean hip, knee, and ankle
trajectories for each activity. For instance, during stair climbing, the highest activation
occurs between 70% and 90% of the gait cycle. By comparing the hip, knee, and ankle
trajectories during these periods with those of other gait ADLs, significant differences
can be observed. However, despite this analysis, the t-SNE graph and confusion
matrices reveal that incorrect classifications are more frequent during ground-level
walking, ascending a ramp, and descending a ramp. Specifically, certain steps while
descending a ramp are misclassified as ground-level walking or ascending a ramp.

The Grad-CAM method can offer valuable insights into understanding the incorrect
predictions of the CNN model proposed. By using joint trajectories and activation maps,
two incorrect classifications can be analyzed (Figure 5.6). The graph on the left shows
a step produced while descending a ramp, although it is classified as ground-level
walking. The class activation map reveals significant activation between 40% to 50%.
This activation aligns with the peak of the ankle angle, indicating that the gait pattern
is similar to ground-level walking. The reason for this similarity relies on the fact that
the ankle angle exceeds the hip angle at this moment. This occurrence does not happen
when descending a ramp. When analyzing the step classified as ascending a ramp,
high activation can be observed during the loading and stance phase (10% - 50%). This
activation is aligned with the activation map associated with ascending ramp steps and
may be attributed to the similarity in knee trajectory during this specific section of the
gait cycle.

In addition, the feasibility of reducing the number of inputs to the 1D-CNN was
also studied to adapt the model to multiple situations. The results from Table 5.2 and
Table 5.3 demonstrate that high accuracy can still be achieved even with fewer inputs.
Although the accuracy is slightly lower compared to when considering hip, knee,
and ankle flexion/extension, these findings suggest that the model can be adapted to
various scenarios while maintaining an accuracy of over 90%. Therefore, the 1D-CNN
classifier proposed could be used to recognize different activities while analyzing the
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biomechanics of a single lower limb joint and detect gait activities for different types of
lower limb exoskeletons.

5.5 conclusion

This Chapter presents a Deep Learning model to perform HAR during gait. The
classifier relies on a 1D-CNN and employs the flexion/extension angles of the hip, knee,
and ankle, which are measured using the IMU-based motion capture system described
in Chapter 3, section 3.2. Notably, the method employed in this study to measure lower
limb angles is independent of sensor position or location, ensuring a highly reliable
classification approach.

The proposed CNN classifier demonstrates exceptional accuracy for both
intra-participant (99.65%) and inter-participant (99.56%) data, indicating a high
generalization. To understand the decision-making process of the model, the t-SNE
and Grad-CAM algorithms have been used. The analysis led to the conclusion that
the model can find nonlinear boundaries so that each ADL can be separated in an
n-dimensional space. In addition, it can be concluded that misclassifications are
attributable to either unusual step patterns or a significant similarity in joint movement
trajectories across different activities.

Furthermore, diverse pieces of training for the proposed models were conducted
while varying the number of inputs to study the feasibility of adapting the model to
multiple scenarios. The results suggest that the proposed 1D-CNN architecture can be
adapted for analyzing the biomechanics of an individual lower limb joint and detecting
gait activities across various types of lower limb exoskeletons.



6
A G E N E T I C A L G O R I T H M - B A S E D M E T H O D T O M O D U L AT E T H E
D I F F I C U LT Y O F S E R I O U S G A M E S A L O N G C O N S E C U T I V E
R O B O T- A S S I S T E D T H E R A P Y S E S S I O N S

6.1 introduction

As described in Chapter 3, the SPLASH project not only proposes to design an
underwater lower limb exoskeleton but also aims to develop end-effector robotic
solutions based on the novel hybrid actuators proposed within the context of the project
(see Chapter 3, Figure 3.4).

As introduced, the end-effector rehabilitation robots are commonly used together
with serious games to enhance patient engagement and motivation (Heins et al., 2017;
Catalán; Blanco-Ivorra, et al., 2023a). However, it must be taken into account that
rehabilitation therapies should be adapted to each patient (Faria et al., 2020). Therefore,
the difficulty of the serious games employed during robot-aided rehabilitation therapies
must be adapted.

The DDA systems described in Chapter 2, section 2.4 were designed to adapt serious
games according to the user’s abilities, the psychophysiological state, or the game score.
However, it is noteworthy that the conducted studies were only evaluated in a single
session, which does not demonstrate the feasibility of employing the proposed systems
for consecutive rehabilitation sessions. Hence, as the ability of the patient is expected
to change across the sessions, there is a need to propose a DDA system for adapting
the difficulty of the serious games while avoiding a recalibration before starting the
robot-aided rehabilitation sessions.

In this Chapter, a genetic algorithm-based DDA system has been proposed to enhance
the user to perform intensive rehabilitation therapy while maintaining a determined
game score to keep him/her engaged. Based on these objectives, the system proposed
searches for which parameters of the serious game are optimal for the user. In addition,
the DDA system designed is intended to be used during consecutive sessions. To
avoid recalibration, the parameters that best suited the user in the previous session
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have been introduced as the starting point for the next session. Furthermore, a recent
study demonstrated that an increase in the difficulty of the rehabilitation exercises
has a beneficial effect on motor recovery (Maier et al., 2019). Hence, in the study
conducted to evaluate the proposed DDA system, the desired game score has been
reduced between sessions in order to increase the difficulty of the games. Additionally,
the Self-Assessment Manikin (SAM) test together with different physiological signals
have been used to evaluate the psychophysiological state during the sessions.

6.2 materials and methods

6.2.1 Experimental setup

The experimental setup shown in Figure 6.1 has been employed to conduct the
experiments to develop and evaluate the DDA system proposed. The Rubidium robot
was employed to interact with the serious games, developed by the research group
and commercialized by the spin-off iDRhA (iDRhA, n.d.). Furthermore, two additional
devices were utilized to capture diverse physiological signals.

Figure 6.1: Setup employed during the experimental sessions to evaluate the DDA system
proposed.
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6.2.1.1 Robotic rehabilitation system

The Rubidium robot, previously used in research studies of the group (Vales;
Catalán, et al., 2023; Catalán; García-Pérez; Blanco; Martínez, et al., 2021; Catalán;
Blanco-Ivorra, et al., 2023b; Vales; Catal, et al., 2022), was used to play serious games
during the experimental sessions. This portable robotic platform focuses on upper limb
rehabilitation and is composed of two actuated degrees of freedom. Its design includes
an articulated parallelogram mechanism driven by two electric motors, enabling
movements within a horizontal plane. In addition to the robot, a control PC was
employed to execute the rehabilitation games and run the DDA system.

The serious games utilized during the experimental sessions are represented in Figure
6.2, referred to as Game A and Game B. In these games, participants can control a green
square through the use of the Rubidium rehabilitation robot. It is worth mentioning
that the interface provided real-time feedback to the participants by displaying the
remaining time for the exercise and the current game score.

Figure 6.2: The serious games used during the experimental sessions. The green square can
be controlled using the Rubidium robot. In Game A, the objective is to evade the
enemies (represented by blue rectangles) while remaining within the limits of the
safe area (gray square). In Game B, the user must reach the target (yellow circle)
while avoiding the enemies.
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In Game A, the player needs to avoid the adversaries, represented as blue rectangles,
while remaining within the designated safe zone, a grey square. While within this zone,
the score increases by 10 points/second. If the green square remains outside the safe
zone, the score stops increasing. The contact with an enemy not only prevents score
gains but also results in a deduction of 5 points/second.

The objective in Game B is to reach the yellow targets while the user avoids the
blue rectangles. Each target appears at a random location within the designated safe
area and remains visible for 5 seconds. The maximum score awarded by each target
is 100 points, which is indicated by a blue circle surrounding the target. The score
awarded for each target decreases at a rate of 20 points/second. Therefore, reaching
targets quickly contributes to a higher overall score. If the green square remains outside
the safe zone, the score decreases by 10 points/second. The contact with an enemy
results in a deduction of 50 points.

The proposed serious games allow for dynamic adjustments of two parameters to
adapt the difficulty of the game to each user. These parameters are the speed of the
enemies ve and the number of enemies ne. In Game A, it was let ne ∈ {1, 2, 3, 4}.
However, in Game B, due to the high difficulty of achieving objectives with four
enemies, it was decided to let ne ∈ {1, 2, 3}. Finally, for both games, the speed of the
enemies was let ve ∈ [0.1, 2.0].

6.2.1.2 Physiological measurements

In addition to the Rubidium robot, a Shimmer3 GSR+ Unit has been employed
to acquire Galvanic Skin Response (GSR) measurements. Furthermore, a Zephyr
BioHarness was used to acquire cardiorespiratory responses. The data collected from
both devices serve as conventional metrics within psychophysiological paradigms
during rehabilitation (Palumbo et al., 2021).

The Shimmer3 GSR+ Unit incorporates a built-in signal-processing module that
handles measurement acquisition, signal cleaning, and subsequent transmission via
Bluetooth. To capture the GSR signal, two circular adhesive electrodes with pre-gelled
Ag/AgCl material, each having a diameter of 26 mm, were strategically positioned on
the proximal phalanges of the index and middle fingers of the non-dominant hand.

The Zephyr BioHarness incorporates an internal unit that handles measurement
acquisition, signal processing, and transmitting via Bluetooth the ECG and the
respiratory signal of the user measured with the elastic belt.
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6.2.2 Therapy performance definition

The objective of the DDA system during therapy is to maximize the therapy
performance η. This performance metric is influenced by both the movements made
during the game and the score achieved. To achieve this goal, η is evaluated within a
time window tw ∈ [0, k], where k represents the number of samples in the window. Let
η be defined as:

η =
n

∑
i=0

ωi · αi (6.1)

where αi are the evaluations of the user movements or score, and ωi are constants used
as weights of the proposed metrics.

Given the unique dynamics of each game, it is proposed to employ different
definitions of η for each game, which are detailed in the following subsections.

6.2.2.1 Game A therapy performance formulation

Regarding the characteristics of Game A, the objective is to evade the enemies while
staying within the designated safe area. However, the scoring mechanism can allow the
user to increase the score for maintaining a position in the safe zone whether no enemy
contacts the green square. Therefore, the definition of η will incorporate terms to assess
the amount of game space covered by the user and the duration of these movements to
avoid the user remaining still. In addition, to ensure that the game has an appropriate
difficulty level, a term related to the desired score is also integrated into the definition
of η. Thus, ηA is defined as:

ηA = ws · αs + wg · αg + wt · αt (6.2)

where αw is the rate of covered game space, αg is the weighted score relative to the
desired score, and αt is the move rate during the evaluation window. It was let ws, wg,
and wt to be equal with a value of 1/3.

The term αs can be defined by segmenting the safe zone of the game into a grid
composed of i rows and j columns, whose value is determined by calculating the ratio
of the number of squares traversed to the total number of squares in the grid ns, and
the value of each square being s(i, j):
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αs =
n

∑
i=0

n

∑
j=0

si,j

ns
(6.3)

Concerning αt, the aim is to evaluate whether the user is performing a continuous
movement or he/she is remaining still. This can be determined by setting a velocity
threshold vr, below which the user is considered to be at rest. Given that the game
operates within a 2D workspace, the overall velocity of the end-effector of the robot
can be computed as:

v = ||⃗v|| =
√

v2
x + v2

y (6.4)

With v, the user’s movement rate during the evaluation window can be estimated as:

αt =
k

∑
i=0

vi · I(vi)

k
(6.5)

where I(vi) is a piecewise function defined as:

I(vi) =





0 if vi ≤ vr

1 if vi > vr

(6.6)

As introduced, during rehabilitation therapies is essential to maintain a balance in
therapy difficulty to challenge and motivate the patient. Hence, the difficulty of the
game should allow for errors while maintaining the state of flow. Consequently, a high
score may not reflect an optimal performance within the DDA system. To address this,
a metric that evaluates the proximity of the user’s score to a predefined target score go

can be integrated into the definition of η.

The game score rate gr can be expressed as the relation between the score obtained
and the maximum possible score in the time window:

gr =
k

∑
i=0

gs,i − gs,i−1

r · (tw,i − tw,i−1)
(6.7)

where r is the ratio of punctuation obtained per second (100 points/s) and gs is the
score achieved at each instant of tw.
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By using gr a Gaussian function can be utilized to weight the score rate obtained
by the user concerning go. With this aim, a Gaussian function was defined with mean
µ = go and standard deviation σ = 0.25:

αg = e−
(gr−go)2

2·σ2 (6.8)

6.2.2.2 Game B therapy performance formulation

In Game B, the goal is to reach targets within the safe zone to increment the score
while evading the enemies. This game mechanic differs from Game A in that it requires
the player to move to increase the score. It is also worth mentioning that targets will
spawn at random locations within the safe zone, meaning the player’s coverage of
the game space will be largely influenced by the position and the number of targets
the player successfully reaches. As a result, the terms of η that describe the player’s
movement need to be redefined.

In Game B, it can be assumed that a specific set of game parameters forces the user
to execute a longer path to reach the targets. Moreover, with the intention of sustaining
a particular score level throughout the exercise, the therapy performance for Game B
can be defined as:

ηB = wp · αp + wg · αg (6.9)

where αp is the path overlength to reach the targets, and αg is the weighted score
relative to the desired score. The wp and wg values are established equal to 0.5.

First, the minimum distance needed to reach the targets dt can be estimated as:

dt =
nt−1

∑
i=0

√
(xt,i+1 − xt,i)2 + (yt,i+1 − yt,i)2 (6.10)

where xt, yt represents the Cartesian coordinates of the targets and nt the number of
targets reached.

In addition, the path length taken to reach the targets can be calculated as:

dp =
k−1

∑
i=0

√
(xp,i+1 − xp,i)2 + (yp,i+1 − yp,i)2 (6.11)
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where xp, yp represents the position of the green square for each instant k in Cartesian
coordinates.

Once dt and dp are estimated, the path overlength caused by the presence of the
enemies can be calculated as:

αp =
dp − dt

dt
(6.12)

As for the Game A, the game score for each analysis window gr can be calculated as
the ratio of the obtained score to the maximum possible score within that time window.
In Game B, gr is defined as:

gr =
nt

∑
i=0

gt,i

mt
(6.13)

where nt is the number of targets reached, gt is the score given by each target, and mt

is the maximum possible score given by each target.

Given gr, a Gaussian function is defined to weight the score rate regarding the desired
game score go:

αg = e−
(gr−go)2

2·σ2 (6.14)

6.2.3 Dynamic difficult adjustment system design

For a personalized game difficulty level, the optimal values of ve and ne need to be
searched to maximize η. In this section, genetic algorithms are introduced to develop
a DDA system. Furthermore, the usage protocol is described to employ the designed
DDA system across consecutive therapy sessions.

6.2.3.1 A genetic algorithm as a method to develop a DDA system

Genetic algorithms are an optimization technique that imitates natural selection and
evolution (Kramer and Kramer, 2017; Lambora et al., 2019; Mirjalili and Mirjalili, 2019).
They can be used to find effective solutions for complex problems that are challenging
to solve using other conventional methods. These algorithms operate by generating
and adjusting a population of potential solutions referred to as individuals. The fitness
of each individual is evaluated using a predefined function. Those individuals who
are best suited to the environment have a higher chance of survival and reproduction,
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passing on their genes to the next generation. This iterative process, known as elitist
selection, drives the population toward improved solutions over time.

To find the optimal solution, genetic algorithms employ a key mechanism known
as crossover. This process involves combining the genetic material from two or more
individuals. In this context, the crossover mechanism merges the ve and ne genes of
individuals that exhibit higher values of η.

Following the crossover, genetic algorithms implement a mutation mechanism. This
process involves random alterations to a solution by mutation operators, thereby
injecting new genetic material into the population. The main purpose of this mechanism
is to avoid converging on a local minimum, ensuring a diverse gene pool among the
individuals (Hassanat et al., 2019). In the context of the games proposed, considering
that ve is a continuous variable, a mutation operator that introduces a noise factor xv

with a uniform probability has been employed:

xv ∼ U(−0.25, 0.25) (6.15)

By contrast, considering that ne is a discrete parameter, a mutation operator that either
adds or removes an enemy with a probability σn has been used. It is worth mentioning
that introducing or eliminating an enemy can significantly impact the game’s difficulty.
To ensure the stability of the game difficulty and facilitate convergence toward an
optimal solution, the mutation probability σn was dynamically adjusted based on the
session time. This approach, known as deterministic control, has been used in previous
studies (Bäck and Schütz, 1996; Fogarty, 1989; Karafotias et al., 2014).

The implemented genetic algorithm used to adapt dynamically the serious games
during the experimental sessions has been represented in Figure 6.3.

6.2.3.2 Usage of DDA system protocol for different sessions

The protocol followed to dynamically adapt the serious games across the consecutive
experimental sessions is represented in Figure 6.4.

For the first session, the target score rate go is established at 80%. Additionally,
a standard initial population is created and shared across all users for each game.
This population is derived by assigning ve ∈ {0.25, 0.50, 0.75, 1.00}, ensuring a broad
spectrum of speeds along with the possible ne values. Each individual undergoes a
20-second evaluation period. Following this initial assessment, the two best individuals
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Figure 6.3: The genetic algorithm implemented is used to dynamically adapt serious games to
find the game parameters that maximize η. A population of individuals is created,
with each individual containing two genes: the number of enemies ne (blue) and
the speed of the enemies ve (orange). Each individual is introduced into the game,
and η is evaluated for a period tw. After evaluating the entire population, the best
individuals are selected, and the crossover and mutation operators are applied. A
new generation is created, and the process is repeated with the individuals from the
new population.

are selected based on η. Subsequently, the crossover operation is applied, resulting in
the generation of two new individuals.

Once the new individuals are created, mutation operators are applied. In the case of
ve, a uniform noise has been introduced:

v′e = ve + xv (6.16)

For ne, the mutation probability σn was set to 50% at the start of each session. This
choice ensures that the algorithm can explore a diverse range of game parameter
combinations. As new generations evolve, σn is gradually reduced to achieve stable
difficulty levels during the session:

σ = 0.5 · e0.05·pi (6.17)
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Figure 6.4: The protocol for dynamically adjusting the serious games across various sessions
begins with utilizing a pre-established population to assess the user’s capabilities
during the initial session. Following this preliminary assessment, the parameters
with the highest η are identified. The next step involves the application of crossover
and mutation processes. To maintain continuity and progress, the elite individuals
from each session are preserved and used as the initial population for the subsequent
session.

where pi is the i-th generation. Furthermore, a baseline mutation probability of 25% has
been established. In case a mutation is applied to ne, the number of enemies will be
randomly increased or decreased by one unit.

After the application of crossover and mutation operators, the newly formed
generation undergoes evaluation, and this cycle is repeated until the session concludes.
The final elite is preserved for the next session.

For subsequent sessions, the target score rate go is decreased by 5%. An initial group
of four individuals is then created based on the elite saved from the previous session.
Throughout these sessions, mutation operators continue to be used to explore changes
that can improve the therapy performance.

6.2.4 Experimental sessions

The conducted study involved 13 able-bodied users (8 males and 5 females), aged
between 20 and 44 years (28.7 ± 5.7 years), with body masses ranging from 49 to 85

kg (67.3 ± 10.9 kg) and heights ranging from 159 to 187 cm (172.2 ± 8.6 cm). The
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participants provided written, informed consent before starting the experimental
sessions. This study was approved by the Hospital La Pedrera Ethical Committee
and registered with reference number HLP-35/2021.

The experiments were carried out for five consecutive days to evaluate the proposed
DDA system. The participants were consistently scheduled for the same time slot
throughout the week, from Monday to Friday. At the beginning of the initial session,
it was clarified to the users that they would realize two different exercises using the
Rubidium rehabilitation robot, spread across five separate sessions. While explaining
the activities, it was indicated that both the quantity and velocity of the enemies would
vary. It is important to highlight that details regarding the mechanics and rationale
behind the variability of these game parameters were not mentioned to prevent any
potential influence on the users’ in-game behavior.

Before each exercise, the physiological signals were recorded for three minutes at
rest to establish a baseline state. The users played Game A and Game B for 10 minutes,
and 20 seconds were left as a warm-up. The sequence of the games was shuffled for
every session and all participants. Following each exercise, participants completed the
SAM test (Bradley and Lang, 1994).

6.2.5 Data acquired and processing

A set of data collected with the Rubidium robot was employed to evaluate the DDA
system proposed. Specifically, the end-effector position in Cartesian coordinates is
collected to assess the movements of the participants during games.

In addition to evaluating the DDA system, it is also intended to analyze the
psychophysiological state of the participants during sessions. With this aim, the
SAM test was used to collect the self-reported emotional state of the users, which is an
effective measure for self-reporting emotion recognition. In the test, the emotions are
rated on a nine-point scale by three dimensions: valence, arousal, and dominance.

In addition to SAM, GSR and cardiorespiratory data were collected. The physiological
signals have been cleaned and processed using the Python toolbox NeuroKit2
(Makowski et al., 2021).

The Zephyr BioHarness device acquired ECG and respiratory signals at a frequency
of 250 Hz. The RFQ was computed through the local maxima and minima caused by
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inspirations and expirations. Similarly, the R peaks in the ECG signal were identified
to calculate the HR and Heart Rate Variability (HRV) indices, which are indicative
biomarkers of both physiological and psychological states (Gilgen-Ammann et al., 2019).
Typically, a lower HR is associated with relaxation or light exercise, whereas higher
HR values are indicative of more intense physical activity. HRV is commonly utilized
as an indicator of mental workload and stress levels associated with various activities.
The time-domain metrics, particularly the Root Mean Square of Successive Differences
between normal heartbeats (RMSSD), have been extensively used in HRV studies and
are considered a reliable measure of the vagal tone. (Laborde et al., 2017; Rajendra
Acharya et al., 2006). In addition, low parasympathetic activity, characterized by a
decrease in High-Frequency (HF) power, is frequently reported as a factor associated
with variation in HRV variables (Kim et al., 2018). It is generally observed that higher
HRV values suggest a state of lower stress or intensity.

The Shimmer GSR+ device acquired the GSR signal at a sampling rate of 512 Hz.
The GSR signal can be divided into two different components: the Skin Conductance
Level (SCL), which represents the baseline level of skin conductance in the absence
of any discrete environmental event, and the Skin Conductance Responses (SCR), which
are transient increases in skin conductance. From these signals, the mean SCL and the
SCR frequency values were calculated.

To minimize the differences across participants and sessions, the physiological
measurements were adjusted to their respective mean baseline values. During the
three-minute rest period, the mean basal value was obtained from the minute preceding
the start of the activity. For the SCR frequency, the baseline value was subtracted from
the signal to standardize the data. The rest of the physiological signals were normalized
as:

xnorm =
x − xbaseline

xbaseline
(6.18)

6.2.6 Statistical data analysis

A statistical data analysis was conducted to compare the variables involved in
the DDA architecture and the psychophysiological states across different sessions.
Significant results are considered for p < 0.05. The analysis included a normality test
using the Shapiro-Wilk test, which indicated that the distribution of certain variables
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deviated from normality. Consequently, non-parametric methods have been used to
identify differences among groups of variables.

The Friedman test was used to study the differences among sessions. Subsequently,
in the post-hoc analysis, pairwise comparisons were performed using the Wilcoxon
signed-rank test with the zero method proposed by Pratt. In the pairwise comparisons,
special interest has been taken into account between the first and the rest of the sessions.
Consequently, four pairwise comparisons are analyzed.

6.3 results

6.3.1 Exercise adaptation

The heatmaps collected in Figure 6.5 represent the activity of one user playing Game
A and Game B for predefined difficulty levels during the initial assessment. In Game
A, the user’s movement and coverage of the game space are influenced by the game
parameters. For instance, with low values of ne and ve the user may remain stationary.
However, with higher values more movement is required to avoid the obstacles. By
contrast, in Game B, the game’s parameters appear to have low impact on how the user

Figure 6.5: The heatmaps represent the movements of one user for different game difficulties
during (a) Game A, and (b) Game B.
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navigates the game space, probably due to the random emergence of targets within
this mode of play.

Figure 6.6 represents two examples of the progression of ηA and ηB throughout
the initial and the last session. Each of the points included in the graph represents
the value of η, each reflecting an evaluation over the preceding 20-second interval.
Moreover, trendlines have been calculated and included in the graphs using the
Locally WEighted Scatterplot Smoothing (LOWESS) method, with a smoother span of
0.2.

The mean and standard deviation of each of the defined game metrics in section
6.2.2 has been represented in Figure 6.7 and summarized in Table B.1. According to
the Friedman test, a significant increase in η (p = 0.0019), αs (p < 0.0001), and αt

(p < 0.0001) is shown for Game A. Regarding the Game B, the Friedman test indicates
that there is a significant increase in both ηB (p < 0.0001) and αp (p = 0.0019). For a
detailed comparison, the results of pairwise comparisons obtained using the Wilcoxon
test are summarized in Table 6.1 for both games.

Figure 6.8 represents a violin plot with the average values of ne and ve across sessions.
For a more detailed analysis of the data distribution of these parameters, refer to Table
B.2 for Game A and Table B.3 for Game B.

Figure 6.6: Therapy performance (η) evolution during the initial and the last session for (a)
Game A, and (b) Game B. The included trendlines have been calculated using the
LOWESS method, with a smoother span of 0.2
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Figure 6.7: Graphical representation of the mean and standard deviation of therapy performance
(η), movement metrics, and score rate during the five sessions for (a) Game A, and
(b) Game B.

Table 6.1: Wilcoxon signed-rank test results for therapy performance measurements. The
p-values of the pairwise comparisons between the first and the n session are
summarized.

S1-S2 S1-S3 S1-S4 S1-S5

Game A ηA 0.0093 0.0161 0.0210 0.0005

αs 0.0640 0.0015 0.0005 0.0005

αt 0.0771 0.0024 0.0005 0.0005

Game A ηB 0.0002 0.0002 0.0002 0.0007

αP 0.7869 0.3396 0.0105 0.0681

6.3.2 Psychophysiological state

The results of self-reported emotions during sessions, assessed using the SAM test,
are summarized in Figure 6.9 and Table B.4. For Game A, the Friedman test indicates
no significant differences in valence (p = 0.1058), arousal (p = 0.9861), and dominance
(p = 0.6895). However, for Game B, there are significant differences in arousal (p =

0.0399) among sessions, while no significant differences are observed in valence (p =

0.2878) and dominance (p = 0.2164). In the pairwise comparison, significant differences
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Figure 6.8: Violin plots representing the mean values of ne and ve across sessions for (a)
Game A, and (b) Game B.

were found in arousal between the first and the third session (p = 0.0209), and the first
and the fifth session (p = 0.0215).

The cardiorespiratory responses are represented in Figure 6.10. No statistical
differences between sessions were found in HR (p = 0.2548), RF (p = 0.3084), RMSSD
(p = 0.6033), or HF (p = 0.2805) for Game A across the experimental sessions. The
same results apply to Game B, where statistical differences were not found across
sessions in HR (p = 0.3971), in RF (p = 0.3084), in RMSSD (p = 0.1291), and HF
(p = 0.0681).

The average values of SCL and the SCR frequency have been represented in Figure
6.11 across sessions for both serious games. In the case of Game A, no significant
differences were found in SCL (p = 0.0645) or SCR frequency (p = 0.1712) among
sessions. A similar pattern was noted for Game B, where no significant changes were
observed in SCL (p = 0.1669) and SCR frequency (p = 0.4530) among the sessions.
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Figure 6.9: Graphical representation of the mean and standard deviation of the SAM test across
sessions for (a) Game A and (b) Game B.

Figure 6.10: The normalized results for cardiorespiratory responses are presented through
boxplots. These graphs represent HR, RFQ, RMSSD, and HF power of successive
RR intervals, categorized by session for both Game A and Game B.
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Figure 6.11: The normalized results for GSR responses are presented through boxplots. These
graphs represent the SCL and the SCR frequency, categorized by session for
both Game A and Game B.

6.4 discussion

In neurorehabilitation therapies, adapting the intensity and difficulty to each patient
is crucial to keep the patients motivated and enhance the motor recovery of the affected
limbs (Kwakkel, 2006; Winstein et al., 2016). A DDA system has been proposed
to adjust robotic therapy exercises to encourage patient movement and maintain an
optimal challenge level. To ensure that the difficulty level is appropriate for each
user, it is proposed to guarantee a certain success percentage during the sessions.
It is worth mentioning that determining an appropriate difficulty or success rate to
enhance engagement can be complex, involving variables like the patient’s skill level
and preferences. Despite this challenge, recent research demonstrated that gradually
increasing the difficulty of exercises can positively impact motor recovery (Maier et
al., 2019). Hence, this study proposes to evaluate the developed DDA system and
the psychophysiological responses when applying a success trajectory that begins
at 80% success in the initial session and decreases to 60% by the final session.

In an attempt to personalize the difficulty of serious games, a genetic algorithm-based
DDA system has been proposed. The method aims to determine optimal values for
two parameters (ne and ve), based on ηA (Equation 6.2) and ηB (Equation 6.9). Both ηA

and ηB incorporate terms that emphasize game parameters related to user movement.
Specifically, they give more weight to parameters that encourage active participation.
To demonstrate the importance of the terms αs and αt in Game A, and αp in Game
B, the movements of one user for some predefined game parameters are represented
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in Figure 6.5. In Game A, it can be observed that some parameter combinations (e.g.
ne = 1 and ve = 0.25) allow the user to remain relatively stationary and cover a small
game space. In contrast, other parameter combinations (e.g. ne = 3 and ve = 0.75)
seem to force the user to cover a larger game area. Regarding Game B, the heatmaps
suggest that parameters do not significantly impact the amount of game space covered.
This behavior may be attributed to the presence of randomly appearing targets that
users must reach. Notably, certain parameter values (e.g. ne = 3 and ve = 0.75) result in
more evenly distributed heat across the game area, suggesting continuous movements
or higher speed.

Figure 6.6 represents two examples with the progression of ηA and ηB for one user
during the initial and final experimental session. At the beginning of the first session,
the initial assessment is conducted to estimate the user’s skills. It can be observed that
η increases when ve and ne are aligned with the user’s needs, while it decreases when
the values deviate from the optimal parameters. Following the initial evaluation, the
implemented genetic algorithm searches for a combination of ne and ve to maximize η.
During the fifth experimental session, η exhibits a more stable value compared to the
first session. In addition, it is worth mentioning that some instances of η are abnormally
low. This phenomenon can be attributed to the inherent characteristics of the algorithm,
particularly when mutations in ve and ne prove to be unsuitable for the user. However,
an ascending trend in η is noticeable throughout both sessions for each game.

The mean and standard deviation of the terms defining η are represented in Figure 6.7
and summarized in Table B.1. In Game A, there is a marked improvement in ηA during
the first session, which is maintained until the last session. The strategy implemented
significantly increased αs, leading to a significant expansion of the game space covered
by users (from 62% in the first session to 78% in the final session). In addition, αt

maintains a high level, causing users to move from 93% of the time in the first session
to 98% in the last two. Furthermore, it can be observed that the DDA system can find
game parameters that approach the score rate requirement. Concerning Game B, there
is also a significant increase in ηB from the initial session. Despite the method proposed
can identify game parameters that increase αp (46% in the first session, 59% in the last
session), the results evidence that the DDA system is not able to find game parameters
to align the game difficulty with the trajectory proposed. One possible explanation
for this discrepancy can be the presence of a game element beyond the control of the
DDA system, i.e. the target location. Given that targets spawn randomly within the
game environment and scores are time-dependent, increasing player movement seems
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to make achieving the target score go more difficult. These findings may indicate that
an effective adaptation strategy should not only focus on the method itself but also
on the adaptability of the game design. Therefore, the game design should exclude
elements that cannot be adapted by the DDA system. Moreover, it is essential to limit
the number of adjustable game parameters to guarantee a time-affordable adaptation
process.

By examining the median values of ne and ve during the game sessions (as represented
in Figure 6.8 and detailed in Tables B.2 and B.3) the degree of personalization may be
assessed. Across both games, the median values of ne and ve increased as the sessions
progressed. These findings suggest that the proposed DDA system tries to increase
the difficulty level to maintain a specific score rate. In addition, the variation in the
values of the game parameters seems to increase, which suggests that each user played
with a personalized difficulty level. Furthermore, except ne in Game B, the Interquartile
Range (IQR) increased compared to the initial session. This implies that while the
personalization was initially minimal, starting from identical game parameters, it
became more pronounced over time, aligning more closely with each user’s skill level.
Notably, even though the initial maximum value for ve was set to 1.0, the DDA system
determined that for some users, it was necessary to elevate this parameter beyond the
initial limit to follow the specified difficulty curve.

The proposed method enhances the intensity of activities, but it’s crucial to examine
users’ psychophysiological states during sessions. The valence, arousal, and dominance
were self-evaluated with the SAM test (Figure 6.9, Table B.4). The Friedman test
results revealed that for Game A, there were no significant differences in any of the
SAM variables. This suggests that users experienced pleasure, excitement, and a
medium-high sense of dominance throughout all sessions, despite the progressive
difficulty increase. However, in Game B, significant differences can be observed in
arousal. Specifically, arousal levels were significantly lower in session 3 compared to
session 1, and in session 5 compared to session 1. No significant differences were found
in valence and dominance. A possible explanation is that this decrease in arousal may
be attributed to the consistent score rate maintained during Game B across sessions.
With the progression of the sessions, the users get more experienced and their arousal
may decrease. This is aligned with the high levels of dominance reported by the users
in Game B.

In addition, no significant differences were found across sessions for the
cardiorespiratory (Figure 6.10) and GSR signals (Figure 6.11). These results are
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aligned with the self-reported emotions reflected in the SAM test, which suggests no
changes in the psychophysiological responses despite a progressive increase in game
difficulty.

The results of this study are highly promising, suggesting that the proposed DDA
system could be used across consecutive rehabilitation sessions. However, it’s essential
to recognize that the experiments conducted to evaluate the adaptation method were
carried out with able-bodied users. As a next step, it is intended to evaluate the
adaptation architecture with patients. Furthermore, it is intended to investigate how
this architecture can be combined with other methods to offer effective robot assistance
to patients with limited upper limb mobility.

6.5 conclusion

In this Chapter, a genetic algorithm-based approach for adapting serious games
during robot-aided rehabilitation therapies has been proposed. The DDA system has
demonstrated efficacy in maximizing the therapy performance (η) across sessions,
suppressing the recalibration between sessions. This achievement can be attributed
to the use of mutations to explore variations in user behavior. Notably, the results
show that the method proposed excels in personalizing game parameters, ensuring
wide player movements while maintaining specific score levels, especially for Game
A. The personalization performed by the proposed DDA system is further supported
by the observed dispersion in the game parameters. In addition, from the results
obtained is derived that game design is crucial for performing an appropriate game
adaptation. Therefore, the deliberate exclusion of random elements from the game
design is recommended to enhance overall effectiveness.

In terms of psychophysiological responses, it’s noteworthy that despite the escalating
difficulty of the game, there is a remarkable consistency in valence, arousal, and
dominance throughout the sessions. The physiological reactions of players also show
uniformity across different sessions, reinforcing the conclusion that the adaptive game
design, which is enabled by the DDA system proposed, does not markedly influence
the players’ emotional or physiological states.



7
A D E E P L E A R N I N G M O D E L F O R A S S I S T I V E D E C I S I O N - M A K I N G
I N R O B O T- A I D E D R E H A B I L I TAT I O N T H E R A P Y

7.1 introduction

In addition to personalizing the difficulty of the serious games, patients with a higher
degree of disability may need assistance to perform the movements required by the
games. Therefore, there is a need to develop an assistance system to find out when
rehabilitation robots should provide assistance.

Diverse AAN methods have been presented in recent studies (Chapter 2, section
2.4) to provide assistance during robot-aided rehabilitation therapies. However, it is
observed that such studies typically overlook the expertise of experienced therapists in
determining the appropriate moments for intervention. A previous study of the group
highlighted that therapists possess a superior ability to determine the most suitable
manner and timing for providing assistance during exercises, compared to the standard
fixed assistance methods found in robotic rehabilitation devices (Catalán; García-Pérez;
Blanco; Ezquerro, et al., 2021). In essence, the assistance offered by therapists is better
adapted to the individual requirements of patients, thereby optimizing their exertion
and potentially enhancing their recovery, a factor identified as crucial by professionals
for successful rehabilitation outcomes (Maclean et al., 2000; Friedrich et al., 1998).

Only S. Pareek and T. Kesavadas (Pareek and Kesavadas, 2020) propose to develop
an AAN architecture based on a therapist’s expertise to determine optimal moments
for providing assistance during rehabilitation exercises. However, the validation of the
AAN was conducted with able-bodied participants, and one of the authors assumed
the role of the therapist.

An AAN approach for determining in which scenarios the robot should assist
is presented in this Chapter. With this aim, data from multiple patients were
collected during real robot-aided rehabilitation sessions, where an experienced
therapist demonstrated when assistance should be provided. Furthermore, a series
of transformations have been applied to ensure the applicability of the method across
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different point-to-point activities. Unlike S. Pareek and T. Kesavadas, who advocate
training individual LSTM models for each user, the presented approach involves
training a Deep Learning model using data from diverse patients to create a more
generalized method. Finally, the trained model is fine-tuned to adapt the therapy to
each patient’s specific needs.

7.2 materials and methods

7.2.1 Subjects

The data acquisition used to develop the AAN model has been performed in La
Pedrera Hospital (Denia, Spain) with patients suffering from neurological conditions
(Table 7.1). The rehabilitation therapists were responsible for defining the inclusion
criteria, which included:

Adults with hemiparesis/hemiplegia

Orientation in the three spheres (social, temporal, and spatial)

Capacity for collaboration and comprehension of task instructions and
study-related information

Table 7.1: Information about the patients who participated in the study.

Patients Sex Age (years) Diagnostic Laterality STREAM

1 Male 72 Abdominal Dystension Right 10/16

2 Male 51 Basal Ganglia hematoma Right 11/16

3 Male 70 Bilateral SARS-CoV2 pneumonia Left N/A
4 Male 78 Ischemic stroke atherothrombotic Right 11/16

5 Female 84 Ischemic stroke Right 7/16

6 Male 69 Protuberance ischemic stroke Left 7/16

7 Male 69 Thalamic capsule-lacunar stroke Right 0/16

8 Male 62 Chronic ischemic heart disease Right 8/16

Note. N/A, not available value; ACM, Artery Cerebral Middle; STREAM, Stroke Rehabilitation
Assessment of Movement, the value indicate the score obtained for the upper limb movement.
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To evaluate patients, the STREAM test was used (Ahmed et al., 2003). This assessment
evaluates coordination, functional voluntary movement, and range of motion. For our
purposes, only the score obtained from the upper limb was considered.

7.2.2 Experimental setup and data collection

The data acquisition was conducted in a previous study of the group (Catalán;
García-Pérez; Blanco; Ezquerro, et al., 2021). The experimental setup has been
represented in Figure 7.1. The Rubidium robot was employed to interact with a
serious game based on a point-to-point modality. During the game, the patients needed
to reach a peripheral point of the roulette starting from its center, as shown in Figure
7.1.a.

In the conducted study, a master-slave assistance approach was employed, where
the Rubidium robot itself does not assist the patient. Instead, the therapist provides
direct assistance to the patient. The therapist exerted force on the end effector of the
Rubidium, which was equipped with an onRobot HEX force sensor to record the
assistance provided (Figure 7.1.b). This setup allowed for the measurement of both the
force applied by the therapist and the timing of the assistance to determine when the
assistance was provided.

Remaining
Targets

Time
Remaining

Ideal Trajectory

Target

Player cursor

RubidiumPatient

Game ScreenForce Sensor

Therapist

a b

Figure 7.1: Set of devices used during the experimental sessions (Catalán; García-Pérez;
Blanco; Ezquerro, et al., 2021). (a) The point-to-point game employed during the
rehabilitation sessions together with the Rubidium robot, an end-effector upper-limb
rehabilitation robot. (b) Image of the experimental setup used in La Pedrera Hospital.
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7.2.3 Data processing

The proposed method in this Chapter is designed to be used in diverse serious games
or exercises based on the dynamics of goal achievement. Consequently, a sequence of
transformations must be applied to the data obtained from the Rubidium robot before
incorporating them as input to the Deep Learning model. The applied data processing
is represented in Figure 7.2.

Figure 7.2: AAN proposed strategy during robot-aided therapy. As the patient executes a
movement, the Cartesian coordinates of the end-effector are acquired. The trajectory,
considering the starting point Sr and the goal position Gr, is aligned with the X-axis
and scaled. The trajectories performed by the patients are labeled according to the
measurements of the force sensor to train a model that learns from the therapist’s
interventions. These trajectories are then segmented into sequences to serve as input
for the Deep Learning model. The model is trained using data collected from diverse
patients and then fine-tuned before its application during robot-aided therapies. In
the final stage of the pipeline, the model evaluates whether assistance is required.
The assistance provided by the robot can be facilitated by the force control-based
method presented in (Catalán; García-Pérez; Blanco; Ezquerro, et al., 2021).
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Each of the trajectory points Pr between the starting point Sr and the target point
Gr has been considered, and the transformation rTu has been applied. By rTu, we
transform Sr → Su = (0, 0) and Pr is aligned with the X-axis, which can be defined as:

rTu =




cos(θx) −sin(θx) 0 −Sr,x

sin(θx) cos(θx) 0 −Sr,y

0 0 1 0

0 0 0 1




(7.1)

where θx is the angle between vector P⃗G and the X-axis. The trajectory performed by
the user aligned with the X-axis Pa and the target point Ga can be obtained by applying

rTu:
Pa =r Tu · Pr (7.2)

Ga =r Tu · Gr (7.3)

A scale factor is finally applied to Pa to transform Ga → Gu = (1, 0):

Pu =




1
Ga,x

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



· Pa (7.4)

Figure 7.3 represents a between the original trajectories and the post-transformation
trajectories. Following the application of these transformations, the distance to the
target du is calculated for each point:

du = ∥−−→PuGu∥ (7.5)

The exerted force F on the end-effector of the robot was measured and employed to
identify the assistance provided by the therapist. Each trajectory point Pu = (Xu, Yu)
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Figure 7.3: On the left, the trajectories executed by a patient during the rehabilitation activity
are represented. On the right, the transformed trajectories are presented, having
undergone alignment and scaling along the X-axis. Moreover, the force applied by
the therapist to the end-effector is visually represented by color coding along the
trajectories.

is labeled as assisted whether F > 0.5 N. Otherwise, the trajectory performed by the
patient is labeled as unassisted. Therefore:

Y =





0 if F ≤ 0.5

1 if F > 0.5
(7.6)

To determine whether a patient requires assistance, the dataset D : (x, y) has been
used for training the model, where x represents the input from the set x ∈ X =

{Xu, Yu, du}, and y is the corresponding output. As the problem is addressed as a
multivariate time-series classification, the input vector xt includes measurements from
the preceding two seconds to predict yt. The data collected from the Rubidium
robot have been acquired at 30 Hz, meaning that xt consists of the last 60 samples
(xt−59, xt−58, ..., xt−1, xt) ∈ X.

It is worth mentioning that the model only receives data from the movements
executed by the patients. Once the assistance was detected, any movement made by
the therapist to aid the patient was excluded from the input data. Consequently, the xt

before the therapist’s assistance during the trial is categorized as assisted.
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Before training, the dataset D was divided into three different subsets. Data from
six users (intra-participants) were utilized for both training and validation datasets.
Specifically:

Training Data. 80% of the assisted trials and 80% of the non-assisted trials were
used to train the model.

Validation Data. The remaining 20% of assisted and non-assisted trials from the
intra-participants were reserved for model validation.

Test Data. Data from the other 2 patients served as the test dataset.

Furthermore, considering that Xu, du ∈ (0, 1) due to the applied transformations,
the input Yu was scaled between the minimum and maximum values of the training
dataset. This ensures that all inputs are within a similar range.

In addition, as it is intended to fine-tune the model for each patient, a subset
comprising 20% of the trajectories (equivalent to 5 trajectories) was split for each test
user from the test dataset. These data will be used to fine-tune the model, while the
rest of the data will be employed to evaluate the impact of fine-tuning.

7.2.4 Deep Learning Model

7.2.4.1 Model architecture

As introduced, it is intended to develop a classifier based on a Deep Learning model
in order to learn from the therapist when to assist during robot-aided rehabilitation
therapies. The problem can be defined as learning a classification function ŷ = f (xt),
such that ŷt ≈ yt, ∀xt ∈ X.

The proposed approach involves training a Deep Learning model based on the
ENCODER architecture proposed by Serrà et al. (Serra et al., 2018), which was
specially designed for time series classification. The architecture of the model proposed
has been represented in Figure 7.4, and consists of one-dimensional convolutional
layers, a convolutional attention mechanism to summarize the time axis, and a final
GAP layer.

The first convolutional layer is composed of 128 filters of length 5; the second
convolutional layer consists of 256 filters of length 11; and the third convolution is
composed of 512 filters of length 21. Each convolutional layer is followed by an instance
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Figure 7.4: The proposed architecture of the Deep Learning model to provide AAN during
robot-aided rehabilitation therapies. Feature extraction is conducted through three
convolutional blocks. Subsequent to these layers, half of the extracted filters are used
as inputs of a time-wise softmax activation, which acts as an attention mechanism
for the remaining filters. The architecture concludes with a GAP layer and a neuron
with the sigmoid activation function to infer whether a patient needs assistance
according to the performed movements.

normalization operation (Ulyanov et al., 2016) and then a Parametric Rectified Linear
Unit (PReLu) activation function (He et al., 2015). The output of PReLu is then subjected
to a dropout operation with a rate of 0.2, followed by a final max-pooling layer of length
2. After these layers, half of the filters are input to a time-wise softmax activation,
serving as an attention mechanism(Niu et al., 2021) for the remaining filters. The result
of the attention mechanism is finally passed through a GAP layer. Finally, a layer
with one neuron is used as the output of the model, employing the Sigmoid activation
function (Pratiwi et al., 2020) for the binary classification problem. The total number of
trainable parameters of the model is 3,118,723.

7.2.4.2 Model training and fine-tuning

The AAN model has been developed and trained using Keras and Tensorflow Python
packages (Gulli and Pal, 2017b). The Mean Square Error (MSE) was chosen as the loss
function, diverging from the typical Binary Cross-Entropy approach (Canbek, 2023).
The Adam algorithm was used as the optimizer with an initial learning rate of 0.001.
To prevent overfitting, the loss on the validation dataset was observed, and training
was halted if no improvement was seen for five epochs, with the epoch limit set at 50.
In the event of early stopping, the model reverted to the parameters that achieved the
lowest loss. A batch size of 8 was employed throughout the training process.
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In order to adjust the assistance provided by the robotic device it is intended to
fine-tune the general model. The fine-tuning process is designed to transfer the
knowledge gained from a Deep Learning model that has been pre-trained on a
separate dataset (Beghriche et al., 2023). Although fine-tuning necessitates a degree of
learning, it would be significantly quicker than building a model from scratch for each
patient’s assistance needs (Too et al., 2019). Moreover, fine-tuning has the advantage of
incorporating broad knowledge acquired from the initial training of the model. During
fine-tuning, the initial learning rate for the Adam algorithm was reduced from 0.001 to
0.0001 to prevent overfitting. The fine-tuning process was conducted during 10 epochs
with a batch size of 1.

7.2.4.3 Model evaluation

To assess the performance of the proposed model in classifying assistance during
robot-aided exercises different evaluation metrics have been used, including accuracy,
recall, specificity, False Positive Rate (FPR), False Negative Rate (FNR), and the F1-Score.
During the evaluation, a sequence is classified as assisted when ŷ > 0.5.

Initially, a sequence-to-sequence evaluation was conducted using the training and
validation datasets. This involved comparing the predicted assistance for each data
sequence against the actual assistance provided. Moreover, to benchmark the model
proposed, seven additional models have been trained for a comparative analysis of
sequence-to-sequence classification accuracy: a ResNet model (Wang et al., 2017a), a
t-LeNet model (Le Guennec et al., 2016), a MCDCNN (Zheng et al., 2016), an ENCODER
model (Serra et al., 2018), a Time-CNN model (Zhao et al., 2017b), and a FCN model
(Wang et al., 2017b). Furthermore, an LSTM model has been trained to evaluate the
performance of the model proposed in comparison to the approach presented by S.
Pareek and T. Kesavadas (Pareek and Kesavadas, 2020).

In addition to sequence-to-sequence evaluation, a method for assistance
decision-making across multiple sequences rather than a single one has been proposed.
This involves employing the model to make continuous inferences throughout the
point-to-point rehabilitation activity. If it is inferred that assistance should be provided
for a certain period of time, the robot assistance will be enabled. Different decision times
were considered to select the optimal period with the validation dataset: 0.5 seconds,
1.0 seconds, 1.5 seconds, and 2.0 seconds. After finding the optimal decision time, the
test dataset was used to evaluate the classification performance in new patients.
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7.3 results

This section describes the evaluation results of the AAN method proposed. Initially,
the sequence-to-sequence experiments are analyzed. Subsequently, the applicability
results of the AAN method within a robot-assisted rehabilitation context are examined.
The model training, fine-tuning, and inference were executed on an Nvidia RTX 4070Ti
GPU. The duration for model training was approximately 35 seconds, fine-tuning
required about 10 seconds per user, and each inference was completed in 0.017

milliseconds.

7.3.1 Sequence-to-sequence evaluation

Table 7.2 and Table 7.3 summarize the accuracy, recall, specificity, FPR, FNR, and
F1-Score of the trained models when evaluating sequences from the training and
validation datasets. On the training dataset, the model proposed achieves the highest
accuracy (97.47%) and F1-Score (94.55%). The ENCODER architecture achieves the
highest specificity (99.50%) and the lowest FPR (0.50%), while the ResNet architecture
obtains the highest recall (97.8%) and the lowest FNR (2.17%). When evaluating
the models with the validation dataset, the model proposed achieves the highest
recall (90.55%), the lowest FNR (9.45%), and the highest F1-Score (75.15%), while the
ENCODER model achieves the highest accuracy (91.81%), specificity (93.64%), and the
lowest FPR (6.35%).

In addition, an analysis of the impact of the sequence length on the model
performance has been conducted. Table 7.4 and Table 7.5 summarize the results
of the analysis with the training and validation datasets, respectively. The metric
values suggest that performance tends to improve when the length of the sequences
increases. For the training dataset, the accuracy increased from 93.43% (15 samples) to
97.91% (45 samples), and the F1-Score increased from 83.81% (15 samples) to 95.36% (45

samples). For the validation dataset, the accuracy increased from 89.27% (15 samples)
to 91.72% (60 samples), and the F1-Score increased from 61.87% (15 samples) to 74.15%
(60 samples).
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Table 7.2: The evaluation of the model using the training dataset is collected. The accuracy,
the recall, the specificity, the FPR, the FNR, and the F1-Score are used to evaluate
the performance of the proposed model while compared with other State of the Art
models.

Model Accuracy Recall Specificity FPR FNR F1-Score

ResNet 0.9310 0.9783 0.9172 0.0828 0.0217 0.8647

t-LeNet 0.9007 0.8523 0.9148 0.0852 0.1477 0.7947

MCDCNN 0.9570 0.8885 0.9768 0.0232 0.1115 0.9029

ENCODER 0.9656 0.8646 0.9950 0.0050 0.1354 0.9190

Time-CNN 0.9071 0.8831 0.9140 0.0860 0.1169 0.8108

FCN 0.8750 0.8365 0.8861 0.1139 0.1635 0.7510

LSTM 0.9177 0.8242 0.9449 0.0550 0.1757 0.8188

Our Model 0.9747 0.9754 0.9744 0.0256 0.0246 0.9455

Table 7.3: The evaluation of the model using the validation dataset is collected. The accuracy,
the recall, the specificity, the FPR, the FNR, and the F1-Score are used to evaluate
the performance of the proposed model while compared with other State of the Art
models.

Model Accuracy Recall Specificity FPR FNR F1-Score

ResNet 0.8773 0.8046 0.8895 0.1105 0.1954 0.6536

t-LeNet 0.8763 0.8046 0.8885 0.1115 0.1954 0.6519

MCDCNN 0.8981 0.7815 0.9178 0.0822 0.2185 0.6883

ENCODER 0.9181 0.8088 0.9364 0.0635 0.1912 0.7397

Time-CNN 0.8748 0.8803 0.8740 0.1260 0.1197 0.6693

FCN 0.7812 0.6765 0.7988 0.2012 0.3235 0.4708

LSTM 0.8996 0.7626 0.9227 0.0773 0.2373 0.6862

Our Model 0.9139 0.9055 0.9153 0.0847 0.0945 0.7515

7.3.2 Assistance during trajectory execution

During robot-aided rehabilitation sessions, it will be considered that assistance should
be provided when ŷ > 0.5 for a certain time tassist. Table 7.6 collects the performance
of the model when classifying complete trajectories according to tassist. The results
suggest that the ideal duration is approximately tassist = 1.0 s, achieving an accuracy
of 96% and an F1-Score of 84.93%. It is worth mentioning that FNR tends to rise with
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Table 7.4: Results of the model evaluation with the training dataset in accordance with the
sequence length. To evaluate the performance of the proposed model, the accuracy,
recall, specificity, FPR, FNR, and F1-score values are included. The equivalence
between samples and time is also given.

Sequence Length Accuracy Recall Specificity FPR FNR F1-Score

15 (0.5 s) 0.9343 0.7543 0.9867 0.0133 0.2457 0.8381

30 (1.0 s) 0.9711 0.8850 0.9962 0.0039 0.1150 0.9325

45 (1.5 s) 0.9791 0.9543 0.9862 0.0138 0.0457 0.9536

60 (2.0 s) 0.9766 0.9001 0.9986 0.0014 0.0992 0.9455

Table 7.5: Results of the model evaluation with the validation dataset in accordance with the
sequence length. To evaluate the performance of the proposed model, the accuracy,
recall, specificity, FPR, FNR, and F1-score values are included. The equivalence
between samples and time is also given.

Sequence Length Accuracy Recall Specificity FPR FNR F1-Score

15 (0.5 s) 0.8927 0.6050 0.9411 0.0590 0.3950 0.6187

30 (1.0 s) 0.9102 0.7962 0.9294 0.0706 0.2038 0.7185

45 (1.5 s) 0.9030 0.8970 0.9040 0.0960 0.1029 0.7268

60 (2.0 s) 0.9172 0.8256 0.9326 0.0674 0.1744 0.7415

an increase in tassist, with an FNR of 20% for tassist = 0.5 s up to 30% for tassist = 2.0 s.
Meanwhile, the FPR remains at 0.85% for tassist ≥ 1.0.

After setting tassist = 1.0, the performance of the model proposed has been analyzed
with the test dataset. Table 7.7 collects a comparative analysis of the impact of
fine-tuning on the performance. Notably, the accuracy improved from 63.04% to
76.09%, the FPR decreased from 44.23% to 26.92%, the FNR decreased from 27.50% to
20.0%, and the F1-Score improved from 63.04% to 74.42%.

In addition, Figure 7.5 represents the classification results as confusion matrices.
Within the intra-participants dataset, 233 out of 235 unassisted trajectories and 31 out
of 40 assisted trajectories were accurately identified. With the test dataset, 38 out
of 52 unassisted trajectories and 32 out of 40 assisted trajectories were successfully
classified.

The inputs of the model Xu, Yu, and du have been represented together with the
inference ŷ, the moment when robot assistance would be enabled, and the intervention
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Table 7.6: Complete trajectory classification results by decision-making time. Accuracy, recall,
specificity, FPR, FNR, and F1-score are calculated using the intra-participant data.

tassist (s) Accuracy Recall Specificity FPR FNR F1-Score

0.5 0.9563 0.8000 0.9830 0.0170 0.2000 0.8421
1.0 0.9600 0.7750 0.9915 0.0085 0.2250 0.8493

1.5 0.9527 0.7250 0.9915 0.0085 0.2750 0.8169

2.0 0.9491 0.7000 0.9915 0.0085 0.3000 0.8000

Table 7.7: Complete trajectory classification results by decision-making time, with and without
fine-tuning. Accuracy, recall, specificity, FPR, FNR, and F1-score are calculated using
the test data.

Fine-Tuning Accuracy Recall Specificity FPR FNR F1-Score

No 0.6304 0.7250 0.5577 0.4423 0.2750 0.6304

Yes 0.7609 0.8000 0.7308 0.2692 0.2000 0.7442

Note: Results obtained with tassist = 1.0 s.

of the therapist. These four examples correspond to different classification scenarios. In
Figure 7.3.a, it is apparent that the model indicates that assistance would be required
at two specific intervals. However, since tassist is not fulfilled, a false positive was
filtered and the trajectory is correctly classified as non-assisted. Figure 7.3.b plots a

Figure 7.5: The confusion matrices have been obtained from the intra-participants and test
datasets for the complete trajectories. The results collected with the test data are
represented after applying fine-tuning for each patient with tassist = 1.0 s.
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Figure 7.6: The inputs Xu, Yu, and du are represented together with the inference ŷ, the moment
when robot assistance would be enabled, and the intervention of the therapist from
the four trajectories executed by the test subjects. The trajectories correspond to (a)
a true negative, (b) a false positive, (c) a false negative, and (d) a true positive. Each
trajectory is represented until the subject completes the trajectory autonomously or
receives assistance from the therapist.

false positive instance, where it can be observed how ŷ exceeds the decision time tassist.
Another possible situation has been represented in Figure 7.3.c, where the model infers
that assistance would be required. However, the therapist assisted before tassist was
fulfilled, resulting in a false negative. Finally, Figure 7.3.d shows a true positive.

7.4 discussion

In this Chapter, an AAN approach has been proposed to determine whether
assistance is needed during upper limb robot-aided rehabilitation scenarios. The
objectives of this approach are, firstly, to encourage active patient participation and
sustained engagement in their therapy, and secondly, to learn from the expertise of a
therapist when assistance should be provided while maintaining a clinical perspective.
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In the context of robot-assisted therapies, exercises often involve patients moving
from a starting point to a designated target (Figure 7.1.a). Consequently, an AAN
method has been proposed to be applied in serious games based on these mechanics.
A series of transformations have been applied in an attempt to standardize the method
(section 7.2.3), and the inputs of the model Xu, Yu, and du are obtained after their
application. It is worth mentioning that the trajectories represented in Figure 7.3
suggest that the therapist decided to assist the patients in reaching the target point
when assistance was considered necessary. Hence, a classifier is proposed to enable a
force-field assistive method implemented in the Rubidium robot (Catalán; Blanco-Ivorra,
et al., 2023a).

The architecture of the proposed model is represented in 7.4, and its performance
was evaluated using diverse methods. Initially, a sequence-to-sequence evaluation was
conducted, comparing the performance of the model proposed against other State
of the Art models (Table 7.2, Table 7.3). The results indicate that the proposed
model outperforms other architectures, achieving the highest F1-Score on both the
training and validation datasets. Notably, the ENCODER model achieves a higher
accuracy (91.81%) and a lower FPR (6.35%) with the validation dataset. These findings
suggest that the ENCODER architecture is robust in determining when to provide
assistance based on observed trajectories. Furthermore, it is worth mentioning that our
model also outperforms the LSTM architecture proposed by S. Pareek and T. Kesavadas
(Pareek and Kesavadas, 2020), whose study proposes a similar AAN approach to the
method proposed in this Chapter.

The previous results were obtained with a sequence length of 60 samples,
corresponding to 2.0 s. The impact on the performance when reducing the sequence
length was also examined using both training and validation datasets (Table 7.4, Table
7.5). The findings suggest that the model benefits from a longer sequence length.

Instead of activating the assistance when an inference ŷ > 0.5 is produced, a full-time
window where the model indicates that the assistance should be activated is proposed.
The impact of the decision time tassist was examined using intra-participant data. The
results of the classification performance (Table 7.6) indicate that the optimal value
would be tassist = 1.0 s.

Once the value of tassist was set with the intra-participant data, the performance
of the AAN method proposed was analyzed with the test users. Initially, the impact
of fine-tuning the model has been evaluated (Table 7.7), which analysis revealed an
increase in the accuracy by 13%, and by 11% in the F1-score by 11%. In addition, the



7.4 discussion 122

FPR decreased by 18%, and the FNR by 7.50%. Given that the fine-tuning process
required only 10.0 s per user, the feasibility of adapting the model for providing better
assistance based on the patient’s needs.

After verifying the effectiveness of fine-tuning, a comparative analysis of the
intra-participant and test dataset classification results was conducted. The analysis
revealed that 99% of the unassisted trajectories and 78% of the assisted trajectories were
correctly classified. The 23% FNR observed with the intra-participant data could be
attributed to the disparity in the number of unassisted trajectories (235) compared
to assisted ones (40). On the other hand, the classification results for the test users
after the application of fine-tuning showed a more equitable distribution of results.
Specifically, 73% of the unassisted trajectories and 80% of the assisted trajectories were
correctly classified. This balance suggests that fine-tuning effectively mitigates the data
imbalance present in the intra-participant data, ensuring that the inferences remain
unaffected when applied to new patients. Consequently, this method demonstrates
promising generalization capabilities in determining the appropriate times to provide
assistance.

For a better comprehension of the model decision-making, four examples of
performed trajectories by the test users are shown in Figure 7.6. Figure 7.6.a represents
how false positives due to tassist may be effectively filtered out, where the fine-tuned
model infers that assistance is needed when the patient is not progressing toward
the goal. This can also be observed in Figure 7.6.b and Figure 7.6.d. It is noteworthy
the case represented in Figure 7.6.c. In certain cases, the therapist may have assisted
the patient before reaching the decision time tassist. Consequently, the trajectory is
labeled as a false negative during model evaluation. However, in a real rehabilitation
scenario, this situation would not occur since the model correctly infers when assistance
is needed.

According to the results obtained, the feasibility of using the AAN method proposed
would be demonstrated to provide assistance during robot-aided rehabilitation
therapies. However, this study has some limitations that are intended to be addressed
in future studies. First, during the study, only one therapist participated in the data
collection and assistance during the robot-aided sessions. Ideally, the Deep Learning
model described in this Chapter should learn from diverse therapists in order to
incorporate a broader range of professional criteria. Additionally, it is intended to
expand the study to include a larger number of patients and to examine the use of the
proposed AAN method in a rehabilitation scenario.
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7.5 conclusion

In this Chapter, a Deep Learning-based AAN method was presented to learn from
therapists’ criteria when a patient needs assistance during robot-aided rehabilitation
therapy. The proposed model has been trained and evaluated using data from diverse
patients playing a point-to-point game. Before the introduction of the movements
performed with the end-effector robot, a series of transformations were applied in an
attempt to universalize the method. Moreover, a reduced set of trajectories executed by
the test patients was used to fine-tune the model trained with intra-participant data.

First, a sequence-to-sequence evaluation was conducted, which revealed an accuracy
of 91.39% and an F1-Score of 75.15% with the validation dataset. Furthermore, the
approach presented proposes to utilize a decision-making time tassist that must be
fulfilled before the rehabilitation robot provides assistance, rather than activating it
immediately when ŷ > 0.5. With this method, in conjunction with fine-tuning, the
AAN architecture proposed demonstrated an accuracy of 76.09% and an F1-Score of
74.42% when classifying trajectories performed by the test patients.

The obtained results would demonstrate the feasibility of applying the proposed
method to determine when to assist during robot-assisted point-to-point rehabilitation
exercises. Furthermore, the intention is to further develop and analyze the performance
of the method proposed by involving a larger number of therapists and patients.
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C O N C L U S I O N S

8.1 conclusion

Human modeling has been shown to be of vital importance in the field of
rehabilitation robotics. In particular, understanding the user is essential to design
the robotic devices taking into account the biomechanics of the upper and lower limbs,
but also to adapt and personalize robot-assisted therapy to each patient needs.

Rehabilitation robotics is an emerging and dynamic area of research. However, there
are no solutions to help patients with spasticity, pain, or joint stiffness use robots during
rehabilitation. The SPLASH project aims to address this issue by developing robotic
solutions for therapy in aquatic environments. The SPLASH project does not only
focus on developing underwater robotic devices but also on studying the effects of
water on user biomechanics. Specifically, in order to study the effects during gait and
subsequently develop a lower limb exoskeleton, a motion capture system based on
submersible IMUs has been developed to measure lower limb joint angles in the sagittal
plane. The employed method does not assume a specific position or orientation of the
sensors, and the calibration only requires random and gait movements for a short time.
Based on the measurements of the leg kinematics, a model describing the buoyancy
and drag forces has been proposed to study the loads on lower limb joints, with the
goal of designing a submersible lower limb exoskeleton.

In addition to the forces arising from the presence of water, it is worth noting that
knowing vGRF during gait is of great relevance for a proper study of biomechanics.
Due to the drawbacks that may arise when trying to measure vGRF with an underwater
force plate, a Machine Learning model has been developed to estimate the magnitude of
this force by using the developed IMU-based motion capture system. First, a model has
been proposed to estimate the vGRF during ground-level walking, and the results of
the study suggest that the accuracy of the proposed method is higher than to previously
published studies. In addition, to generalize the model and to be able to estimate the
vGRF during different situations, the feasibility of adapting the model to different gait
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activities has been studied, concluding that the knowledge of the activity performed by
the user improves the accuracy when estimating the vGRF.

With the aim of increasing the accuracy when estimating the vGRF, in addition to
proposing an approach to adapt the assistance of a submersible lower limb exoskeleton
in different activities, a model has been developed to recognize a set of ADLs. Although
different models using IMUs for HAR have been proposed, the presented approaches
require high accuracy in the sensor placement since errors in their positioning will
impact the accuracy of the models. Using the implemented motion capture system, a
Deep Learning model that takes as inputs the joint trajectories of the lower limbs has
been proposed to recognize different gait ADLs. The proposed model achieves high
accuracy when evaluated with test users, and the feasibility of reducing the number of
model inputs to adapt the system has been demonstrated.

In addition, the SPLASH project also proposes to develop a submersible end-effector
robotic device for upper limb rehabilitation. In order to personalize the therapy
to each patient to maximize recovery, two approaches have been proposed in this
thesis: a system to dynamically adapt the difficulty of serious games, and a system
to recognize when assistance should be provided during robot-aided rehabilitation
through demonstrations performed by a therapist.

Several diverse DDA systems have been proposed in recent studies. However, none
of them address the need to use this type of system for several consecutive sessions. To
address this drawback, a DDA system has been developed for consecutive rehabilitation
sessions. The system is based on a genetic algorithm and it aims to maximize the game
space covered by the patient to rehabilitate the limb while maintaining a certain level
of difficulty to maintain motivation.

On the other hand, according to the impairment degree of the patients, it is
also necessary to identify when to assist with rehabilitation robots. Therefore, the
development of intelligent AAN control algorithms, that recognize and only assist the
patient in the needed moment should be deeply investigated and developed. In this
context, the goal of the AAN methods is to promote the active participation of the
patient, providing the necessary assistance to complete the exercises proposed during
therapy. Although several solutions have been proposed in recent studies, there is a lack
of systems that learn from therapists’ interventions to decide when to assist. Following
this principle, a model has been proposed to learn from demonstrations performed by
an experienced therapist. The study has demonstrated the feasibility of developing a
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model using data from different patients. In addition, the results show that fine-tuning
has a positive impact on the accuracy of the model.
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8.2 future works

During the development of this thesis, several lines of work were left open, which
could be summarized in the following points:

To analyze the effects of the aquatic environment on gait using the submersible
sensor system developed. The loads on the lower limb joints will be analyzed,
and the force modeling presented will be validated using OpenSim simulation
software, comparing the simulated muscular activation with the measured EMG
signals.

To study the use of new Machine Learning models to increase the accuracy when
estimating the vGRF during different gait ADLs, with special interest in the
accuracy when estimating the characteristic peaks of the vGRF.

A new study can be conducted to validate the developed DDA system with
patients. In addition, new serious games can be designed to be adapted based on
the developed study.

A larger number of patients and therapists can be involved to improve the AAN
system proposed

To develop a therapy adaptation architecture that unifies the presented DDA
system with the proposed AAN method. Based on both systems, it is intended to
develop a method that attempts to maximize patient movement while maintaining
an appropriate game score and minimizing assistance with the rehabilitation
robot.
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C O N C L U S I O N E S

9.1 conclusión

Se ha demostrado que el modelado del ser humano es de vital importancia en el
ámbito de la robótica de rehabilitación. En concreto, comprender el usuario es de
importancia para diseñar los dispositivos teniendo en cuenta la biomecánica de los
miembros superiores e inferiores, pero también para adaptar y personalizar la terapia
asistida con robots a las necesidades de cada paciente.

La robótica de rehabilitación es un campo de investigación emergente y dinámico.
Sin embargo, no existen soluciones para ayudar a los pacientes con espasticidad, dolor
o rigidez articular a utilizar robots durante la rehabilitación. El proyecto SPLASH
pretende resolver este problema desarrollando soluciones robóticas para realizar la
terapia en entornos acuáticos. El proyecto SPLASH no sólo se centra en el desarrollo de
dispositivos robóticos sumergibles, sino también en el estudio de los efectos del agua
en la biomecánica del usuario. Para estudiar los efectos durante la marcha y desarrollar
posteriormente un exoesqueleto de miembro inferior, se ha desarrollado un sistema
de captura de movimiento basado en IMUs sumergibles para medir los ángulos de
las articulaciones de los miembros inferiores en el plano sagital. El método empleado
no asume una posición u orientación específica de los sensores, y la calibración sólo
requiere movimientos aleatorios y de la marcha durante un breve periodo de tiempo.
A partir de las mediciones de la cinemática de las piernas, se ha propuesto un modelo
que describe las fuerzas de flotabilidad y arrastre para estudiar las cargas sobre las
articulaciones de las extremidades inferiores con el objetivo de diseñar un exoesqueleto
sumergible.

Además de las fuerzas que surgen por la presencia del agua, cabe destacar que
conocer la vGRF durante la marcha es de gran relevancia para realizar un estudio
adecuado de la biomecánica. Debido a los inconvenientes que puede surgir al tratar
de medir la vGRF, se ha desarrollado un modelo de Machine Learning que permite
estimar la magnitud de esta fuerza a partir de las medidas tomadas con el sistema de
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captura de movimiento desarrollado. En primer lugar, se ha propuesto un modelo que
permite estimar la vGRF en plano, y los resultados del estudio sugieren que la precisión
del método propuesto es superior a estudios publicados previamente. Además, con el
fin de generalizar el modelo y poder estimar la vGRF durante diferentes situaciones, se
ha estudiado la viabilidad de adaptar el modelo, y se llegado a la conclusión de que
conocer la actividad realizada por el usuario mejora la precisión al estimar la vGRF.

Con el objetivo de aumentar la precisión al estimar la vGRF, así como para adaptar la
asistencia de un exoesqueleto de miembro inferior sumergible en diferentes actividades,
se ha desarrollado un modelo para reconocer un conjunto de ADLs. Aunque diferentes
modelos que usan IMUs para HAR han sido propuestos, las soluciones presentadas
requieren de una gran precisión al colocar los sensores, debido a que errores en
su posicionamiento repercutirán en la precisión de los clasificadores. Empleando
el sistema de captura de movimiento implementado, se ha desarollado una CNN
que toma como entradas las trayectorias articulares de los miembros inferiores para
reconocer diferentes ADL. El modelo propuesto logra una gran precisión cuando se ha
evaluado con usuarios de test, y se ha demostrado la viabilidad de poder reducir el
número de entradas del modelo para adaptar el sistema HAR a múltiples situaciones
con un impacto bajo en la precisión.

Además, en el proyecto SPLASH también se propone desarrollar un dispositivo tipo
efector final sumergible para la rehabilitación del miembro superior. Con el objetivo
de personalizar la terapia a cada paciente para maximizar la recuperación, en esta
tesis se han propuesto dos soluciones: un sistema para adaptar la dificultad de juegos
serios, y un sistema para reconocer cuándo es necesario asistir a un paciente mediante
demostraciones de un terapeuta.

Aunque varios sistemas DDA han sido propuestos en diferentes estudios, no se
aborda la necesidad de poder usar este tipo de sistemas durante varias sesiones
consecutivas. Para tratar de solventar este inconveniente, se ha desarrollado un sistema
DDA pensado para poder emplearse durante sesiones de rehabilitación consecutivas.
El sistema está basado en un algoritmo genético y se busca que el paciente cubra el
mayor espacio de juego posible para rehabilitar el miembro afectado a la vez que se
mantiene un cierto nivel de dificultad para mantener la motivación.

Por otra parte, según el grado de movilidad de los pacientes, también es necesario
identificar cuándo se debe asistir con los robots de rehabilitación. En este contexto, el
objetivo de los métodos de AAN es promover una participación activa del paciente,
aportando la ayuda necesaria para tratar de completar los ejercicios planteados durante
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la terapia. Aunque varias soluciones han sido propuestas en estudios recientes, existe
una falta de sistemas AAN que aprendan de las intervenciones de terapeutas para
decidir cuándo asistir. Siguiendo este principio, se ha propuesto un modelo para tratar
de aprender en qué situaciones se debe aportar asistencia a partir de las demostraciones
realizadas por un terapeuta experimentado. En el estudio realizado, se ha demostrado la
viabilidad de desarrollar este tipo de sistemas empleando datos de diferentes pacientes.
Además, los resultados demuestran que aplicar fine-tuning tiene un impacto positivo en
la precisión del modelo.
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9.2 trabajos futuros

Durante el desarrollo de esta tesis han quedado abiertas diversas líneas de
investigación, las cuales pueden resumirse en los siguientes puntos:

Analizar los efectos en la marcha producidos por la inmersión en un entorno
acuático empleando el sistema de captura de movimiento desarrollado. Para ello,
se pretende analizar las cargas en las articulaciones, y el modelo presentado se
validará empleando el software de simulación OpenSim, comparando la activación
muscular simulada con señales adquiridas de EMG.

Estudiar el uso de nuevas técnicas de Machine Learning para aumentar la
precisión al estimar la vGRF durante diferentes ADL, mostrando especial interés
en la precisión al estimar los picos característicos de la señal de vGRF.

Puede llevarse a cabo un nuevo estudio para validar el sistema DDA propuesto
con pacientes. Además, puede diseñarse nuevos juegos que puedan ser adaptados
en base a los resultados obtenidos en el estudio realizado.

Puede realizarse un nuevo estudio involucrando un mayor número de pacientes
y terapeutas para mejorar el sistema AAN propuesto.

Desarrollar una arquitectura de adaptación de terapias de rehabilitación que
unifique el sistema DDA junto con el sistema AAN presentado. En base a
ambos sistemas, se pretende desarrollar un método que trate de maximizar el
movimiento del paciente mientras se mantiene una puntuación adecuada y se
minimiza la asistencia aportada por los sistemas robóticos.



A
A N A LY S I S O F T H E V E RT I C A L G R O U N D R E A C T I O N F O R C E
C H A R A C T E R I S T I C P E A K S E S T I M AT I O N

This Appendix provides an in-depth analysis regarding the estimated characteristic
peaks of the vGRF. Specifically, Table A.1 and Table A.2 present the following results:

1. Table A.1. This table collects the mean magnitude error and delay associated
with the LP, MP, and TP. These results are based on the FNN-C7 and RF-C7

models using intra-participant data.

2. Table A.2. This table collects the mean magnitude error and delay associated
with the LP, MP, and TP. These results are based on the FNN-C7 and RF-C7

models using inter-participant data.

Additionally, the tables include pairwise comparison values between the errors
obtained from the FNN and the RF models.

133



analysis of the vertical ground reaction force characteristic peaks estimation 134

Table A.1: Results obtained in the vGRF estimation with the selected FNN and RF models
employing data from the intra-participants. The table presents the average errors in
both peak magnitude and peak delay between the measured and estimated vGRF
for each gait speed. Additionally, the p-values (Wilcoxon-Pratt test) for pairwise
comparisons of the selected models are summarized.

Gait Speed (km/h) FNN-C7 RF-C7 p-value

LP Error (BW) 1.5 0.0334 ± 0.0256 0.0128 ± 0.0075 p<0.0001

2.5 0.0407 ± 0.0283 0.0132 ± 0.0080 p<0.0001

3.5 0.0409 ± 0.0467 0.0139 ± 0.0138 p<0.0001

4.5 0.0900 ± 0.1026 0.0210 ± 0.0286 p<0.0001

MP Error (BW) 1.5 0.0562 ± 0.0561 0.0161 ± 0.0147 p<0.0001

2.5 0.0262 ± 0.0330 0.0119 ± 0.0097 p<0.0001

3.5 0.0566 ± 0.0376 0.0120 ± 0.0102 p<0.0001

4.5 0.0793 ± 0.0596 0.0158 ± 0.0184 p<0.0001

TP Error (BW) 1.5 0.0279 ± 0.0195 0.0110 ± 0.0062 p<0.0001

2.5 0.0331 ± 0.0205 0.0123 ± 0.0072 p<0.0001

3.5 0.0396 ± 0.0304 0.0114 ± 0.0117 p<0.0001

4.5 0.0491 ± 0.0428 0.0171 ± 0.0209 p<0.0001

LP Delay (%) 1.5 -1.51 ± 6.47 -0.19 ± 2.53 p<0.0001

2.5 1.57 ± 5.97 0.17 ± 2.96 p<0.0001

3.5 -0.20 ± 4.04 0.01 ± 2.34 0.0772

4.5 0.99 ± 2.05 -0.07 ± 1.36 p<0.0001

MP Delay (%) 1.5 -0.32 ± 6.80 0.16 ± 3.12 0.4353

2.5 3.43 ± 5.10 0.08 ± 3.00 p<0.0001

3.5 1.47 ± 4.98 0.13 ± 2.53 p<0.0001

4.5 0.61 ± 3.38 0.05 ± 1.94 p<0.0001

TP Delay (%) 1.5 -0.92 ± 6.24 0.10 ± 2.31 p<0.0001

2.5 -3.00 ± 7.23 -0.09 ± 3.25 p<0.0001

3.5 -0.93 ± 2.75 -0.13 ± 1.73 p<0.0001

4.5 -1.89 ± 2.43 0.11 ± 1.42 p<0.0001
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Table A.2: Results obtained in the vGRF estimation with the selected FNN and RF models
employing data from the inter-participants. The table presents the average errors in
both peak magnitude and peak delay between the measured and estimated vGRF
for each gait speed. Additionally, the p-values (Wilcoxon-Pratt test) for pairwise
comparisons of the selected models are summarized.

Gait Speed (km/h) FNN-C7 RF-C7 p value

LP Error (BW) 1.5 0.0206 ± 0.0161 0.0225 ± 0.0162 0.0142

2.5 0.0382 ± 0.0254 0.0492 ± 0.0305 p<0.0001

3.5 0.0619 ± 0.0362 0.0611 ± 0.0315 p<0.0001

4.5 0.0499 ± 0.0408 0.0579 ± 0.0375 p<0.0001

MP Error (BW) 1.5 0.0467 ± 0.0583 0.0399 ± 0.0540 p<0.0001

2.5 0.0263 ± 0.0194 0.0535 ± 0.0296 p<0.0001

3.5 0.0690 ± 0.0306 0.0563 ± 0.0315 0.1825

4.5 0.0810 ± 0.0410 0.0983 ± 0.0418 p<0.0001

TP Error (BW) 1.5 0.0249 ± 0.0377 0.0319 ± 0.0393 p<0.0001

2.5 0.0302 ± 0.0177 0.0316 ± 0.0221 p<0.0001

3.5 0.0435 ± 0.0265 0.0564 ± 0.0462 p<0.0001

4.5 0.0922 ± 0.0386 0.1256 ± 0.0466 0.0834

LP Delay (%) 1.5 -1.37 ± 6.72 -2.34 ± 5.21 0.0001

2.5 -1.12 ± 7.17 -3.52 ± 6.35 p<0.0001

3.5 -2.21 ± 5.30 -4.88 ± 5.49 p<0.0001

4.5 -0.84 ± 3.34 -2.63 ± 3.15 p<0.0001

MP Delay (%) 1.5 4.14 ± 6.95 3.01 ± 6.79 0.0008

2.5 3.56 ± 5.48 2.00 ± 6.25 p<0.0001

3.5 1.267 ± 4.04 -2.57 ± 4.61 p<0.0001

4.5 1.56 ± 2.37 -0.14 ± 3.66 p<0.0001

TP Delay (%) 1.5 -2.33 ± 7.40 -2.39 ± 6.40 0.7777

2.5 -0.70 ± 6.61 1.60 ± 7.71 p<0.0001

3.5 0.73 ± 3.27 4.51 ± 4.69 p<0.0001

4.5 -0.27 ± 2.41 5.35 ± 2.88 p<0.0001
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B
G A M E M E T R I C S I N F O R M AT I O N A N D S E L F - A S S E S S M E N T
M A N I K I N T E S T R E S U LT S

b.1 game metrics results

Table B.1: Mean and standard deviation values of the game metrics and therapy performance
across sessions.

S1 S2 S3 S4 S5

Game A ηA 0.77 ± 0.03 0.81 ± 0.03 0.80 ± 0.04 0.80 ± 0.05 0.81 ± 0.01
αs 0.62 ± 0.07 0.69 ± 0.09 0.71 ± 0.10 0.74 ± 0.06 0.78 ± 0.06
αt 0.93 ± 0.03 0.96 ± 0.03 0.97 ± 0.02 0.98 ± 0.02 0.98 ± 0.01
gr 0.77 ± 0.06 0.76 ± 0.07 0.70 ± 0.10 0.65 ± 0.09 0.58 ± 0.07

Game B ηB 0.55 ± 0.11 0.66 ± 0.07 0.70 ± 0.06 0.72 ± 0.07 0.73 ± 0.07
αP 0.46 ± 0.17 0.46 ± 0.46 0.50 ± 0.14 0.58 ± 0.16 0.59 ± 0.14
gr 0.58 ± 0.16 0.68 ± 0.06 0.68 ± 0.06 0.64 ± 0.05 0.65 ± 0.07
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Table B.2: Distribution of the mean number of enemies (ne) and the speed of the enemies (ve)
for Game A across sessions.

S1 S2 S3 S4 S5

ne min 2.40 1.89 1.59 2.21 2.52

q1 2.65 2.55 2.76 2.87 2.96

median 2.89 2.96 3.20 3.26 3.54

q3 3.06 3.75 3.65 3.67 3.74

max 3.22 3.81 3.85 3.89 3.89

IQR 0.41 1.20 0.89 0.80 0.78

ve min 0.59 0.62 0.74 0.70 0.80

q1 0.72 0.80 0.85 0.89 1.00

median 0.73 0.90 0.98 1.05 1.15

q3 0.75 0.99 1.14 1.16 1.30

max 0.82 1.20 1.25 1.22 1.51

IQR 0.03 0.19 0.29 0.27 0.51

Table B.3: Distribution of the mean number of enemies (ne) and the speed of the enemies (ve)
for Game B across sessions.

S1 S2 S3 S4 S5

ne min 1.48 1.07 1.15 1.37 1.33

q1 1.17 1.41 1.63 2.44 2.31

median 2.11 1.74 2.33 2.70 2.81

q3 2.31 2.43 2.72 2.86 2.89

max 2.52 2.96 2.89 2.89 2.96

IQR 1.14 1.55 1.09 0.42 0.58

ve min 0.54 0.38 0.32 0.29 0.41

q1 0.65 0.55 0.57 0.58 0.62

median 0.68 0.74 0.78 0.80 0.77

q3 0.73 0.79 0.86 0.86 0.91

max 0.83 1.09 1.08 1.05 1.07

IQR 0.08 0.24 0.29 0.28 0.29
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b.2 self-assessment manikin results

Table B.4: The mean and standard deviation of valence, dominance, and arousal reported by
the SAM test are summarized across sessions.

S1 S2 S3 S4 S5

Game A Valence 6.69 ± 1.60 6.00 ± 1.41 6.08 ± 2.63 5.62 ± 2.40 6.77 ± 1.17
Arousal 5.46 ± 1.94 5.30 ± 2.17 5.69 ± 1.70 5.46 ± 1.90 5.54 ± 1.76

Dominance 5.92 ± 1.38 5.62 ± 1.66 5.62 ± 2.21 5.08 ± 1.89 5.38 ± 2.10

Game A Valence 7.69 ± 1.03 7.15 ± 2.12 7.15 ± 1.21 6.62 ± 1.85 7.39 ± 1.19
Arousal 5.31 ± 2.02 4.31 ± 2.25 4.31 ± 1.84 4.39 ± 2.33 3.62 ± 1.56

Dominance 6.54 ± 1.05 6.77 ± 1.69 6.77 ± 1.54 6.08 ± 1.85 6.92 ± 1.98
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Estimating vertical ground
reaction forces during gait from
lower limb kinematics and vertical
acceleration using wearable
inertial sensors

David Martínez-Pascual1*, José M. Catalán1,
Andrea Blanco-Ivorra1, Mónica Sanchís2, Francisca Arán-Ais2 and
Nicolás García-Aracil1

1Biomedical Neuroengineering Research Group, Robotics and Artificial Intelligence Unit, Bioengineering
Institute, Miguel Hernandez University, Elche, Spain, 2INESCOP Footwear Technology Center, Elda,
Alicante, Spain

One of the most important forces generated during gait is the vertical ground
reaction force (vGRF). This force can be measured using force plates, but these
can limit the scope of gait analysis. This paper presents a method to estimate the
vGRF using inertial measurement units (IMU) and machine learning techniques.
Four wearable IMUs were used to obtain flexion/extension angles of the hip, knee,
and ankle joints, and an IMU placed over the C7 vertebra to measure vertical
acceleration. We trained and compared the performance of twomachine learning
algorithms: feedforward neural networks (FNN) and random forest (RF). We
investigated the importance of the inputs introduced into the models and
analyzed in detail the contribution of lower limb kinematics and vertical
acceleration to model performance. The results suggest that the inclusion of
vertical acceleration increases the rootmean square error in the FNN, while the RF
appears to decrease it. We also analyzed the ability of the models to construct the
force signal, with particular emphasis on the magnitude and timing of the vGRF
peaks. Using the proposed method, we concluded that FNN and RF models can
estimate the vGRF with high accuracy.

KEYWORDS

biomechanical analysis, gait analysis, magneto-inertial devices,machine learning, vertical
ground reaction force

1 Introduction

The analysis of human kinematics and kinetics has great potential in the prevention of
injuries (Padua and DiStefano, 2009), and the analysis or prediction of musculoskeletal
disorders (Fineberg et al., 2013). The analysis of human kinematics requires the use of
motion capture data. Computer vision techniques (Graci et al., 2012), but also wearable
inertial sensors (Sy et al., 2020) can be used for estimating the angle of the human limbs. On
the other hand, when performing a kinetic analysis, the human joint forces and torques are
estimated by the forces exerted, using inverse dynamics methods (Moya-Angeler et al.,
2017).
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In a lower extremity biomechanical analysis, the kinetic data
must include the ground reaction forces produced (Lencioni et al.,
2019), which can be divided into the mediolateral ground reaction
force, the anteroposterior ground reaction force, and the vertical
ground reaction force (Kram et al., 1998). Vertical ground reaction
force (vGRF) is the largest component of the ground-generated
forces during gait. The vGRF is generated in the sagittal plane and
represents the magnitude and pattern of mechanical loading in the
vertical direction at the foot (Jacobs et al., 1972). During gait, three
main peaks can be distinguished in this force (Marasović et al.,
2009). First, the loading peak (LP) is produced, a local maximum
corresponding to the loading response. Then, there is a local
minimum corresponding to the mid-stance phase (MP). Finally,
there is a second local maximum during the terminal stance phase
(TP). The magnitude and timing of these peaks has influence in the
lower limb joints and muscle loads. For this reason, the analysis of
vGRF characteristic peaks could be essential to study
musculoskeletal disorders (Shafizadegan et al., 2016).

The vGRF measurement is usually performed by employing
force plates. The force plates can rest over the ground, but also they
can be embedded in treadmills. These plates might limit the space
for the gait analysis, and they also can be financially costly. As a
consequence of these limitations, some authors have studied the
possibility of estimating the vGRF.

To overcome these drawbacks, the use of inertial measurement
units (IMU) to estimate vGRF has been investigated. E. Sahabpoor
and A. Pavic showed that it is possible to estimate the vGRF with a
single IMU, using the subjects’ body mass and vertical acceleration
to estimate the vGRF exerted on the human body. (Shahabpoor and
Pavic, 2018). The authors compared several locations and concluded
that placing an IMU over the C7 vertebra was the better location to
achieve the lowest error in the vGRF estimation. However, the
method proposed by these authors is not able to determine the force
produced on the right and left lower limbs.

The development and improvement of machine learning
algorithms have led some authors to apply these techniques to
analyze gait kinematics and estimate vGRF.

In (Choi et al., 2013; Oh et al., 2013) the authors used human body
kinematics and artificial neural networks to perform vGRF prediction.
However, the main disadvantage is that they used several infrared
cameras to acquiremotion capture data, so thismethodmight also limit
the analysis space. On the other hand, other authors preferred to place
IMUs over the lower limbs tomonitor humanmovement. X. Jiang et al.
used a Random Forest model to estimate the vGRF during gait with a
single IMU using acceleration and gyroscope data (Jiang et al., 2020). F.
J. Wouda et al. also used IMU sensors over the lower limbs (pelvis and
lower legs) (Wouda et al., 2018). These authors used an artificial neural
network to estimate the knee angle and artificial neural networks to
estimate the vGRF during running using the estimated knee angle and
the vertical accelerations from the placed IMUs.

The scientific literature shows that progress in machine learning
algorithms has made it possible to achieve good accuracy when
estimating the vGRF by different approaches. When performing a
biomechanical analysis, we usually want to study not only the
kinetics but also the lower limb kinematics. Hence, we intend to
develop a Machine Learning model that makes use of the lower limb
joint kinematics to estimate the vGRF. Moreover, it has to be
mentioned that we have employed a method to estimate the hip,

knee, and ankle angles in the sagittal plane by employing IMUs, so
the gait analysis could be performed in any situation.

Moreover, as mentioned before, apart from the lower limb
kinematics, vertical acceleration has been used to estimate the vGRF
since there is a closed relation between them. However, when including
these features together, the contribution to the vGRF prediction of lower
limb kinematics and vertical acceleration has not been analyzed.

This work aims to develop a system to perform biomechanical
analysis of the lower limbs based on wearable inertial sensors. For
this purpose, we have used a method to measure the angle of the
lower limb joints, and we have trained and compared the
performance of machine learning models to estimate the vGRF
during gait. We have introduced the lower limb joint kinematics and
vertical acceleration measured at the C7 vertebra as inputs of the
machine learning models to estimate the vGRF. In addition, we have
analyzed the contribution to the vGRF estimation of this set of
features using different machine learning methods.

2 Materials and methods

2.1 Lower limb joints measurement

The method proposed by T. Seel et al. has been used to estimate
the joint angles of the lower limbs during gait (Seel et al., 2014). The
proposed method is based on the analysis of the movement of the
joints and it allows obtaining the joint angles with high accuracy
with IMUs even at low acquisition rates (from 40 Hz) (Seel et al.,
2012). This section describes the method and details the calibration
and angle measurement process.

2.1.1 Identification of the joint axis and position
coordinates

This method avoids developing an algorithm that assumes a
position and orientation of the different IMUs concerning the user’s
lower limb. Moreover, to estimate joint angles by this algorithm, we
must use gyroscope and accelerometer data from the IMUs, so it
does not depend on a uniform magnetic field. Hence, we assume we
have two IMUs attached to the upper and lower segment for each
joint, so we measure the accelerations a1(t), a2(t) ∈ R3 and the
angular rates g1(t), g2(t) ∈ R3 at a sample period Δt.

The gyroscope data are used to identify the direction vectors
j1, j2 ∈ R of the hip, knee, and ankle flexion/extension axis in the
local coordinates of the IMUs. Geometrically, g1(t) and g2(t) differ
only by the joint angular velocity and a rotation matrix, so their
projections into the joint plane have the same lengths for each
instant. This can be defined as:

‖g1 t( ) × j1‖2 − ‖g2 t( ) × j2‖2 � 0 ∀t (1)
where ‖ ·‖2 is the Euclidean norm.
Moreover, apart from the direction vectors, the joint center position

in the local coordinates of the IMUs must be calculated. These vectors
o1, o2 ∈ R are constant and only depend on the mounting position and
orientation over the leg segments. In order to calculate them, T. Seel et al.
propose that the acceleration of each sensor can be thought as the sum of
the center of the joint acceleration, and the accelerationdue to the rotation
of the sensor around the joint center. The acceleration of the joint center
should be the same in both IMU local frames, which can be expressed as:
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‖a1 t( ) − Γg1 t( ) o1( )‖2 − ‖a2 t( ) − Γg2 t( ) o2( )‖2 � 0 ∀t (2)
Γgi t( ) oi( ) ≔ gi t( ) × gi t( ) × oi( ) + _gi t( ) × oi , i � 1, 2 (3)

where Γgi(t)(oi) is the radial and tangential acceleration due to the
IMU rotation around the joint center.

It should be noted that the constraints defined must be fulfilled
by any given motion of the joint. Hence, we can identify j1, j2, o1, and
o2 by minimizing the left side of Eqs 1, 2.

To determine j1 and j2, if we restrict the axis to the unit length,
the problem becomes four-dimensional and we can express j1 and j2
in spherical coordinates:

j1 �
cos ϕ1( ) · cos θ1( )
cos ϕ1( ) · sin θ1( )

sin ϕ1( )
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, j2 � cos ϕ2( ) · cos θ2( )

cos ϕ2( ) · sin θ2( )
sin ϕ2( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (4)

where ϕi and θi are inclination and azimuth. We also can define the
sum of squared errors for N samples as:

Ψ ϕ1, θ1, ϕ2, θ2( ) ≔ ∑N
i�1

‖g1 ti( ) × j1‖2 − ‖g2 ti( ) × j2‖2( )2 (5)

and in the samemanner, we can also obtain o1 and o2 by defining
another sum of squared errors:

Ψ o1, o2( ) ≔ ∑N
i�1

‖a1 ti( ) − Γg1 ti( ) o1( )‖2 − ‖a2 ti( ) − Γg2 ti( ) o2( )‖2( )2
(6)

To minimize Ψ(ϕ1, θ1, ϕ2, θ2) and Ψ(o1, o2) we have employed
the Trust Region Reflective algorithm (Byrd et al., 1988), but the
problem could be resolved by employing any other algorithm, e.g., a
Gauss-Newton algorithm.

To obtain the hip, knee, and ankle joint position coordinates (o1,
o2), before the experimental session started the users were told to
perform circling arbitrary movements. Moreover, concerning the
estimation of the joint axis coordinates (j1, j2), we got data from the
users walking to identify the principal axis of motion, i.e., the
flexion/extension movements of the hip, knee, and ankle.

2.1.2 Flexion/extension angle measurement
Once we have successfully obtained the joint axis coordinates

(j1, j2) and the joint position coordinates (o1, o2) for each user, we
can estimate the angle of the joints with the placed IMUs. These
angles are calculated from accelerations and angular rates. Using
the gyroscope data, the flexion/extension angles can be estimated
by integrating the difference of the angular rates around the joint
axis:

αgyr t( ) � ∫t

0
g1 τ( ) · j1 − g2 τ( ) · j2( )dτ (7)

As T. Seel et al. mention, by knowing the axis coordinates we can
applymethods that need the axes of the sensor coincide with the joint or
the segment axes (Liu et al., 2009). First, we move the measured
accelerations from the local IMU coordinates to the joint axis:

~a1 � a1 t( ) − Γg1 t( ) o1( ), ~a2 � a2 t( ) − Γg2 t( ) o2( ) (8)

The flexion/extension can be estimated by the angle between the
projections of ã1 and ã2 into the joint plane. Then, we define a pair of
joint plane axes x1, y1, x2, y2 ∈ R3 for the local frames:

x1 � j1 × c, y1 � j1 × x1, x2 � j2 × c, y2 � j2 × x2 (9)
where c ∈ R3 could be any vector that makes none of the products

zero. Finally, we can estimate the joint angle by accelerometer readings:

αacc t( ) � ∠ ã1 t( ) · x1

ã1 t( ) · y1
[ ], ã2 t( ) · x2

ã2 t( ) · y2
[ ]( ) (10)

This αacc is not affected by drift as αgyr is, since we have not
employed any integration to compute the angle, but it is affected by
the accelerometer noise. Moreover, despite the drift, αgyr is precise in
short time scales. Hence, it could be appropriate to combine αacc and
αgyr. We have used a complementary filter (Young, 2009) defined as:

α t( ) � λ · αacc t( ) + 1 − λ( ) · α t − Δt( ) + αgyr t( ) − αgyr t − Δt( )( )
(11)

To obtain flexion/extension data from the participants, we have
used a sample period Δt = 0.016 (60 Hz) and λ = 0.02.

The method proposed by T. Seel et al. has shown a root mean
squared error (RMSE) of between 3 and 5° for the hip, knee, and
ankle flexion/extension movements (Kumar et al., 2018). Therefore,
we can assume that we are accurate enough to perform an adequate
gait analysis and vGRF.

2.2 Experimental setup

The equipment used during the experimental sessions is shown
in Figure 1.

Five XSens Dot IMUs were used to acquire kinematic data from the
participants at a sampling rate of 60 Hz. Four inertial sensors were
placed on the back of the hip, the thigh, the leg, and the foot to estimate
the joint angles of the lower limb. The remaining IMU was placed over
the C7 vertebra to provide vertical acceleration data. The hip, thigh, and
leg IMUs were placed with elastic straps, and the C7 and foot sensors
were attached to the skin and the user’s shoes with stickers.

A treadmill with an embedded force plate model h/p/cosmos
150/50 was used to measure the generated vGRF during gait. The
vGRF data were recorded at 100 Hz.

2.3 Subjects

Twelve volunteer able-bodied subjects participants were
involved in the experimental sessions, 10 male and 2 female. The
ages were between 23 and 52 years old (29.8 ± 7.4), with heights
ranging between 1.65 m and 1.87 m (176.2 ± 7.4 cm) and weights
between 56.1 kg and 90.2 kg (76 ± 12.5 kg). Written informed
consent was obtained from the individuals for the publication of
any potentially identifiable images or data included in this article.

2.4 Experimental protocol

At the beginning of the experimental session, the IMUs were
placed on the participants at the established locations, and the height
and weight of users were measured. Once the user wore the sensors,
we proceeded to obtain the calibration data to estimate the joint
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angles of the lower limb. First, the users were told to perform
arbitrary circling movements with the hip, knee, and ankle to obtain
the center position coordinates o1, o2 of each joint for 1 min. Then,
the participant walked for 1 min over the treadmill at a comfortable
speed to obtain the flexion/extension joint axis coordinates j1, j2.

After the calibration was carried out, the subjects walked over
the treadmill at four different speeds selected to cover a wide range of
normal gait speedsWeber (2016): 1.5 km/h, 2.5 km/h, 3.5 km/h, and
4.5 km/h. When the treadmill reached the desired speed, the
kinematics and vGRF data were recorded for 5 min. Between
each activity, 2 min were left for rest.

2.5 Acquired data and processing

The data acquired from each device and the signals processing to
be used as the machine learning models inputs are detailed in this
section and illustrated in Figure 2.

The vGRF was acquired from the plate-instrumented treadmill,
which has been normalized by the body weight of the participants (BW).

From the hip, thigh, leg, and ankle IMUs, we acquired
accelerometer and gyroscope data to estimate the lower limb
joint angles in the sagittal plane. Once the hip, knee, and ankle
angles were computed, we applied a forward-backward low-pass
filter (Gustafsson, 1996) with a 6 Hz cutoff and we obtain the
angular velocities of each joint.

To obtain the vertical acceleration we acquired the acceleration
and orientation of the IMU placed over the C7 vertebra (Esser et al.,
2009). First, by using the IMU orientation, we transform the
acceleration vector from the local to the global coordinates
system. Then, to obtain the vertical acceleration, we remove
gravity from the measured vertical acceleration, which
corresponds to the Z-axis acceleration in the global coordinates
system.

In addition, it is usual to identify the onset and end of the gait
cycle and transform the data from the temporal domain to the gait

cycle domain (0%–100%) when performing a gait analysis. Hence,
all signals have been transformed to the cycle gait domain. To detect
the onset of the steps we have detected the foot-ground contact
detection by two methods. To identify the foot contact in the IMU
data (inputs of the model) we have made use of the hip acceleration
(Zijlstra and Hof, 2003). We applied a forward-backward low-pass
filter with a 2 Hz cutoff. In the filtered signal, we detect the local
maxima, which correspond to the left and right ground foot
contacts. As a matter of convention, we employed the right foot
contact to calculate the gait cycle. Moreover, we detected the foot-
ground contact when the force value starts growing in the vGRF
signal.

Signal synchronization begins by detecting the first foot contact
with the ground in both the vGRF and the IMU system. In addition,
by detecting the ground-foot contact in the vGRF and the IMU
system the onset and end of each step can be detected. For each step,
each vGRF and lower limb kinematics data is assigned a label
according to the gait instant in which it occurs (gait cycle
percentage). Finally, to train the machine learning models, the
vGRF and leg kinematics data are synchronized from the gait
instant in which they occur, so that each lower limb kinematics
data is assigned a vGRF value.

The flexion/extension angles, the vertical acceleration, and the
vGRF acquired are shown in Figure 3 for each gait speed. When the
treadmill reached the desired speed, the kinematics and vGRF data
were recorded for 5 min. Between each activity, 2 min were left
for rest.

2.6 Machine learning models training

2.6.1 Selected machine learning algorithms
Regression techniques can be used in order to estimate the

vGRF. We decided to train Random Forest (RF) models and Feed-
forward Neural Networks (FNN) since their use has been validated
in previous studies by different authors.

FIGURE 1
The devices employed during the experimental sessions. On the left image, the location of the IMUs placed tomeasure vertical acceleration (C7 IMU)
and estimate the joint angles of the lower limb (hip, thigh, leg and foot IMUs). On the right image, the treadmill h/p/cosmos 150/50, used to acquire the
vGRF during gait is shown.
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The RF models consist of multiple decision trees (Zhang and
Ma, 2012). These decision trees are trained independently with a
data subset, and the output of the model will be determined by the
best result given by the ensemble trees. This strategy allows the RF
models to achieve accurate predictions as well as better
generalizations, which come from the bagging scheme by
decreasing variance.

The RF models have been trained with SciKit Learn Python
Library (Pedregosa et al., 2011). RF training was performed with
170 decision trees, a tree maximum depth of 35, a minimum number
of samples of 1, a minimum number of samples required to split an
internal node of 2, and the number of inputs to consider when
looking for the best split were calculated by the logarithm base 2 of
the number of inputs.

The FNN models are a kind of artificial neural networks based
on neurons that receive an input signal and process them by the
activation function to an output signal (Svozil et al., 1997; Sharma
et al., 2017). These neurons are ordered into layers, where the first
layer is called the input layer, the last layer is called the output layer,
and the layers between them are called the hidden layers. Each

neuron of a particular layer is connected with all the neurons placed
in the next layer, connected by the weights coefficients. The
adjustment of the weights of the neural network is usually
performed by back-propagation, employing a non-linear
optimization method such as the gradient descent algorithm
(Andrychowicz et al., 2016).

The FNN models have been trained with Keras Python Library
(Gulli and Pal, 2017). We have employed FNN with one input layer
of a number of neurons equal to the number of inputs, 5 hidden
layers with 10 neurons, and an output layer with one neuron. We
have used the Rectified Linear Unit (ReLu) as the activation function
of the neurons, the Adam algorithm (Kingma and Ba, 2014) as the
optimizer to adjust the network weights, and the RMSE as the loss
function. To avoid overfitting, we have employed the dropout
regularization method (Srivastava et al., 2014). Moreover, as
recommended when using dropout, a constraint is imposed on
the weights for each hidden layer. We have imposed that the
maximum norm of the weights does not exceed a value of 4.

The hyperparameters tunned for both RF and FNN models are
the best performing based on the RMSE with the training data.

FIGURE 2
Signals obtained by the IMUs and the treadmill, and their processing before introducing them in themachine learningmodels. From the IMUs placed
on the lower limbs, we have acquired acceleration and angular velocity to estimate the flexion/extension angles (T. Seel et al. method). With the IMU
placed over the C7 vertebra, we measured the vertical acceleration. Moreover, the foot-ground contact has been detected using the anteroposterior
acceleration measured at the hip to compute the gait cycle. The generated vGRF during gait has been measured and normalized by body weight. In
the vGRF signal, the gait foot contact detection has been performed by finding the end of the stance phase (null force). The measured vGRF and the
kinematics data have been synced by using the cycle gait. The flexion/extension joint angles and velocities, the vertical acceleration, and the cycle gait
have been introduced as inputs of the models. The measured vGRF has been introduced as a reference for model learning.
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2.6.2 Preprocessing and training
For the training of the RF and FNNmodels, we introduced the joint

angles, angular velocities, vertical acceleration, and cycle gait as inputs
(Figure 2). In addition, the vGRF measured with the instrumented
treadmill was introduced as the reference of the model.

We divided the data into 3 subsets to evaluate the performance
of the models. First, we used data collected from 10 participants to
train the model (intra-participants). This data collection was
randomly divided into two subsets to validate the accuracy of the
models by cross-validation: 80% of the data for training and the
remaining 20% for validation. Data from 2 participants were also
used to evaluate the performance of the models on users not
involved in the learning process (inter-participants).

To train themodels, 8 inputs were used: the flexion/extension angles
and angular velocities of the hip, knee, and ankle; the vertical acceleration
measured at the C7 vertebra; and the instant of the gait cycle.

It must be noted that we have scaled each input of the training
data from its minimum and maximum, so we have numerical values
between 0 and 1. We have also used the training scaler to evaluate
the accuracy of the classifier with the test data.

As we introduced, one of the objectives of this work is to
examine the contribution of vertical acceleration and lower limb
kinematics in the vGRF estimation. To analyze the
contributions, we realized two different pieces of training for
each model.

• Training 1 (Kinematics). Joint angles, angular velocities, and
cycle gait have been included as inputs of the models.

• Training 2 (C7). Joint angles, angular velocities, vertical
acceleration, and cycle gait have been included as inputs of
the models.

2.6.3 Performance evaluation of the trained
models

The performance achieved by the trained models has been
analyzed as follows.

• vGRF RMSE (BW). A lower RMSE in the reproduction of the
vGRF signal is understood as a better performance of the
model.

FIGURE 3
Acquired data during the experimental session. We have represented the hip, knee, and ankle flexion/extension angles (first, second, and third row),
the vertical acceleration measured at the C7 vertebra (fourth row), and the measured vGRF (fifth row). The data is represented for different gait speeds
(1.5–4.5 km/h) and normalized by the cycle gait.
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• Normalized RMSE (BW). The Normalized RMSE (NRMSE)
is defined as (Shahabpoor and Pavic, 2018):

NRMSE � RMSE

max vGRFmeasured −min vGRFmeasured
(12)

A lower normalized RMSE (NRMSE) in the construction of the
vGRF is understood as a better performance of the model.

• Correlation. A higher correlation (ρ) between the measured
and estimated vGRF signals is understood as a better
performance of the model. To calculate the correlation, the
Person’s correlation coefficient has been calculated.

• LP, MP, and TP error (BW).A lower error between measured
and estimated vGRF peaks is understood as a better
performance of the model. To find the LP and TP peaks
we searched the local maximum in the first and second periods
of the foot support. To calculate the MP peak we searched the
local minimum between LP and TP peaks.

• LP, MP, and TP delay (%). A delay or advance close to
0 between measured and estimated vGRF peaks is understood
as a better performance of the model. The delay is calculated as
the difference between the estimated and measured peaks. A
positive value means a delay of the estimated peak, and a
negative value means an advance of the estimated peak to the
measured peak.

2.6.4 Statistical data analysis
We performed statistical data analysis to compare the accuracy

of the models in estimating the vGRF with the validation and test
data. First, we compared the four trained models (FNN-Kinematics,
FNN-C7, RF-Kinematics, and RF-C7) in terms of RMSE. To
perform a deep analysis of the vGRF signal construction, we have
selected the best FNN and RF models, taking into account the
evaluation detailed previously. For each model, we compared the
vGRF estimation and peak reproduction with the validation and
test data.

In the statistical analysis, first, a normality test was performed
using the Kolmogorov-Smirnov test (Berger and Zhou, 2014). The
results of the test showed that data distribution was not normal
(p < 0.05).

The Friedman test was used to study the differences between the
accuracy of the models (Sheldon et al., 1996). In the post hoc analysis,
pairwise comparisons have been studied by the Wilcoxon signed-
rank test with the zero method proposed by Pratt (1959).

3 Results

3.1 Feature importance

To understand the influence of the angles, the angular velocities,
the vertical acceleration, and the cycle gait in the training of the FNN
and RFmodels, we have calculated the feature importance by feature
permutation (Altmann et al., 2010). This method is defined to be the
increase in the model error when a single feature is randomly
shuffled, so we could understand how much the vGRF depends
on each feature. The results obtained are shown in Figure 4, which
shows the increase of the RMSE in the vGRF prediction when a

feature is shuffled with the FNN-C7 model (Figure 4A and the
RF-C7 model (Figure 4B).

The feature permutation results show that the gait cycle has the
greatest influence on the performance of the models since the RMSE
increases by 0.2590 BW in the FNN-C7model and 0.1927 BW in the
RF-C7 model. Concerning the lower limb kinematics, it can be
observed that the knee and the ankle angles have the highest
relevance on the FNN-C7, followed by the hip and knee angular
velocity. By contrast, in the RF-C7 training the hip, knee, and ankle
angles take on greater significance than their angular velocities. In
both cases, the ankle angular velocity has lower importance than the
hip and knee kinematics.

According to the results, vertical acceleration has a low impact
on the training of the models compared to the lower limb
kinematics. In the FNN-C7 model, the vertical acceleration has
the second lowest importance, and in the RF-C7 model, it has the
lowest relevance.

3.2 Validation and test results

Once we performed the two established pieces of training
(Kinematics, C7), we evaluated the accuracy of the models with
the validation and test data. We have calculated the RMSE for each

FIGURE 4
Feature importance computed with feature permutation (A)
FNN-C7 model (Training 2) (B) RF-C7 model (Training 2)
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of the registered steps to evaluate the performance of the models
with the intra-participants and inter-participants. The mean and
standard deviations of the RMSE errors are shown in Figure 5, where
Figure 5A show the results with the intra-participants, and Figure 5B
the results with the inter-participants. In addition, Table 1 and
Table 2 show respectively the validation and test results.

The statistical analysis showed significant differences between
the performance of the models with the validation data for each gait
speed (Friedman test p < 0.0001 for all speeds). In the pairwise
comparison, the results show that there is not a significant difference
in the accuracy of the models when the users’ vertical acceleration is
included as an input of the model for each gait speed (p > 0.05).
However, the inclusion of the vertical acceleration seems to reduce
significantly the global error when using the FNNmodels (p < 0.05).
When we compare the FNN and RF performance, we see a
significant reduction of the RMSE when we employ the RF
models with the validation data for the global RMSE errors and
for all gait speeds. When we analyze the effect of the vertical
acceleration, despite there is not an statistical significance, we

observe a reduction of the RMSE errors in the RF training when
the vertical acceleration is included, specially for the gait speeds of
3.5 and 4.5 km/h. This behavior can also be seen when using the
FNN models. However, it should be noted that, when we employ a
FNN model, the inclusion of the vertical acceleration is detrimental
to the model performance at 1.5 km/h.

The analysis of the RMSE errors obtained with the inter-
participants shows that there is not a significant difference
between the accuracy of the models (Friedman test for global
RMSE p = 0.24, at 1.5 km/h p = 0.80, at 2.5 km/h p = 0.80, at
3.5 km/h p = 0.17, and at 4.5 km/h p = 0.24). Nevertheless, it can be
observed that there is also a reduction of errors in both models when
the vertical acceleration is included. Moreover, we can observe
similar results in terms of RMSE errors if we compare the FNN
and RF models.

The results suggest that the FNN-C7 model and the RF-C7
model have higher accuracy in terms of RMSE errors. Hence, both
models are analyzed deeply in the next section.

3.3 Validation and test vGRF signal
reconstruction

In Figure 6 we have represented the measured vGRF, the vGRF
estimated with the FNN-C7model, and the vGRF estimated with the
RF-C7 model. In these graphs, the median value of the vGRF is
represented during the gait cycle, and the shaded areas correspond
to the vGRF values between the first and third quartiles.

Table 3 and Table 4 collects the correlation (ρ) and NRMSE
between the measured and estimated vGRF with the selected models
for the intra-participants and the inter-participants, respectively.
Figure 7 shows heatmaps with the mean of the peaks magnitude
errors and delays with the intra-participants and inter-participants.
Moreover, the Supplemental Data collects detailed information
about the magnitude error and delay of the characteristic peaks,
and the pairwise comparison results between the selected models
(FNN-C7 and RF-C7).

With the intra-participants, the results show ρ values in the
vGRF reconstruction between 0.9676 and 0.9886 with the FNN-C7
model, and coefficients between 0.9966 and 0.9988 with the RF-C7
model. In addition, the results show NRMSE values between
0.0399 BW and 0.0651 BW with the FNN-C7 model, and values
between 0.0127 BW and 0.0210 BW with the RF-C7 model. When
the vGRF is predicted with the inter-participants the correlation is
reduced, with ρ values between 0.9705 and 0.9876 with the FFN-C7
model, and values between 0.9746 and 0.9849 with the RF-C7model.
According to the NRMSE results, values are between 0.0560 BW and
0.0853 BW with the FNN-C7 model, and values are between
0.0691 BW and 0.0792 BW with the RF-C7 model.

The analysis of the vGRF peaks shows statistical differences with
the intra-participants for all the characteristic peaks (p < 0.0001).
The results collected in Figure 7 show that all the peak magnitude
errors obtained with the RF-C7 model are lower than errors
obtained with the FNN-C7 model. The RF-C7 achieves
magnitude errors lower than 0.0210 BW for the LP, 0.0161 BW
for the MP, and 0.0171 BW for the TP. Otherwise, the FNN-C7
model errors are up to 0.0900 BW in the LP, 0.0793 BW for the MP,
and 0.0491 BW for the TP. By contrast, when the models are

FIGURE 5
Mean RMSE (BW) and standard deviation for each training of the
FNN and RF models. The graphs show the global RMSE and the RMSE
per gait speed with (A) The intra-participant data (B) the inter-
participant data.
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evaluated with the inter-participant data, the statistical analysis has
shown that there are differences in the prediction of the peak
magnitude errors between models except for the MP at 3.5 km/h
(p = 0.1825) and TP at 4.5 km/h (p = 0.0834). In the case of the FNN-
C7 model, we can find errors between to 0.0206 BW and 0.0619 BW
in the LP, between 0.0263 BW and 0.0810 BW in the MP, and
between 0.0249 BW and 0.0922 BW in the TP. By contrast, the
obtained errors with the RF-C7 model are between 0.0225 BW and
0.0611 BW in the LP, between 0.0399 BW and 0.0983 BW in theMP,
and between 0.0316 BW and 0.1256 BW in the TP.

The analysis of the delay of the predicted vGRF peaks with the
intra-participants shows that the lags achieved by the RF-C7 model
are closely 0%, with mean lags lower than 0.18% (advance in LP at
1.5 km/h), while the timing errors with the FNN-C7 range
from −0.21% to 1.6% in the LP, from −0.3% to 3.4% in the MP,

and −0.92% to −3% in the TP. Furthermore, an increase in the
timing errors can be appreciated for both models when they are
evaluated with the inter-participant data. The timing errors obtained
with the FNN-C7 model range from −0.84% to −2.2% in the LP,
from 1.3% to 4.1% in the MP, and −2.3%–0.73% in the TP, while the
RF-C7 model errors range from −2.3% to −4.9% in the LP,
from −2.6% to 3% in the MP, and −2.4% to 5.4 in the TP estimation.

4 Discussion

This work presents a method to estimate vGRF using diverse
inertial sensors placed over the lower limbs and the C7 vertebra.

The IMUs placed on the hip, thigh, shank, and foot are used to
measure the flexion/extension angles of the hip, knee, and ankle joints.
For this purpose, the method developed by T. Seel et al. was used to
estimate the joint angles by means of the accelerometer and gyroscope
data provided by the sensors (Seel et al., 2014). One of the main
advantages of this method is that the position and orientation of the
IMUs do not influence the estimation of joint angles. Therefore, we can
assume that variations in sensor placement will not affect the error
made in the estimation of vGRF. Furthermore, the calibration method
of this algorithm is simple and does not require precise movements, as
the calibration is based onwalking and performing randommovements
with the legs for a short period.

We have trained and evaluated the performance of two machine
learning models in order to estimate the vGRF during gait. First, we
have calculated the feature importance for the FNN-C7 and RF-C7
models to understand the relevance of each input (Figure 4). For
both models, the results show that the gait cycle has the biggest
influence on the training of the model, which suggests that the
proposed method for estimating vGRF has a strong dependence on

TABLE 1 Validation mean (standard deviation) RMSE (BW) for each training of the FNN and RF models. The global RMSE errors for each model are shown.
In addition, the table collects the RMSE errors obtained for each gait speed.

FNN - Kinematics (a) FNN - C7 (b) RF - Kinematics (c) RF - C7 (d)

Global 0.076 (0.039) ***c,d 0.072 (0.040) ***c,d 0.037 (0.027) ***a,b,d 0.036 (0.026) ***a,b,c

1.5 km/h 0.070 (0.027) ***c,d 0.073 (0.030) ***c,d 0.030 (0.014) ***a,b*d, 0.030 (0.015) ***a,b*c,

2.5 km/h 0.067 (0.020) ***c,d 0.062 (0.020) ***c,d 0.033 (0.013) ***a,b,d 0.032 (0.013) ***a,b,c

3.5 km/h 0.067 (0.030) ***c,d 0.064 (0.030) ***c,d 0.036 (0.023) ***a,b,d 0.035 (0.023) ***a,b,c

4.5 km/h 0.095 (0.050) ***c,d 0.086 (0.056) ***c,d 0.045 (0.038) ***a,b,d 0.044 (0.037) ***a,b,c

Statistical differences are represented by * (p < = 0.05), ** (p < = 0.01), *** (p < = 0.001), and **** (p < = 0.0001).

TABLE 2 Test mean (standard deviation) RMSE (BW) for each training of the FNN and RFmodels. The global RMSE errors for each model are shown. In addition, the
table collects the RMSE errors obtained for each gait speed.

FNN - Kinematics FNN - C7 RF - Kinematics RF - C7

Global 0.077 (0.022) 0.074 (0.028) 0.083 (0.026) 0.077 (0.024)

1.5 km/h 0.069 (0.030) 0.070 (0.029) 0.070 (0.029) 0.067 (0.030)

2.5 km/h 0.062 (0.014) 0.062 (0.013) 0.074 (0.029) 0.072 (0.027)

3.5 km/h 0.075 (0.010) 0.068 (0.010) 0.082 (0.012) 0.075 (0.018)

4.5 km/h 0.096 (0.014) 0.092 (0.025) 0.102 (0.019) 0.087 (0.019)

No statistical differences were found.

TABLE 3 Correlation (ρ) and normalized RMSE (NRMSE) results obtained
between the measured and estimated vGRF with the intra-participants using
the FNN-C7 and RF-C7 models.

Gait speed (km/h) ρ NRMSE

FNN-C7 1.5 0.9817 0.0483

2.5 0.9886 0.0399

3.5 0.9847 0.0449

4.5 0.9676 0.0651

RF-C7 1.5 0.9988 0.0118

2.5 0.9987 0.0127

3.5 0.9980 0.0155

4.5 0.9966 0.0210
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time. This makes sense since the values of angles, angular velocities,
and vertical acceleration can take the same value for different
instants of the gait cycle, but the vGRF takes different values.
Moreover, from the results, it also can be extracted that hip and
knee kinematics have a bigger importance than ankle kinematics.

We introduced that vertical acceleration is strongly related to the
vGRF. However, when the feature importance is calculated, we can
observe that vertical acceleration has a small influence on the model
training compared to the kinematics of the lower limbs. Despite the
vertical acceleration seems to have low relevance in the models, the
results suggest that this input could modify the performance of the
FNN and RF models (Figure 5; Table 1; Table 2). Although no
statistical differences were found, according to the validation and

test results represented in Figure 5, we can observe that the vertical
acceleration appears to improve the performance in the FNN and RF
models in terms of RMSE. By contrast, the RMSE obtained with the
FNN models when the vertical acceleration is included seems to
increase. Hence, it could be concluded that vertical acceleration is
not crucial to estimate the vGRF with the method proposed if we are
able to measure the lower limb kinematics, but it might help to
improve the performance of certain models.

In addition, when we compare the performance of the four models
trained (FNN-Kinematics, FNN-C7, RF-Kinematics, and RF-C7)
some differences can be observed in terms of RMSE. When we
employ the validation data (i.e., data from the intra-participants),
the RMSE obtained with the RF models (0.030–0.045 BW) is almost
half the RMSE of obtained with the FNN models (0.067–0.095 BW).
However, when we evaluate the models with the inter-participants,
these differences are not statistically significant, and we obtain similar
RMSE with the four models. It is usual to obtain an increase in the
error with inter-participant data, but the behavior of the RF models
might indicate that they tend to overfit more than the FNN models,
which is a known problem on algorithms based on decision trees
(Dietterich, 1995). Despite the overfitting, the results suggest that the
RF models achieve similar accuracy, with a global RMSE of 0.077 BW
for the RF-C7model, and 0.074 BW for the FNN-C7model, which are
the best FNN and RF models in terms of RMSE.

If we analyze further the FNN-C7 and the RF-C7, Table 4 shows
that the measured and estimated vGRF are strongly correlated for
both intra-participants and inter-participants. In the same manner, as
can be seen in the results obtained for RMSE, RF-C7 achieves higher
correlation coefficients than the one achieved by the FNN-C7 model
with the intra-participant data, but with the inter-participants, the

FIGURE 6
Epoch graphs with the measured and estimated vGRF (intra-participants and inter-participants) according to the cycle gait (%) for different gait
speeds. The median data value has been represented, and the values between the first and third quartiles have been colored. The first row collects the
measured vGRF, the second row the estimated vGRFwith the selected FNNmodel (Training 2, C7), and the third row the estimated vGRFwith the selected
RF model (Training 2, C7). The vGRF representations include all participant users (intra-participants and inter-participants).

TABLE 4 Correlation (ρ) and normalized RMSE (NRMSE) results obtained
between the measured and estimated vGRF with the inter-participants using
the FNN-C7 and RF-C7 models.

Gait speed (km/h) ρ NRMSE

FNN-C7 1.5 0.9777 0.0718

2.5 0.9876 0.0560

3.5 0.9859 0.0604

4.5 0.9705 0.0853

RF-C7 1.5 0.9776 0.0716

2.5 0.9797 0.0708

3.5 0.9797 0.0691

4.5 0.9746 0.0792
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FNN-C7 correlations are higher than the achieved by the RF-C7 for
gait speeds between 1.5 and 4.5 km/h. The NRMSE results show the
same behavior, where the FNN-C7 achieves higher errors than the RF-
C7 model. However, with the inter-participant data, the NRMSE for
2.5 and 3.5 km/h are lower with the FNN-C7, while the RF-C7 obtains
lower errors for 1.5 and 4.5 km/h.

The estimated vGRF signals shown in Figure 6 indicate that both
selected models can replicate the measured vGRF. It can be observed
that the FNN-C7 and the RF-C7 models can differentiate the cycle

gait phases, as the graphs show that they might estimate the
characteristic peaks and the swing phase (vGRF = 0 BW).

It must be noted that the magnitude and timing of the vGRF
peaks are important parameters to perform gait analysis. For this
reason, these peaks are deeply analyzed (Figure 7, Supplemental
Data). The RF-C7 model has shown a significantly higher accuracy
than the FNN-C7 model according to the magnitude errors in intra-
participant users for all the peaks at each gait speed. Nevertheless,
the errors of the peaks obtained with the inter-participants are
similar between both models. We must remark that the errors
obtained with the FNN-C7 in the LP at 1.5, 2.5, and 4.5 km/h,
and the TP at 1.5 and 2.5 km/h are lower with the inter-participant
data than the intra-participants. Although, it can be observed that
the errors obtained with RF-C7 for the inter-participants are higher
than the intra-participants for all the peaks and gait speeds. These
results would be in agreement with what was seen previously with
the RMSE and could be due to the overfitting of the RF models.

Concerning the timing errors of the vGRF peaks, the RF-C7
model presents a high accuracy in the timing prediction of the peaks
at all gait speeds with the intra-participant data, with a maximum lag
of 0.18% of the cycle gait. On the other hand, the FNN-C7 model
appears to make a larger error at the peak timing, especially in the
MP with mean delays up to 3.4%. The results obtained for the inter-
participants show larger delays and advances in the estimation of the
peaks with respect to the measured vGRF, specially with the RF-C7
model. We must mention that all the mean lags obtained with the
RF-C7 are greater than the FNN-C7 except for the MP peak at
1.5 and 2.5 km/h.

It must be highlighted that we can assume that both FNN-C7
and RF-C7 models are robust and they have good accuracy to
estimate the vGRF by using the kinematics of the lower limbs and
the vertical acceleration. This conclusion can be extracted since the
RMSE and ρ of our models are in a similar range to studies made by
other authors when the vGRF was estimated during gait. In (Oh
et al., 2013) the authors obtained an RMSE of around 0.066 BW and
ρ of 0.991 with intra-participants; in (Choi et al., 2013) the authors
obtained an RMSE of around 0.074 BW and ρ of 0.99 with intra-
participants; in (Jiang et al., 2020) the authors obtained an RMSE of
0.02 BW and ρ of 1.00 with intra-participants, and an RMSE of
0.10 BW and ρ of 0.97 with inter-participants. Despite the RF model
trained by Jiang et al. seems to achieve a higher accuracy than our
models with intra-participants, the results with inter-participants
suggest that our RF and FNN models achieve a lower RMSE and
higher ρ, so they would have a higher generalization than those
proposed by Jiang et al.

It should be noted that, although the FNN-C7 model and the
RF-C7 model achieve good accuracy compared to previous works,
the results show differences between them. First, the mean of the
RMSE obtained with the intra-participants is lower with the RF-C7
model, but the global RMSE achieved by the FNN-C7 is lower than
the RF models. However, the calculated ρ and NRMSE show that
coefficients and errors obtained are lower at 1.5 and 4.5 km/h with
the RF-C7, but lower at walking speeds of 2.5 and 3.5 km/h with the
FNN-C7. Finally, the mean magnitude errors of the characteristic
peaks show similar results for the inter-participants. Furthermore,
the FNN-C7 seems to achieve higher performance than the RF-C7 in
estimating the timing of the peaks. Therefore, based on these

FIGURE 7
Heatmaps with the vGRF peak errors for gait speeds of 1.5 km/h,
2.5 km/h, 3.5 km/h, and 4.5 km/h. (A) Mean magnitude errors of the
vGRF peaks (BW) (B) Mean delays of the vGRF peaks (%).
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differences, we could assume that the FNN-C7 model overcomes the
accuracy of the trained RF-C7 model.

5 Conclusion

This work aims to present a method to estimate the vGRF using
wearable IMUs. We used inertial sensors to estimate the kinematics
of the lower limbs and the vertical acceleration of the users,
which were employed to train two types of machine learning
models: Feedforward Neural Networks (FNN) and Random
Forest (RF).

The results show that the trained models have a big influence on
the temporal variable (cycle gait), followed by the hip, knee, and
ankle kinematics. The inclusion of vertical acceleration has a small
influence on the training of the FNN and RF models compared to
the rest of the inputs. However, the results suggest that the inclusion
of vertical acceleration can modify the performance of the model. In
the case of the FNN and RF models, the inclusion of this feature
appears to increase the performance.

Moreover, we can assume that the method proposed to estimate
the vGRF has good accuracy for biomechanical analysis, as the
estimate of vGRF, including its peaks, is in a similar range of
accuracy to that reported in other studies, and even the results
suggest that a smaller error is obtained in the estimation of VGRF.
Furthermore, the RMSE, ρ, and the errors in the characteristic peaks
suggest that the FNN-C7 model achieves the highest accuracy of the
trained machine learning models.
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Abstract— Human gait activity recognition can be crucial to adapt
the assistance provided by lower limb exoskeletons, as well as for
biomechanical analysis. With this purpose, Deep Learning tech-
niques can be applied to develop a classifier based on the acqui-
sition of the lower limb kinematics. In this paper, we present a
one-dimensional Convolutional Neural Network (CNN) to classify
different activities from the hip, knee, and ankle flexion/extension
angles, measured with wearable inertial sensors. The proposed
CNN classifier achieves 99.56% accuracy with users not involved
in the learning process. In addition, the Gradient-weighted Class
Activation-Map (Grad-CAM) and the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) were used to understand the CNN model
decision-making. Finally, how the accuracy of the CNN model is impacted by input reduction was analyzed to adapt the
CNN model to multiple situations, and it can be concluded that the CNN maintains high accuracy with a single joint angle
as input.

Index Terms— Gait analysis, human activity recognition, magneto-inertial devices, Deep Learning

I. INTRODUCTION

HUMAN locomotion is a complex and dynamic process
that involves the coordination of multiple body seg-

ments and muscles. The analysis of human gait can provide
valuable information about the health and functional status
of an individual [1]. In this context, the analysis of human
gait can be used to analyze the range of motion (ROM)
of the lower limb joints, which may be reduced in patients
suffering from neuromuscular pathologies such as cerebral
palsy, Parkinson’s disease, or hemiplegia [2], [3]. In addition,
lower limb kinematics analysis could help make detailed
diagnoses, plan optimal treatment, or evaluate the results of
rehabilitation therapies [4]. However, traditional gait analysis
methods require expensive and specialized equipment, and
they are also limited by the laboratory setting, which may not
reflect the natural and dynamic environment of daily living
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[5]. Therefore, to perform a correct biomechanical analysis in
a natural environment, the recognition of the activity that the
user has performed is needed.

Gait analysis and activity classification techniques can be
used to personalize lower limb exoskeletons, which are wear-
able devices designed to assist or enhance leg movements
[6]. These exoskeletons have diverse applications such as
rehabilitation, assistive technology, and human augmentation
[7], [8]. The exoskeleton must be able to recognize the user’s
intentions and adjust its parameters accordingly to ensure
a natural and comfortable interaction between the user and
the device, [9]. Joint sensors and inertial measurement units
(IMUs) are generally used for movement recognition [10]–
[12]. In addition, the activity performed is the most important
factor in determining the operation and high-level behavior
of assistive walking devices. Different methods have been
proposed to detect and adapt the control of lower limb
exoskeletons, including cameras [13], [14], infrared distance
sensors [15], and a combination of infrared sensors with IMUs.

Machine learning algorithms can be employed to classify
various gait activities of daily living (ADLs) based on the
information provided by inertial sensors [16]. This classifica-
tion is vital for biomechanical analysis and adaptation of lower
limb exoskeleton assistance in a natural environment. Extract-
ing temporal and frequency domain features from the IMUs
can be used to train machine learning models for gait activity
classification [17]. By contrast, Deep Learning methods can
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autonomously extract features from the signals collected by the
IMUs [18]. Convolutional Neural Network (CNN) is one of
the most commonly used models for Deep Learning in image
processing [19]. Some authors have transformed accelerometer
and gyroscope signals from IMUs into images to apply two-
dimensional (2D) CNNs for gait activity classification [20].
However, generating 2D images for the analysis of time series
can be computationally expensive. Therefore, a fixed-size time
series can be used instead of images to train and recognize
ADLs with a one-dimensional (1D) CNN [21].

Although the accelerometer and gyroscope data provided
by the IMUs have been used to develop gait ADL classifiers,
the use of the angles of the lower limb joints has not been
explored. This method can be easily embedded in the control
system of the lower limb exoskeletons since joint sensors are
generally used. In addition, this method could also be used to
perform biomechanical analysis with wearable measurement
devices. In this paper, we present a deep learning model
that uses the angles of the lower limbs to classify different
gait activities. For this purpose, we have developed a 1D-
CNN architecture that can effectively extract features and
classify several gait activities from the trajectories of the
lower limbs measured with wearable IMUs. In addition, we
have used the Gradient-weighted Class Activation-Map (Grad-
CAM) and the t-Distributed Stochastic Neighbor Embedding
(t-SNE) to understand the decision-making of the developed
1D-CNN model. Finally, we have analyzed possible variations
of the model so that it can be adapted to multiple lower limb
exoskeletons, as well as to perform a biomechanical analysis
from one to three joints.

II. RELATED WORK

Human activity recognition (HAR) is a complex problem
that has many practical applications such as human-robot
interaction, rehabilitation, or health monitoring [22]. With
recent advances in wearable technology, analyzing human
biomechanics and recognizing different activities of daily
living (ADLs) has become more affordable, accurate, and
feasible.

Vision-based approaches have been explored to perform
activity recognition and adapt lower limb exoskeletons or
prostheses. In [23], the authors study the feasibility of using a
depth camera placed on the leg to adapt lower limb prosthe-
ses. The authors detected five different situations (standing,
running, ground-level walking, ascending stairs, descending
stairs) using a Support Vector Machine (SVM) with a 99%
accuracy. On the other hand, in [24], the authors proposed
to use a chest-mounting camera, which provides less relative
body movement than head or lower-limb mounting. In that
work, the authors used a Deep Learning model to analyze the
images from the camera to detect ground-level walking and
ascending/descending stairs with a 94.85% accuracy.

In addition to vision-based methods, the use of inertial
sensors for HAR has also been widely studied. In [25], the
authors used accelerometers embedded inside the insoles of the
shoes to recognize different activities. They used accelerome-
ter signals as inputs of a CNN to recognize six activities with

a 93% accuracy (running, walking, cycling, kicking, standing,
and jumping).

Other authors propose to use the IMU of smartphones
to recognize different activities. In [26], the authors used
the gyroscope and accelerometer signals as inputs of a 1D-
CNN, where the proposed model achieved a 95.57% accuracy
using the Fast Fourier Transform of the input signals. Another
example is the model proposed in [27], where the authors
used the Euclidean norm of the accelerometer signals to detect
different activities, with a 92.71%. Moreover, in [28] the
authors propose to classify different activities by extracting
statistical features from the accelerometer of smartphones,
achieving a 95.89% accuracy with a CNN model.

More related to our work is the approach proposed in [29],
where the authors used the public dataset HuGaDB [30] to
classify different gait ADLs. The authors trained a Random
Forest model using as inputs different extracted features from
the accelerometer and gyroscope signals placed over the thigh,
shank, and foot, achieving an accuracy of 98.6%. Instead of
extracting features to train the models, in [20] a Deep Learning
approach was used. The authors transformed the accelerometer
and gyroscope signals from the OU-ISIR public dataset [31] to
use a 2D-CNN. They show that their trained model achieved
a 93% accuracy when detecting ground-level walking, ascend-
ing/descending a ramp, and going down/up stairs.In addition,
in [32] the authors used a single IMU placed at the center of
mass position of each user to recognize different gait activities
(jogging, ground-level walking, standing, climbing stairs). The
authors employed a hybrid model based on ensemble learning
and they achieved an accuracy of 99.34%. However, the main
limitation of this approach relays on the computational cost,
since the ensemble learning approach is composed by four
Deep Learning models, which would be not suitable for real-
time inference. In addition, the authors do not include in the
work an evaluation with users who were not participated in
the learning process of the models. Hence, it is not clear how
accurate this method would be if used with different users.

In addition to only employing inertial sensors, some studies
propose to perform HAR by fusing the IMU data with other
sensors. In [33], the authors propose to employ an IMU placed
over the waist together with laser measurements to recognize
the terrain for adapting powered lower limb prostheses. They
used a Decision Tree to perform a terrain classification with a
98% accuracy. Another sensor fusion approach is presented in
[34], where pressure insoles and IMUs placed on the thigh
and shank were used. An intelligent fuzzy algorithm was
used to recognize different gait ADLs with an accuracy of
95.52%. Another approach is presented in [35], where several
IMUs and strain gauges placed on the lower limbs were
used to classify different gait activities. The authors used
an autoencoder to perform dimensionality reduction, followed
by a Deep Learning model that combined convolutional and
recursive layers, achieving an accuracy of 98.9%.

Despite different methods for HAR using wearable sensors
have been proposed, they all come with certain limitations.
Vision-based techniques are computationally expensive due to
the need for image analysis to detect user activity. In contrast,
the use of IMUs seems to be portable, cost-effective, and the
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computational cost is affordable enough to perform HAR with
wearable devices. Nonetheless, in the IMU-based methods
proposed, accurate placement of IMUs is essential, as any error
in the IMU positioning may cause disturbances in the signals,
thus reducing the accuracy of the activity classification.

To the best of our knowledge, no study has explored the use
of the angles of the lower limb joints to perform HAR. In order
to propose an affordable approach, while solving the possible
errors due to IMU positions, we have implemented a method
to measure the angle of the hip, knee, and ankle in the sagittal
plane which does not depend on the position and location
of the IMUs. Therefore, variations in IMU placement on
the lower limbs would not impact the classification accuracy.
While previous studies have proven effective in HAR, the use
of explainability methods to understand model operation is not
common in this field. Thus, we have used the t-SNE method
and Grad-CAM to determine how our model extracts features
and which parts of the input are most critical.

III. MATERIALS AND METHODS

A. Lower limb joints measurement

An IMU-based algorithm was used to measure the flex-
ion/extension angles of the hip, knee, and ankle joints. The
joint motion analysis method proposed by T. Seel et al. was
applied to estimate the lower limb joint angles during gait [36].
This method does not require the knowledge of the IMUs’
position and orientation on the user’s lower limb, and it only
assumes that each joint has two inertial sensors on its upper
and lower segments, and uses the measured accelerations and
angular rates.

To align the IMU reference systems with the joint axis,
some methods in the literature require specific and accurate
calibration movements [37]. On the other hand, the method by
T. Seel et al. determines the location of the sensors on the joint
they measure by using arbitrary calibration movements and
joint movements during gait, taking advantage of kinematic
constraints. The direction vectors j1 and j2 of the hip,
knee, and ankle joints’ flexion/extension axes are found using
gyroscope data in the local coordinates of the IMUs during
the calibration. The acceleration data are also used to estimate
the joint position coordinates o1 and o2.

The method by T. Seel et al. has demonstrated a root mean
squared error between 3 and 5 degrees in flexion/extension
movements [38]. This suggests that the method is accurate
enough for gait analysis and gait ADL detection. In addition,
T. Seel et al. demonstrated that this method conserves the
accuracy even at low acquisition rates. Therefore, this method
is robust and suitable to perform real-time measurements.

B. Experimental session

Twelve able-bodied participants (9 male, 3 female) aged 23-
52 years old (29.8±7.4), with heights ranging between 165cm
and 187cm (176.2± 7.4cm) and weights between 56.1kg and
90.2kg (76 ± 12.5kg) participated in the experiment. They
provided written, informed consent before participating in the
experimental session.

Fig. 1. Setup and performed gait activities during the experimental
session. The left image shows the positions of the attached IMUs
used to measure joint angles. The participants walked on a treadmill
to simulate ground-level walking, as well as ascending and descending
a ramp of 12% slope. In addition, stair climbing was simulated using a
stair treadmill.

Four gait activities were simulated to collect lower limb
movement data using four XSens Dot IMUs at 60Hz. In order
to simulate and collect data during various ADLs, we used an
h/p/cosmos 150/50 treadmill to simulate ground-level walking,
ramp ascent, and ramp descent. A stair treadmill was used to
simulate stair climbing. The experimental setup and the ADLs
performed are shown in Fig. 1.

The IMUs were attached to the pelvis, thigh, shank, and foot
using elastic triggers and stickers. The participants calibrated
the IMUs by moving their legs for 30 s and walking on the
treadmill for 1 minute at their preferred speed.

After the calibration concluded, the angles of the hip, knee,
and ankle were measured during four different activities:

1) Ground-level walking at 4.5 km/h for 5 minutes.
2) 12% positive slope walking at 2.5 km/h for 5 minutes.
3) 12% negative slope walking at 2.5 km/h for 5 minutes.
4) Climbing stairs at 50 stairs/minute for 3 minutes.
We followed the INESCOP Footwear Technology Center

protocols for footwear certification to set the walking speeds
and slope. The stair-climbing time was shortened to 3 min to
prevent excessive fatigue.

C. Acquired data
This section describes the IMU data acquisition and process-

ing to be used as inputs of the classifier model. This procedure
is shown in Fig. 2, which is based on previous studies [39],
[40].

Acceleration and angular rate data were used to measure
the flexion/extension angles of the hip, knee, and ankle. To
perform a gait analysis, kinematics data are usually trans-
formed from the time domain to the gait cycle domain (0-
100%), which requires identifying the start and end of each
gait cycle. Therefore, we applied this transformation to all
signals. We used the hip acceleration [41] to detect the ground-
foot contact, and applied a forward-backward low-pass filter
[42] with a 2 Hz cutoff. The local maxima in the filtered signal
corresponds to the left and right foot contacts. We followed
the convention of using the right foot contact to calculate the
gait cycle.
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Fig. 2. The IMUs placed on the lower limbs were used to measure acceleration and angular velocity for the estimation of the flexion/extension
angles. We also detected the foot-ground contact from the hip acceleration, which is used to segment the joint angles into steps and gait cycles. We
normalized each gait cycle (0-100%) and fed them to the CNN as inputs. The hip, knee, and ankle flexion/extension joints are normalized between
their minimum and maximum to be introduced as inputs of the model. The proposed model is composed of three 1D convolutional layers with a
kernel size of 3 and 64 filters. Also, a padding operation is applied to have feature maps with lengths equal to the inputs. The ReLu is used as the
activation function of the convolutional layers, and batch normalization is applied. A global average pooling layer is used to reduce the generated
feature maps connected to the output layer.

It is important to note that the CNNs require a fixed
window size as input. In our case, as we want to classify
each step within one of the ADLs, it seems reasonable to use a
window size of 100 joint values calculated from the gait cycle.
Therefore, we will use as CNN inputs three windows of size
100, with the values of hip, knee, and ankle flexion/extension
angles during a step.

D. Gait activity classifier
1) Proposed Convolutional Neural Network architecture: As

introduced, we plan to train a CNN model to detect four
gait activities. Typically, 1D-CNN classifiers consist of two
parts [43]: the convolutional and pooling layers, and the fully-
connected layers or Multilayer Perceptron (MLP).

In the first part of the model, the CNNs have an input layer
of Nxk, where N is the length of the univariate time series
and k is the number of input series. After the input layer,
convolution and pooling operations are used to generate deep
features of the inputs. In the convolutional layers, convolution
operations are performed on the time series of the previous
layer with convolutional filters (kernel), whose final output is
known as a feature map. In addition, a nonlinear function, such
as the Rectified Linear Unit (ReLu) function, is used after each
convolution operation. In the pooling layers, the feature maps
are divided, and each segment is represented by its average
or maximum value. Finally, after the convolution and pooling
layers, the original time series is represented by a series of
feature maps.

The feature maps are usually connected to an MLP in the
second part of the model. The classification task is performed
by these layers based on the features and filters of the previous
layers. A global average pooling layer can replace this part,
which aims to produce one feature map per class [44]. The

average of each feature map is taken by this layer, and the
resulting vector goes straight to the softmax layer. The global
average pooling layer also fits better with the convolution
structure by creating correspondences between feature maps
and categories, and it prevents overfitting at this layer since it
has no parameter to optimize.

The architecture of the CNN model proposed to classify
four gait activities is a Fully Convolutional Neural Network
(Fig. 2). The hip, knee, and ankle flexion/extension angles are
introduced as the CNN inputs, which have been normalized by
their maximum and minimum values. We have used 3 convo-
lutional layers and 64 filters are applied with a kernel size of 3.
Moreover, we applied padding on the convolution operations
to have feature maps with a length N equal to the inputs.
After each convolutional layer, we operate with the ReLu as
the activation function, and Batch Normalization is applied.
After the convolution operations, we used a global average
pooling layer connected to a dense layer with four neurons
(one per gait ADL) with the softmax as the activation function.
The number of convolutional layers, the number of filters, the
size of the kernels, and the rest of the hyperparameters of the
model have been tuned to achieve the highest performance.

2) Preprocessing and model training: We divided the data
from 12 participants into 3 subsets to evaluate the performance
of the model. Time series from 9 users were randomly divided
by steps to train and to validate the accuracy of the model
with (intra-participants): 80% was used for training and 20%
for validation. Data from the remaining 3 users were used to
evaluate model accuracy with participants not involved in the
learning process (inter-participants). In addition, the training
data was scaled between the minimum and maximum angle
values of the hip, knee, and ankle so that the values of the
inputs are between 0 and 1. The training scaler was also
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Fig. 3. Collected kinematics data during the experiment. The flexion/extension angles of the hip, knee, and ankle joints (top, middle, and bottom
row) for different types of walking (flat surface, ascent ramp, descent ramp, and stairs) are shown, and normalized by the gait cycle. The figures
above show the median of the twelve participants, and the shaded areas indicate the range between the first and third quartiles.

used to evaluate the model with the intra-participant and inter-
participant data.

The proposed 1D-CNN model has been trained with the
Keras Python Library. The model was trained for 50 epochs
and a batch size of 8. To adjust the weights of the network we
used the Adam algorithm as the optimizer, and the Categorical
Cross-Entropy (CE) was used as the loss function, defined as:

CE = −
C∑

i

yi · log(ŷi) (1)

where yi is the actual class, ŷi is the CNN score for each
class, and C is the number of classes.

E. Model explainability
It is common to think of machine learning models as black

boxes since insights into decision-making are mostly opaque
to humans. However, understanding decision-making can be
critical in areas such as healthcare. In our particular case,
it may be interesting to know how the trained CNN model
discriminates between the four ADLs performed during the
experimental session.

Some methods have been proposed to explain model predic-
tions to solve the black-box problem. We used the Gradient-
weighted Class Activation-Map (Grad-CAM) algorithm [45]
to examine the class activation map [46]. The Grad-CAM
method has been used to explain deep learning models in
image analysis by noting the impact of the pixels on the
prediction. Extending this method to time series analysis with
a CNN, we can use Grad-CAM to highlight segments of the
joint trajectories to understand how our model distinguishes
each gait activity. In the next sections, the contribution of
the hip, knee, and ankle flexion/extension trajectories will be
analyzed.

IV. RESULTS

A. Model evaluation
In Fig. 3 the hip, knee, and ankle flexion/extension angles

have been represented during the ADLs performed during the
experimental session.

We evaluated the performance of the CNN model trained
with data from the intra-participants and inter-participants.
The inference process was made in a PC with an Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz with 16 GB of RAM, and
each inference took 1 ± 0.37 milliseconds. In addition, the
performance of the proposed model is compared with four
state-of-the-art models proposed in different studies: ResNet
[47], t-LeNet [48], MCDCNN [49], and Time-CNN [50]. Table
I collects the accuracy and the CE with the intra-participant
and inter-participant data with the proposed model and the
state-of-the-art models. The results show that our classifier
achieves an accuracy of 99.65% and a CE of 0.0054 with

TABLE I
ACCURACY AND CATEGORICAL CROSS-ENTROPY (CE) OBTAINED

WITH THE INTRA-PARTICIPANTS AND INTER-PARTICIPANTS.

Model Dataset Accuracy(%) CE

Proposed 1D-CNN Intra-participants 99.65 0.0054
Inter-participants 99.56 0.0025

ResNet [47] Intra-participants 100.00 0.0004
Inter-participants 99.46 0.0082

t-LeNet [48] Intra-participants 99.98 0.0132
Inter-participants 99.21 0.0287

MCDCNN [49] Intra-participants 99.98 0.0036
Inter-participants 99.46 0.0039

Time-CNN [50] Intra-participants 99.98 0.0003
Inter-participants 98.09 0.0102
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Fig. 4. Confusion matrices obtained with the proposed CNN classifier
for intra-participants and inter-participants. The rows of the matrix show
the ADL that was performed, and the columns show the ADL that was
predicted. The matrices include the four gait ADLs that were done in the
experiment: walking on a flat surface, going up a ramp (Up), going down
a ramp (Down), and climbing stairs.

intra-participant data, and an accuracy of 99.56% and a CE of
0.0025 with inter-participant data. For a better comprehension
of the classification results, confusion matrices are represented
in Fig. 4 with the intra-participant and inter-participant data.
The results show that CNN could confuse ground-level walk-
ing, ascending a ramp, and descending a ramp. For the intra-
participants, 99% of the descent ramp steps are classified
correctly, where 0.32% of the steps are confused with ground-
level walking, and 0.97% is confused with ascending a ramp.
The inter-participant results show similar behavior since 1.5%
of the descent ramp steps are classified incorrectly as ground-
level walking.

B. Model interpretability
We applied the t-Distributed Stochastic Neighbor Embed-

ding (t-SNE) to project the 64-dimensional feature map ob-

Fig. 5. Two-dimensional representation of the feature map generated by
the CNN model proposed for 2 intra-participants and 2 inter-participants.
The projection was obtained using the t-SNE embedding. Each gait
ADL is represented by a color: blue for ground-level walking, red for
ascending a ramp, green for descending a ramp, and yellow for climbing
stairs.

tained by the convolutional and global average pooling layers
into a 2-dimensional graph [51]. Fig. 5 shows the representa-
tion of the generated feature maps for 2 intra-participants and
2 inter-participants, using perplexity and early exaggeration
values of 50. This graph shows diverse groups of points, also
known as clusters, where each point represents the feature map
obtained by the CNN for each step, and clusters represent a
group of similar steps.

In Fig. 6 we have represented the mean joint trajectories
of the lower limbs during the four gait ADLs over the
class activation maps obtained with Grad-CAM for the last
convolutional layer. The activation map is represented as a
heatmap that highlights the important parts of the inputs. Blue
parts of the graph can be seen as low attention parts of the
inputs, and red values as high attention parts. The ground-
level walking activation map shows high activation during
the terminal stance phase (45%-65%), the swing phase and
the initial contact; the ascending ramp activation map shows
strong activation during the loading response and mid stance
phase (around 10%-50%) and the terminal swing phase; the
descending ramp activation class shows high activation during
the terminal swing phase (75%-90%); and the climbing stairs
activation map has an strong activation during the swing phase
(70%-90%).

In addition, the Grad-CAM method could also help us to
understand why some steps are classified incorrectly. Fig. 7
collects two steps classified wrongly as descending a ramp.
The joint angles and the class activation maps are represented,
and the softmax values for the actual class and the predicted
class are specified.

C. Model adaption
Several models have been trained with the same proposed

architecture, but changing the number of inputs of the models
to check the feasibility of adapting the CNN model presented.
With this purpose, we have trained seven 1D-CNN models for
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Fig. 6. Mean lower limb joint trajectories during ground-level walking, ascending a ramp, descending a ramp, and climbing stairs overlaid with the
mean class activation maps. The class activation maps have been obtained with the Grad-CAM method, where blue parts represent low activation,
and reds represent high activation.

Fig. 7. Descending ramp steps classified incorrectly as ground-level
walking and ascending ramp steps. The class activation maps and the
joint trajectories are represented, as well the softmax values for the
predicted and actual classes are collected.

a different number of epochs, all of them with the architecture
proposed.

In Table II and Table III the accuracy of the models is shown
according to the number of inputs and training epochs.

With the intra-participant data, when the CNN model is
trained with the hip angle, the accuracy ranges from 26.91%
(25 epochs) to 97.82% (200 epochs); with the knee angle,
the accuracy ranges from 38.59% (200 epochs) to 93.21%
(250 epochs); with the ankle angle, the accuracy ranges from
43.64% (10 epochs) to 99.91% (250 epochs); with the hip and
knee angles the accuracy ranges from 38.41% (10 epochs)
to 98.87% (250 epochs); with the hip and ankle angles the
accuracy ranges from 82.32% (75 epochs) to 100% (100, 150,
200, and 250 epochs); and with the knee and ankle angles,
the accuracy ranges from 30.49% (25 epochs) to 99.91% (200
epochs).

With the inter-participant data, when the CNN model is
trained with the hip angle, the accuracy ranges from 25.71%
(25 epochs) to 98.28% (200 epochs); with the knee angle it
ranges from 35.23% (200 epochs) to 85.97% (250 epochs);
with the ankle angle it ranges from 37.24% (10 epochs) to
98.18% (150 epochs); with the hip and knee it ranges from
37.63% (10 epochs) to 89.94% (250 epochs); with the hip
and ankle angles it ranges from 63.54% (75 epochs) to 99.95%
(150 epochs); and with the knee and ankle angles, the accuracy
ranges from 29.83% (150 epochs) to 90.72% (200 epochs).

As detailed in previous sections, the results show that the
model trained with all the angles of the lower limb joints
achieves accuracy close to 100% for all the range of epochs
with the intra-participant and inter-participant data.
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TABLE II
INTRA-PARTICIPANT ACCURACY (%) ACCORDING TO EPOCHS NUMBER DURING TRAINING

Epochs
10 25 50 75 100 150 200 250

Hip, knee, and ankle 100.00 100.00 100.00 99.91 100.00 100.00 99.65 100.00

Hip 37.54 26.91 70.73 76.05 46.34 93.73 97.82 96.52

Knee 47.30 65.85 70.12 51.74 45.12 71.52 38.59 93.21

Ankle 43.64 57.49 81.10 86.24 60.28 96.43 44.16 99.91

Hip and knee 38.41 45.56 91.46 67.07 72.30 99.39 72.83 98.87

Hip and ankle 92.42 99.65 99.91 82.32 100.00 100.00 100.00 100.00

Knee and ankle 41.20 30.49 69.60 47.91 69.33 31.97 99.91 84.84

TABLE III
INTER-PARTICIPANT ACCURACY (%) ACCORDING TO EPOCHS NUMBER DURING TRAINING

Epochs
10 25 50 75 100 150 200 250

Hip, knee, and ankle 100.00 99.80 99.90 100.00 100.00 100.00 99.90 100.00

Hip 37.63 25.71 70.17 55.30 39.99 68.45 98.28 85.97

Knee 37.44 60.84 81.31 39.60 44.46 67.22 35.23 85.77

Ankle 37.24 46.37 89.11 85.33 59.67 98.18 34.44 97.55

Hip and knee 37.63 43.67 79.00 57.85 62.71 92.89 75.47 89.94

Hip and ankle 86.16 96.42 99.46 63.54 99.71 99.95 99.26 99.31

Knee and ankle 44.50 31.99 69.92 43.92 60.94 29.83 85.57 90.72

V. DISCUSSION

We trained a CNN to recognize four gait ADLs: ground-
level walking, ramp ascent, ramp descent, and stair climbing.
Several authors have proposed using accelerometer and gy-
roscope data from IMUs to recognize different gait activities
[20], [25]–[27], [29], [30], [33], [34]. We propose a different
approach from other studies since we used multiple IMUs to
capture the joint angles of the lower limb in order to classify
the gait activities. This way, we can do a biomechanical
analysis and also adjust the assistance given by lower limb
exoskeletons. Hence, the hip, knee, and ankle flexion/extension
angles were introduced as inputs to a 1D-CNN. Our method,
based on the of T. Seel et al. [36] approach, has the advantage
of estimating joint angles without depending on the position
and orientation of the IMUs. This means that variations in
sensor placement do not affect the error in gait activity classi-
fication. Furthermore, the calibration method of this algorithm
is simple, and it does not require accurate movements, as it
only requires walking and performing random leg movements
for a short period of time.

We can extract features describing the gait using the angles
of the lower limb joints to distinguish between activities.
However, we decided to use a CNN model since Deep
Learning methods can extract features autonomously from the
input data [18], also known as feature maps. The 1D-CNN
proposed shows promising results, with 99.65% accuracy for
intra-participants, and 99.56% accuracy for inter-participants
(Fig. 4). In addition, the results collected in Table I show

that our model outperforms other state-of-the-art architectures
with the inter-participant data. However, it must be noted
that the accuracy and the CE are in a similar range for all
the trained models. These results suggest that introducing
the lower limb joint trajectories is a robust method for gait
ADL recognition, outperforming other approaches proposed
previously (section II). Furthermore, the computational time
results with our model are around 1 ms for each inference on a
laptop, suggesting that our method can be employed to perform
HAR in real time. Despite our CNN model achieved high
accuracy with both intra-participants and inter-participants, in
the confusion matrices can be observed that ground-level and
walking on a ramp are sometimes classified wrong. The t-
SNE and Grad-CAM methods could be the basis to clarify
this behavior.

In Fig. 5, we have represented the projection of the 64-
dimensional feature maps extracted with the proposed CNN
model with data from four users: two intra-participants and
two inter-participants. The resulting graph shows diverse
groups of points (clusters), where each point represents the
feature map obtained by the CNN for each step, and clusters
represent a group of similar steps. The feature maps generated
by our CNN model for climbing stairs are grouped in four
different clusters, while the rest of the clusters could be
composed of one or two ADLs. This could be explained by
the similarity in the joint trajectories during the ground-level
walking and walking on a ramp (Fig. 3). In addition, although
there are clusters formed with two ADLs, in the graph can be
observed that the ADLs are joined into four different groups.
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The number of groups coincides with the number of users
in the projection. This could mean that each participant has
a unique gait pattern, so the feature maps generated by the
CNN would not be equal for all the users. However, one
might wonder why a good classification result is achieved
when t-SNE does not show a clear separation of the extracted
features. This may be because neural networks can recognize
nonlinear boundaries so that ADL can be separated in the 64-
dimensional space.

The t-SNE embedding method can help us understand how
the features extracted by the CNN are grouped. However, it
cannot verify which parts of the joint trajectories are important
in determining the user’s gait ADL. To examine which parts of
the joint trajectories are crucial in classifying each gait ADL,
we can use the Grad-CAM method. In Figure 6, the class
activation maps for each gait ADL over the hip, knee, and
ankle flexion/extension angles are represented. For instance, in
the case of climbing stairs, the highest activation is produced
during 70%-90% of the gait cycle. When we compare the
hip, knee, and ankle trajectories during those periods with the
rest of the gait ADLs, there is a notable difference. However,
the t-SNE graph and confusion matrices show that wrong
classifications occur more often during ground-level walking,
ascending a ramp, and descending a ramp. Specifically, certain
steps descending a ramp are misclassified as ground-level
walking or ascending a ramp.

The Grad-CAM method can be a powerful tool to under-
stand why our CNN model makes incorrect predictions. To
this end, we can use joint trajectories and activation maps for
two incorrect classifications, as shown in Figure 7. The left
graph represents a step performed while descending a ramp but
classified as ground-level walking. The class activation map
shows high activation between 40% to 50%. This activation
occurs around the peak of the ankle angle, which suggests
that the gait pattern is more similar to flat walking. This is
because, at this instant, the ankle angle is greater than the
hip angle, which does not occur when walking on a descent
ramp. In the case of the step classified as ascending a ramp, a
high activation can be observed during the loading and stance
phase, which is from 10% to 50%. This activation corresponds
to the activation map of the ascending ramp steps and could be
due to the similarity of the knee trajectory during this section
of the gait cycle.

The feasibility of reducing the number of inputs to the 1D
CNN was also examined. The results collected in Table II
and Table III show that high accuracy can also be achieved
by reducing the number of inputs. It should be noted that by
introducing a single input of the 1D CNN, the model achieves
an accuracy of 97.82% (intra-participants) and 98.28% (inter-
participants) when using the hip angle, and an accuracy of
93. 21% (intra-participants) and 85.77% (inter-participants),
and an accuracy of 99.91% (intra-participants) and 97.55%
(inter-participants) for the ankle angle trajectory. Although
the accuracy is reduced compared to the introduction of
hip, knee, and ankle flexion/extension, these results suggest
the feasibility of adapting the model to different situations.
Thus, the 1D-CNN classifier could be adapted to analyze the
biomechanics of a single lower limb joint, as well as to detect

gait activities for different types of lower limb exoskeletons.
Although the results obtained by adapting the model suggest

that our method can be used with exoskeletons, it must be
noted that we intend to further develop and test the proposed
method. Furthermore, we intend to integrate this HAR system
to adapt the assistance of active lower limb exoskeletons and
to provide adequate assistance on different types of surfaces.

VI. CONCLUSIONS

This work presents a deep learning model to perform HAR
during gait. The classifier is based on a 1D-CNN and uses the
flexion/extension angles of the hip, knee, and ankle measured
with IMUs. It is worth noting that the method used in this
study to measure the lower limb angles does not depend on
the position or location of the sensors, making the method
very reliable.

The CNN classifier proposed achieves high accuracy with
intra-participants (99.65%) and inter-participants (99.56%), so
it can be assumed that the proposed model presents a high
generalization. The t-SNE and Grad-CAM algorithms were
used to understand this behavior, and it can be concluded that
this is due to anomalous steps or a high similarity of joint
trajectories between activities.

Furthermore, we have trained the 1D-CNN varying the num-
ber of inputs. The results suggest that the 1D-CNN architecture
proposed could be adapted to analyze the biomechanics of a
single lower limb joint, as well as to detect gait activities for
different types of lower limb exoskeletons.
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