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Maŕıa Dolores Esteban Lefler

Miguel Hernández University of Elche

– 2024 –





Recommended Citation

Bugallo, M. Model-based Contributions to Small Area Estimation, Doctor of Philosophy Thesis.

Center of Operations Research, Miguel Hernández University of Elche, Spain, 2024.





This doctoral thesis has been financially supported by

– Grant PROMETEO-2021-063 from the Generalitat Valenciana, Spain.

– Study grant from the Manuel Ventura Figueroa Foundation, Spain.





The Doctoral Thesis entitled “Model-based Contributions to Small Area Estimation”, car-
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two researchers who deserve all my sympathy.

Words cannot express my gratitude for having been accepted at the Department of Eco-
nomics and Management of the University of Pisa. I cherish all the good times I had during
my two stays in Pisa, the hospitality of Nicola Salvati and his enthusiasm for research, shared
with Francesco Schirripa, whom I also thank for his warmth and helpfulness. To them and to
all the Italian people I met outside academia, I hope that our paths will cross again.

Finally, but no less importantly, I cannot forget to thank my family, my friends, my
flatmate Sof́ıa and my partner Eduardo, for all their love, understanding and unconditional
support during these intense years.

xv





Table of Contents

Abstract xxi

List of Abbreviations xxiii

Preface xxv

1 Introduction 1

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Computing resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Sources of information and databases . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Area-level zero-inflated mixed models 13

2.1 Brief introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Area-level zero-inflated Poisson mixed model . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Small area prediction of totals and proportions . . . . . . . . . . . . . . . . . . . 16

2.2.2 Bootstrap inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Description of the 2016 SHBS data . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Simulations based on the 2016 SHBS data . . . . . . . . . . . . . . . . . . . . . . 21

2.2.5 Application to the 2016 SHBS data . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.6 R codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Area-level zero-inflated Negative Binomial mixed model . . . . . . . . . . . . . . . . . . 31

2.3.1 Small area prediction of expected counts . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Bootstrap inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Description of the 2002-2015 GFFS monthly data . . . . . . . . . . . . . . . . . . 34

2.3.4 Application to the 2002-2015 GFFS monthly data . . . . . . . . . . . . . . . . . 36

2.3.5 R codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Area-level zero-inflated Gamma mixed model . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Small area prediction of expected averages . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Bootstrap inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xvii



xviii TABLE OF CONTENTS

2.4.3 Description of the 2007-2015 GFFS weekly data . . . . . . . . . . . . . . . . . . 45

2.4.4 Application to the 2007-2015 GFFS weekly data . . . . . . . . . . . . . . . . . . 47

2.4.5 R codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Three-fold Fay-Herriot model and segregation indexes 55

3.1 Dissimilarity indexes and 2020.4-2021.4 SLFS data . . . . . . . . . . . . . . . . . . . . . 56

3.2 Three-fold Fay-Herriot statistical methodology . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Small area prediction of Duncan Segregation Indexes . . . . . . . . . . . . . . . . 61

3.2.2 Bootstrap inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Simulations based on the 2020.4-2021.4 SLFS data . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Application to the 2020.4-2021.4 SLFS data . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Model fitting and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Prediction, error measures and maps . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 R codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Multinomial mixed model and labour indicators 75

4.1 Labour indicators and 2021.1 SLFS data . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Unit-level multinomial logit mixed model . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 H-cubature algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.2 Laplace algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Small area prediction of labour indicators . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Bootstrap inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Model-based simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.3 Simulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Application to the 2021.1 SLFS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.1 Model fitting and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.2 Prediction, error measures and maps . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 R codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 M-quantile regression 101

5.1 M-quantile functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Two-fold M-quantile linear regression for SAE . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Two-fold M-quantile approach for inter-area variability . . . . . . . . . . . . . . . 104

5.2.2 Robust predictors for two-fold M-quantile models . . . . . . . . . . . . . . . . . . 105

5.3 Three-fold M-quantile linear regression for SAE . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Three-fold M-quantile approach for inter-area variability . . . . . . . . . . . . . . 107



TABLE OF CONTENTS xix

5.3.2 Robust predictors for three-fold M-quantile models . . . . . . . . . . . . . . . . . 108

5.3.3 Residual analysis and inter-period weights . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Time-Weighted M-quantile statistical methodology . . . . . . . . . . . . . . . . . . . . . 110

5.4.1 Robust predictors for Time-Weighted M-quantile models . . . . . . . . . . . . . . 112

5.4.2 Mean squared error estimation for temporal M-quantile predictors . . . . . . . . 113

5.4.3 Mean squared error estimation for bias-corrected temporal M-quantile predictors 117

5.4.4 Selection of the robustness parameter . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Model-based simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Description of the 2013-2022 SLCS data . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Application to the 2013-2022 SLCS data . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.7.1 Model fitting and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.7.2 Prediction, error measures and maps . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7.3 Detection of outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusions 135

6.1 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Conclusions in Spanish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Maximum likelihood Laplace algorithm 141

B K-means algorithm 145

C Iterative Re-weighted Least Squares algorithm 147

D Proof of Theorems 1 and 2 in Section 5.4 149

D.1 First-order approximation of the mean squared error . . . . . . . . . . . . . . . . . . . . 149

D.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.1.2 Part I: Dealing with the differences Y
btmq

dt ´ Y dt . . . . . . . . . . . . . . . . . 153

D.1.3 Part II: Dealing with the differences rY
btmq

dt ´ Y
btmq

dt . . . . . . . . . . . . . . . 155

D.1.4 Part III: Dealing with the differences pY
btmq

dt ´
rY

btmq

dt . . . . . . . . . . . . . . . 158

D.1.5 Final expression of the mean squared error . . . . . . . . . . . . . . . . . . . . . 161

D.1.6 Estimation of the final expression of the mean squared error . . . . . . . . . . . . 162

D.2 Selection of area-time specific robustness parameters . . . . . . . . . . . . . . . . . . . . 164

Bibliograf́ıa 167





Abstract

English abstract

National statistical offices and private institutions are increasingly interested in having
information on specific subgroups of the population. The main motivation is to address
decision-making more effectively. Survey data are widely used for this purpose and no tech-
nical problem arises as long as the sample sizes are large enough to yield direct estimates
of acceptable reliability. Otherwise, Small Area Estimation is an effective solution. This
thesis contributes to this field using both area-level and unit-level models. First, new zero-
inflated mixed models are proposed. Subsequently, the Fay-Herriot model is generalised and
the unit-level multinomial logit mixed model is investigated. We predict segregation indexes
and unemployment rates, respectively. Finally, the M-quantile regression is generalised to
temporal data and the optimal selection of robustness parameters is addressed. In general,
fitting algorithms are proposed and model-based predictors and mean squared error estimates
are derived. Simulation studies and applications to real data are carried out to analyse the
properties and applicability of the new statistical methods.

Keywords: Small Area Estimation; official statistics; indirect estimation; zero-inflated model;
Fay-Herriot model; unit-level model; M-quantile model.

Resumen en castellano

Los institutos nacionales de estad́ıstica y las instituciones privadas están cada vez más
interesadas en disponer de información sobre subgrupos espećıficos de la población. La prin-
cipal motivación es abordar la toma de decisiones eficientemente. Las encuestas se utilizan
ampliamente con este fin, sin ningún problema técnico si el tamaño muestral es adecuado para
producir estimaciones directas veraces. En caso contrario, la estimación en áreas pequeñas
es una solución eficaz. Esta tesis contribuye a este campo utilizando modelos tanto a nivel
de área como de unidad. En primer lugar, se proponen modelos mixtos inflados en el cero.
Además, se generaliza el modelo Fay-Herriot y se estudia el modelo mixto loǵıstico multi-
nomial a nivel de unidad para predecir indicadores no lineales, como ı́ndices de segregación
y tasas de paro, respectivamente. Finalmente, la regresión M-cuantil se generaliza a datos
temporales y se aborda la selección óptima de los parámetros de robustez. En general, se
proponen algoritmos de ajuste y se derivan predictores y estimaciones del error cuadrático
medio. También se llevan a cabo estudios de simulación y aplicaciones a datos reales para
analizar las propiedades y la aplicabilidad de los nuevos métodos estad́ısticos.

Palabras clave: Estimación en áreas pequeñas; estad́ıstica pública; estimación indirecta; mod-
elo inflado en el cero; modelo Fay-Herriot; modelo de unidad; modelo M-cuantil.
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Preface

Modern societies are changing faster and faster and the scientific community must re-
spond appropriately to these new dynamics. As of today, it is safe to say that there are two
international objectives whose interests overlap.

On the one hand, there is a growing and widespread governmental concern about issues of
discrimination, equity and disparity, as well as environmental challenges. It stands to reason
that socio-economic indicators, including unemployment rates and household distribution
statistics, are no less popular as decision-making aids. Added to this, climate change and its
consequences are an increasingly worrying problem and all indications are that this trend will
continue, with potentially noticeable changes, e.g. in fire behaviour. While wealthy western
countries are better equipped to tackle the problems of global warming, specific solutions need
to be provided and implemented extensively. Additionally, developed countries are promoting
fair treatment and legal protection for women and minority groups, and governments are
looking for places where systemic discrimination occurs.

The main evidence of the current commitment to address all these issues is the 2030
Sustainable Development Agenda (United Nations, 2015), set by the United Nations General
Assembly, and its 17 Sustainable Development Goals. At its core, it commits to “no one left
behind” and called for more granular and better-quality statistical results to measure specific
indicators for different population subgroups (areas or domains). Namely, disaggregated by
geographical area (e.g. regions, provinces, municipalities, health service areas), sex, age group
or citizenship. Disaggregated statistics are also useful for allocating resources and developing
programmes that target disadvantaged territories or population subgroups. In a more and
more divided world, any project to reduce inequalities, no matter how small, is welcome. No
one could deny the existence of stereotypes and their impact on an individual’s opportunities
and experiences in education, employment and social interactions.

On the other hand, although we live in an age of information, there is still a need for cost-
effective survey design. In this context, National Statistical Offices periodically collect survey
data to facilitate targeted policy-making. In the case of survey-based estimates, the granular-
ity of the data implies that the survey design, often resource-constrained, accommodates the
level of aggregation of the population and adequately represents each population subgroup in
the sample. However, the latter is rarely the norm and direct survey estimates –based only
on the sample data in the area– for subgroups with small sample sizes lead to unacceptably
high variability. In other words, they are designed to estimate indicators of interest in large
geographical areas or broad demographic communities, but not for minority subgroups. It
is not always feasible to require a certain sample size for many small areas. Budgetary con-
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straints and a lack of planning in the initial design are the most common reasons for small or
even zero sample sizes, prompting the need for further research.

Fortunately, Small Area Estimation (SAE) methods provide more reliable granular level
estimates by “borrowing strength” from auxiliary variables, information from other subgroups
and underlying dependency structures. As a result, indiscriminate increases in survey sample
sizes are avoided. This will allow better use of existing data to, among other advantages,
identify smaller geographical areas, where development needs are greatest, and improve re-
source allocation. The term “small area” is commonly used to refer to a geographical area
or a subgroup of the population defined according to some combination of socio-demographic
characteristics but where, in any case, direct estimation is not accurate enough due to the
smallness of the sample size. For instance, if a survey is designed to obtain precise direct
estimates at national level and results disaggregated by region, or for a particular minor-
ity group, are of interest, these unplanned estimation domains are called small areas. It is
therefore desirable, but also necessary, to use more sophisticated prediction tools.

Research in this field can be of great help to policy makers in deciding where to imple-
ment effective policies based on factual information. In addition, new approaches to raising
awareness of extreme fire events need to be further explored. This thesis contributes to SAE
and to the aforementioned concerns from different perspectives, but always guided by the
current demands of our societies and the scientific interests of the national statistical offices.
All new methods will be extensively studied by simulations, and illustrated by real problem
applications.



Chapter 1

Introduction

National statistical offices design surveys to provide a cost-effective way of collecting data
and to obtain accurate estimates at a given level of aggregation. However, disaggregated
statistics facilitate more effective targeting of decision-making, but obviously require more
information to adequately represent each population subgroup in the sample (Rao, 2003).
The importance of rich and granular data should therefore not be undervalue (see Rao and
Molina (2015), Chapter 1.2). If the aim is to ensure valid inference on specific subgroups
of the population, where the portion of available data is large enough, we can accurately
estimate domain characteristics using direct estimators, i.e. relying only on data from sample
units in the domain of interest. The most commonly used direct estimators are the Horvitz
and Thompson (1952) and the Hájek (1971) estimators. Although it is difficult to establish
general conditions under which one of them is better than the other, Sarndal et al. (1992)
present some evidence in favour of the Hájek estimator. This has motivated our choice of the
Hájek estimator, which is why it will be referred to hereafter as either the Hájek estimator or
the direct estimator.

Unfortunately, unplanned domains can be of any size, making estimation more difficult.
In small areas, indirect estimation techniques based on statistical modelling must be used.
SAE addresses this challenge by relying on auxiliary variables, data from other domains and
underlying dependency structures. A common feature of model-based predictors is that they
do not aim to reproduce the trend of direct estimators, but to smooth them and provide
more accurate results. Inference based on information from other domains and auxiliary
variables is widely used in the literature, as it is expected to be more efficient (Singh et al.,
1994). Nonetheless, it is important to bear in mind that they might add a certain degree
of subjectivity to the results. It is therefore of great importance for a good mathematical
modelling that the selection of the auxiliary information is done carefully (Humi, 2017). In
most cases, data to improve direct estimates are selected from the available sources, such as
previous or auxiliary surveys and official census records.

1
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1.1 Literature review

The following is an overview of the state of the art. SAE uses linear mixed models (LMM)
and generalized linear mixed models (GLMM), which can be fitted to either unit-level or
area-level data, and then derives predictors from them. This is the usual way to incorporate
additional information from other domains, auxiliary variables and hierarchical, spatial or
temporal dependency structures (Singh et al., 1994). The use of valid statistical models
provide small area predictions with greater accuracy, but bias can result from an incorrect
model. As a matter of fact, statistical modelling is richer when random effects are also
introduced to account for more complex correlation patterns (Jiang and Lahiri, 2006). An
excellent review provided by Morales et al. (2021) covers a wide range of statistical models
for SAE based on the traditional approach governed by the Gaussian law of errors. Rao and
Molina (2015) and Pratesi (2016) are also comprehensive and up-to-date accounts.

Depending on the type of data available, SAE models fall into two broad categories:
area-level models, which relate design-based direct estimates to area-specific covariates, and
unit-level models, which use individual survey responses as the target variables rather than
direct estimates. The former are needed when unit-level census data are not available.

Area-level models have the advantage of being able to easily incorporate auxiliary variables
from statistical sources other than the sample. Typically, these models include area-specific
random effects to account for the between-area variability that is not explained by the covari-
ates. Among the precursors of area-level SAE models, Fay and Herriot (1979) (FH) suggest
estimates based on the best prediction method (Henderson, 1975), i.e., empirical best linear
unbiased predictors (EBLUP) of linear domain indicators and empirical best predictors (EBP)
of non-linear domain indicators. A basic example is the estimation of domain totals, means
and proportions using EBLUPs. It stands to reason, however, that it is crucial to decide
whether it is worth using a mixed effects model rather than a simpler fixed effects model.
This led Marhuenda et al. (2016) to come up with tests for the variance parameter in the
FH model. Also recently, Reluga et al. (2021) propose simultaneous inference methods for
unit-level binomial (BI), area-level Poisson (PO)-Gamma (GA) and area-level PO Log-Normal
(LogN) mixed models, and Reluga et al. (2023) for mixed parameters assuming a LMM.

An alternative approach to incorporating spatial information into a small area regression
model, and which does not necessarily include random effects, is to assume that the model
parameters themselves vary spatially across the region of interest. Geographically Weighted
Regression (Brundson et al., 1996) models this spatial variation by using local rather than
global parameters. Maiti et al. (2016) have proposed a functional mixed-effects model for
SAE. Indeed, they fit a linear mixed-effects model with varying coefficients, where the varying
coefficients are semi-parametrically modelled by B-splines, to area-level data.

Regarding generalizations of the FH model, some temporal extensions have been given
by Pfeffermann and Burck (1990), Rao and Yu (1994), Ghosh et al. (1996), Datta et al.
(2002) and Singh et al. (2005). For estimating proportions, Esteban et al. (2012), Marhuenda
et al. (2013, 2014) and Morales et al. (2015) have proposed predictors based on variants of
the FH model. Chapter 19 of Morales et al. (2021) describes the bivariate FH model. The
extension to multivariate FH models, with unstructured random effect covariance matrix,
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increases the number of variance component parameters. Indeed, multivariate FH models
have been studied by Huang and Bell (2004), González-Manteiga et al. (2008), Porter et al.
(2015) and Benavent and Morales (2021), to cite just but a few. Benavent and Morales
(2016) introduce multivariate FH models with covariance patterns between the components
of the vector of random effects, but they only considered the estimation of univariate indexes.
Arima et al. (2017) and Burgard et al. (2021) study multivariate FH models with error-
measured covariates. Krause et al. (2022b) propose penalized multivariate FH models and
present an application to alcohol consumption data. Esteban et al. (2020) have adapted a
trivariate FH model for the estimation of small area compositions. Cabello et al. (2024)
applies a multivariate FH model to log-ratio transformations for the small area prediction
of divergence indexes. On the other hand, some extensions of the FH model that ensure
estimates in the range r0, 1s have been proposed in the literature. For example, LMMs with
appropriate transformations have been proposed by González-Manteiga et al. (2002) and Beta
regression models by Janicki (2020).

As for the nesting level, the two-fold FH (FH2) model has been introduced by Rao and
Yu (1994) and studied by Esteban et al. (2012), Marhuenda et al. (2013) and Morales et al.
(2015), among others. The model is adapted to area-level data indexed by areas and subareas.
The three-fold FH (FH3) model (Marcis et al., 2023) can further describe data structured in
areas, subareas and time periods or subsubareas. This is the case of the employment data
used to estimate sex segregation by province, occupational sector and time period. Under the
FH3 model, Krenzke et al. (2020) have estimated adult literacy of US counties and Cai and
Rao (2022) have studied some variable selection methods.

Based on area-level multivariate LMMs, Erciulescu and Fuller (2013) derive small area pre-
dictors for the mean of a BI random variable. Chambers et al. (2016) develop semiparametric
SAE for binary outcomes with application to UK unemployment data. Under area-level PO,
BI, Negative Binomial (NB) and multinomial mixed models, count and proportion predic-
tors have been introduced by Boubeta et al. (2016a, 2017, 2023), Burgard et al. (2021, 2022),
Krause et al. (2022a,b) and Dı́z-Rosales et al. (2023), among others. As for the computational
limitations of the PO-GLMMs, but with a unit-level approach, Berg (2022) has shown that
the conjugate form of the GA-PO model allows for computationally light estimation and pre-
diction procedures. Faltys et al. (2022) introduce a general area-level model-based approach
based on GLMMs. Overall, most of the contributions in the above non-exhaustive collection
of relevant papers have in common that they propose area-level SAE methods for predicting
domain proportions, totals and counts. However, none of the papers cited above deal with
data with excess zeros. This is a partial step that we address in this thesis.

One possible solution is to fit a FH model after a transformation and then apply the
methodology of Berg and Fuller (2012) to obtain a non-zero variance estimate when the
observed value is zero. Another idea is to consider models in which the probability of the target
variable is modified from that which would correspond to a given probability distribution.
Zero-inflated models play an important role because of their flexibility.

As a precursor, Hall (2000) studies zero-inflated BI and PO regression with random effects:
a case study. The focus is on modelling, not on deriving predictors with desired theoretical
properties or estimating the mean squared error (MSE). Pfeffermann et al. (2008) consider
situations where the target response value is either zero or an observation from a continuous
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distribution. A typical example analyzed in the paper is the assessment of literacy proficiency,
where the possible outcome is either zero, indicating illiteracy, or a positive score measuring
the level of literacy. They apply a unit-level mixture between zero and a multi-level LMM.
Chandra and Chambers (2011) address the modelling of skewed data in the presence of zeros
in small areas. Chandra and Sud (2012) propose a unit-level mixture between zero and a LMM
on the log-scale. The aim is to estimate the domain mean of a continuous variable y when the
census y-vector contains a substantial proportion of zeros. However, the EBP methodology
is not applied. Anggreyani et al. (2015) address the estimation of infant mortality in small
areas using a zero-inflated area-level PO mixed-effects model, but they do not propose EBPs
either. Krieg et al. (2016) and Santi et al. (2019) have conducted simulation experiments
for unit-level mixtures between zero and a nested error regression (NER) model under a
Bayesian approach. Hartono et al. (2017) deal with area-level zero-inflated BI models, with
an application to unemployment data in Indonesia. Last but not least, Datta and Mandal
(2015) and Sugasawa et al. (2017) propose uncertain random effects, which are expressed as
mixtures of a normal distribution and a one-point-at-zero distribution.

Although the scope of this thesis is mainly in the field of SAE, many methods are po-
tentially applicable to environmental studies and, in particular, to the modelling of forest
fire data. Without being exhaustive, some recent contributions related to our research are
listed below. To provide predictions of fire counts by forest area, Boubeta et al. (2019, 2016a)
and Ŕıos-Pena et al. (2017) have proposed PO mixed models and binary structured additive
regression models, respectively. In a related vein, Rodŕıgues et al. (2014) and Ŕıos-Pena et al.
(2015) have applied logistic regression models to address the presence or absence of forest
fires. In this context, it is common to deal with target variables that contain more zeros than
would be expected if the data-generating process came purely from a standard probability dis-
tribution (Feng and Dean, 2012; Feng et al., 2020). In fact, the zeros are sometimes not really
zeros at all, but very small values that were not observed. Some engineers and statisticians
have therefore modelled this peculiarity of the data.

For count data in medical and environmental studies, but without the inclusion of random
effects, recent research on zero-inflated models is quite extensive. Namely, fixed effect zero-
inflated regression models describe the effects of air pollutants on hospital admissions (Cengiz
and Terzim, 2012), analyse the occurrence of fires, which are likely to be scattered and often
have an excess of zero counts, or investigate the occurrence and burned area of forest fires
using a zero-one-inflated structured additive beta regression model. Specifically, Ŕıos-Pena
et al. (2018) and Viedma et al. (2018) for the forest fires in Spain and Tan et al. (2021) for
the Indonesian scenario. Eklund et al. (2022) have used the same technique to investigate the
effect of Covid-19 on the increase in arson activity in Madagascar’s protected areas. Finally,
it has been found that spatial correlation models and Pattern Recognition techniques are
used to model burned areas (Moanga et al., 2020; Pereira et al., 2015). Hand in hand with
this, as it also concerns the prediction of burned area, Boubeta et al. (2016b) propose two
semi-parametric time series models. Part of this research has been motivated by applications
to forest fire data, proposing new predictors and risk measures derived from zero-inflated NB
and GA mixed models.

On a slightly different topic, most models use cross-sectional data, but a large number of
surveys are repeated over time. LMMs and GLMMs using temporal information are therefore
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quite useful, as the recent past is often very informative in explaining current patterns. This
issue has been explored extensively in longitudinal studies using biological or medical data.
However, the use of temporal models in SAE is more recent, as data are often available
for many small areas simultaneously, but possibly only for a few time periods. The main
idea is to jointly use data from all domains in a given time period together with relevant
historical information. The task could be to introduce vector autoregressive (AR) multivariate
distributions for the domain-time random effects. You and Rao (2000) and Datta et al.
(2002) used the Rao-Yu model (Rao and Yu, 1994), but replaced the AR(1) process with
a random walk. Datta et al. (1999) envisaged a similar model but added extra terms to
the linking models to reflect seasonal variation in their case study. Pfeffermann and Burck
(1990) considered a model with AR(1) time-varying random slopes. A second challenge is
to incorporate multivariate spatial correlation structures. For example, random effects may
follow a multivariate spatial or conditional autoregressive model. Benavent and Morales (2021)
have taken the first steps in this direction. A minor criticism is that these models rely on
strong distributional assumptions and it is also necessary to formally specify the dependence
structure of the random effects. They are inflexible, fully parametric models.

The scientific literature also offers many contributions to SAE based on unit-level models.
Chapter 7 of Rao and Molina (2015) reviews some commonly used unit-level small area mod-
els, although the most popular techniques are based on generalisations of the NER model. As
a matter of fact, unit-level models are very promising and have a high predictive capability if
auxiliary information is available (Parker et al., 2023a,b). In practice, however, it is common
not to have any supporting census files, having to limit ourselves to ANOVA-type models.
It is expected that the methodology loses strength but, as we will discuss below, they are
certainly no less important. In addition, the lack of administrative records or supporting files
is in itself a major challenge. It must be said that national statistical offices have censuses
and/or administrative files, so they are able to use auxiliary variables measured without error.
However, the access is often restricted, so the scientific community is forced to fit measure-
ment error models (Battese et al., 1988) or to use estimates of the auxiliary information as
population values. As for the former, measurement error models are rather sophisticated be-
cause they are not LMMs and their study should be investigated elsewhere. Hariyanto et al.
(2018) provides a comprehensive and up-to-date account of these models in the context of
SAE. On the other hand, Marchetti et al. (2018) mention the possibility of using area-level
auxiliary variables (i.e. contextual variables) to fit unit-level models.

Among the most outstanding unit-level contributions, Rao and Molina (2010) have pro-
posed EBPs based on NER models. Herrador et al. (2011), Marhuenda et al. (2017), Guadar-
rama et al. (2021) and Esteban et al. (2022a,b) have modified NER models and extended
the EBP approach to two-fold, temporal and multivariate regression. Hobza and Morales
(2016) and Hobza et al. (2018) apply unit-level logit mixed models to estimate small area
poverty rates; and Morales and Santamaŕıa (2019) propose unit-level temporal LMMs with
an AR(1) type time correlation structure for the random effects. Ranalli et al. (2018) study
benchmarking procedures for unit-level logit models. In addition, Marino et al. (2019) pro-
pose a semiparametric approach for unit-level models and Lombard́ıa et al. (2021) define a
new unit-level nested structure adapted to model the gender pay gap by economic activity.

In short, the EBP methodology can be applied to predict domain indicators defined by
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non-linear transformations of means, totals and proportions. They represent alternative meth-
ods to the area-level model-based approach. As a foretaste, EBPs based on unit-level models
are also part of one of the research lines of this thesis. They will be used to predict, among
other labour indicators, unemployment rates. At this regard, the estimation of rates involves
the estimation of numerators and denominators, so it is advisable to use predictors based
on multivariate models. In what follows, we will cite some contributions about multivari-
ate model-based prediction of labour indicators in small areas. Datta et al. (1999) provide
hierarchical Bayes estimates of unemployment rates for USA states. Molina et al. (2007)
consider area-level multinomial logit mixed models with a common random effect for q “ 3
categories, and propose model-based predictors of labour proportions and rates. Saei and
Taylor (2012) treat the same problem by using a multinomial model for q “ 3 categories and
two dependent random effects. López-Vizcáıno et al. (2013) consider multinomial models for
q ě 3 categories and q ´ 1 independent random effects. López-Vizcáıno et al. (2015) propose
multinomial mixed models for temporal data. They derive algorithms to compute penalized
quasi-likelihood (PQL) estimators, opening the way for research on maximum likelihood (ML)
and PQL estimators of small area ratio indicators. These authors only present plug-in pre-
dictions. Esteban et al. (2020) introduce an area-level compositional mixed model and give
predictors of domain proportions of people in the four categories of the variable labour status:
under 16 years of age, employed, unemployed and inactive.

Nevertheless, the modelling of unit-level multi-category outcomes, and the subsequent
construction of small area predictors, has been scarcely studied. Dawber et al. (2022) derive
robust predictors based on multinomial M-quantile (MQ) and expectile regression models.
Esteban et al. (2023) deal with unit-level compositional data and derive predictors of small
area average compositions under multivariate NER models. The development of EBPs or
plug-in predictors based on unit-level multinomial logit mixed models is still to be done.

Moving on to a different approach, the demand for results unaffected by outliers in small
areas has encouraged the development of robust inference techniques for SAE. It stands to
reason that outlier observations can significantly affect the estimation of population parame-
ters, even more so in the context of SAE. Sinha and Rao (2009) have addressed this issue from
the perspective of LMMs and Ghosh et al. (2009) studied robust procedures using Bayesian
methods. A recent book by Yi and Nordhausen (2023) sheds new light on robust statistics
and, among other aspects, pays special attention to bias calibration for robust estimation in
small areas (Ranjbar et al. (2023), pp. 365–394).

On the other hand, both quantiles (Koenker and Bassett, 1978) and expectiles (Newey and
Powell, 1987) have been extended to conditional distributions to provide quantile and expectile
generalizations of the conventional regression models based on the Gaussian law of errors. As
an alternative to the frequentist approach, the pioneering paper by Chambers and Tzavidis
(2006) is a tipping point for research in new SAE unit-level models and predictors. The idea
proposed by these authors is to non-parametrically capture the variability of the population,
beyond what is explained by the covariates, using the so-called MQ coefficients (Breckling and
Chambers, 1988). Generally speaking, the new approach avoids distributional assumptions as
well as problems associated with the specification of the random effects, allowing differences
between areas to be characterised by the variation in area-specific MQ coefficients. For a more
in-depth understanding of this methodology, see a review by Dawber and Chambers (2019).
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Notable contributions following this idea include Tzavidis et al. (2008), Salvati et al.
(2012), Tzavidis et al. (2014), Marchetti et al. (2018) and Schirripa Spagnolo et al. (2021).
The methodology has been applied to predict, among other indicators, poverty rates and
labour indicators. MQ models have also been used to estimate acidity in northeastern US
lakes (Pratesi et al., 2008) and in an analysis of temporal gene expression data (Vinciotti
and Keming, 2009). In addition, Chambers et al. (2012, 2016) propose MQ regression models
adapted to binary data. On top of that, Tzavidis et al. (2014), Chambers et al. (2014b) and
Chandra et al. (2017) derive robust small area predictors for counts. Tzavidis et al. (2010)
studied robust prediction of small area means and distributions based on MQ models. One
of the most prevalent and shared features of all previous studies is robustness.

Apart from applied contributions, theoretical developments of MQ models have been made
by Bianchi and Salvati (2015), Alfo et al. (2017) and Bianchi et al. (2018).

1.2 Objectives and scope

The scientific proposal of this thesis is motivated by the need to map, with a sufficient
level of detail, complex socio-economic indicators derived from variables measured in public
databases. This will allow a better understanding of our societies and, ultimately, the identi-
fication of the most vulnerable areas. The scope of application is limited to SAE techniques,
but the methodological developments are applicable to other fields of statistics and involve
several branches. Namely, survey sampling, finite population inference, asymptotic theory and
simulation and bootstrap methods. The mathematical research develops statistical models,
derives fitting algorithms for estimating model parameters, studies asymptotic and inferential
related issues, builds model-based predictors of indicators at population and small area-level
and calculates error measures. It also implements the software for the production, mapping
and interpretation of complex socio-economic variables.

A variety of methods are available for SAE, but there are still many avenues to be inves-
tigated. The first line of research pursues the development of model-based statistical tech-
niques for the small area prediction of indicators dependent on zero-inflated variables based
on probabilistic frameworks. This is motivated by the fact that it is common in scientific and
technical studies to find count data with many zeros (Chapter 9 of Zuur et al. (2009); Michael
and Thomas (2016)). It should be stressed that zero-inflated outcomes are quite common
in forestry databases, where excess zeros indicate undetectable events. The second line of
research is guided by the seminal paper by Fay and Herriot (1979), generalising it into three
levels of nesting and addressing the prediction of Duncan Segregation Indexes (DSI) (Duncan
and Duncan, 1955). The third line of research proposes unit-level multinomial logit mixed
models to analyse employment data in small areas. The task is to derive fitting algorithms and
develop EBPs of multivariate linear and non-linear indicators, such as unemployment rates.
To estimate MSEs in all the above situations, we have introduced parametric bootstrap al-
gorithms by following Hall and Maiti (2006) and González-Manteiga et al. (2008, 2010). In a
guide for practitioners and researchers, Chernick (2007) provide a detailed, multidisciplinary
coverage of bootstrap methods.

The thesis concludes with the study of new models and predictors based on the MQ re-
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gression approach to SAE, developing for the first time in the literature temporal MQ linear
models. As usual, our proposal can be considered as a robust-projective approach based on
plug-in robust prediction, i.e. the optimal, but outlier-sensitive, parameter estimates are re-
placed by outlier-robust versions. Unfortunately, although these methods usually lead to a
low prediction variance, they may also introduce an unacceptable prediction bias (Chambers,
1986; Chambers et al., 2014a; Dongmo-Jiongo et al., 2013). To address this issue, we derive
robust bias-corrected predictors, although the introduction of a bias correction term may in-
crease the variability of the corrected versions. In general, the robust bias-corrected predictor
is obtained by incorporating a second influence function that depends on a tuning constant,
usually called the robustness parameter. The selection of this parameter is crucial as it allows
a trade-off between bias and variance. Against this background, the optimal selection of the
robustness parameter for bias correction in MQ models is a theoretical contribution of this
thesis, exploring its applicability in outlier detection.

1.3 Materials and methods

1.3.1 Computing resources

The experimental part of the project was developed in the Cluster of Scientific Computing
of the Miguel Hernández University of Elche (http://ccc.umh.es; accessed on: November 4,
2024), which provides a high level of availability and performance, both in terms of intensive
computation and storage. In addition, hardware and software resources of the University
Research Institute “Center of Operations Research” of the Miguel Hernández University of
Elche have been used. The computer code has been implemented in the programming language
R (R Development Core Team, 2024) and may be provided on request. Unfortunately, the
methods are not yet available in a R package to the user. In any case, the scientific publications
that are part of this doctoral thesis contain links to online and open access repositories, where
the corresponding code and databases are stored.

1.3.2 Sources of information and databases

In addition to the theoretical foundations that must underpin any statistical method, its
success in simulation experiments and its application to real data must also prove its worth.
Although the applicability of the proposed methods is of a general nature, the case studies
focus on the Spanish context. In particular, our contributions have been applied to forest
fire data and to Household Budget Surveys (HBS), Living Conditions Surveys (LCS) and
Labour Force Surveys (LFS). Supporting information from official population censuses has
also been used. Regarding the former, data were obtained from (i) the General Forest Fire
Statistics (GFFS), the national agency of the European Forest Fire Information System, which
provides services related to forest fires in Spain (https://effis.jrc.ec.europa.eu/; accessed on:
November 4, 2024). GFFS data after 2015 are being cleaned and are not available for research
purposes; (ii) AEMET: the Spanish Meteorological Agency (https://www.aemet.es; accessed
on: November 4, 2024), state agency of the Government of Spain.

http://ccc.umh.es
https://effis.jrc.ec.europa.eu/
https://www.aemet.es
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For the analysis of the forest fire data, it is useful to describe the study region. Spain is
a country located in the Iberian Peninsula, in southwestern Europe, bordering North Africa
and partly surrounded by the Mediterranean Sea. It has two archipelagos, the Canary Islands
and the Balearic Islands, and two autonomous cities, Ceuta and Melilla (Figure 1.1). In view
of their respective insular and urban conditions, it is customary to treat the archipelagos
separately and to omit both cities from forestry studies. In territorial terms, the province is
an administrative demarcation with competences in environment and forest fire management.
According to the Spanish Ministry for Ecological Transition and the Demographic Challenge,
the provinces can be grouped based on their fire regime into three main regions: Northwest
Spain, Mediterranean Coast and Peninsular Center (MITECO, 2023).
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Figure 1.1: Political map of Spain at provin-
cial level (NUTS3). Ceuta and Melilla are
not included. Territorial divisions are taken
from MITECO (2023). The “No data” cate-
gory refers to provinces that do not provide (or
do not have reliable) data on the distance be-
tween fires and human buildings for our forest
fire studies (see Section 2.4.3). The northern
ones belong to Northwest Spain and Madrid
to the Peninsular Center.

As for data recording, the reporting of a forest fire is located in the province where it
originated and, therefore, the ignition point is crucial for the distribution of events between
neighbouring provinces. For some years now, the term “megafire‘” has been widely used to
refer to forest fires that are extremely intense and difficult to control. In Spain, a megafire
is considered to be any forest fire that reaches 500 hectares (Ha) of burned forest area in the
Iberian Peninsula and 250 Ha in the archipelagos (MITECO, 2023). Reasons for the selection
of the area-level auxiliary variables in our forest fire research are presented below. In general,
weather conditions and, to some extent, the socio-economic situation of a country and its
investment in firefighting resources are crucial factors in identifying patterns in the study
of forest fires. In addition, the presence of human settlements leads to biases in firefighting
guidelines, as fires that are more dangerous to urban areas are given priority over those in
more remote regions. The simultaneity of events is also crucial for the allocation of firefighting
equipment. The latter is discussed in more detail in Section 2.3.3 and Section 2.4.3.

The following is a description of the sources of information for the survey microdata. The
HBS, LCS and LFSs are periodically statistics harmonized at the European level, carried
out by the European National Statistical Offices under the supervision of EUROSTAT, the
statistical office of the European Union. According to the Nomenclature of Territorial Units
for Statistics (NUTS, 2016), the HBS and LCS are designed to obtain reliable direct estimates
at NUTS2 level and the LFS is designed to obtain precise direct estimates at NUTS3 level.
The accuracy of the results at a lower level of aggregation than that established in the sample



10 CHAPTER 1. INTRODUCTION

design is not guaranteed in either survey.

We have worked with microdata from the Spanish HBS (SHBS), the Spanish LFS (SLFS)
and the Spanish LCS (SLCS), being in charge of the sampling, storage and validation of this
information the Spanish National Statistical Office (INE, Instituto Nacional de Estad́ıstica).
The anonymized data files can be downloaded free of charge from the INE website (https:
//www.ine.es/; accessed on: November 4, 2024). While the INE publishes the SLFS quarterly,
the periodicity of the SHBS and SLCS is annual. Official census data are updated every
10 years, with the latest available in 2021. As for the territorial geocoding in Spain, the
NUTS2 geocode corresponds to the autonomous community level, with 19 subdivisions, and
the NUTS3 geocode to the province level, with 52 subdivisions. At this regard, the province
is the territorial division we use in this research. It should be stressed that if open access data
had been available at a lower level of aggregation, we would have chosen it.

The following is a brief description of the surveys. Firstly, the SHBS is published an-
nually to study the nature and destination of household expenditure on goods and services.
It includes nearly 24,000 dwellings in its sample, selected by means of a two-stage stratified
random sampling carried out independently in each NUTS2 region. Secondly, the SLCS is an
annual household survey that focuses on providing comparable and harmonised information
on living standards, living conditions and social cohesion. A sample of approximately 13,000
dwellings is taken for the SLCS, selecting 2,000 census sections throughout the national ter-
ritory. Finally, the SLFS is published quarterly, includes nearly 65,000 dwellings, equivalent
to approximately 160,000 people, and collects data on the labour force and its various cate-
gories, as well as on the population outside the labour market. Its sampling is two-stage with
stratification in the census sections, which are geographical areas with around 500 dwellings
or approximately 3,000 people. Census sections are grouped into strata according to the size
of the municipality to which they belong. Secondary sampling units are dwellings, and all
individuals aged 16 or over in the selected dwelling are interviewed.

1.4 Structure

The thesis is divided into six chapters and four appendices, with mathematical results
and additional information and methods, key to achieving a self-contained memory and a
reproducible research. Chapter 1 is the introduction, i.e. a comprehensive review of the state
of the art, the main objectives and scope, the materials and methods and the structure of the
document. Chapter 2 provides a fairly detailed description of the new area-level zero-inflated
models and small area predictors, including zero-inflated PO, NB and GA mixed models.
Chapter 3 fits a FH3 model to predict DSIs of sex occupational segregation by province and
time period. Chapter 4 presents a self-contained account of a unit-level multinomial logit
mixed model for the small area prediction of employed, unemployed and inactive proportions
and unemployment rates. Chapter 5 departs from the rest in terms of mathematical modelling,
but not in its purpose, as it focuses on robust small area prediction using MQ regression.
Contributions to this field include the extension of the MQ linear regression to the modelling
of time-dependent data, through a Time-Weighted MQ (TWMQ) model. Also, the pioneering
proposal of data-driven criteria for the selection of nuisance parameters is included. Chapter

https://www.ine.es/
https://www.ine.es/
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6 summarises the main findings and the lines of future research.

The thesis has four appendices. Appendix A develops the ML-Laplace algorithm to com-
pute the ML estimators of the model parameters and the modal predictors of the random
effects for the area-level zero-inflated mixed models in Chapter 2. Appendix B describes the
K-means algorithm used in Section 2.4. Appendix C provides an adaptation of the Iterative
Re-weighted Least Squares (IRLS) algorithm used to estimate the model parameters of the
TWMQ linear models formulated in Chapter 5. Appendix D provides technical specifications
and step-by-step proofs of Theorems 1 and 2 in Section 5.4.





Chapter 2

Area-level zero-inflated mixed models

This chapter contains the contributions based on area-level zero-inflated mixed models. It
is divided in four self-contained sections. Section 2.1 provides a brief introduction to area-level
mixed models. Thereafter, each section corresponds to a paper, to which reference is made in
the text itself, and which contains supplementary material available online on the website of
the journal in which it has been published. Appendix A goes hand in hand with this chapter.
It develops the ML-Laplace algorithm to compute the ML estimators of the model parameters
and the modal predictors of the random effects for the area-level zero-inflated mixed models
presented here. Appendix B describes the K-means algorithm used in Section 2.4.

2.1 Brief introduction

First of all, we should have a look at the motivation for the problem we want to investi-
gate. In this respect, the topic of modelling zero-inflated outcomes has received less attention
than deserves in the SAE literature. Nevertheless, zero-inflated data are almost inevitably
complicated by some form of non-observation or inaccurate measurement. Prompted by the
need to model variables with an implausible number of zeros, but from a probabilistic frame-
work, we first propose mixtures of mixed models for the small area prediction of indicators
dependent on zero-inflated outcomes. For count variables, zero-inflated PO mixed models
(Bugallo et al., 2024b) and zero-inflated NB mixed models (Bugallo et al., 2023) are proposed
in Section 2.2 and Section 2.3, respectively. For continuous positive variables, Section 2.4
proposes zero-inflated GA mixed models (Bugallo et al., 2024c). The strategy is to tackle the
problem in a similar way to that used from standard regression problems, now extended to
a much more complex prediction situation when using mixed models. In light of what has
been said, all mathematical steps are detailed to justify the soundness of what is presented.
In addition, the new methods are illustrated with applications to socio-economic data, mod-
elling the proportion of single-person households by province, sex and age group of the main
breadwinner in Section 2.2.5; and to environmental data, modelling the number of provincial
forest fires in Section 2.3.4 and the total and the average burned area in Section 2.4.4.

Parametric resampling methods are used to compute bootstrap confidence intervals (CI)

13
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for the model parameters and to estimate the MSEs of the proposed predictors by following
Hall and Maiti (2006) and González-Manteiga et al. (2008, 2010). Predictors derived from
zero-inflated PO mixed models have also been the subject of several simulation studies in
Section 2.2.4. The formulation of the models is always motivated by the case studies, guided
by the promise of finding accurate but simple models. Even so, they are easily adaptable to
more sophisticated situations, related to more general zero inflation problems.

2.2 Area-level zero-inflated Poisson mixed model

This section describes an area-level zero-inflated PO mixed model aimed at deriving pre-
dictors of proportions and counts in small areas. Let U be a finite population of size N
which can be divided into mutually disjoint subpopulations Uijk of size Nijk, i “ 1, . . . , I,
j “ 1, . . . , J , k “ 1, . . . ,K. Let yijk be a count variable taking values in t0, 1, 2, . . . u. Let
D “ IJK be the total number of y-values. Let zijk, x1,ijk “ px1,ijk1, . . . , x1,ijkq1q and
x2,ijk “ px2,ijk1, . . . , x2,ijkq2q be latent (non observable) variables and 1 ˆ q1, q1 ě 1, and
1 ˆ q2, q2 ě 1, row vectors containing area-level auxiliary variables, respectively. The colp¨q
operator stores the data by indexing the observations according to k, then j and finally i. In
this way, we define the target and latent vectors and matrices as follows

yij “ col
1ďkďK

pyijkq, y “ col
1ďiďI

p col
1ďjďJ

pyijqq; zij “ col
1ďkďK

pzijkq, z “ col
1ďiďI

p col
1ďjďJ

pzijqq.

For the area-level auxiliary variables, we define

X1,ij “ col
1ďkďK

px1,ijkq, X1 “ col
1ďiďI

p col
1ďjďJ

pX1,ijqq;

X2,ij “ col
1ďkďK

px2,ijkq, X2 “ col
1ďiďI

p col
1ďjďJ

pX2,ijqq.

Let u1,k, u2,ijk be independent Np0, 1q random effects, uijk “ pu1,k, u2,ijkq
1, and define

u1 “ col
1ďkďK

pu1,kq „ NKp0, Iq, u2 “ col
1ďiďI

p col
1ďjďJ

p col
1ďkďK

pu2,ijkqqq „ NDp0, Iq, u “ pu11,u
1
2q
1.

The bivariate vectors pyijk, zijkq follow an area-level zero-inflated PO (aZIP) mixed model if

zijk
ind
„ BEppijkq, P pyijk “ 0{zijk “ 1q “ 1, P pyijk “ t{zijk “ 0q “

e´µijkµtijk
t!

, t P t0, 1, 2, . . . u,

(2.1)

where the probabilities pijk P p0, 1q, µijk “ mijkλijk, mijk P N is known, and λijk ą 0.
In addition, pijk and λijk depend on the area-level auxiliary variables x1,ijk and x2,ijk, on
the model parameters β1 “ pβ11, . . . , β1q1q

1 and β2 “ pβ21, . . . , β2q2q
1, and on the standard

deviations φ1 ą 0 and φ2 ą 0 by means of the link functions

logitppijkq “ log
´ pijk

1´ pijk

¯

“ x1,ijkβ1 ` φ1u1,k, logpλijkq “ x2,ijkβ2 ` φ2u2,ijk.

Inverting the above functions, it follows that

pijk “
exptx1,ijkβ1 ` φ1u1,ku

1` exptx1,ijkβ1 ` φ1u1,ku
, λijk “ exptx2,ijkβ2 ` φ2u2,ijku. (2.2)
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The proposed model is a mixture of two mixed submodels. The BE submodel drives the
mixture and incorporates the information derived from the excess of zeros. The PO submodel
deals with the modelling of the count variables. It is assumed that the vectors pyijk, zijkq

1

are independent conditioned to the random effects. So as to recap, the vectors pyijk, zijkq
1

follow an aZIP13 mixed model (Bugallo et al., 2024b), where the terminology “13” is added
to specify that the BE model has random effects in only one component, k, and the PO model
in the three, i.e. at each crossing ijk.

Let θ “ pβ11,β
1
2, φ1, φ2q

1 be the vector of model parameters and define ξijk “ Ipyijk “ 0q.
The indicator function is denoted by Ip¨q. From the properties of the PO distribution,

P pyijk|u1,k, u2,ijk;θq “ ξijk

„

pijk ` p1´ pijkqe
´µijk



` p1´ ξijkq

„

p1´ pijkq
e´µijkµ

yijk
ijk

yijk!



“ p1` exptx1,ijkβ1 ` φ1u1,kuq
´1
!

ξijk

„

exptx1,ijkβ1 ` φ1u1,ku

` exp
!

´mijk exptx2,ijkβ2 ` φ2u2,ijku

)



` p1´ ξijkq exp
!

yijkpx2,ijkβ2 ` φ2u2,ijkq

´mijk exptx2,ijkβ2 ` φ2u2,ijku ` yijk logmijk ´ log yijk!
)

+

.

The calculation of a factorial number is denoted by !. By the independence assumptions,

P py|u;θq “
I
ź

i“1

J
ź

j“1

K
ź

k“1

P pyijk|u1,k, u2,ijk;θq.

Therefore, the likelihood function of the aZIP13 mixed model is

P py;θq “

ż

RKp1`IJq
P py|u;θqfupuq du (2.3)

“

K
ź

k“1

ż

R1`IJ

´

I
ź

i“1

J
ź

j“1

P pyijk|u1,k, u2,ijk;θqfNp0,1qpu2,ijkq du2,ijk

¯

fNp0,1qpu1,kq du1,k,

and the respective log-likelihood function is

`pθ;yq “
K
ÿ

k“1

log

ż

R1`IJ

´

I
ź

i“1

J
ź

j“1

P pyijk|u1,k, u2,ijk;θqfNp0,1qpu2,ijkq du2,ijk

¯

fNp0,1qpu1,kq du1,k.

Given y, the ML parameter estimator of θ is

pθ “ argmaxθPΘ `pθ;yq, Θ “ Rq1`q2 ˆ R2
`, R` “ p0,8q.

To maximize `pθ;yq in θ, two functions can be used sequentially. The first one would compute
the integral on R1`IJ and the second one would perform the maximization on θ. Since this
approach is not efficient, Appendix A describes the ML-Laplace algorithm as an alternative
and preferable maximization method. As for the inference procedures of the ML estimators,
we rely on both asymptotic (Appendix A) and resampling methods (Section 2.2.2).
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2.2.1 Small area prediction of totals and proportions

This section is devoted to the development of new small area predictors based on the
aZIP13 mixed model (2.1)-(2.2). Let i “ 1, . . . , I, j “ 1, . . . , J, k “ 1, . . . ,K. The inference
focuses on the expected values

µyijk
∆
“ Eryijk|uijks “ mijkp1´ pijkqλijk, (2.4)

where pijk
∆
“ pijkpu1,kq and λijk

∆
“ λijkpu2,ijkq are defined in (2.2).

Firstly, by plugging ML estimators and modal predictors, the population-based quantities
given by (2.4) can be predicted using the plug-in (IN) predictor, defined as

pµinyijk “ mijk

`

1` exptx1,ijk
pβ1 `

pφ1pu1,ku
˘´1

exptx2,ijk
pβ2 `

pφ2pu2,ijku.

Of the various predictors that can be mentioned, this is the simplest to understand and
the easiest to calculate. Indeed, its ease of interpretation and calculation, as well as its
computational performance and execution times, are unsurpassed (Bugallo et al., 2024b).
However, there are other potentially competitive alternatives. Let us define

yk “ col
1ďiďI

p col
1ďjďJ

pyijkqq, u2,k “ col
1ďiďI

p col
1ďjďJ

pu2,ijkqq, vk “ pu1,k,u
1
2,kq

1.

The best predictor (BP) of (2.4) is pµbpyijkpθq “ mijkErp1 ´ pijkqλijk|yks. The conditional
expectation Eijk “ Erp1´ pijkqλijk|yks is

Eijk “

ş

R1`IJ

`

1` exptx1,ijkβ1 ` φ1u1,ku
˘´1

exptx2,ijkβ2 ` φ2u2,ijkuP pyk|vkqfpvkq dvk
ş

R1`IJ P pyk|vkqfpvkq dvk
.

We denote the numerator and denominator of Eijk by Aijk “ Aijkpyk,θq and Bk “ Bkpyk,θq,
respectively. Then, we define ξrtk “ It0upyrtkq, r “ 1, . . . , I, t “ 1, . . . , J , k “ 1, . . . ,K.

It holds that

Aijk “

ż

R1`IJ

exptx2,ijkβ2 ` φ2u2,ijku

1` exptx1,ijkβ1 ` φ1u1,ku

I
ź

r“1

J
ź

t“1

ωrtk fNp0,1qpu1,kqfNp0,1qpu2,rtkq du1,k du2,rtk,

Bk “

ż

R1`IJ

I
ź

r“1

J
ź

t“1

ωrtk fNp0,1qpu1,kqfNp0,1qpu2,rtkq du1,k du2,rtk,

ωrtk “ p1` exptx1,rtkβ1 ` φ1u1,kuq
´1

#

ξrtk

„

exptx1,rtkβ1 ` φ1u1,ku

` exp
!

´mrtk exptx2,rtkβ2 ` φ2u2,rtku

)



` p1´ ξrtkq exp
!

yrtkpx2,rtkβ2 ` φ2u2,rtkq

´ mrtk exptx2,rtk
pβ2 `

pφ2u2,rtku ` yrtk logmrtk ´

yrtk
ÿ

a“1

log a
)

+

.

The EBP is pµebpyijk “ pµbpyijkp
pθq and can be calculated by a Monte Carlo method using

antithetic variables to reduce the variability (Hobza and Morales, 2016) as follows:
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1. Calculate the ML parameter estimator pθ “ ppβ
1

1,
pβ
1

2,
xφ1,xφ2q

1.

2. For s “ 1, . . . , S, generate u
psq
1,k, u

psq
2,rtk independent and identically distributed (i.i.d.)

according to the Np0, 1q distribution and set u
pS`sq
1,k “ ´u

psq
1,k, u

pS`sq
2,rtk “ ´u

psq
2,rtk.

3. Calculate pµebpyijk “ mijk
pAijk{ pBk, where

pAijk “
1

2S

2S
ÿ

s“1

exptx2,ijk
pβ2 `

pφ2u
psq
2,ijku

1` exptx1,ijk
pβ1 `

pφ1u
psq
1,ku

I
ź

r“1

J
ź

t“1

pωrtk, pBk “
1

2S

2S
ÿ

s“1

I
ź

r“1

J
ź

t“1

pωrtk, (2.5)

pωrtk “
1

1` exptx1,rtk
pβ1 `

pφ1u
psq
1,ku

#

ξrtk

„

exptx1,rtk
pβ1 `

pφ1u
psq
1,ku

` exp
!

´mrtk exptx2,rtk
pβ2 `

pφ2u
psq
2,rtku

)



` p1´ ξrtkq exp
!

yrtkpx2,rtk
pβ2 `

pφ2u
psq
2,rtkq

´ mrtk exptx2,rtk
pβ2 `

pφ2u
psq
2,rtku ` yrtk logmrtk ´

yrtk
ÿ

a“1

log a
)

+

, ξrtk “ It0upyrtkq.

It has been noticed that the terms in (2.5) contain products with IJ terms. At the expense
of the theoretical properties, simpler alternatives are finally proposed in search of a better
computational performance. The simplified predictor (SP) is defined as

pµspyijkpθq “ mijkErp1´ pijkqλijk|yijks.

The conditional expectation Espijk “ Erp1´ pijkqλijk|yijks is

Espijk “

ş

R2

`

1` exptx1,ijkβ1 ` φ1u1,ku
˘´1

exptx2,ijkβ2 ` φ2u2,ijkuP pyijk|uijkqfpuijkq duijk
ş

R2 P pyijk|uijkqfpuijkq duijk
.

We denote the numerator and denominator of Espijk by Aspijk “ Aspijkpyijk,θq and Bsp
ijk “

Bsp
ijkpyijk,θq, respectively. It holds that

Aspijk “

ż

R2

exptx2,ijkβ2 ` φ2u2,ijku

p1` exptx1,ijkβ1 ` φ1u1,kuq
ωijk fNp0,1qpu1,kqfNp0,1qpu2,rtkq du1,k du2,rtk,

and

Bsp
ijk “

ż

R2

ωijk fNp0,1qpu1,kqfNp0,1qpu2,rtkq du1,k du2,rtk.

The empirical simplified predictor (ESP) is pµespyijk “ pµspyijkp
pθq and can be approximated

by numerical approximation of integrals. However, we apply an antithetical Monte Carlo
algorithm:

1. Calculate the ML parameter estimator pθ “ ppβ
1

1,
pβ
1

2,
xφ1,xφ2q

1.

2. For s “ 1, . . . , S, generate u
psq
ij “

`

u
psq
1,k, u

psq
2,ijk

˘1
i.i.d. N2p0, I2q and set u

pS`sq
ij “ ´u

psq
ij .
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3. Calculate pµespyijk “ mijk
pAspijk{

pBsp
ijk, where

pAspijk “
1

2S

2S
ÿ

s“1

exptx2,ijk
pβ2 `

pφ2u
psq
2,ijku

p1` exptx1,ijk
pβ1 `

pφ1u
psq
1,kuq

pωijk, pBsp
ijk “

1

2S

2S
ÿ

s“1

pωijk.

Because of the numerical precision of the programming language R, the calculation of
exponential functions to predict µyijk can report very small negative values (Boubeta et al.,
2016a), being ωijk almost zero. By definition, the ESP avoids these major drawbacks to a
greater extent, but the EBP does not, so the latter is omitted from the simulation experiments
in Section 2.2.4 and in the application to real data in Section 2.2.5.

2.2.2 Bootstrap inference

This section presents bootstrap-based CIs for the model parameters and estimators of the
MSEs of the predictors. Let θ` be a component of θ and α P p0, 1q. The following procedure
calculates a p1´ αq% percentile bootstrap CI for θ` and a parametric bootstrap estimator of
MSEppµyijkq, where pµyijk can be the EBP, ESP or plug-in predictors defined in Section 2.2.1.

1. Fit the model and calculate the ML parameter estimator pθ “ ppβ
1

1,
pβ
1

2,
pφ1, pφ2q

1.

2. Let i “ 1, . . . , I, j “ 1, . . . , J , k “ 1, . . . ,K.

Repeat B times (b “ 1, . . . , B):

(a) Generate u
˚pbq
1,k „ Np0, 1q, u

˚pbq
2,ijk „ Np0, 1q and calculate

p
˚pbq
ijk “ exp

 

x1,ijk
pβ1 `

pφ1u
˚pbq
1,k

(`

1` exp
 

x1,ijk
pβ1 `

pφ1u
˚pbq
1,k

(˘´1
,

λ
˚pbq
ijk “ exp

 

x2,ijk
pβ2 `

pφ2u
˚pbq
2,ijk

(

.

(b) Generate z
˚pbq
ijk „ BEpp

˚pbq
ijk q. If z

˚pbq
ijk “ 1, y

˚pbq
ijk “ 0. Otherwise, y

˚pbq
ijk „ POpmijkλ

˚pbq
ijk q.

(c) Calculate µ
˚pbq
yijk “ mijkp1´ p

˚pbq
ijk qλ

˚pbq
ijk .

(d) On the basis of the bootstrap sample py
˚pbq
ijk ,mijk,xijkq, calculate the ML parameter

estimator pθ
˚pbq
` , the bootstrap version of the vector of model parameters, pθ

˚pbq
, and

the predictor pµ
˚pbq
yijk.

3. Sort the values pθ
˚pbq
` , b “ 1, . . . , B, from smallest to largest. They are pθ˚`p1q ď . . . ď pθ˚`pBq.

A p1´ αq% percentile bootstrap CI for θ` is
`

pθ˚`ptpα{2qBuq
, pθ˚`ptp1´α{2qBuq

˘

, where t¨u is the
closest integer operator.

4. To estimate error measures, define

mse˚ppµyijkq “
1

B

B
ÿ

b“1

`

pµ
˚pbq
yijk ´ µ

˚pbq
yijk

˘2
.
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2.2.3 Description of the 2016 SHBS data

The application to real data aims to estimate the proportion and total count of single-
person households by province, sex (sex1: men, sex2: women) and age group (age1: less than
45 years; age2: between 46 and 55 years; age3: between 56 and 64 years; age4: 65 years or
older) of the main breadwinner, which is particularly noteworthy (Cho and Shim, 2019). Data
are from the 2016 Spanish Household Budget Survey (SHBS), so U is the finite population of
Spanish households in 2016. As a result, the D “ 416 domains are defined at NUTS 3 level
by Spanish province (I “ 52) crossed by sex (J “ 2) and age group (K “ 4). The quartiles
of the domain sample sizes reveal that this is a SAE problem such that q0 “ 1, q0.25 “ 17,
q0.5 “ 34, q0.75 “ 72 and q1 “ 367.

At unit-level, the variable of interest is dichotomic, i.e. yijkl “ 1 if the household uijkl P

Uijk is single-person and yijkl “ 0, otherwise. Let s “
ŤI
i“1

ŤJ
j“1

ŤK
k“1 sijk be the 2016 SHBS

sample extracted from U . Let n and nijk be the sample sizes of s and sijk, respectively. For
ease of exposition, we write l “ 1, . . . , nijk for the households in sijk and l “ nijk`1, . . . , Nijk

for the households in Uijk ´ sijk. Let wijkl be the household sampling weight of uijkl P Uijk.
The domain parameters of interest are

Yijk “

Nijk
ÿ

l“1

yijkl, Y ijk “
Yijk
Nijk

. (2.6)

The Hájek estimator of Yijk, Nijk and Y ijk are, respectively,

pY dir
ijk “

nijk
ÿ

l“1

wijkl yijkl, pNdir
ijk “

nijk
ÿ

l“1

wijkl,
pY
dir

ijk “

pY dir
ijk

pNdir
ijk

.

Let pµyijk be a model-based predictor of yijk. Population sizes and auxiliary information are
taken from the four 2016 SLFSs, as the sample size of each quarterly SLFS is more than
three times the size of an annual SHBS. The effect of the variances of the covariate means
and population sizes on the properties of the prediction procedure is considered negligible. In
addition, the elevation factors are the inverse of the inclusion probabilities, which are deter-
ministic, after a calibration process whose randomness is minimal. Therefore, the population
sizes estimated as sums of elevation factors have negligible variability.

As for yijk and mijk, two options can be considered:

Option 1. Take yijk “ tpY dir
ijk u and mijk “ tNijku. The predictors of Y ijk and Yijk are

pY ijk “
pµyijk
mijk

, pYijk “ pµyijk.

Option 1 reconciles the area-level model-based approach and the design-based approach to
inference in finite populations. This is an important argument in favour of Option 1. However,
the fitting algorithm or the calculation of predictors may become unstable when the values of
the dependent variable are large, requiring more refined programming.
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Option 2. Take yijk “
nijk
ř

l“1

yijkl and mijk “

nijk
ř

l“1

yijkl. The predictors of Y ijk and Yijk are

pY ijk “
pµyijk
mijk

, pYijk “ pNdir
ijk

pY ijk.

Boubeta et al. (2016a) applies Option 2 for area-level PO mixed models because it is com-
putationally more robust, but it does not include the sampling weights. Since the omission
of sampling weights is an important issue with Option 2 –as it can lead to biased predictors–
our choice of Option 1 is properly justified, even if it makes programming more difficult.

As for the domain-level auxiliary variables, they are obtained by calculating the Hájek
estimates of the proportion of people in the following factor categories: Citizenship: Span-
ish (cit1) and foreign (cit2); Education: primary education or less (edu1), basic secondary
education (edu2), advanced secondary education (edu3) and higher education, such as univer-
sity (edu4); Labour situation: employed (lab1), unemployed (lab2) and inactive (lab3); Civil
status: unmarried (civ1), married (civ2), widowed (civ3) and separated or divorced (civ4);
Dwelling mobility: more than a year in the same dwelling (dwe1) and the opposite (dwe2).
The aforementioned auxiliary variables are proportions, bounded in [0,1], i.e. they are con-
tinuous variables, not binary indicators. Since the sum of the proportions in the categories
of each factor is one, and based on their socio-economic meaning, we omit one category from
each factor. Namely, we have deleted cit2, edu2, lab3, civ1, dwe2.

So far we have discussed the need of auxiliary information, but we have not addressed the
problem of excess zeros, or even shown that they exist. Null counts are caused by the difficulty
of detecting single-person households due to the low number of respondents in some domains.
Table 2.1 displays the distribution of the 28 zeros by sex and age group in the sample. On
closer inspection, they are mainly concentrated in certain crosses (age1:sex2; age2:sex2) and
the number is too high for what would be expected from a PO distribution.

age group

sex age1 age2 age3 age4 Total

sex1 3 2 2 3 10

sex2 8 8 2 0 18

Total 11 10 4 3 28

Table 2.1: Unobserved domain-level single-person households in the 2016 SHBS by sex and
age group. In other words, total number of zeros per domain by sex and age group.

To test the dependence between the number of zeros/non-zeros and provinces, sex and age
groups, we used the Pearson’s Chi-Squared test in 2ˆ I, 2ˆ J and 2ˆK contingency tables,
where p-values are calculated by Monte Carlo. As a result, p-values close to 0.06 are obtained
for province and age group as inputs, rising to 0.18 for sex. Based on Table 2.1 and the
results of the above tests, we have decided to consider only age-group randomness to model
zero-inflated probabilities. Furthermore, applying the same tests to assess the dependence
between the count of single-person households (less/greater than 1, 2 or 3) and provinces, sex
and age groups, only the randomness of the age group is significant. Guided by the promise
of finding a good, simple model, the aZIP13 mixed model was proposed in Section 2.2.
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2.2.4 Simulations based on the 2016 SHBS data

Based on the 2016 SHBS data described in Section 2.2.3, two simulation experiments
were run. According to Option 1, the dependent variable yijk is the direct estimator of the
total count of single-person households in province i, with the main breadwinner of sex j
and age group k. It has been assumed that yijk follows the aZIP13 mixed model selected in
the statistical analysis of Section 2.2.5. As q1 “ 1, the BE submodel contains one auxiliary
variable: x1,1 “ intercept, and the regression parameter is β11 “ ´2.696. The PO submodel
contains q2 “ 4 auxiliary variables: x2,1 “ intercept, x2,2 “ edu3, x2,3 “ civ2 and x2,4 “ civ3,
with regression parameters β21 “ ´1.857, β22 “ 2.138, β23 “ ´0.649 and β24 “ 3.881.
The standard deviations are φ1 “ 0.398 and φ2 “ 0.5171. Setting the random effects u1,k,
k “ 1, . . . ,K, to their theoretical expected value zero, the basic zero-inflated probability is

p0 “ p0pβ11q “ exptβ11u
`

1` exptβ11u
˘´1

“ 0.063.

Simulation 1

Simulation 1 aims to evaluate the fitting algorithm, i.e. the ML-Laplace algorithm de-
scribed in Appendix A, and investigate the performance of the new small area predictors
defined in Section 2.2.1. It also examines what happens when the excess zeros are ignored in
the prediction. Apart from those derived from the aZIP13 mixed model, i.e., from the SP,
ESP and plug-in (IN) predictors, the plug-in predictor with fixed zero-inflated probability
(IN1) and the one based on the erroneous non-inflated PO mixed model (IN0) are considered.
The model parameters of the IN1 predictor are β11, β21, β22, β23, β24, φ2 and those of the IN0
predictor are β21, β22, β23, β24, φ2. As for the remaining models, the EBLUP of the total count
of single-person households based on the FH model (Fay and Herriot, 1979) is included. In
addition, a zero-inflated NB mixed model (aZINB13) is fitted to identify the advantages of
the proposed procedure for excess zeros and the corresponding IN predictor is derived.

Simulation 1 has the following steps:

1. Let i “ 1, . . . , I, j “ 1, . . . , J , k “ 1, . . . ,K. Repeat R “ 103 times (r “ 1, . . . , R):

1.1. Generate u
prq
1,k, u

prq
2,ijk i.i.d. Np0, 1q.

1.2. Calculate p
prq
k “ exptβ11 ` φ1u

prq
1,ku

´

1` exptβ11 ` φ1u
prq
1,ku

¯´1
,

λ
prq
ijk “ exp

" 4
ÿ

`“1

x2,ijk`β2` ` φ2u
prq
2,ijk

*

, µ
prq
yijk “ mijk

´

1´ p
prq
k

¯

λ
prq
ijk.

1.3. Generate z
prq
ijk „ BE

´

pp
prq
k

¯

, y
prq
ijk “ 0 if z

prq
ijk “ 1; y

prq
ijk „ PO

´

mijkλ
prq
ijk

¯

if z
prq
ijk “ 0.

1.4 Calculate the ML estimators pτ prq P tpβ
prq
11 ,

pβ
prq
21 ,

pβ
prq
22 ,

pβ
prq
23 ,

pβ
prq
24 ,

pφ
prq
1 , pφ

prq
2 u and the

model-based predictors pµ
prq
yijk P tpµ

spprq
yijk , pµ

espprq
yijk , pµ

inprq
yijk , pµ

in1prq
yijk , pµ

in0prq
yijk , pµ

FHprq
yijk u.
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2. For each estimator τ and model-based predictor pµyijk, calculate

BIASppτq “ 1
R

řR
r“1ppτ

prq ´ τq, RMSEppτq “

ˆ

1

R

R
ÿ

r“1

ppτ prq ´ τq2
˙1{2

,

BIASijk “
1
R

řR
r“1ppµ

prq
yijk ´ µ

prq
yijkq, RMSEijk “

ˆ

1

R

R
ÿ

r“1

ppµ
prq
yijk ´ µ

prq
yijkq

2

˙1{2

,

and

ABIAS “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

|BIASijk|, RMSE “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

RMSEijk.

3. Calculate the corresponding relative performance measures in %. That is, calculate the
relative bias (RBIASijk), the relative root-MSE (RRMSEijk), the average absolute
relative bias (ARBIAS) and the average relative root-MSE (RRMSE):

RBIASppτq “ 100
BIASppτq

|τ |
, RRMSEppτq “ 100

RMSEppτq

|τ |
,

RBIASijk “ 100
BIASijk
|µyijk|

, RRMSEijk “ 100
RMSEijk
|µyijk|

, µyijk “
1

R

R
ÿ

r“1

µ
prq
yijk,

ARBIAS “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

|RBIASijk|, RRMSE “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

RRMSEijk.

For the SHB2016 scenario, Table 2.2 (top) shows the results of Simulation 1 for the model
parameters. To investigate the effect of the basic zero-inflated probabilities, we also consider
the cases p0 “ 0.200 (Table 2.2, center) and p0 “ 0.500 (Table 2.2, bottom).

For both BE and PO submodels, the relative biases are small but the RRMSEs are not,
being the variance the main component of the MSE. This may be due to the fact that the ratio
between the number of domains and the number of estimated model parameters, 416{7 « 60,
is not large enough to activate the asymptotic properties of the ML estimators. For the
basic zero-inflated probabilities p0 “ 0.2 and p0 “ 0.5, the ML estimators of β11 and φ1 have
slightly lower values of RBIAS and RRMSE than the corresponding ones under the SHBS2016
scenario, with p0 “ 0.063. This suggests that the BE submodel estimators perform slightly
better as the basic zero-inflated probability increases. However, the changes are small. There
are no notable differences in the remaining coefficients.

Table 2.3 includes the relative performance measures of Simulation 1 for the predictors SP,
ESP, IN (of the aZIP13 and aZINB13 mixed models), IN1, IN0 and FH. To better understand
the necessity of running this experiment and interpret its results, we emphasize that the
predictors SP and ESP are not calculated, but rather are approximated, since the integrals
that appear in their formulas cannot be calculated analytically. The approximations are
obtained by the antithetical Monte Carlo method, with S “ 2000, as described in Section
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p “ 0.063 BE submodel PO submodel

β11 φ1 β21 β22 β23 β24 φ2

Estimate -2.696 0.398 -1.857 2.138 -0.649 3.881 0.517

RBIAS -0.183 -42.196 0.881 -2.303 -1.289 -0.486 -0.510

RRMSE 11.329 78.693 190.866 121.998 326.656 96.880 3.708

p “ 0.2 BE submodel PO submodel

β11 φ1 β21 β22 β23 β24 φ2

Estimate -2.696 0.398 -1.857 2.138 -0.649 3.881 0.517

RBIAS 0.791 -34.480 1.325 -3.198 -2.113 -0.801 -0.659

RRMSE 16.398 60.556 190.449 122.655 345.917 96.770 4.007

p “ 0.5 BE submodel PO submodel

β11 φ1 β21 β22 β23 β24 φ2

Estimate -2.696 0.398 -1.857 2.138 -0.649 3.881 0.517

RBIAS NaN -29.43 1.576 -3.116 -3.407 -0.731 3 -1.110

RRMSE NaN 55.028 191.085 123.530 315.871 96.855 4.994

Table 2.2: Relative performance measures of model parameter estimators for p “ 0.063 (top),
p “ 0.2 (center) and p “ 0.5 (bottom) for the BE (left) and PO (right) submodels.

2.2.1. Since we approximate integrals in R2, the theoretical properties are largely missing
but increasing S even more in a simulation experiment with R “ 1000 iterations entails
unaffordable computation times in Simulation 1 and even more so in Simulation 2. Therefore,
the results are subject to the approximation method and the number of iterations.

aZIP13 FH aZINB13

p0 Measure SP ESP IN IN1 IN0 EBLUP IN

0.063 ARBIAS 0.358 0.361 0.790 9.179 3.068 0.780 3.968

RRMSE 14.429 14.476 14.662 60.759 60.789 30.380 28.143

0.200 ARBIAS 0.727 0.739 2.444 9.286 13.460 1.405 4.492

RRMSE 26.270 26.155 25.894 60.714 63.759 57.578 34.117

0.500 ARBIAS 2.965 2.130 5.955 10.716 77.754 2.925 5.566

RRMSE 43.697 43.075 40.926 62.293 104.149 111.921 44.572

Table 2.3: Relative performance measures (in %) for the predictors with S “ 2000.

The discussion of Table 2.3 starts with the analysis of the predictors proposed for the
aZIP13 mixed model. Under all scenarios, the SP has the lowest bias, increasing slightly in its
theoretical versions. When substituting true model parameters by ML parameter estimators,
the performance of the ESP is almost as good as that of the SP. In nominal terms, the
variance has a notable contribution to the RRMSE for all predictors. Since the ESP and the
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IN predictor have similar RRMSEs, it has been decided to use the latter in Simulation 2 and
in the case study, as it is computationally preferable. As expected, the predictors IN1 and
IN0 are biased and have higher RRMSE than the IN predictor.

Under the scenarios with basic zero-inflated probabilities p0 “ 0.2 and p0 “ 0.5, the
predictors IN1 and IN0 perform poorly, with relative biases equal to 9.286 and 13.460 (p “
0.2). By increasing p0 from 0.2 to 0.5, the RRMSE of the IN1 predictor stabilizes, even
though the IN predictor is better. The latter indicates that the age-group randomness is
less relevant for such high zero-inflated probabilities. In the latter case, the IN0 predictor
performs extremely poorly. We conclude that the IN predictor obtained from the aZIP13
mixed model performs much better than the predictor based on the model with constant zero
inflation structure. The same applies to the IN0 predictor. Therefore, we do not recommend
to use predictors IN0 and IN1 when there is an excess of zeros.

As for the EBLUP-FH, its bias is small for all values of p0, with results close to the SP
and the ESP. However, this is not a zero-inflated model, which has a negative impact on the
error through a significant increase in the variance as p0 increases. Regarding the IN predictor
of the aZINB13 mixed model, the bias is greater than that of the IN predictor of the aZIP13
mixed model. Nevertheless, this is compensated to some extent by a lower variance, achieving
similar but worse results. To sum up, the main advantages of the aZIP13 mixed model over
existing models, and in particular of the IN predictor, are computational performance and
reduction in ARBIAS and RRMSE.

Simulation 2

Simulation 2 studies the behaviour of the parametric bootstrap estimator of the MSE of a
predictor pµyijk of µyijk. The latter is done by comparing mse˚ppµyijkq with the empirical MSE
of pµyijk, obtained from Simulation 1. For illustrative purposes and speed of computation, we
select pµyijk “ pµinyijk. The aim is to give some advice on which B value to choose.

Simulation 2 has the following steps:

1. Let i “ 1, . . . , I, j “ 1, . . . , J , k “ 1, . . . ,K.

Take MSEijk “ RMSE2
ijk from Simulation 1.

2. Repeat R “ 500 times (r “ 1, . . . , R):

2.1. Generate a sample py
prq
ijk, x1,ijk,x2,ijkq and calculate the ML estimation pθ

prq
.

2.2. Repeat B times pb “ 1, . . . , Bq:

2.2.1. Generate u
˚prbq
1,k , u

˚prbq
2,ijk i.i.d. Np0, 1q and calculate

p
˚prbq
k “ exptpβ11 ` pφ1u

˚prbq
1,k u

´

1` exptpβ11 ` pφ1u
˚prbq
1,k u

¯´1
,

λ
˚prbq
ijk “ exp

" 4
ÿ

`“1

x2,ijk`
pβ2` `

pφ2u
˚prbq
2,ijk

*

, µ
˚prbq
yijk “ mijk

´

1´ p
˚prbq
k

¯

λ
˚prbq
ijk .
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2.2.2 Generate z
˚prbq
ijk „ BE

´

pp
˚prbq
k

¯

, y
˚prbq
ijk “ 0 if z

˚prbq
ijk “ 1 and y

˚prbq
ijk „ PO

´

mijkλ
˚prbq
ijk

¯

if z
˚prbq
ijk “ 0. Then calculate the predictor pµ

˚prbq
yijk .

2.3 Define

mse
˚prq
ijk “

1

B

B
ÿ

b“1

´

pµ
˚prbq
yijk ´ µ

˚prbq
yijk

¯2
.

3. Calculate

Bijk “
1

R

R
ÿ

r“1

´

mse
˚prq
ijk ´MSEijk

¯

, REijk “

ˆ

1

R

R
ÿ

r“1

´

mse
p˚rq
ijk ´MSEijk

¯2
˙1{2

,

AB “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

|Bijk|, RE “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

REijk.

4. Calculate the corresponding relative performance measures in %, i.e.

RBijk “ 100
Bijk

MSEijk
, RREijk “ 100

REijk
MSEijk

,

ARB “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

RBijk, RRE “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

RREijk.

The non-relative measures depend on the large values of the output. Consequently, Figure
2.1 prints five boxplots of RBijk and RREijk, for B “ 100, 200, 400, 500, 600.
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Figure 2.1: Study of the parametric bootstrap estimator of the MSE of pµinyijk. Boxplots of
RBijk’s (left) and RREijk’s (right) for B “ 100, 200, 400, 500, 600.

As can be observed in Figure 2.1 (left), the relative biases do not decrease as the size
of B increases, showing an origin-centric behaviour. Moreover, there are few atypical values
that correspond to the most conflictive domains, i.e., those with smaller sample sizes or with
zero observed single-person households in the 2016 SHBS data. This severely distorts the
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symmetry of the ordinate axis. Figure 2.1 (right) illustrates that the RRMSEs decrease as
B increases. Table 2.4 confirms this behaviour, with an ARB stabilized around 10.500 and a
RRE decreasing as B increases, but suggesting some stabilization around B “ 600 iterations.
It is concluded that the results for the MSE estimator of the IN predictor are reasonable in
most domains. However, the low sample size of some of them and the non-observation of
single-person households add additional biases.

B 100 200 400 500 600

ARB 10.244 10.566 10.657 10.723 10.594

RRE 134.643 99.255 73.821 68.054 60.089

Table 2.4: Study of the parametric bootstrap estimator of the MSE of pµinyijk. Average relative
performance measures for B “ 100, 200, 400, 500, 600.

2.2.5 Application to the 2016 SHBS data

This study is a pioneering approach for estimating the proportion of single-person house-
holds in small areas. Even though, the latter is essential for a more accurate implementation
of social policies, as well as for clarifying certain economic aspects related to the housing sector
and the private consumption of basic resources (Cohen, 2021). Incidentally, the case study is
motivated by the need to map the distribution of single-person households, as it is well-known
that household composition reveals vital aspects of the socio-economic situation and major
changes in developed countries. Living alone has become a sign of individual autonomy and
freedom, even if it is sometimes still stereotyped (Greitemeyer, 2009). Meanwhile, loneliness
and its impact on physical and mental health are an increasingly widespread problem (Snell,
2017), accentuating the symptoms of cognitive diseases (Lee and Lee, 2021; Park et al., 2016).
Particularly in single-person households inhabited by the elderly. Among the main indicators
of loneliness, we can mention the proportion and total count of single-person households by
domains defined by territorial and socio-demographic features.

As for the issue at hand, Section 2.2.1 derives predictors of the domain parameters defined
in (2.6), based on the aZIP13 mixed model described in Section 2.2. The scenario of the
application to real data has been detailed in Section 2.2.3. Population sizes and the area-level
auxiliary variables have been obtained from the 2016 SLFS microdata. According to Option
1, the dependent variable, yijk, is the direct estimator of the total count of single-person
households in province i, with main breadwinner of sex j and age group k.

Table 2.5 shows the ML parameter estimators of the model parameters β1, φ1 (BE sub-
model) and β2, φ2 (PO submodel), the p-values to test H0 : βt` “ 0, t “ 1, 2, ` “ 1, ..., qt, and
H0 : φt “ 0, t “ 1, 2, and the normal-asymptotic and bootstrap CIs at the 95% confidence
level. For convenience, their lower (LB) and upper (UB) bounds are provided. Normal-
asymptotic CIs are discussed in Appendix A and bootstrap CIs in Section 2.2.2. The final
model incorporates only those variables that are significant at 5%.

The flexibility achieved by making the random effects of the count model domain-dependent
allows us to reduce the importance of the set of domain-level variables and incorporate only
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BE submodel PO submodel

β11 φ1 β21 β22 β23 β24 φ2

Estimate -2.696 0.398 -1.857 2.138 -0.649 3.881 0.517

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Asymp LB 95% -3.270 0.091 -2.319 1.007 -1.057 3.207 0.482

UB 95% -2.121 1.752 -1.395 3.269 -0.242 4.554 0.555

Boot LB 95% -3.317 0.0002 -2.312 1.051 -1.016 3.215 0.480

UB 95% -2.162 0.859 -1.432 3.270 -0.222 4.577 0.554

Table 2.5: Model parameters of the final aZIP13 mixed model for the BE (left) and PO (right)
submodels.

those that actually add relevant knowledge. The BE submodel contains one auxiliary vari-
able, x1,1 “ intercept, and the PO submodel four: x2,1 “ intercept, x2,2 “ edu3, x2,3 “ civ2,

x2,4 “ civ3. The basic zero-inflated probability is p0ppβ11q “ 0.063. For further confidence
in the model linked to Table 2.5 as the true generator model, a residual analysis is per-
formed. Besides, we are interested in the conciliation of the model-based approach and the
design-based approach to SAE. Let us define the raw residuals (RR) as

peijk “ yijk ´ pµinyijk, i “ 1, . . . , I, j “ 1, . . . , J, k “ 1, . . . ,K.

Under Option 1, yijk “ tpY dir
ijk u and peijk “ tpY dir

ijk u´ pµinyijk. The standardized residuals (SR) are
defined by dividing the RRs by its standard deviation, i.e.

peijkν
´1, where ν “

˜

1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

´

peijk ´ pe...

¯2
¸

1
2

, pe... “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

peijk.

Figure 2.2 plots the SRs of the aZIP13 mixed model versus domain indexes (left) and
predicted values of the proportion of single-person households in original (center) and log-
scale (right). In dotted red, the line y “ 0 is added. As general conclusions, it can be seen
that SRs have a pattern of symmetry around zero and are mainly found in r´3, 3s. The
central plot has a low percentage of domains with large predicted probabilities, which exceed
the threshold of 0.7, and correspond to domains with predominantly single-person households
inhabited by elderly women. Regarding the right plot, plotting SRs against log-predicted
probabilities allows us to detect a conical pattern in the scatterplot. That is, as the log-
predicted probabilities increases, so does the variability of the SRs. This phenomenon is in
agreement with the theoretical dispersion of the aZIP13 mixed model.

Once the model has been fitted and validated, it is time to provides Hájek estimates
and IN predictions of the proportion of single-person households by province, sex and age
group. Figure 2.3 shows line charts of these values sorted by domain index (left) and sample
size (center), as well as a comparison of both (right). Among the most noteworthy findings,
model-based predictors correct the excessively large Hájek estimates. Even more, it is inferred
that the IN predictor smoothes the results of the Hájek estimator, although it still presents
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Figure 2.2: SRs versus domain indexes (left) and predicted values of the proportion of single-
person households in original (center) and log-scale (right).

problems when dealing with extreme proportions. On the other hand, provided single-person
households are not observed, the Hájek estimator has no margin of error, although the model
never comes to such a low proportion. The same is true for values close to one. This can
be seen in Figure 2.3 (left). In addition, household composition does not affect all domains
equally: as the age group increases, the proportion of single-person households also increases.
In this context, we would like to draw the attention to the sudden and noticeable increase in
the number of single-person households inhabited by elderly women.
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Figure 2.3: IN proportions of single-person households sorted by domain (left) and sample size
(center), and Hájek estimates versus IN proportions (right). Sorting by domain corresponds
to sorting by age group, showing first the results for men and then for women.

According to Figure 2.3 (center), the IN predictor gets closer to the Hájek estimator as
the sample size increases, which is one of the most convincing aspects of the data analysis.
Eventually, Figure 2.3 (right) plots the Hájek estimates versus the IN proportions. It can be
seen that the dots are evenly distributed around y “ x. To support this statement, a local
polynomial regression of degree 3, with an appropriate bandwidth, is plotted to smoothly
represent the relationship between ordinates and abscissas. Consequently, we underline a
crucial advantage of our approach: the theoretical properties of the Hájek estimator, such
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as asymptotic design-based unbiasedness, are, to some extent, inherited by the IN predictor
based on the aZIP13 mixed model.

Table 2.7 (a) reports IN proportions of single-person households by sex and age group.
The current trend projects an increase in the proportion of single-person households, with the
number of households inhabited by elderly women skyrocketing. The latter is associated with
the ageing process, which progressively involves the emancipation of children and widowhood.
In addition, the elderly is linked to another factor that alters household composition: mor-
tality. So sex and age4 are crucial here. The increase in quality of life implies not only an
increase in life expectancy but also in the autonomy of the elderly, which results in an increase
in the number of single-person households inhabited by retired people. Most men live with
their partners until their death. In contrast, women have a longer life expectancy (implying
a greater accumulation at the top of the demographic pyramid) and the average age of their
partners is higher, so they will live alone to a greater extent. The statements are based on
information for 2021 published on the official website of the Ministry of Health of the Govern-
ment of Spain (https://www.sanidad.gob.es/estadEstudios/estadisticas/inforRecopilaciones/
ESPERANZAS DE VIDA 2021.pdf; accessed on: November 4, 2024).

sex

age group sex1 sex2 Total

age1 0.199 0.239 0.219

age2 0.160 0.184 0.174

age3 0.147 0.369 0.261

age4 0.171 0.648 0.439

Total 0.1830 0.337 0.262

(a) IN proportions aggregated by province.

sex

age group sex1 sex2 Total

age1 20.836 19.825 20.335

age2 20.379 22.094 21.245

age3 20.941 12.680 16.692

age4 20.158 18.115 19.007

Total 20.630 19.313 19.95

(b) IN RRMSEs (%) aggregated by province.

Table 2.7: Results for the predicted proportion of single-person households.

As for the error measures, we calculate the parametric bootstrap estimator of the MSE
following Section 2.2.2 with B “ 1000 resamples. To avoid scale dependencies, and as usual,
the script should be focused on RRMSEs. Table 2.7 (b) contains the bootstrap estimates of
the RRMSE (in %) for the IN predictor by sex and age group. As a general conclusion, all
values are around 20%, with a slightly lower average for women and especially for age3.

For illustrative purposes, Figure 2.4 maps the provincial distribution of single-person
households for men (left) and women (right) for the first age group of the main breadwinner.
The results are expressed as percentages.

It may be suggested that the highest proportions of single-person households are found in
central and north-western Spain, with lower proportions in the south and the Canary Islands.
Not surprisingly, the distribution between neighboring provinces, or between provinces with
similar demographic and socio-economic conditions, is generally homogeneous. This fact
justifies how model-based predictors lead to smoother results (and closer to the reality) than
direct estimators. In addition, an interesting spatial pattern emerges: an inverse relationship

https://www.sanidad.gob.es/estadEstudios/estadisticas/inforRecopilaciones/ESPERANZAS_DE_VIDA_2021.pdf
https://www.sanidad.gob.es/estadEstudios/estadisticas/inforRecopilaciones/ESPERANZAS_DE_VIDA_2021.pdf
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Young men: Age group 1 under 15
15 - 25
25 - 35
35 - 50

Young women: Age group 1 under 15
15 - 25
25 - 35
35 - 50
50 - 65

Figure 2.4: Percentages of single-person households for young men (left) and women (right).

between housing prices and the proportion of single-person households (Bugallo et al., 2024b).
Thus, lower proportions are estimated for the Catalan Coast, Madrid, Balearic Islands and
Málaga. In other words, the Spanish provinces with the highest average prices.

Figure 2.5 maps the corresponding RRMSEs of the predictions in Figure 2.4. Looking at
the percentages, the accuracy of our results is statistically reasonable, with RRMSEs below
30% in most domains, and exceeding that only in those where the predicted proportions are
rather small, which is a pretty good accuracy for a SAE problem.

RRMSE Young men: Age group 1 under 10%
10 - 15 %
15 - 20 %
20 - 30 %
30 - 40 %
over 40 %

RRMSE Young women: Age group 1 under 10%
10 - 15 %
15 - 20 %
20 - 30 %
30 - 40 %
over 40 %

Figure 2.5: RRMSE of the IN predicted proportions for young men (left) and women (right).

Additional results available online at SORT-Statistics and Operations Research Transac-
tions 1, include maps of the proportion of single-person households for all age group and
sex crossings, and RRMSE estimates. Further charts and analysis for the application to real
data are also covered, including a thorough validation of the zero-inflated structure and a

1https://www.idescat.cat/sort/sort481/48.1.4.Bugallo-etal.prov.pdf; accessed on: November 4, 2024.

https://www.idescat.cat/sort/sort481/48.1.4.Bugallo-etal.prov.pdf
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discussion of the need for its inclusion in the case study. On the whole, the evidence sug-
gests that living alone is a common housing choice in all age groups, influenced by marital
separation, the emancipation of children, cohabitation and lifestyle in general. Moreover, dif-
ferences in household composition between men and women are more pronounced among the
elderly. Declining fertility and increasing longevity will lead to an ageing population, with an
overwhelming increase in the proportion of single-person households.

2.2.6 R codes

As for the R codes, the GitHub repository https://github.com/mbugallo/aZIP13 (accessed
on: November 4, 2024) contains our dataset and computer code, as well as a detailed descrip-
tion of its contents. It includes a README file that provides basic instructions for the correct
execution of the available software.

2.3 Area-level zero-inflated Negative Binomial mixed model

This section describes an area-level zero-inflated NB mixed model aimed at deriving pre-
dictors of counts in small areas. Starting from Section 2.2 as the initial reference point,
the basic distribution is moved from the PO to the NB to accommodate the overdispersion
of the target variable. Let yijk a count variable taking values in t0, 1, 2, . . . u, i “ 1, . . . , I,
j “ 1, . . . , J , k “ 1, . . . ,K. Let D “ IJK be the total number of y-values. Let zijk,
x1,ijk “ px1,ijk1, . . . , x1,ijkq1q and x2,ijk “ px2,ijk1, . . . , x2,ijkq2q be latent (non observable)
variables and 1 ˆ q1, q1 ě 1, and 1 ˆ q2, q2 ě 1, row vectors containing area-level auxiliary
variables, respectively. Let us define the vectors and matrices

yjk “ col
1ďiďI

pyijkq, zjk “ col
1ďiďI

pzijkq, y “ col
1ďjďJ

p col
1ďkďK

pyjkqq, z “ col
1ďjďJ

p col
1ďkďK

pzjkqq,

Xa,jk “ col
1ďkďK

pxa,ijkq, Xa “ col
1ďjďJ

p col
1ďkďK

pXa,jkqq, a “ 1, 2.

Let u1,j , u1,k, u2,j , u2,k be independent random effects with standard normal distribution.
Define the vectors u1,jk “ pu1,j , u1,kq

1, u2,jk “ pu2,j , u2,kq
1,ujk “ pu

1
1,jk,u

1
2,jkq

1 and

u1 “ col
1ďjďJ

p col
1ďkďK

pu1,jkqq „ N2JKp0, Iq, u2 “ col
1ďjďJ

p col
1ďkďK

pu2,jkqq „ N2JKp0, Iq, u “ pu
1
1,u

1
2q
1.

The vectors pyijk, zijkq follow an area-level zero-inflated NB mixed model (aZINB) if

zijk
ind
„ BEppijkq, P pyijk “ 0{zijk “ 1q “ 1, yijk|zijk“0 „ NBpr, µijkq, i.e. (2.7)

P pyijk “ t{zijk “ 0q “
Γpt` rq

Γpt` 1qΓprq

ˆ

µijk
r ` µijk

˙tˆ r

r ` µijk

˙r

, t P t0, 1, 2, . . . u,

where pijk P p0, 1q, r ą 0 and µijk ą 0. In addition, pijk and µijk depend on the area-
level auxiliary variables x1,ijk and x2,ijk, on the model parameters β1 “ pβ11, . . . , β1q1q

1 and

https://github.com/mbugallo/aZIP13
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β2 “ pβ21, . . . , β2q2q
1, and on the standard deviations φ11 ą 0, φ12 ą 0, φ21 ą 0 and φ22 ą 0

by means of the link functions

logitppijkq “ log
pijk

1´ pijk
“ x1,ijkβ1 ` φ11u1,j ` φ12u1,k “

q1
ÿ

`“1

x1,ijk`β1` ` φ11u1,j ` φ12u1,k,

logpµijkq “ x2,ijkβ2 ` φ21u2,j ` φ22u2,k “

q2
ÿ

`“1

x2,ijk`β2` ` φ21u2,j ` φ22u2,k.

Conversely, we have

pijk “
exptx1,ijkβ1 ` φ11u1,j ` φ12u1,ku

1` exptx1,ijkβ1 ` φ11u1,j ` φ12u1,ku
, µijk “ exptx2,ijkβ2 ` φ21u2,j ` φ22u2,ku.

(2.8)

Finally, it is assumed that the vectors pyijk, zijkq
1 are independent conditional on u and it is

said that they follow an aZINB11 mixed model (Bugallo et al., 2023). The terminology “11”
is added to specify that both the BE and NB models have additive random effects in two
components, j and k. The proposed model is a mixture model of two mixed submodels. The
BE submodel drives the mixture and incorporates the information derived from the excess
of zeros. The NB submodel deals with the modelling of count variables. The overdispersion
parameter of the NB submodel is denoted by γ “ r´1 ą 0.

Let θ “ pβ11,β
1
2, φ11, φ12, φ21, φ22q

1 be the vector of model parameters and define ξijk “
Ipyijk “ 0q. From the properties of the NB distribution, it holds that

P pyijk|ujk;θq “ ξijk

”

pijk ` p1´ pijkq exptr log r ´ r logpr ` µiqu
ı

` p1´ ξijkq

„

p1´ pijkq exp
!

yijk logµijk ´ pyijk ` rq logpr ` µijkq`

r log r ` log
Γpyijk ` rq

Γpyijk ` 1qΓprq

)



“
`

1` exptx1,ijkβ1 ` φ11u1,j ` φ12u1,ku
˘´1

#

ξijk

„

exptx1,ijkβ1 ` φ11u1,j ` φ12u1,ku

` exp
!

r log r ´ r log
`

r ` exptx2,ijkβ2 ` φ21u2,j ` φ22u2,ku
˘

)



` p1´ ξijkq exp
!

yijkpx2,ijkβ2 ` φ21u2,j ` φ22u2,kq

´ pyijk ` rq log
`

r ` exptx2,ijkβ2 ` φ21u2,j ` φ22u2,ku
˘

` r log r ` log
Γpyijk ` rq

Γpyijk ` 1qΓprq

+

.

It follows from the independence assumptions that

P py|u;θq “
J
ź

j“1

K
ź

k“1

P pyjk|ujk;θq, P pyjk|ujk;θq “
I
ź

i“1

P pyijk|ujk;θq.
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Therefore, the likelihood function of the aZINB11 mixed model is

P py;θq “

ż

R4JK

P py|u;θqfupuq du “
J
ź

j“1

K
ź

k“1

ż

R4

I
ź

i“1

P pyijk|ujk;θqfN4p0,Iqpujkq dujk, (2.9)

and the respective log-likelihood function is

`pθ;yq “
J
ÿ

j“1

K
ÿ

k“1

log

ż

R4

I
ź

i“1

P pyijk|ujk;θqfN4p0,Iqpujkq dujk. (2.10)

Given y, the ML parameter estimator of θ is

pθ “ argmaxθPΘ `pθ;yq, Θ “ Rq1`q2 ˆ R4
`.

Appendix A describes the ML-Laplace algorithm to maximize `pθ;yq and calculate the ML
estimators of the model parameters. This algorithm also gives modal predictors of random
effects. As for the inference procedures for the ML estimators, we rely on both asymptotic
(Appendix A) and resampling methods (Section 2.3.2).

2.3.1 Small area prediction of expected counts

This section is devoted to the development of small area predictors of expected counts
based on the aZINB11 mixed model (2.7)-(2.8). Let i “ 1, . . . , I, j “ 1, . . . , J, k “ 1, . . . ,K
and define

µyijk
∆
“ Eryijk|ujks “ p1´ pijkpθ1,u1,jkqqµijkpθ2,u2,jkq,

where pijk
∆
“ pijkpu1,kq and λijk

∆
“ λijkpu2,ijkq are defined in (2.8).

The plug-in predictor of µyijk is

pµinyijk “ p1´ pijkp
pθ1, pu1,jkqqµijkppθ2, pu2,jkq,

where pθ1 and pθ2 are estimators (e.g. ML parameter estimators) of θ1 and θ2, respectively,
and pu1,jk and pu2,jk are predictors (e.g., log-likelihood modes) of u1,jk and u2,jk, respectively.
Depending on its purpose, the plug-in predictor could also be used as a forecasting tool for
future average counts. For example, when the time component to be predicted in the future
is determined by the i-index. To calculate pµinyijk, we use model parameter estimators and
random effect predictions, which only depend on the indexes j and k. Nevertheless, one must
specify a prediction scenario determined by the values assumed for x1,ijk and x2,ijk.

2.3.2 Bootstrap inference

This section presents bootstrap-based CIs for the model parameters and estimators of the
MSE of the plug-in predictor. Let θ` be a component of θ and α P p0, 1q. The following proce-
dure calculates a p1´αq% percentile bootstrap CI for θ` and a parametric bootstrap estimator
of MSEppµyijkq, where pµyijk is the plug-in predictor, although the algorithm described below
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applies to any model-based predictor derived from the proposed aZINB11 mixed model. The
procedure also provides a parametric bootstrap estimator of the marginal variance varpyijkq
and prediction intervals (PI) for expected counts (Bugallo et al., 2023).

1. Fit the model and calculate the ML parameter estimator pθ “ ppβ
1

1,
pβ
1

2,
pφ11, pφ12, pφ21, pφ22q

1.

2. Let i “ 1, . . . , I, j “ 1, . . . , J, k “ 1, . . . ,K.

Repeat B times (b “ 1, . . . , B):

(a) Generate u
˚pbq
1,j „ Np0, 1q, u

˚pbq
1,k „ Np0, 1q, u

˚pbq
2,j „ Np0, 1q and u

˚pbq
2,k „ Np0, 1q.

Then calculate

p
˚pbq
ijk “ exp

 

x1,ijk
pβ1 `

pφ11u
˚pbq
1,j `

pφ12u
˚pbq
1,k

(`

1` exp
 

x1,ijk
pβ1 `

pφ11u
˚pbq
1,j `

pφ12u
˚pbq
1,k

(˘´1
,

µ
˚pbq
ijk “ exp

 

x2,ijk
pβ2 `

pφ21u
˚pbq
2,j `

pφ22u
˚pbq
2,k

(

.

(b) Generate z
˚pbq
ijk „ BEpp

˚pbq
ijk q. If z

˚pbq
ijk “ 1, y

˚pbq
ijk “ 0. Otherwise, y

˚pbq
ijk „ NBpr, µ

˚pbq
ijk q.

(c) On the basis of the bootstrap sample, py
˚pbq
ijk ,xijkq, calculate the ML parameter

estimator pθ
˚pbq
` , the bootstrap estimate pθ

˚pbq
and the predictor pµ

˚pbq
yijk.

3. Sort the values pR
˚pbq
` “ D1{2

`

pθ
˚pbq
` ´ pθ`

˘

, b “ 1, . . . , B, from smallest to largest. They

are pR˚`p1q ď . . . ď pR˚`pBq. A p1´ αq% basic percentile bootstrap CI for θ` is

`

pθ` ´D
´1{2

pR˚`ptpα{2qBuq,
pθ` `D

´1{2
pR˚`ptp1´α{2qBuq

˘

.

4. To estimate error measures, define

mse˚ppµyijkq “
1

B

B
ÿ

b“1

`

pµ˚pbqyijk
´ µ˚pbqyijk

˘2
, rmse˚ppµyijkq “

`

mse˚ppµyijkq
˘1{2

,

rrmse˚ppµyijkq “
rmse˚ppµyijkq

pµyijk
, ȳ˚ijk “

1

B

B
ÿ

b“1

y
˚pbq
ijk , var˚pyijkq “

1

B ´ 1

B
ÿ

b“1

`

y
˚pbq
ijk ´ ȳ

˚
ijk

˘2
,

A p1´ αq% PI of yijk is

PIαijk “
´

pµyijk ´ z1´α{2

`

var˚pyijkq
˘1{2

, pµyijk ` z1´α{2

`

var˚pyijkq
˘1{2

¯

. (2.11)

2.3.3 Description of the 2002-2015 GFFS monthly data

The case study investigates the applicability of the zero-inflated NB mixed model (2.7)-
(2.8) to explain the occurrence of forest fires in Spain between 2002 and 2014 by province
and month, and to provide forecasts for 2015. Taking Boubeta et al. (2019) as an initial
reference point for modelling and predicting forest fires, we propose the following innovations
and improvements, which have not yet been considered. First, the basic distribution is shifted
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from the PO to the NB to account for the overdispersion of the target variable. Second, excess
zeros are modelled using a BE mixed model. Third, both models include random effects that
vary with month and province, but not with year. This allows modelling the temporal and
spatial variability within each year and predicting the number of fires in future years.

Data are from the General Forest Fire Statistics (GFFS) and contain aggregated records
by province and month of all forest fires in Spain from 2002 to 2015, both years included,
totalling 216,538 events. The dependent variable yijk counts the number of Spanish forest
fires in year i, month j and province k. Therefore, there are D “ IJK “ 8400 domains,
defined by the crosses of years (I “ 14), months (J “ 12) and provinces (K “ 50).

Table 2.8 shows the number of forest fires and zeros per year. An exploratory analysis
indicates that there are 951 domains in which no forest fires were recorded and their number
is not uniform over the years. In fact, the number of forest fires varies from year to year and
a clear change in the pattern of forest fires is observed at the end of 2006 and 2012, which
motivates the inclusion of the categorical auxiliary variable year3 (year3.1 : time interval
[2002, 2006]; year3.2 : time interval [2007, 2012]; year3.3 : time interval [2013, 2015]).

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Zeros 107 112 63 51 90 52 60 47 89 44 55 60 77 44

Total 19929 18616 21393 25492 16334 10936 11654 15641 11721 16414 15997 10797 9805 1180

Table 2.8: Annual grouping of domains without observed forest fires (zeros per year). Domains
are defined as crossings between years, months and provinces.

Table 2.9 shows the number of forest fires and zeros per month, with late autumn and the
whole of winter being a period of low fire activity, in contrast to the summer period.

Jan. Feb. Mar. April May Jun July Aug. Sept. Oct. Nov. Dec.

Zeros 177 112 52 40 22 20 5 6 9 59 206 243

Total 6372 19270 30432 16701 11844 18494 28912 37742 26124 12033 4343 4271

Table 2.9: Monthly grouping of domains without observed forest fires (zeros per month).
Domains are defined as crossings between years, months and provinces.

Meteorological variables have been part of the set of auxiliary variables in many fire risk
studies. In the current research, the process of selecting domain-level auxiliary variables is
divided into two stages and they are described in Table 2.10. A spatial analysis search is
used to select those automatic meteorological stations that best represent the climatological
conditions of each province, and then data are collected from the selected stations. The
auxiliary variables contain aggregated information at monthly level, so their effects on the
target variable are, in some cases, limited to the context. In addition, if a fire starts at
the end of the month and lasts several days, most of which are in the following month, the
count corresponds to the previous month, which distorts the available information. As a
result, fitting fire models with aggregated monthly and provincial data is generally a difficult
problem. But in spite of this, a model that provides an acceptable solution would allow us to
predict the number of future forest fires based on easy-to-predict climatological information.
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Variable Description Units Variable Description Units

e average vapor pressure
tenths of
hPa

p.mes total precipitation mm

hr average relative humidity
tenths of
mm

q.mar mean sea-level pressure KPa

n.fog foggy days % days q.max max. absolute pressure KPa

n.gra hail days % days q.med average pressure KPa

n.llu rainy days % days q.min max. min. pressure KPa

n.nie snowy days % days ta.max absolute max. temperature ˝C

np.001 precipitation ě0.1mm % days ta.min absolute min. temperature ˝C

np.010 precipitation ě1mm % days ti.max lowest max. temperature ˝C

np.300 precipitation ě30mm % days tm.max average max. temperature ˝C

nt.00 min. temperature ď0˝C % days tm.mes average temperature ˝C

nt.30 max. temperature ě30˝C % days tm.min average min. temperature ˝C

n.tor storm days % days ts.min highest min. temperature ˝C

nw.55 wind speed ě55km/h % days w.med
average speed elaborated
from 07, 13, 18 UTC

km/h

nw.91 wind speed ě91km/h % days unemp unemployment rate %

p.max max. daily precipitation mm year3 year group variable –

Table 2.10: Two-column description and units of the domain-level auxiliary variables used in
the application to the 2002-2015 GFFS monthly data.

2.3.4 Application to the 2002-2015 GFFS monthly data

The problem addressed below is to model the number of forest fires in Spain between 2002
and 2014 by province and month, providing error measures and point and interval forecasts
for 2015. Due to seasonality, there are provinces where the number of fires is zero in some
months and overdispersed in others. In addition, the Mediterranean countries have a high
number of fires, but they are mainly concentrated in the summer months. Fortunately, zero-
inflated NB mixed models are well suited to this type of data, as they describe patterns
that explain both the number of fires and their non-occurrence. Based on this insight, we fit
the aZINB11 mixed model (2.7)-(2.8) to the forest fire data described in Section 2.3.3, with
month-dependent random effects u1,j , u2,j , j “ 1, . . . , J , and province-dependent random
effects u1,k, u2,k, k “ 1, . . . ,K.

Tables 2.11 and 2.12 show the ML parameter estimators of the model parameters β1,
φ1 (BE submodel) and β2, φ2 (NB submodel), the p-values to test H0 : βt` “ 0, t “ 1, 2,
` “ 1, ..., qt, and H0 : φt “ 0, t “ 1, 2, and the normal-asymptotic and bootstrap CIs at the
95% confidence level. For convenience, their lower (LB) and upper (UB) bounds are provided.
Normal-asymptotic CIs are discussed in Appendix A and bootstrap CIs in Section 2.3.2. The
models are fitted to data from 2007 to 2014, keeping 2015 to test near future retroconditions.
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BE submodel

β11 β12 β13 β14 β15 β16 φ11 φ12

Estimate -14.353 0.192 0.143 -0.132 -1.048 -0.754 0.103 1.872

p-value 0.000 0.000 0.003 0.001 0.000 0.005 0.000 0.000

Asymp LB 95% -19.675 0.138 0.050 -0.208 -1.477 -1.285 0.004 1.424

UB 95% -9.030 0.246 0.236 -0.056 -0.619 -0.223 2.940 2.460

Boot LB 95% -17.733 0.158 0.070 -0.175 -1.367 -1.253 0.000 1.319

UB 95% -11.212 0.232 0.213 -0.094 -0.768 -0.311 0.297 2.305

Table 2.11: Model parameters of the final aZINB11 mixed model for the BE submodel. Model
fitted with 2002-2014 data aggregated by province and month.

The final model incorporates only those variables that are significant at 1%. The BE
submodel contains q1 “ 6 covariables: x1,1 “ intercept, x1,2 “ hr, x1,3 “ np.300, x1,4 “

ta.max, x1,5 “ year3.2, x1,6 “ year3.3. The NB submodel contains q2 “ 18 covariables:
x2,1 “ intercept, x2,2 “ e, x2,3 “ hr, x2,4 “ n.llu, x2,5 “ n.nie, x2,6 “ np.300, x2,7 “ nt.00,
x2,8 “ nw.55, x2,9 “ nw.91, x2,10 “ q.mar, x2,11 “ q.max, x2,12 “ q.min, x2,13 “ ta.max,
x2,14 “ ta.min, x2,15 “ tm.mes, x2,16 “ tm.min, x2,17 “ year3.2, x2,18 “ year3.3.

NB submodel

β21 β22 β23 β24 β25 β26 β27 β28 β29 β210

Estimate -10.509 0.009 -0.045 -0.014 -0.032 -0.029 0.016 0.018 -0.025 0.146 0.0

p-value 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000

Asymp LB 95% -17.960 0.007 -0.051 -0.016 -0.039 -0.043 0.014 0.015 -0.041 0.072

UB 95% -3.058 0.012 -0.038 -0.012 -0.025 -0.015 0.018 0.021 -0.009 0.220

Boot LB 95% -12.409 0.009 -0.046 -0.015 -0.034 -0.034 0.016 0.017 -0.030 0.125

UB 95% -8.227 0.010 -0.043 -0.014 -0.030 -0.024 0.017 0.019 -0.020 0.165

β211 β212 β213 β214 β215 β216 β217 β218 φ21 φ22 γ

Estimate -0.057 0.049 0.053 0.025 0.064 -0.150 -0.180 -0.272 0.343 1.156 2.151

p-value 0.003 0.009 0.000 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.000

Asymp LB 95% -0.095 0.012 0.041 0.011 0.020 -0.191 -0.222 -0.331 0.226 0.948 2.063

UB 95% -0.020 0.086 0.064 0.040 0.109 -0.109 -0.139 -0.213 0.519 1.408 2.244

Boot LB 95% -0.068 0.039 0.050 0.022 0.055 -0.158 -0.189 -0.286 0.177 0.914 2.007

UB 95% -0.046 0.060 0.056 0.029 0.074 -0.140 -0.171 -0.257 0.451 1.370 2.755

Table 2.12: Model parameters of the final aZINB11 mixed model for the NB submodel. Model
fitted with 2002-2014 data aggregated by province and month.

The effect of the auxiliary variables derived from Tables 2.11 and 2.12 is consistent with the
results obtained in previous studies in which arsonists wait for optimal conditions (a window
of opportunity) to start a fire (Marcos et al. (2015); Russo et al. (2017)). In general, the LBs,
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UBs and widths of the bootstrap CIs are similar to those of the asymptotic CIs, suggesting
that the theoretical distribution is close to the asymptotic one. Furthermore, although the
interpretation of the estimated model parameters is reasonable, it is noteworthy that both
their sign and magnitude often change, sometimes substantially, so it is important to keep in
mind that the results are conditioned by the proposed model. Consequently, the mathematical
modelling is based on the actual situation. Other auxiliary variables, time periods or any
changes in the database may lead to different results, both in sign and relevance.

To validate the fitted model and detect outliers, we analysed the behaviour of the model
residuals. Let us define the raw residuals (RR) as

peijk “ yijk ´ pµinyijk, i “ 1, . . . , I, j “ 1, . . . , J, k “ 1, . . . ,K.

Standardized residuals (SR) are defined by dividing the RRs by its standard deviation, i.e.

peijkν
´1, where ν “

˜

1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

´

peijk ´ pe...

¯2
¸

1
2

, pe... “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

peijk.

Figure 2.6 plots the SRs of the aZINB11 mixed model against domain indexes (left),
plug-in predicted values (center) and plug-in log-predicted values (right). It can be seen
that the SRs fluctuate around zero, although there are more positive large residuals than
negative ones. The cause of this asymmetric behaviour is the underprediction of the model in
provinces where the number of observed forest fires in summer was extremely high, as we will
see later. Similarly, in the central plot, a small percentage of domains have large predicted
values that exceed the threshold of 400. Finally, plotting the SRs against the log-predicted
values allowed us to detect a conical pattern in the scatterplot, maintaining their positive
asymmetry, which is accentuated as the abscissa axis increases. As the log-predicted values
increase, the variability of the residuals also increases. This phenomenon is consistent with
the theoretical overdispersion of the aZINB11 model.
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Figure 2.6: SRs versus domain indexes (left) and predicted values of the expected counts of
forest fires in 2002-2014 in original (center) and log-scale (right).

Figure 2.7 shows boxplots of the SRs by year, month and province. They fluctuate around
zero, mostly in the interval r´3, 3s. However, there are more large positive SRs than negative
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ones, suggesting underprediction in some provinces. In this sense, there are six provinces with
absolute SRs greater than 3. This gives a total of 82 domains. These are the four provinces
of Galicia and the two neighbouring autonomous communities in north-western Spain: A
Coruña (18), Lugo (5), Ourense (22), Pontevedra (17), Asturias (14) and Cantabria (6).
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Figure 2.7: Boxplot of SRs by year (left), month (center) and province (right).

The prediction of the number of forest fires in Spain for 2015 (I “ 14) is discussed
below. The idea is to calculate predictions for future horizons in order to optimise forest fire
prevention tasks and allocate available resources efficiently. The prediction scenario is the
actual 2015 scenario, i.e. the recorded covariates x1,Ijk and x2,Ijk, j “ 1, . . . , J , k “ 1, . . . ,K,
are used, so that the results are actually retroconditions. As the observed forest fire counts
yIjk are available for 2015, the accuracy of the retroconditions can be tested.

For the sake of illustration, Figure 2.8 maps the observed values (left) and plug-in forecasts
(center) for July 2015 to analyze the discrepancies in the provincial distribution of forest fires
and evaluate the predictive performance. Specifically, the map on the left shows the recorded
values of the count variable and the one in the center shows the plug-in predictions. The
map on the right allows to widecheck the accuracy of the retroconditions, displaying RRMSE
estimates that have been calculated with the algorithm proposed in Section 2.3.2. In order
to strike a balance between the approximation capability of the Monte Carlo method and its
computational cost, B “ 500 bootstrap replicates have been used.

Comparing the left and center maps in Figure 2.8, the aZIBN11 mixed model accurately
detects the provinces with the highest fire probabilities and reproduces the pattern of fire
spread along the Iberian Peninsula. An artificial diagonal line divides the maps into two
zones: the north-west, with many fires and low RRMSEs, and the south-east, with few fires
and high RRMSEs. The lower the number of forest fires, the higher the RRMSE, because
it is challenging to fit a model when the distribution of data across provinces is so uneven,
leading to inaccuracies in domains with few events. Nevertheless, it is desirable to predict
better in those domains that are more conflictive and with a higher number of forest fires,
given that the severity of the environmental problem is greater in those areas. To overcome
this challenge, PIs defined in equation (2.11) are calculated.

In addition, let us define the relative squared prediction error (RSPE) for provinces and
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Wildfires July 2015 <= 12
>12 & <= 50
>50 & <=100
>100 & <=180
>180 & <=230
>230

Forecast July 2015 <= 12
>12 & <= 50
>50 & <=100
>100 & <=180
>180 & <=230
>230

RRMSE July 2015 under 8%
8 - 16 %
16 - 25 %
25 - 40 %
 40 - 50 %
over 50 %

Figure 2.8: Observed (left) and predicted (center) plug-in forest fires and RRMSE estimates
(right) in July 2015. The prediction scenario is the actual scenario for 2015.

the province coverage probabilities for 2015 as

RSPEI.k “

b

ř12
j“1pyIjk ´ pµinIjkq

2

ř12
j“1 yIjk

, CαI.k “
1

12

12
ÿ

j“1

CαIjk, C
α
Ijk “ I

`

yijk P PI
α
Ijk

˘

, k “ 1, . . . ,K,

and the RSPE for months and the month coverage probabilities for 2015 as

RSPEIj. “

b

ř50
k“1pyIjk ´ pµinIjkq

2

ř50
k“1 yIjk

, CαIj. “
1

50

K
ÿ

k“1

CαIjk, C
α
Ijk “ I

`

yIjk P PI
α
Ijk

˘

, j “ 1, . . . , J.

Figure 2.9 presents data on provincial RSPEI.k values (left) and provincial coverage prob-
abilities (right) in 2015. As a result, it can be seen that the RSPE values are high in the
north of Spain, where the number of recorded forest fires is unusually high in winter 2015,
and low in the south (Andalućıa), where not many events have been observed or predicted.
The opposite applies to the provincial coverage probabilities in Figure 2.9 (right). To provide
further evidence for the previous point, Table 2.13 summarizes the RSPEIj. values (top) and
the monthly coverage probabilities (bottom) in 2015. The percentage RSPE values are low in
the months with the highest forest fire probabilities (July - September), and rise in spring and
autumn. For winter, the anomalous observations reported in December 2015 justify the high
value of this relative discrepancy measure, greater than 45%. This is an atypical value as it has
been, in fact, an atypical month. In short, the average percentage RSPE for 2015 is 20.34%,
so that its four quarterly averages are 17.22%, 21.11%, 11.86% and 31.17%, respectively. In
terms of coverage probabilities, the same results as in Figure 2.9 can be extracted.

The coverage probabilities provide encouraging results at provincial and monthly level.
For the provinces, the maps show that coverage is 100% for most of them. On a monthly
basis, the situation changes slightly due to the anomalous behaviour of Northwest Spain (see
Figure 1.1), but coverage is around 85-90% in almost all months. This case study is intended
to serve as an example for future applications of forest fire modelling. Current and future
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RSPE 2015 under 10%
10 - 15 %
15 - 22.5 %
22.5 - 30 %
 30 - 40 %
40 - 45 %

Coverage 2015 8.3 - 16.6 %
16.6 - 58.3 %
58.3 - 83.3 %
83.3 - 91.6%
91.6 - 100%

Figure 2.9: RSPE values and coverage probabilities for Spanish provinces in 2015, both in %.

Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.

RSPEIj. 16.96 20.30 14.42 20.57 18.43 24.32 10.96 9.70 14.94 27.61 19.04 46.86

CαIj. 94 88 88 90 92 94 98 94 92 94 92 94

Table 2.13: RSPE values and monthly coverage probabilities in 2015, both in %.

fire management in Mediterranean countries requires a paradigm shift. Cooperation between
countries is increasingly necessary to face moments of crisis in certain regions. In this respect,
old planning systems are no longer effective and a change of scale and of mechanical and
human means of extinguishing fires is urgently needed.

It is interesting to note that zero-inflated NB mixed models proved to be flexible tools for
describing the behaviour and predicting the number of fires in a region over time. The chosen
model has a reasonable interpretation from a forestry point of view, showing dependence
and correlation relationships consistent with those published in the scientific literature on
fire occurrence modelling. The developed forecasting tool is also useful when applied to the
forecasting period. Regarding the improvements of the current research on the statistical
methodology for the analysis of forest fires, it provides a forecasting tool that is able to
identify values with a 95% confidence in the real data analysed (i.e. retroconditions). In
addition, a zero-inflated structure is added, providing a means to deal with areas with very
different climatological and socio-economic conditions in relation to their arson activity.

2.3.5 R codes

As for the R codes, the GitHub repository https://github.com/mbugallo/aZINB11Fires
(accessed on: November 4, 2024) contains our dataset and computer code, as well as a detailed
description of its contents. It includes a README file that provides basic instructions for
the correct execution of the available software.

https://github.com/mbugallo/aZINB11Fires
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2.4 Area-level zero-inflated Gamma mixed model

This section describes an area-level zero-inflated GA mixed model aimed at deriving pre-
dictors of averages and totals in small areas for non-negative continuous variables. Let us
consider a continuous random variable yijk taking values on r0,8q, where i “ 1, . . . , I,
j “ 1, . . . , J , k “ 1, . . . ,K. Let D “ IJK be the total number of y-values. Let zijk,
x1,ijk “ px1,ijk1, . . . , x1,ijkq1q and x2,ijk “ px2,ijk1, . . . , x2,ijkq2q be latent (non observable)
variables and 1ˆ q1, q1 ě 1, and 1ˆ q2, q2 ě 1, row vectors of area-level auxiliary variables,
respectively. Let us define the vectors and matrices

yjk “ col
1ďiďI

pyijkq, zjk “ col
1ďiďI

pzijkq, y “ col
1ďjďJ

p col
1ďkďK

pyjkqq, z “ col
1ďjďJ

p col
1ďkďK

pzjkqq,

X1,jk “ col
1ďkďK

px1,ijkq, X2,jk “ col
1ďkďK

px2,ijkq,

X1 “ col
1ďjďJ

p col
1ďkďK

pX1,jkqq, X2 “ col
1ďjďJ

p col
1ďkďK

pX2,jkqq.

Let be ujk “ pu1,jk, u2,jkq
1, with u1,jk, u2,jk independent Np0, 1q random effects, and

u1 “ col
1ďjďJ

p col
1ďkďK

pu1,jkqq „ NJKp0, Iq, u2 “ col
1ďjďJ

p col
1ďkďK

pu2,jkqq „ NJKp0, Iq, u “ pu
1
1,u

1
2q
1.

The vectors pyijk, zijkq follow an area-level zero-inflated GA mixed model (aZIG) if

zijk „ BEppijkq, P pyijk “ 0{zijk “ 1q “ 1, (2.12)

fpyijk “ t{zijk “ 0q “ exp
!

´νµ´1
ijkyijk ´ ν logµijk ` pν ´ 1q log yijk ` ν log ν ´ log γpνq

)

,

where pijk P p0, 1q, ν ą 0, t ą 0 and µijk ą 0. In addition, pijk and µijk depend on the
area-level auxiliary variables x1,ijk and x2,ijk, on the model parameters β1 “ pβ11, . . . , β1q1q

1

and β2 “ pβ21, . . . , β2q2q
1, and on the standard deviations φ1 ą 0 and φ2 ą 0 by means of the

link functions

logitppijkq “ log
pijk

1´ pijk
“ x1,ijkβ1 ` φ1u1,jk “

q1
ÿ

`“1

x1,ijk`β1` ` φ1u1,jk,

logpµijkq “ x2,ijkβ2 ` φ2u2,jk “

q2
ÿ

`“1

x2,ijk`β2` ` φ2u2,jk.

Inverting the above functions, it follows that

pijk “
exptx1,ijkβ1 ` φ1u1,jku

1` exptx1,ijkβ1 ` φ1u1,jku
, µijk “ exptx2,ijkβ2 ` φ2u2,jku. (2.13)

Conditioned on u, it is assumed that the vectors pyijk, zijkq
1 are independent and it is said

that they follow an aZIG22 mixed model (Bugallo et al., 2024c). The terminology “22” is
added to specify that both the BE and GA models have multiplicative random effects in two
components, j and k. The proposed model is a mixture model of two mixed submodels. The
BE submodel drives the mixture and incorporates the information derived from the excess of
zeros. The GA submodel deals with strictly positive target values using the GA distribution
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with means µijk ą 0 and constant shape ν ą 0, like the normal linear model assumes a
constant variance.

Let θ “ pβ11,β
1
2, φ1, φ2q

1 be the vector of model parameters and define ξijk “ Ipyijk “ 0q.
The components of the (continuous) marginal distribution are

P pyijk|ujk;θq “ ξijkpijk ` p1´ ξijkq

„

p1´ pijkq exp
!

´ νµ´1
ijkyijk ´ ν logµijk ` pν ´ 1q log yijk

` ν log ν ´ log γpνq
)



“
`

1` exptx1,ijkβ1 ` φ1u1,jku
˘´1

#

ξijk exptx1,ijkβ1 ` φ1u1,jku

` p1´ ξijkq exp
!

´ νyijk expt´x2,ijkβ2 ´ φ2u2,jku ´ νpx2,ijkβ2 ` φ2u2,jkq

` pν ´ 1q log yijk ` ν log ν ´ log γpνq
)

+

.

By the independence assumptions, it follows that

P py|u;θq “
J
ź

j“1

K
ź

k“1

P pyjk|ujk;θq, P pyjk|ujk;θq “
I
ź

i“1

P pyijk|ujk;θq.

The likelihood and log-likelihood functions of the aZIG22 mixed model are, respectively,

P py;θq “

ż

R2JK

P py|u;θqfupuq du “
J
ź

j“1

K
ź

k“1

ż

R2

I
ź

i“1

P pyijk|ujk;θqfN2p0,Iqpujkq dujk,

`pθ;yq “
J
ÿ

j“1

K
ÿ

k“1

log

ż

R2

I
ź

i“1

P pyijk|ujk;θqfN2p0,Iqpujkq dujk.

Given y, the ML parameter estimator of θ is

pθ “ argmaxθPΘ `pθ;yq, Θ “ Rq1`q2 ˆ R2
`.

Appendix A describes the ML-Laplace algorithm to maximize `pθ;yq and calculate the ML
estimators of the model parameters. This algorithm also gives modal predictors of random
effects. As for the inference procedures for the ML estimators, we rely on both asymptotic
(Appendix A) and resampling methods (Section 2.4.2).

2.4.1 Small area prediction of expected averages

This section is devoted to the development of small area predictors of expected avegares
based on the aZIG22 mixed model (2.12)-(2.13). Let i “ 1, . . . , I, j “ 1, . . . , J , k “ 1, . . . ,K
and define

µyijk
∆
“ Eryijk|ujks “ p1´ pijkpu1,jkqqµijkpu2,jkq,

where pijk
∆
“ pijkpu1,jkq and µijk

∆
“ µijkpu2,jkq are defined in (2.13).
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By plugging ML estimators and modal predictors, the plug-in predictor of µyijk is

pµinyijk “
`

1` exptx1,ijk
pβ1 `

pφ1pu1,jku
˘´1

exptx2,ijk
pβ2 `

pφ2pu2,jku.

Following the more applied cut-off of this section, where we will look again at wildfire mod-
elling and prediction (see Sections 2.4.3 and 2.4.4), the plug-in predictor is sufficient for our
practical purposes. In fact, it is the most convenient choice as it is unrivalled in terms of ease
of interpretation and execution time.

2.4.2 Bootstrap inference

In this section we formalise how to compute bootstrap-based CIs for the model parameters
and estimators of the MSEs of the predictors. Let θ` be a component of θ and α P p0, 1q.
The following procedure calculates a p1´αq% percentile bootstrap CI for θ` and a parametric
bootstrap estimator of MSEppµinyijkq. It also provides bootstrap estimates for the quantiles of

the distribution of the predictor pµinyijk so as to define risk measures in Section 2.4.4.

1. Fit the model and calculate the ML parameter estimator pθ “ ppβ
1

1,
pβ
1

2,
pφ1, pφ2q

1.

2. Let i “ 1, . . . , I, j “ 1, . . . , J, k “ 1, . . . ,K.

Repeat B times (b “ 1, . . . , B):

(a) Generate u
˚pbq
1,jk „ Np0, 1q, u

˚pbq
2,jk „ Np0, 1q and calculate

p
˚pbq
ijk “ exp

 

x1,ijk
pβ1 `

pφ1u
˚pbq
1,jk

(`

1` exp
 

x1,ijk
pβ1 `

pφ1u
˚pbq
1,jk

(˘´1
,

µ
˚pbq
ijk “ exp

 

x2,ijk
pβ2 `

pφ2u
˚pbq
2,jk

(

.

(b) Generate z
˚pbq
ijk „ BEpp

˚pbq
ijk q. If z

˚pbq
ijk “ 1, do y

˚pbq
ijk “ 0. If z

˚pbq
ijk “ 0, generate

y
˚pbq
ijk „ GApµ

˚pbq
ijk , νq.

(c) Calculate µ
˚pbq
yijk “ p1´ p

˚pbq
ijk qµ

˚pbq
ijk .

(d) Based on the sample py
˚pbq
ijk ,xijkq, calculate the ML bootstrap estimate pθ

˚pbq
` . In

addition, calculate the predictor pµ
˚pbq
yijk.

3. Sort the values pθ
˚pbq
` , b “ 1, . . . , B, from smallest to largest. They are pθ˚`p1q ď . . . ď pθ˚`pBq.

A p1´ αq% percentile bootstrap CI for θ` is
`

pθ˚`ptpα{2qBuq
, pθ˚`ptp1´α{2qBuq

˘

.

4. To estimate error measures, define mse˚ppµyijkq “
1
B

řB
b“1

`

pµ
˚pbq
yijk ´ µ

˚pbq
yijk

˘2
,

rmse˚ppµyijkq “ pmse
˚ppµyijkqq

1
2 , rrmse˚ppµyijkq “

rmse˚ppµyijkq

pµyijk
.

5. Sort the values pµ
˚pbq
yijk, b “ 1, . . . , B, from smallest to largest. They are pµyijkp1q ď . . . ď

pµyijkpBq. The bootstrap quantile of the distribution of the predictor pµyijk that leaves its
left-hand probability α is pqijk,α :“ pµyijkptαBuq.
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2.4.3 Description of the 2007-2015 GFFS weekly data

The case study assesses the applicability of the aZIG22 mixed model (2.12)-(2.13) to
explain the occurrence of large fires in Spain between 2007 and 2014, by province and week,
and provide forecasts for 2015. Data are from the General Forest Fire Statistics (GFFS).
The dependent variable yijk can be either the total burned area (in Ha) of a region during a
certain period of time, or its value averaged over the number of reported forest fires, denoted
by nijk. It is said that yijk “ yijk{nijk denotes an average forest fire. The indexes i, j and
k stand for year, week and province, respectively. The application to real data is limited to
K “ 41 Spanish provinces for reasons of data availability (see Figure 1.1). In fact, the light
shaded provinces in Figure 1.1 have been excluded from this application to real data because
we do not have data for all the explanatory variables we will consider and which are listed in
Table 2.16. Furthermore, due to the seasonal nature of the megafires, the study is limited to
the months of July, August, September and October, with data collected between the 27th
and 44th weeks of I “ 9 years, so there are J “ 18 weeks.

Tables 2.14–2.15 are included to illustrate the suitability of using a zero-inflated mixed
model. Table 2.14 shows the provincial deciles of the total and average burned area for weeks
27 to 44 and years 2007 to 2015. At least 20% of the data are equal to 0, which is an extremely
high percentage for continuous distributions, such as the GA distribution. This motivates the
modelling of burned forest areas by also including latent variables to account for excess zeros.
Moreover, the total burned area has much more dispersion than its average by the number
of fires, as expected. Table 2.15 depicts the proportion of zeros per year. It follows that the
zero-inflated structure is stable over the years.

q0 q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 q1

Total 0 0 0 0.200 0.900 2.200 5.080 11.307 27.048 80.092 15256.210

Average 0 0 0 0.190 0.500 0.932 1.600 2.800 5.073 12.305 4674.110

Table 2.14: Deciles of total (top) and average (bottom) monthly and provincial burned areas
for weeks 27 to 44 of the years 2007 to 2015.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015

Proportion 0.257 0.295 0.203 0.276 0.168 0.324 0.251 0.339 0.314

Table 2.15: Proportion of zeros per year, i.e. domains with no reported forest fires. Domains
are defined as crossings between years, weeks and provinces.

The area-level auxiliary variables are described in Table 2.16. The climatological variables
(first eight rows on the left of Table 2.16) were obtained in Section 2.3.3 for monthly data,
and the process is simply extended here to weekly data. In terms of pre-processing, it was
decided to standardize the variables of fire extinguishing means and the number of forest fires
to avoid problems of location and scale. Thus, although these variables were initially of count
type, they are interpreted as measures scaled to the mean and are unitless. The area-level
auxiliary variables in Table 2.16 have been grouped according to their description into six
categories: climatological (8), distance (2), firefighting staff (4), land-based machinery (4),
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aerial machinery (4) and fire count (1).

VariableDescription Units VariableDescription Units

Climatological variables (8) sec.st state security force

dir direction of max. wind speed x0= oth.st others, e.g. volunteers

prec average precipitation xmm Land-based machinery variables (4)

sol duration of insolation xh bll.eq no. of bulldozers

tmax average max. temperature x0C trc.eq no. of tractors

tmed average mean temperature x0 oth.eq no. of other machines

tmin average min. temperature x0C atb.eq no. of fire engines

wmed
average speed elaborated
from 07, 13, 18 UTC

xm{s Aerial machinery variables (4)

hr average relative humidity
tenths
of mm

ext.air no. of firefighting helicopters

Distance variables (2) car.air no. of aircrafts

bui1
distance between the fire and
the nearest building

xkm tra.air no. of transport helicopters

bui10
average distance between the fire
and the 10 nearest buildings

xkm amp.air no. of amphibious aircraft

Firefighting staff variables (4) Fire count variable (1)

tch.st technicians and/or forestry agents n.fir no. of fires by domain

brg.st brigade personnel

Table 2.16: Two-column description and units of the domain-level auxiliary variables used in
the application to the 2007-2015 GFFS weekly data.

As a preliminary analysis to the statistical modelling in Section 2.4.4, we applied a clus-
tering method, the K-means algorithm, described in Appendix B. This clustering algorithm
allows the identification of domains with a markedly anomalous profile. Table 2.17 shows
the center, size and distribution of the average megafires in the clusters. To find a trade-off
between interpretability, complexity and variability (measured by comparing within-cluster
and between-cluster sums of squares), three clusters were considered (Forgy, 1965). As rec-
ommended, random sets of different observations were repeatedly selected as initial centres.

There is one cluster with only 5 observations (0.07%) and a slightly larger cluster with
34 observations (0.50%). The remaining one forms a large cluster with 6603 observations
(99.41%). The average burned area in cluster 1 exceeds the threshold of 500 Ha. The same
is true for 48% of the observations in cluster 2 and for none in cluster 3. Results show that
0.07 ` 0.50 “ 0.57% of the studied events concentrate the problem and it is on these that
modelling should focus. Thus, the K-means algorithm successfully detects average megafires
and supports the need for models capable of quantifying and forecasting the spatio-temporal
risk of extreme events. From Table 2.17, average megafires are described as follows:
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Cluster dir prec sol tmax tmed tmin wmed hr bui1 bui10 tch.st brg.st sec.st

1 16.360 1.702 9.660 30.976 24.886 18.808 3.188 53.000 1.292 2.530 12.456 8.700 19.366

2 20.795 1.561 11.311 32.066 24.295 16.530 2.776 44.206 1.884 3.673 4.219 3.716 4.910

3 9.546 8.705 8.912 26.756 20.337 13.918 2.554 57.896 1.086 2.266 -0.031 -0.026 -0.040

Cluster oth.st atb.eq bll.eq trc.eq oth.eq amp.air car.air ext.air tra.air n.fir yijk size count

1 2.272 6.321 7.118 4.139 8.015 8.873 4.711 2.134 10.235 -0.209 3710.843 5 5

2 2.521 3.759 6.064 1.803 1.877 4.560 2.014 2.445 3.681 0.026 656.026 34 16

3 -0.015 -0.024 -0.037 -0.012 -0.016 -0.030 -0.014 -0.014 -0.027 0.000 5.919 6603 0

Table 2.17: Results of the K-means algorithm described in Appendix B. Cluster centres and
sizes (size) and count (count) of average megafires for the 3-group case.

Weather conditions: Low rainfall and humidity, plenty of sunshine, higher than expected
temperatures and strong winds. Wind direction is not discriminating.

Distances: Proximity to urban settlements more influential than isolated human buildings.

Firefighting resources (standardized variables): Need for much more personnel, ground equip-
ment and air support. The differences with the average of the extinguishing systems are
higher for megafires. Indeed, they skew the mean –not robust enough– and force it to be
slightly negative for cluster 3, which captures fires with “more common” patterns.

Simultaneity of fires (standardized variable): The more forest fires, the more virulent they
are. In cluster 1, large forest fires occur in a period with fewer events than the average, but
the other fires in cluster 2 are generally associated with higher simultaneity.

2.4.4 Application to the 2007-2015 GFFS weekly data

As a follow-up to the study by Bugallo et al. (2023), the aim of this section is to model
virulent fires with provincial spatial and weekly time scales, and to define risk measures. Based
on the aZIG22 mixed model (2.12)-(2.13), this section analyses the variables total burned area,
yijk, and average burned area , ȳijk, in year i, week j and province k, accounting for excess
zeros. For ease of exposition, we will denote the models aZIG for totals and averages as
aZIGT and aZIGA, respectively. Each model aZIG has two submodels, with BE and GA
distributions, called the BE-submodel and the GA-submodel, respectively.

Tables 2.18 and 2.19 show the ML parameter estimators of the model parameters β1,
φ1 (BE submodel) and β2, φ2 (GA submodels), the p-values to test H0 : βt` “ 0, t “ 1, 2,
` “ 1, ..., qt, and H0 : φt “ 0, t “ 1, 2, and the normal-asymptotic and bootstrap CIs at the
95% confidence level. For convenience, their lower (LB) and upper (UB) bounds are provided.
Normal-asymptotic CIs are discussed in Appendix A and bootstrap CIs in Section 2.4.2. The
models are fitted to data from 2007–2014, keeping 2015 to test near future retroconditions.

The final model incorporates only those variables that are significant at 1%. As a result,
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the BE submodel, fitted with the climatological variables of Table 2.16, contains q1 “ 5
covariables: x1,1 “ prec, x1,2 “ tmax, x1,3 “ tmed, x1,4 “ wmed, x1,5 “ hr. The GA-
submodel of model aZIGT contains q2 “ 11 covariates: x2,1 “, x2,2 “ bll.eq, x2,3 “ trc.eq,
x2,4 “ amp.air, x2,5 “ car.air, x2,6 “ tra.air, x2,7 “ prec, x2,8 “ tmax, x2,9 “ tmed,
x2,10 “ wmed, x2,11 “ hr. The GA-submodel of model aZIGA contains q2 “ 7 covariates:
x2,1 “ n.fir, x2,2 “ bui1, x2,3 “ prec, x2,4 “ tmax, x2,5 “ tmed, x2,6 “ wmed, x2,7 “ hr.
The estimates of the scale parameters are νT “ 0.808 and νA “ 0.805, respectively. There is
no fixed intercept in either of the three submodels and the climatological variables of the two
GA submodels are the same.

BE submodel

β11 β12 β13 β14 β15 φ1

Estimate 0.015 -0.285 0.235 -0.447 0.041 1.141

p-value 0.000 0.000 0.000 0.000 0.000 0.000

Asymp LB 95% 0.010 -0.339 0.167 -0.559 0.035 1.020

UB 95% 0.020 -0.232 0.302 -0.335 0.046 1.275

Boot LB 95% 0.011 -0.351 0.183 -0.555 0.036 1.015

UB 95% 0.020 -0.248 0.317 -0.330 0.047 1.267

Table 2.18: ML parameter estimators of the model parameters for the BE submodel of models
aZIG. Model fitted with 2007-2014 data aggregated by province and week.

It can be observed in Table 2.18 that for both yijk and ȳijk the ML-Laplace algorithm
returns the same estimates for the BE-submodel. The reason is that the objective function
to be maximised is additively separable and the optimization of the BE-submodel summand
does not depend on yijk or ȳijk. Furthermore, the BE-submodel is an area-level BE mixed
model (aBE) with random effects dependent on week and province crosses, and stable over
years. If we fit the aBE model directly to the binary target variables ξijk’s, which indicate the
events of zero or more than one forest fire, and apply the ML-Laplace algorithm, we obtain
the same estimates as for the completed models aZIGT and aZIGA.

At the same time, we have modelled the target variables taking into account that they
are semi-continuous, i.e. with many exact zeros and continuous positive outcomes. Linear
models for normally distributed variables are the simplest and most commonly used statistical
models. However, linear models are not appropriate for positive variables with asymmetric
distributions. Here are some reasons for choosing a GA mixed model for the conditional target
data, yijk|nijk ą 0 and yijk|nijk ą 0. If the response variable is positively skewed, a model
based on the normal distribution does not take place. The GA distribution is appropriate
when the response variables take values in p0,8q, where small values are expected to have
small variability and large values are expected to have large variability. The link function of
the GA GLMM is logarithmic. One reason is that these models assume multiplicative effects
of the predictors on the original outcome and are easier to interpret. This is not the case with
the canonical link of the GA GLMM (Lee et al., 2010). In addition, it is suitable to reduce
the variability of positive variables with some tiny and some unusually high values. Finally,
the usual GA GLMM assumes that the shape parameter is constant, just as the normal linear
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Total burned area - model aZIGT

β21 β22 β23 β24 β25 β26 β27 β28 β29 β210 β211 φ2,T

Estimate 0.316 0.384 0.274 0.267 0.171 0.336 0.008 0.356 -0.347 0.301 -0.016 1.347

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Asymp LB 95% 0.236 0.305 0.221 0.192 0.104 0.266 0.003 0.316 -0.400 0.226 -0.020 1.266

UB 95% 0.397 0.462 0.326 0.342 0.239 0.407 0.012 0.396 -0.294 0.377 -0.012 1.433

Boot LB 95% 0.290 0.334 0.217 0.188 0.107 0.295 0.002 0.308 -0.395 0.218 -0.019 1.261

UB 95% 0.407 0.437 0.305 0.311 0.225 0.414 0.011 0.388 -0.285 0.369 -0.012 1.416

Average burned area - model aZIGA

β21 β22 β23 β24 β25 β26 β27 φ2,A

Estimate MM. 0.243 0.237 0.006 0.115 -0.080 0.331 -0.021 1.023 MM..

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Asymp LB 95% 0.191 0.188 0.002 0.079 -0.128 0.257 -0.025 0.959

UB 95% 0.296 0.287 0.010 0.152 -0.032 0.406 -0.017 1.091

Boot LB 95% 0.207 0.173 0.002 0.083 -0.121 0.253 -0.026 0.926

UB 95% 0.310 0.252 0.011 0.152 -0.027 0.393 -0.018 1.077

Table 2.19: ML parameter estimators of the model parameters for the GA-submodels of
models aZIG. Models fitted with 2007-2014 data aggregated by province and week.

model assumes a constant variance. Likewise, we have maintained this assumption.

To validate models aZIGT and aZIGA, we first define the raw residuals (RR) as

peijk “ yijk ´ pµinyijk, i “ 1, . . . , I, j “ 1, . . . , J, k “ 1, . . . ,K.

Standardized residuals (SR) are defined by dividing the RRs by its standard deviation, i.e.

peijkν
´1, where ν “

˜

1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

´

peijk ´ pe...

¯2
¸

1
2

, pe... “
1

IJK

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

peijk.

Up to this point, it is important to make the following comments.

Model aZIGT : Due to the range of the response variable, calculations are restricted to the
log-scale. Consequently, the RRs are the differences between the log-observed values and the
log-fitted values. For SRs, the sample mean is subtracted and divided by the sample standard
deviation. At this point, there is a problem with null counts because the corresponding
residuals are not defined. They must be omitted or an artificial value must be assigned to
logp0q. Since we are interested in zero inflation, both options are problematic. This drawback
is a strong argument against the model aZIGT (Bugallo et al., 2024c).

Model aZIGA: Calculations are performed at the original scale and both the RRs and SRs
are well defined for all domains. Values are consistent and interpretable.
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Because of the advantages and disadvantages mentioned above, we will pay more attention
to the aZIGA model, whose estimated model parameters are given in Tables 2.18 and 2.19
(bottom). The aim is to investigate whether there are unfavourable cases for the tolerance
limits set and to relate them to the megafires. Of the 5904 observations, only 18 are average
megafires, but they are particularly interesting and distort the residual plots strongly. It is
safe to say that they must be analysed separately.

Figure 2.10 plots the SRs of the model aZIGA, stressing their magnitude and colouring
average megafires in dark blue. As expected, it is challenging to accurately fit such events,
which adds great value to our research. Indeed, average megafires are more volatile and
their residuals skyrocket. Consequently, the model underpredicts them. In contrast, residuals
belonging to null observations are conveniently close to zero. In addition, the majority of the
SRs are in the interval r´3, 3s. Finally, no patterns are observed over the years.
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Figure 2.10: SRs of model aZIGA by domain, for non-zero (left) and zero (right) outcomes.
Megafires are dark blue and the size of the dots is proportional to the average burned area.

Once the week and the province have been determined and the auxiliary variables are
known, the proposed models make it possible to predict the total and average burned area in
different provinces. There are two main approaches. One is to assess the goodness-of-fit of the
model using the fit period of the data. The other is to work with hypothetical scenarios, i.e.
artificial values of the area-level auxiliary variables and simulated target values. However, it is
quite difficult to reproduce the variability of the real process, so we would have no guarantee
that the results would be close to a realistic background. For this reason, we have decided to
set aside 2015 (I “ 9) and use the available information to make retroconditions for the near
future. We have taken the actual scenario of 2015 as the forecast scenario.

Figure 2.11 shows line charts of the observed area-level values and retroconditions of the
2015 forest fires, based on the aZIGT and aZIGA models. The results have been averaged
on a provincial basis according to the territorial division of Spain shown in Figure 1.1. Thus,
what is shown is the average behaviour of the provinces over time, as a summary measure of
the three specified regions (Northwest Spain, Peninsular Center and Mediterranean Coast).
We conclude that the averaged observations and retroconditions follow similar patterns over
time. Figure 2.11 also indicates that in 2015, the month of July was, on average, the period
with the highest number of reported medium to large fires, with a decreasing trend until
the last month considered, October. We do not include a non-aggregated plot because the
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cardinality of the set of crosses between weeks and provinces clouds the interpretation.
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Figure 2.11: Spanish forest fire plug-in retroconditions for 2015 over the study weeks (from
July to October) and aggregated by the three pre-defined regions of the Iberian Peninsula.

We also provide estimates of the MSE of the plug-in predictor for the 2015 retroconditions.
For this purpose, we apply the resampling method described in Section 2.4.2 and consider both
models aZIGT and aZIGA. Figure 2.12 shows the RRMSE estimates for domains of model
aZIGT (left), model aZIGA (center) and one model against the other (right), all of them in %.
To analyse what happens, a distinction is made between zero and non-zero observations. The
model aZIGT performs worse, which is in line with the problems of fitting and handling large
outcomes already mentioned. For totals, the main quartiles are q0 “ 0.036, q0.25 “ 3.752,
q0.5 “ 10.085, q0.75 “ 25.342 and q1 “ 198.558. In contrast, the model aZIGA is much better,
with considerably lower RRMSE estimates. For averages, the main quartiles are q0 “ 0.039,
q0.25 “ 2.564, q0.5 “ 5.386, q0.75 “ 10.187 and q1 “ 70.940. As can be inferred from Figure
2.12 (right), domains with higher RRMSE estimates match for both models, although they
are higher for totals. These are either domains with no records or very small weekly and
provincial values, both in number and magnitude. This is mainly explained by the relative
nature of the RRMSE. In addition, it is difficult to fit a model when the distribution of the
data across provinces and weeks is so dissimilar. However, our results are reassuring: it is
convenient to predict better in those domains with larger average forest fires, as the severity
of the environmental problem is of much more concern.

Last but not least, we have proposed a measure of risk. The aim is to have solid evidence for
firefighting, bearing in mind that the important issue is to know whether a fire is particularly
dangerous or not, without seeking to predict exactly how many hectares it will burn. As a
starting point, bootstrap estimates of the quantiles of the predicted average burned areas,
pqijk,α, are calculated for α P t0.05, 0.15, 0.2, 0.3u, according to Section 2.4.2. We set 50 Ha
as a threshold to introduce the risk scale: medium-low if pqijk,0.30 ď 50 (ă 70%), moderate
if pqijk,0.20 ď 50 ă pqijk,0.30 (70-80%), high if pqijk,0.15 ď 50 ă pqijk,0.20 (80-85%), very high if
pqijk,0.05 ď 50 ă pqijk,0.15 (80-85%), and extreme if pqijk,0.05 ą 50 (ą 95%). The risk conditions
establish a hierarchy over the Spanish provinces, providing weekly horizon prospects.

Figure 2.13 shows the risk maps for weeks 28, 29 and 30 of 2015. For the study period,
the presence of constant provincial patterns over time is quite evident, highlighting the high
risk associated with the provinces of Galicia and Extremadura, as well as some provinces of
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Figure 2.12: RRMSE estimates of the 2015 plug-in retroconditions by domains. Domains are
defined as crossings between years, weeks and provinces.

Castilla and León. In these domains, the detection of a forest fire is an alarm signal because,
with high probability, it can grow considerably in size and, in particular, burn more than
50 Ha. On the opposite side are the provinces of the Mediterranean Coast and the whole of
Andalućıa. Thus, our results are consistent with the facts: north-western Spain is the region
most affected by the incidence and intensity of forest fires because of its large forest mass.
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Figure 2.13: Risk maps for weeks 28, 29 and 30 of year 2015. The risk scale is calculated
according to the bootstrap quantile estimation method of Section 2.4.2.

Several conclusions are drawn. The modelling of burned forest area has demonstrated the
suitability of the GA distribution to model continuous and asymmetric outcomes, and the BE
distribution to tackle the excess of zeros. Added to that, the application to real data provides
solid and convincing results for the following reasons: (1) forest fire data are strongly affected
by uncertainty and opportunism; (2) short-term (weekly) fire modelling is key to managing
resources in potentially vulnerable locations and planning future firefighting practices; (3)
easy-to-predict meteorological data have been used, which simplifies forecasting tasks; (4) the
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error inherent in the modelling of large events is conditioned by simplified representations of
the underlying physical processes.

2.4.5 R codes

As for the R codes, the GitHub repository https://github.com/mbugallo/aZIG11Fires (ac-
cessed on: November 4, 2024) contains our dataset and computer code, as well as a detailed
description of its contents. It includes a README file that provides basic instructions for
the correct execution of the available software.

https://github.com/mbugallo/aZIG11Fires




Chapter 3

Three-fold Fay-Herriot model and
prediction of segregation indexes

This chapter is self-contained and follows Bugallo et al. (2024d) as a reference point. It
describes a new statistical methodology for the small area prediction of dissimilarity indexes
of occupational segregation by sex in administrative areas and time periods. In this respect,
there is a large amount of literature on the measurement of segregation, with several indexes
in use, all of which have different properties. However, one of the most popular measures of
segregation is the Duncan Segregation Index (DSI) (Duncan and Duncan, 1955), which allows
for the assessment of differences between categories in the calculation of various socio-economic
indicators. The DSI is a measure of segregation that is applied to individuals differentiated
by a dichotomous classification variable in groups defined by sex, race, origin, religion or
culture, to name just but a few. Locations should be interpreted in a broad sense. Examples
of locations are residential areas, educational levels or occupational sectors.

The current research examines the use of the DSI to measure occupational segregation
by sex, where the group variable is sex and the location variable is the occupational sector.
This is done by comparing the percentage of men and women employed in each occupational
sector and providing a numerical value which is lower the closer the occupational distribution
is to equality. If all sectors have the same proportion of employed men and women, the DSI
is zero. Otherwise, the DSI is one and segregation reaches its maximum.

The estimation of segregation indexes has been widely studied but, to our knowledge,
little attention has been paid to the sample sizes used in the inferential processes. Recent
contributions include Salardi (2016), who examines the evolution of racial and sex segregation
in Brazilian labour markets, and Das and Kotikula (2019), who analyse the causes of gender-
based occupational segregation. As a general feature, the studies cited above assume that
the available information is fully reliable. In practice, data may come from surveys and are
therefore subject to sampling errors. On condition the data come from administrative registers
or surveys with large sample sizes, the calculation of the DSI is straightforward. When
sample sizes are small, direct estimators may be unreliable and the problem deserves further
methodological research. The main advantage of the three-fold Fay-Herriot (FH3) model over
the existing literature is that it is an area-level model with hierarchical nesting, which suits

55
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the nature of our data. Nested error regression (NER) models may also be appropriate, but
the lack of census data and administrative registers would limit their predictive power to that
of ANOVA-type models. It is highly doubtful that these models would have performed better
in predicting DSIs over small areas.

This chapter is structured as follows. Section 3.1 introduces the data, the dissimilarity
indexes and the small area problem. Section 3.2 describes the FH3 model, fitted to the pro-
portion of employed men by province, occupation and time period, and then derives EBPs and
plug-in predictors of the DSI. A parametric bootstrap algorithm is implemented to estimate
the MSE by following Marcis et al. (2023). Section 3.3 includes some simulation experiments
to investigate the performance of the DSI predictors and MSE estimators. The simulation
scenario is based on the case study. Section 3.4 deals with the application to real data. Data
from the 2020.4-2021.4 Spanish Labour Force Survey (SLFS) are used to illustrate the per-
formance of the new statistical methodology and to shed some light on the current state of
sex occupational segregation by province in Spain.

3.1 Dissimilarity indexes and 2020.4-2021.4 SLFS data

The application to real data aims to estimate sex occupational segregation by Spanish
provinces (D “ 52) and time period. Data are from T “ 5 Spanish Labour Force Surveys
(SLFS), starting in the last quarter of 2020 (SLFS2020.4) and up to the last quarter of 2021
(SLFS2021.4). The population of interest is made up of people aged 16 and over (ageě16),
with permanent residence in Spain. Respondents under 16 years of age are not considered
because they are not above the minimum age for working in Spain. The occupational sector
(OC) variable has been derived from the 2011 Spanish National Classification of Occupa-
tions (CNO2011), statistical classification published online by the Spanish National Statisti-
cal Office (INE) (https://www.ine.es/en/daco/daco42/clasificaciones/nota epa cno11 en.pdf;
accessed on: November 4, 2024). Three categories have, however, been aggregated due to the
smallness of the sample sizes and because they are roughly similar in description. The final
encoding of the occupational sector variable, with R “ 7 mutually exclusive categories, is
described in Table 3.1. The set of categories covers a wide range of occupations and provides
an accurate picture about the respondents in terms of their main occupation.

In order to calculte the DSI by province and time period, some mathematical definitions
are given below. Let Udrt be a subset (estimation domain) of the population, relative to time
period t and conformed by Ndrt employed people aged 16 or over, resident in province d and
working in sector r. Let ydrt1j be a dichotomic variable such that ydrt1j “ 1 if the individual
j of Udrt is male, and ydrt1j “ 0, otherwise. Let ydrt2j “ 1´ ydrt1j be the analogous variable
for females. The population means of these variables are

Y drt1 “
1

Ndrt

Ndrt
ÿ

j“1

ydrt1j , Y drt2 “
1

Ndrt

Ndrt
ÿ

j“1

ydrt2j , d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T.

(3.1)

https://www.ine.es/en/daco/daco42/clasificaciones/nota_epa_cno11_en.pdf
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Code Description

OC1 Directors and managers. Senior public and private figures

OC2 Scientists and intellectual technicians and professionals

OC3˚ (i) Military occupations. (ii) Technicians and support staff

OC4 Accounting, administrative and other office employees

OC5 Catering, protection and commercial staff

OC6˚ (i) Unskilled workers. (ii) Primary sector workers

OC7˚
(i) Plant and machinery operators. (ii) Craftsmen and skilled workers in
the manufacturing and construction industries.

Table 3.1: Encoding of the occupational sector (OC) variable. The .˚ means that the cate-
gories have been aggregated because they are roughly similar in description.

The Duncan Segregation Index (DSI) of province d at time period t is

Sd.t “
1

2

R
ÿ

r“1

Sdrt where Sdrt “

ˇ

ˇ

ˇ

ˇ

ˇ

NdrtY drt1
řR
i“1NditY dit1

´
NdrtY drt2

řR
i“1NditY dit2

ˇ

ˇ

ˇ

ˇ

ˇ

. (3.2)

In our research, the DSI measures how evenly (or unevenly) the population of both sexes is
distributed in each occupational sector (Bugallo et al., 2024d). Segregation is measured as the
degree to which the spatial distribution of the female group deviates from that of the male one.
As long as men and women are distributed in equal proportions in the different occupational
sectors, there is no segregation. Therefore, the DSI has a straightforward interpretation: it
corresponds to the proportion of women (or men) who would have to move to another occu-
pational sector to balance the distribution. Movements would have to occur from occupations
in which the group is overrepresented to occupations in which it is underrepresented.

In practice, the theoretical DSI values defined in (3.2) should be estimated by using SLFS
data. However, our estimation domains are not planned in the SLFS so we first investigate
whether the sample sizes are large enough to provide accurate direct estimates of the dis-
similarities Sdrt’s. For this purpose, we introduce some additional notation below. Let ndrt
and pNdir

drt be the sample size and the estimated population size (sum of the sampling weights)

of Udrt. Let n “
řD
d“1

řR
r“1

řT
t“1 ndrt be the global sample size. The estimated sampling

fractions (in %), are defined as relative sample sizes as

fdrt “ 100
ndrt
pNdir
drt

, (3.3)

and are not uniformly distributed in Udrt. The latter is shown in Table 3.2, which presents
the deciles of the sample sizes (SS) and the estimated sampling fractions (SF).

It can be observed in Table 3.2 that 20% (50%) of the Udrt’s have samples sizes smaller
than 56 (121) and that the average sample size, equal to 149, is between q0.6 “ 143 and
q0.7 “ 175, indicating that the sample size distribution is positively skewed. Furthermore,
sampling fractions allow us to know the percentage of individuals of the subsets Udrt who
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q0 q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 q1

SS 6 34 56 82 104 121 143 175 218 297 1013

SF 0.091 0.202 0.249 0.290 0.350 0.407 0.469 0.538 0.652 0.811 1.779

Table 3.2: Deciles of the sample sizes (SS) and the estimated sampling fractions (SF), in %,
for the 2020.4-2021.4 SLFS data.

actually belong to the sample. As they are all lower than 1.779, the representativeness of
the samples in the crosses is quite small. Consequently, this is a SAE problem and direct
estimators, such as the Hájek estimator, are not accurate enough. The inference problem
requires the incorporation of more sophisticated prediction methods.

Table 3.3 shows the total and the proportion of men and women in the subset of employees
by main occupation for the SLFS2021.4 data. We conclude that OC7 and, to a lesser extent,
OC1 are of particular interest for the analysis of sex occupational segregation.

Occupation sector OC1 OC2 OC3 OC4 OC5 OC6 OC7

Men Total 11,023 31,816 29,101 12,720 31,845 27,798 63,984

Proportion 0.698 0.395 0.631 0.317 0.380 0.508 0.906

Women Total 5,191 44,518 17,947 28,116 48,398 29,021 6,694

Proportion 0.302 0.605 0.369 0.683 0.620 0.492 0.094

Table 3.3: Employed men and women by occupation sector in the SLFS of 2021.4.

The Hájek estimators of Y drt1 and Y drt2 are direct estimators that are calculated by using
only data of the SLFS sample sdrt of the subset Udrt and the sampling weights wdrt’s. They
are therefore ratios between two quantities, pY dir

drtκ and pNdir
drt , given by

pY
dir

drtκ “
pY dir
drtκ

pNdir
drt

“

ř

jPsdrt
wdrtjydrtκj

ř

jPsdrt
wdrtj

, κ “ 1, 2. (3.4)

To overcome the lack of precision of the Hájek estimator, we incorporate auxiliary and
hierarchical information, and derive model-based predictors, which are the ones that drive
our research. The selected auxiliary variables are the Hájek estimates of the proportion of
individuals in Udrt that belong to the categories of the following factors:

Age group, with 3 categories: between 16 and 30 years (age3-1), between 30 and 50 years
(age3-2) and over 50 years (age3-3).

Citizenship, with 2 categories: Spanish (cit1) and not Spanish (cit2).

Education, with 4 categories: primary or less (edu1), basic secondary education (edu2),
advanced secondary education (edu3) and higher education, such as university (edu4).

Working hours, with 2 categories: full-time (work1) and part-time work (work2).
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Professional status, with 5 categories: self-employed (st1), cooperative or family business
(st2), public (st3) and private (st4) sector salaried employee and others (st5).

The set of categories of each factor is exhaustive, so the estimated proportions sum one.
Based on their socio-economic meaning, we have limited to 11 auxiliary variables defined at
the level of the Udrt subsets. We have removed age3-2, cit2, edu2, work2 and st5. First of
all, cit1 and work1 are complementary to cit2 and work2, respectively, so the selection of
the former or the latter is of little interest. As for age3-2, it represents the intermediate
category, so we consider it more informative to include the age variables that account for the
two edge groups, which to some extent also applies to edu2. Finally, we dropped st5, defined
as “others”, for being the most ambiguous variable to account for professional status.

For the sake of accuracy, we jointly use data from the last five SLFSs to estimate the
covariates for each quarter and the population sizes Ndrt used to calculate the DSI values in
(3.2). Therefore, the effects of the variances of the covariate means and population sizes in
the properties of the prediction procedure are considered negligible. This allows for an ap-
proximate 5-fold increase in available data and reduces temporal variability. As an example,
the vector of covariates for t “ 1 (SLFS2020.4) is estimated using the SLFS data from 2019.4
to 2020.4, both surveys included. In simulation experiments in Section 4.5, we empirically
verify that this does not lead to underestimating the final variability. In addition, the ele-
vation factors are the inverses of the inclusion probabilities, which are deterministic, after a
calibration process whose randomness is minimal. As a result, the population sizes estimated
as sums of elevation factors have negligible variability.

Table 3.4 compares the quartiles of the variances of the Hájek estimates of the selected
auxiliary variables with those of the response variable. All area-level variables being propor-
tions, it is safe to say that the variability of the covariates is significantly lower than that of
pY
dir

drt1 and close to zero. To provide further evidence to the previous point, the loss of precision
of model-based predictors when using area-level auxiliary variables obtained with sampling
errors will be studied. The results are reported in Section 3.3 of the simulation experiments,
where the framework is based on the application to real data performed in Section 3.4.

age3-1 age3-3 cit1 edu1 edu3 edu4 work1 st1 st2 st3 st4 pY
dir

drt1

q0.25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

q0.5 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.002

q0.75 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.002 0.004

Table 3.4: Quartiles of the variances of the Hájek estimates of the selected auxiliary variables
and the response variable. Data from the 2020.4-2021.4 SLFSs.

To take advantage of the area-level auxiliary data to refine the estimation of the propor-
tions of men and women employed in each occupational sector, and to obtain DSI predictions
by province and time period, Section 3.2 details the FH3 model-based statistical methodol-
ogy. No specific model has been used for the proportions because priority has been given
to obtaining DSI predictors from a three-fold nested model that allows the population to be
hierarchised in provinces, occupational sectors and time periods.
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3.2 Three-fold Fay-Herriot statistical methodology

The three-fold Fay-Herriot (FH3) model (Marcis et al., 2023) is defined in two steps, with

the simplified notation ydrt “
pY
dir

drt1 and µdrt “ Y drt1. The first step starts from the sampling
model, indicating that ydrt is an unbiased estimator of µdrt, i.e.

ydrt “ µdrt ` edrt, edrt „ Np0, σ2
drtq, σ

2
drt ą 0, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T,

(3.5)
where the error variances σ2

drt’s are assumed to be known.

The selection of σ2
drt is worthy of comment. In practice, we use the generalized variance

function (GVF) method (see Chapter 5 of Wolter (1985)) to calculate σ2
drt. For this purpose,

a regression model is fitted to the direct estimates of the design-based variance of ydrt, pσ
dir,2
drt ,

obtained in advance from the unit-level survey data. See e.g. Remark 2.3 in Morales et al.
(2021). Following Section 16.4 in Morales et al. (2021), we define the log-linear model

logppσdir,2drt q “ b0 ` b1ydrt ` b2ndrt ` εdrt, (3.6)

where the εdrt’s are i.i.d. Np0, σ2
Aq and σ2

A ą 0. Intuitively, b1 is expected to be positive and
b2 negative. The final σ2

drt equals the variance values predicted by the GVF model (3.6), i.e.

σ2
drt “ expppσ2

A{2q ¨ exp
`

pb0 `pb1ydrt `pb2ndrt
˘

, (3.7)

where the factor expppσ2
A{2q is the usual bias correction term in a log-linear regression analysis

to prevent underestimation. This allows for the smoothing of the direct estimates pσdir,2drt .

In a second step, a linking model is constructed assuming a hierarchical linear relationship
between µdrt and a row vector xdrt of p auxiliary variables, i.e.

µdrt “ xdrtβ ` u1,d ` u2,dr ` u3,drt, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T, (3.8)

where β “ pβ1, . . . , βpq is a p ˆ 1 row vector of model parameters, u1,d „ Np0, σ2
1q, u2,dr „

Np0, σ2
2q, u3,drt „ Np0, σ2

3q and σ2
1, σ

2
2, σ

2
3 ą 0 are the variance parameters. We further

assume independence between errors and random effects.

The FH3 model is a linear mixed model that can be expressed in the single form

ydrt “ xdrtβ ` u1,d ` u2,dr ` u3,drt ` edrt, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T. (3.9)

For θ “ pθ1, θ2, θ3q “ pσ
2
1, σ

2
2, σ

2
3q, the REML log-likelihood function is

lremlpθq “ ´
DRT ´ p

2
log 2π `

1

2
log |X 1X| ´

1

2
log |V | ´

1

2
log |X 1V ´1X| ´

1

2
y1Py,

(3.10)

where the column and diagonal operators define the vectors and matrices

X “ col
1ďdďD

`

col
1ďrďR

`

col
1ďtďT

pxdrtq
˘˘

, V e “ diag
1ďdďD

`

diag
1ďrďR

`

diag
1ďrďR

pσ2
drtq

˘˘

,

V “ σ2
1 diag

1ďdďD
p1RT11RT q ` σ

2
2 diag

1ďdďD

`

diag
1ďrďR

p1T11T q
˘

` σ2
3IDRT ` V e,

y “ col
1ďdďD

`

col
1ďrďR

`

col
1ďtďT

pydrtq
˘˘

, P “ V ´1 ´ V ´1XpX 1V ´1Xq´1X 1V ´1,
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and 1m and Im denote the mˆ 1 vector of ones and the mˆm identity matrix, respectively.
The REML estimators of the variance components, pθ1, pθ2 and pθ3, are obtained by maximizing
lremlpθq in (3.10). We apply the Fisher-Scoring algorithm with updating equation

θpk`1q “ θpkq ` F´1pθpkqqSpθpkqq, (3.11)

where S “ Spθq “ pS1, S2, S3q
1 is the score vector and F “ F pθq “ pFabqa,b“1,2,3 is the Fisher

information matrix. For a, b “ 1, 2, 3, the components of S and F are

Sa “
Blreml
Bθa

“ ´
1

2
trpPV aq `

1

2
y1PV aPy, Fab “

1

2
trpPV aPV bq,

where

V 1 “
BV

Bθ1
“ diag

1ďdďD
p1RT11RT q, V 2 “

BV

Bθ2
“ diag

1ďdďD

`

diag
1ďrďR

p1T11T q
˘

, V 3 “
BV

Bθ3
“ IDRT .

To estimate β and to predict u “ pu11,u
1
2,u

1
3q
1, where

u1 “ col
1ďdďD

pu1,dq, u2 “ col
1ďdďD

`

col
1ďrďR

pu2,drq
˘

, u3 “ col
1ďdďD

`

col
1ďrďR

`

col
1ďtďT

pu3,drtq
˘˘

,

we use the REML estimator of β and the REML-EBLUP of u , i.e.

pβ “ pX 1
pV
´1
Xq´1X 1

pV
´1
y, pu “ pV uZ

1
pV
´1

´

y ´Xpβ
¯

, (3.12)

where pV is obtained by plugging, pV u “ diagppσ2
1ID, pσ

2
2IDR, pσ

2
3IDRT q, Z “ pZ1,Z2,Z3q, and

Z1 “ diag
1ďdďD

`

1RT
˘

, Z2 “ diag
1ďdďD

`

diag
1ďrďR

p1T q
˘

, Z3 “ IDRT .

The EBLUP of µdrt is pµdrt “ xdrtpβ ` pu1,d ` pu2,dr ` pu3,drt, where pβ and pu are given in
(3.12). Consequently, each pµdrt contains area-level auxiliary information that will reduce the

variance of the Hájek estimates pY
dir

drt1 in (3.4) without needing to increase the sample sizes.

3.2.1 Small area prediction of Duncan Segregation Indexes

Below we derive several model-based predictors for the DSI indicators defined in (3.2),
assuming that ydrt follows the FH3 model (3.5)-(3.8). Let d “ 1, . . . , D, r “ 1, . . . , R, t “
1, . . . , T . First, let us define udrt “ pu1,d, u2,dr, u3,drtq

1, so that

udrt „ NKp0,V u,drtq, V u,drt “ diagpσ2
1, σ

2
2, σ

2
3q, θ “ pσ2

1, σ
2
2, σ

2
3, q

and K “ 1`R`RT . We consider the domain target parameters

Sdrt “

ˇ

ˇ

ˇ

ˇ

ˇ

Ndrtµdrt
řR
i“1Nditµdit

´
Ndrtp1´ µdrtq

řR
i“1Nditp1´ µditq

ˇ

ˇ

ˇ

ˇ

ˇ

. (3.13)
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The plug-in predictors of Sdrt and Sd.t are

pSind.t “
1

2

R
ÿ

r“1

pSindrt,
pSindrt “

ˇ

ˇ

ˇ

ˇ

ˇ

Ndrtpµdrt
řR
i“1Nditpµdit

´
Ndrtp1´ pµdrtq

řR
i“1Nditp1´ pµditq

ˇ

ˇ

ˇ

ˇ

ˇ

; (3.14)

and the marginal predictor (MP) of Sdrt is

pSmpdrt “ ErSdrt|ydrts “

ş

R3 Sdrtpudrt,βqfpydrt|udrtqfpudrtq dudrt
ş

R3 fpydrt|udrtqfpudrtq dudrt
“
Adrtpydrt,β,θq

Bdpydrt,β,θq
,

where

Adrtpydrt,β,θq “

ż

R3

Sdrtpudrt,βq exp
!

´
1

2σ2
drt

e2
drt

)

fpudrtqdudrt,

Bdpydrt,β,θq “

ż

R3

exp
!

´
1

2σ2
drt

e2
drt

)

fpudrtqdudrt

and edrt “ ydrt ´ µdrt “ ydrt ´ xdrtβ ´ u1,d ´ u2,dr ´ u3,drt.

The empirical marginal predictor (EMP) of Sdrt is pSempdrt “ Adrtpydrt, pβ, pθq{Bdpydrt, pβ, pθq.

Therefore, the following algorithm gives a Monte Carlo approximation of pSempdrt .

1. Fit the model and obtain the REML estimates of pβ and pθ.

2. For ` “ 1, . . . , L, do

(a) Draw u
p`q
1,d „ Np0, pσ2

1q, u
p`q
2,dr „ Np0, pσ2

2q, u
p`q
3,drt „ Np0, pσ2

3q, u
p`q
drt “ pu

p`q
1,d, u

p`q1
2,dr, u

p`q1
3,drtq

1

and set u
pL``q
drt “ ´u

p`q
drt.

(b) Calculate pSempdrt “
pAdrt{ pBd, where

pAdrt “
1

2L

2L
ÿ

`“1

Sdrtpu
p`q
drt,

pβq exp
!

´
e2
drt

2σ2
drt

)

, pBd “
1

2L

2L
ÿ

`“1

exp
!

´
e2
drt

2σ2
drt

)

and e
p`q
drt “ ydrt ´ xdrtpβ ´ u

p`q
1,d ´ u

p`q
2,dr ´ u

p`q
3,drt.

All in all, the EMP of Sd.t is

pSempd.t “
1

2

R
ÿ

r“1

pSempdrt .

The BP of Sdrt, pSbpdrt “ ErSdrt|ys, is also a potentially attractive alternative: theoretically
it has minimum MSE within the class of unbiased predictors. However, its computation
requires to approximate an integral in RK , with K “ 43 in the application to real data.
This is computationally intensive and is the main reason why we do not consider the EBP
approach under the proposed FH3 model to be a useful alternative for predicting the Duncan
Segregation Index in academia or in the production of public statistics.
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3.2.2 Bootstrap inference

This section presents bootstrap-based CIs for the model parameters and estimators of the
MSE of pµdrt and pSd.t P tpS

in
d.t,

pSempd.t u, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T . Let β`1 be a
component of β, `1 “ 1, . . . , p, θ`2 a component of θ, `2 “ 1, 2, 3, and α P p0, 1q. Under the
FH3 model, we adapt the parametric bootstrap procedure proposed by Marcis et al. (2023)
to calculate a p1´ αq% percentile bootstrap CI for β`1 , `1 “ 1, . . . , p, or θ`2 , `2 “ 1, 2, 3, and
estimate the MSE of pµdrt and pSd.t P tpS

in
d.t,

pSempd.t u.

The steps of our algorithm are described below.

1. Fit the FH3 model to the data pydrt,xdrtq and obtain the REML estimates of β and θ.

2. Repeat B times (b “ 1, . . . , B):

(a) For d “ 1, . . . , D, generate u
˚pbq
1,d „ Np0, pσ2

1q. Construct the vector u
˚pbq
1 “

col
1ďdďD

pu
˚pbq
1,d q.

(b) For d “ 1, . . . , D, r “ 1, . . . , R, generate u
˚pbq
2,dr „ Np0, pσ2

2q. Construct the vector

u
˚pbq
2 “ col

1ďdďD
p col
1ďrďR

pu
˚pbq
2,drqq.

(c) For d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T , generate u
˚pbq
3,drt „ Np0, pσ2

3q. Construct

the vector u
˚pbq
3 “ col

1ďdďD
p col
1ďrďR

p col
1ďtďT

pu
˚pbq
3,drtqqq.

(d) For d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T , generate e
˚pbq
drt „ Np0, σ2

drtq. Construct

the vector e˚pbq “ col
1ďdďD

p col
1ďrďR

p col
1ďtďT

pe
˚pbq
drt qqq.

(e) Calculate the bootstrap vectors

y˚pbq “ µ˚pbq ` e˚pbq, µ˚pbq “Xpβ `Z1u
˚pbq
1 `Z2u

˚pbq
2 `Z3u

˚pbq
3 .

(f) For d “ 1, . . . , D, calculate the bootstrap quantities

S
˚pbq
d.t “

1

2

R
ÿ

r“1

S
˚pbq
drt , S

˚pbq
drt “

ˇ

ˇ

ˇ

ˇ

ˇ

Ndrtµ
˚pbq
drt

řR
i“1Nditµ

˚pbq
dit

´
Ndrtp1´ µ

˚pbq
drt q

řR
i“1Nditp1´ µ

˚pbq
dit q

ˇ

ˇ

ˇ

ˇ

ˇ

.

(g) Fit the FH3 model to the bootstrap vector y˚pbq. Calculate the ML parameter

estimators pθ
˚pbq

, pβ
˚pbq

, the EBLUP pµ˚pbq, with components pµ
˚pbq
drt , and the predictors

pS
˚pbq
d.t , d “ 1, . . . , D, t “ 1, . . . , T .

3. Sort the values pβ
˚pbq
`1

or pθ
˚pbq
`2

, `1 “ 1 . . . , p, `2 “ 1, 2, 3, b “ 1, . . . , B, from smallest to

largest. They are pβ˚`1p1q ď . . . ď pβ˚`1pBq and pθ˚`2p1q ď . . . ď pθ˚`2pBq. A p1´ αq% percentile

bootstrap CI for β`1 is
`

pβ˚`1ptpα{2qBuq
, pβ˚`1ptp1´α{2qBuq

˘

. A p1 ´ αq% percentile bootstrap

CI for θ`2 is
`

pθ˚`2ptpα{2qBuq
, pθ˚`2ptp1´α{2qBuq

˘

.
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4. For d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T , we calculate the MSE estimates as

mse˚ppµdrtq “
1

B

B
ÿ

b“1

´

pµ
˚pbq
drt ´ µ

˚pbq
drt

¯2
, mse˚ppSd.tq “

1

B

B
ÿ

b“1

´

pS
˚pbq
d.t ´ S

˚pbq
d.t

¯2
. (3.15)

Remark 3.2.1. The auxiliary variables of the FH3 model must be known at domain level,
from censuses or administrative records, as they must be free of sampling errors to reduce the
variability of the small area predictions. In practice, however, this is not the norm, leading
researchers to resort to strategies that allow estimating such area-level variables with low
variability. A common technique is to use data from many consecutive surveys to increase
sample sizes in the direct estimation of the auxiliary information.

If the auxiliary variables have non-negligible sampling errors, the algorithm described
above could lead to underestimates of the actual MSE of pµdrt and pSd.t P tpS

in
d.t,

pSempd.t u. As
a solution to this potential problem, we propose to modify Step 2 (e) so as to include the
potencial non-negligible variability of xdrt. The proposed modification assumes uncorrelation
between the columns of xdrt and between xdrt and ydrt. Nonetheless, correlation relationships
are expected to be even lower.

Let us rewrite Step 2 (e) as follows:

2. (e) For d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T , k “ 1, . . . , p, generate v
˚pbq
drtk v

Np0, σ2
drtkq, where σ2

drtk is the design-based variance of the k-th component of xdrt “
pxdrt1, . . . , xdrtpq and p is the dimension of xdrt. This must be skipped for the inter-
cept. If we use Hájek estimates, σ2

drtk can be replaced by the direct estimate of the
design-based variance of xdrtk. We calculate the modified bootstrap vectors

y˚pbq “ µ˚pbq ` e˚pbq, µ˚pbq “ pX ` v˚pbqqpβ `Z1u
˚pbq
1 `Z2u

˚pbq
2 `Z3u

˚pbq
3 ,

where v˚pbq “ col
1ďdďD

p col
1ďrďR

p col
1ďtďT

pv
˚pbq
drt qqq and v

˚pbq
drt “ pv

˚pbq
drt1, . . . , v

˚pbq
drtpq P R

p.

3.3 Simulations based on the 2020.4-2021.4 SLFS data

Based on the case study, two model-based simulation experiments were performed. The
real set of area-level auxiliary variables, the variance of the direct estimator and the fitted
model, described around Table 3.8, were used to simulate the target variables. At this regard,
ydrt represents the direct estimator of the proportion of employed men in province d, occupa-

tional sector r and time period t, i.e. ydrt “
pY
dir

drt1. Simulation 1 investigates the performance
of the Fisher-Scoring algorithm (3.11) and studies the behaviour of the DSI predictors derived
in Section 3.2.1. The loss of precision of model-based predictors when using area-level auxil-
iary variables obtained with sampling errors will also be studied. Simulation 2 deals with the
MSE estimation and provides a recommendation on the number of bootstrap replicates to be
used. The behaviour of the estimators and predictors is studied under the assumption that the
fitted model is the true one. For the final FH3 model, we use xdrt1 “ intercept, xdrt2 “ cit1,
xdrt3 “ edu1, xdrt4 “ edu4, xdrt5 “ work1, xdrt6 “ st1, xdrt7 “ st2 and xdrt8 “ st4. As
mentioned above, the estimates of the model parameters are shown in Table 3.8 of Section
3.4, devoted to the application to real data.
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3.3.1 Simulation 1

The goal of Simulation 1 is to investigate the behaviour of the fitting algorithm and the
performance of the predictors of Sdrt and Sd.t, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T . We
run Simulation 1 with I “ 103 iterations. For a model parameter pτ “ pβk, k “ 1, . . . , 8 or
pτ “ σ2

l , l “ 1, 2, 3, we calculate

BIASppτq “
1

I

I
ÿ

i“1

ppτ piq ´ τq, RMSEppτq “

ˆ

1

I

I
ÿ

i“1

ppτ piq ´ τq2
˙1{2

,

and for a predictor pSd.t P tpS
in
d.t,

pSempd.t u, d “ 1, . . . , D, t “ 1, . . . , T , we calculate

ABIAS “
1

DT

D
ÿ

d“1

T
ÿ

t“1

ˇ

ˇ

ˇ

1

I

I
ÿ

i“1

ppS
piq
d.t ´ S

piq
d.tq

ˇ

ˇ

ˇ
, RMSE “

1

DT

D
ÿ

d“1

T
ÿ

t“1

ˆ

1

I

I
ÿ

i“1

ppS
piq
d.t ´ S

piq
d.tq

2

˙1{2

.

The corresponding relative performance measures (in %) are

RBIASppτq “ 100
BIASppτq

τ
, RRMSEppτq “ 100

RMSEppτq

τ
,

RBIASdt “ 100
BIASdt
Sd.t

, RRMSEdt “ 100
RMSEdt
Sd.t

, Sd.t “
1

I

I
ÿ

i“1

S
piq
d.t,

ARBIAS “
1

DT

D
ÿ

d“1

T
ÿ

t“1

|RBIASdt|, RRMSE “
1

DT

D
ÿ

d“1

T
ÿ

t“1

RRMSEdt.

An analysis of Table 3.5 (top) illustrates that, for the β coefficients, the biases are small but
the root-MSEs (RMSE) are not so small, implying that the variance is the main component of
the MSE. Such variability is probably attributable to the relationship between the number of
estimation domains and the number of model parameters, DRT {p8`3q “ 165.45, which is not
large enough to activate the asymptotic properties of the ML estimators. For the estimators
of the variances, the RBIAS is small and the RRMSE does not present notably large values
either, with the worst result being the one corresponding to pσ2

1.

Table 3.6 (left) provides the absolute and relative performance measures for the EMPs
and the plug-in predictors of the DSI values. We use L “ 500 iterations in the integral
approximation performed when calculating the EMPs. For the plug-in predictor, the average
across DSI-domains of the absolute relative bias (ARBIAS) is close to 11% and the average
RRMSE does not exceed 28%, which is quite satisfactory. Incidentally, we use the plug-
in predictor in the application to real data in Section 3.4. In the case of the EMP, the
ARBIAS is greater than 56% and the RRMSE is close to 80%. The EMP is not obtained
exactly, only approximately, because the integrals that appear in its expression cannot be
calculated analytically. It should be pointed out that approximations are generated by the
antithetic Monte Carlo method and calculations are subject to the number of iterations, partly
justifying its poor results. Moreover, good theoretical properties are attributed to the BP,
not to marginal or empirical versions.
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β1 β2 β3 β4 β5 β6 β7 β8 σ2
1 σ2

2 σ2
3

Estimate -0.327 0.142 0.089 -0.304 0.889 0.205 0.620 0.135 0.012 0.002 0.001

BIAS -0.001 0.000 0.001 -0.001 0.001 0.000 0.014 0.000 0.000 0.000 0.000

RMSE 0.044 0.018 0.038 0.019 0.034 0.029 0.186 0.021 0.002 0.000 0.000

RBIAS -0.387 -0.305 1.500 -0.209 0.157 -0.129 2.230 -0.166 -0.008 0.165 -0.024

RRMSE 13.346 12.681 42.924 6.216 3.836 14.228 29.992 15.423 20.792 10.701 11.360

β1 β2 β3 β4 β5 β6 β7 β8 σ2
1 σ2

2 σ2
3

Estimate -0.327 0.142 0.089 -0.304 0.889 0.205 0.620 0.135 0.012 0.002 0.001

BIAS -0.002 0.001 0.004 0.002 0.000 0.001 0.001 0.001 0.000 0.000 0.000

RMSE 0.042 0.019 0.039 0.018 0.035 0.028 0.194 0.020 0.002 0.000 0.000

RBIAS -0.450 0.594 4.609 0.537 -0.019 0.371 0.147 0.430 -0.066 -0.296 0.020

RRMSE 12.933 13.378 43.129 5.956 3.883 13.583 31.248 15.139 20.358 10.661 11.594

Table 3.5: Performance of REML estimators of β and θ under the assumption that the aux-
iliary variables are deterministic (top) and taking into account the sampling errors (bottom).

plug-in EMP plug-in EMP

ABIAS 0.051 0.324 0.050 0.342

RMSE 0.100 0.349 0.100 0.350

ARBIAS 11.186 56.484 11.730 57.284

RRMSE 27.659 79.371 27.955 78.634

Table 3.6: Performance of predictors of Sd.t under the assumption that the auxiliary variables
are deterministic (left) and taking into account the sampling errors (right).

Up to this point, we have assumed that the area-level auxiliary variables are deterministic.
This assumption leads to the results in Table 3.5 (top) and Table 3.6 (left). As mentioned in
Remark 3.2.1, if the auxiliary data does not come from censuses or administrative registers, but
from estimates, it is potentially likely to add more variability to the small area predictions. For
this reason, we have also considered in the real data simulations the scenario in which the area-
level auxiliary variables have non-negligible sampling errors. For each iteration i “ 1, . . . , I,
the new area-level auxiliary variables are generated as follows:

X ` v˚piq, where v˚piq “ col
1ďdďD

p col
1ďrďR

p col
1ďtďT

pv
˚piq
drt qqq, v

˚piq
drt “ pv

˚piq
drt1, . . . , v

˚pbq
drtpq P R

p, (3.16)

v
˚piq
drtk v Np0, σ2

drtkq, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T , k “ 1, . . . , p, and σ2
drtk is the

design-based variance of the k-th component of xdrt “ pxdrt1, . . . , xdrtpq.

Table 3.5 (bottom) shows the results for the model parameter estimators under scenario
(3.16). So as to compare the differences between the two scenarios (the deterministic scenario
and scenario (3.16)), the error measures must be interpreted in absolute terms to avoid small
variations caused by changes in the denominators when relativizing. Having said that, it is
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concluded that there is virtually no change in the performance of the Fisher-Scoring algorithm

when the random terms v
˚piq
drtk’s are added. This is another argument in favour of our method-

ology. In addition, and as can be seen in Table 3.6 (right), generating the area-level auxiliary
variables according to scenario (3.16) leads to virtually no changes in the performance mea-
sures of the predictors Sd.t’s. This justifies that the variability added by estimating them with
five consecutive periods of the SLFS is minimal. In light of the above, we conclude that it is
not necessary to propose a measurement error model for the problem at hand, i.e. the small
area prediction of DSIs by province and time period.

3.3.2 Simulation 2

Simulation 2 studies the behaviour of the parametric bootstrap estimator of the MSE of
the plug-in predictor of pSind.t, denoted by msedt, d “ 1, . . . , D, t “ 1, . . . , T . The real MSE

of pSind.t is taken from Simulation 1 and denoted by MSEdt. It is assumed that the area-level
auxiliary variables are deterministic. As this simulation is more computationally-demanding,
we run Simulation 2 with I “ 500 iterations. Moreover, as absolute measures are more difficult
to interpret, we focus our study on relative measures.

For d “ 1, . . . , D, t “ 1, . . . , T , we calculate

Bdt “
1

I

I
ÿ

i“1

´

mse
˚piq
dt ´MSEdt

¯

, REdt “

ˆ

1

I

I
ÿ

i“1

´

mse
˚piq
dt ´MSEdt

¯2
˙1{2

,

Then we define the relative performance measures (in %)

RBdt “ 100
Bdt

MSEdt
, RREdt “ 100

REd
MSEdt

, d “ 1, . . . , D, t “ 1, . . . , T ;

ARB “
1

DT

D
ÿ

d“1

T
ÿ

t“1

|RBdt|, RRE “
1

DT

D
ÿ

d“1

T
ÿ

t“1

RREdt.

Figure 3.1 plots five boxplots of the relative biases (left), RBdt, and the relative root-MSEs
(right), RREdt, d “ 1, . . . , D, t “ 1, . . . , T , for B “ 50, 100, 150, 200, 300, 400.
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Figure 3.1: Study of the parametric bootstrap estimator of the MSE of pSind.t. Boxplots of
RBdt’s (left) and RREdt’s (right) for B “ 50, 100, 150, 200, 300, 400.
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The left boxplots show that the relative biases do not decrease as the size of B increases,
showing a slight positive bias around 1.2%. The right boxplots show that the relative root-
MSEs are lower than 20% and decrease as B increases, achieving good results for values
greater than or equal to 300 resamples. Table 3.7 confirms it, with the average of the absolute
relative biases (ARB) stabilized around 1.2% and the average of the relative root-MSEs (RRE)
decreasing as B increases, but suggesting some stabilization around B “ 300 iterations.

B 50 100 150 200 300 400

ARB 1.229 0.963 1.163 1.107 1.180 1.121

RRE 9.506 6.933 7.185 6.507 5.624 4.830

Table 3.7: Study of the parametric bootstrap estimator of the MSE of pSind.t. Average relative
performance measures for B “ 50, 100, 150, 200, 300, 400.

3.4 Application to the 2020.4-2021.4 SLFS data

3.4.1 Model fitting and validation

In this section we apply the FH3 model-based statistical methodology described in Section
3.2 to the SLFS 2020.4-2021.4 data. Although we fit the FH3 model to all data, we focus
mainly on the results of the last quarter (SLFS2021.4) to draw conclusions. The main reason
is the temporal proximity, which allows us to analyse results closer to the present day, but
also to assess brevity. To fit the FH3 model to each ydrt, we recursively removed those
auxiliary variables that are not significant at 5%. Specifically, age3-1, age3-3, edu3 and st3
were eliminated. For the final FH3 model, we use xdrt1 “ intercept, xdrt2 “ cit1, xdrt3 “ edu1,
xdrt4 “ edu4, xdrt5 “ work1, xdrt6 “ st1, xdrt7 “ st2 and xdrt8 “ st4. The failure to consider
age groups suggests that sex segregation is persistent over time, despite the age of the worker.
At this regard, the conclusions are subject to the available information and, therefore, with
other territorial divisions, occupational sectors or time periods, the final set of auxiliary
variables may vary. Table 3.8 presents the REML estimates of β and the p-values to test
H0 : βk “ 0, k “ 1, . . . , 8. It also includes the lower (LB) and upper (UB) bounds of the
normal-asymptotic and bootstrap-percentile CIs at the 95% confidence level, being the latter
discussed in Section 3.2.2.

β1 β2 β3 β4 β5 β6 β7 β8

Estimate -0.327 0.142 0.089 -0.304 0.889 0.205 0.620 0.135

p-value 0.000 0.000 0.020 0.000 0.000 0.000 0.001 0.000

Asymp LB 95% -0.414 0.105 0.014 -0.340 0.820 0.156 0.243 0.095

UB 95% -0.241 0.180 0.165 -0.269 0.957 0.260 0.998 0.175

Boot LB 95% -0.550 0.126 0.246 -0.406 0.704 0.067 0.818 0.052

UB 95% -0.117 0.413 0.426 -0.206 1.069 0.343 2.095 0.315

Table 3.8: Model parameters of the final FH3 model for the SLFS 2020.4-2021.4 data.
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The effect of the auxiliary variables derived from Table 3.8 is consistent with a socio-
economic interpretation. Once the rest of the variables are fixed, their sign indicates their
contribution (positive or negative) to estimate the proportion of employed men by estimation
domain. Regarding the model variances, we obtain pσ2

1 “ 0.012, pσ2
2 “ 0.002 and pσ2

3 “ 0.001.
At the 95% confidence level, the asymptotic CIs for the variances are

CIasymp
σ2
1

“ p0.007, 0.016q, CIasymp
σ2
2

“ p0.002, 0.003q, CIasymp
σ2
3

“ p0.001, 0.001q;

and the respetive bootstrap-percentile CIs are

CIbootσ2
1
“ p0.002, 0.004q, CIbootσ2

2
“ p0.001, 0.003q, CIbootσ2

3
“ p0.001, 0.002q.

As they do not contain zero, it is justified to make further inferences based on the FH3 model.
Moreover, the similarity between asymptotic-normal and bootstrap-percentile CIs indicates
that both distributions are close, which is a reassuring finding.

For the diagnosis of the FH3 model, we consider the raw residuals (RR), defined by

pedrt “ ydrt ´ pµdrt, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T,

and the standardized residuals (SR), defined by dividing by the standard deviation, i.e.

pedrtν
´1, where ν “

˜

1

DRT

D
ÿ

d“1

T
ÿ

r“1

T
ÿ

t“1

´

pedrt ´ pe...

¯2
¸

1
2

, pe... “
1

DRT

D
ÿ

d“1

R
ÿ

r“1

T
ÿ

t“1

pedrt.

To detect outliers, three boxplots are shown in Figure 3.2. From left to right, the SRs
are grouped by time period, province and main occupation. The last two boxplots use only
data from the 2021.4 SLFS. We observe that: (1) the SRs present a homogeneous pattern
over time periods, (2) the provinces have a more pronounced influence, although none of them
shows particularly anomalous behaviour, and (3) the Hájek estimates tend to overestimate
occupational categories OC1, OC2, OC3 and OC7 because their boxes fall mostly in the
positive half-plane. Another important result that can be inferred is the adequacy of the SRs
in terms of rank: they take values from -3 to 2, with a single outlier, located in Melilla.
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Figure 3.2: Boxplot of the SRs of the final FH3 model the SLFS 2020.4-2021.4 data by time
period (left), province (center) and main occupation (right).
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3.4.2 Prediction, error measures and maps

The aim now is to predict proportions of men who are employed in each occupational sector
and, eventually, sex occupational segregation across provinces and time periods. Figure 3.3
(left) plots the EBLUPs and the Hájek direct estimates of the proportion of employed men in
the last quarter of 2021. The dotted line y “ 0.5 is included to compare the distance between
both approaches and the balanced distribution of the population. As desired, it can be seen
that model-based predictions smooth the behaviour of the Hájek estimates, with atypically
high and low proportions, and show a better predictive performance. It is observed that the
EBLUPs and the direct estimates follow the same trend, although the first ones are closer
to y “ 0.5. Figure 3.3 (right) includes some boxplots of the EBLUPs and the Hájek direct
estimates of the proportion of employed men, for each occupational sector and the lastest
time period SLFS2021.4. The boxes of the EBLUPs and the direct estimates follow the same
pattern, although they are not completely identical.
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Figure 3.3: Line charts (left) and boxplots (right) of EBLUPs and Hájek estimates of the
proportion of employed men. Data from the SLFS of 2021.4.

To make a fair comparison of the relative error measures, we estimate the RRMSE of pµdrt
by dividing the squared root of the bootstrap estimate mse˚ppµdrtq, defined in (3.15), by the
Hájek estimate ydrt. Next, we run the bootstrap algorithm with B “ 2000 resamples, taking
into account Remark 3.2.1, and estimate the RRMSE of the EBLUP as follows:

RRMSEppµdrtq “

a

mse˚ppµdrtq

ydrt
, d “ 1, . . . , D, r “ 1, . . . , R, t “ 1, . . . , T. (3.17)

Table 3.9 contains the deciles of the model-based estimates of the RRMSEs of the EBLUP
proportions of employed men and CVs of the Hájek estimator for the 2021.4 SLFS data. It
is obtained that the deciles of the CVs prior to the median are lower, as they correspond to
estimation domains with higher sample sizes, where direct estimates report reliable results.
However, after the median, the CVs have higher deciles than those of the RRMSEs of the
EBLUP. The reason, again, is the sample size.

Since the sample sizes are highly variable in our estimation domains for the SLFS data,
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q0 q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 q1

ndrt 6 30 57 81 101 118 142 172 211 294 956

RRMSE 0.027 0.047 0.066 0.078 0.088 0.097 0.108 0.129 0.150 0.187 0.315

CV 0.000 0.029 0.063 0.077 0.088 0.099 0.113 0.127 0.153 0.187 0.373

Table 3.9: Deciles of sample sizes, RRMSEs of the EBLUP proportions of employed men and
CVs of the Hájek estimator. Data from the SLFS of 2021.4.

it is advisable to use model-based predictors instead of direct estimators. Under the model-
based approach, the EBLUP also has some theoretical good properties, such as asymptotic
unbiasedness. Overall, the proposed model performs satisfactorily, both in terms of the signifi-
cance level of the estimated parameters and in the reduction of the CVs of the Hájek estimator
when the sample sizes are small. On balance, its use to calculate plug-in predictions of the
DSI by province from 2020.4 to 2021.4 is justified.

Table 3.10 presents the provincial averages of the DSI plug-in predictions for t “ 5, i.e.

pSin.r5 “
1

D

D
ÿ

d“1

pSindr5, r “ 1, . . . , R. (3.18)

Among the main occupations with highest DSI plug-in predictions, OC2 and OC7 stand
out. Therefore, sex occupational segregation is concentrated in two main groups: high-skilled
scientific and intellectual jobs and traditionally manual or low-skilled jobs (Figure 3.4).

OC1 OC2 OC3 OC4

pSin.r5 0.011 0.131 0.019 0.036

OC5 OC6 OC7 AC

pSin.r5 0.040 0.040 0.160 0.060

Table 3.10: For 2021.4, DSI plug-in pre-
dictions and mean value of the so-called
average contributions (AC), given by

sdt “
1

R

R
ÿ

r“1

Sdrt, d “ 1, ..., D, t “ 1, ..., T.
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Figure 3.4: Unbalanced occupations and
average contributions (AC) by province.

The problem of inclusion and equal opportunities particularly affects the lowest and most
precarious occupational categories, and the highest positions of professor, manager, director
or equivalent. Moreover, this gap not only has an immediate effect on women’s labour con-
ditions, but also on their career progression, as it is a process of continuous training and
promotion. In contrast, directors and managers of public and private institutions and, in
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general, accountants, administrative and other office employees work in less sex-segregated
jobs. Intuitively, sex segregation is expected to be less evident in the public sector, where
placement is theoretically based on objective merit criteria. However, multiple studies have
shown that public institutions, such as universities, are not exempt from these problems either
(Massó et al., 2021). Nevertheless, the average measures presented here mask the provincial
variability of sex occupational segregation.

Figure 3.5 (left) colours Spain according to the DSI predictions for the fourth quarter
of 2021. It therefore allows us to analyse how sex segregation differs across provinces. We
observe that the largest discrepancies are found in Teruel, Albacete and Álava, among others.
Indeed, between 30 and 35% of the employed population of Teruel would have to change their
occupational sector to achieve a uniform distribution by province. The cause of the high sex
segregation in Álava is owing to the mining industry. Historically, male labour has always been
more predominant in this sector, including plant and machinery operators and assemblers,
as well as the construction and mining industries. In the other highlighted provinces, sex
segregation mainly occurs in the category OC2, which covers highly skilled scientific and
intellectual jobs. Research claims that there is a sex gap that persists despite advances in the
inclusion of women in the labour market in recent years and that is related to the unequal
sharing of family responsabilities and the stigmas still present in modern societies.
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Figure 3.5: DSI predictions (left) and RRMSEs (center) for the SLFS of 2021.4, and evolution
of the DSI predictions over the horizon 2020.4-2021.4 (right).

There is no clear spatial pattern in the sense that it is not possible to say that certain
larger regions of the Iberian Peninsula are more prone to sex segregation than others. However,
the distribution among provinces with similar demographic and socio-economic conditions is,
in general, homogeneous. In terms of labour equality, the high predicted values for many
provinces reveal the magnitude of the problem: the labour market disadvantages women
and the occupational distribution is clearly non-homogeneous. According to our research,
public and private institutions should implement measures of work equality and promote the
inclusion of men and women in those sectors in which their presence is minority.

As for the error measures, we calculate the parametric bootstrap estimator of pSind.t, mse
˚ppSind.tq,

given by (3.15). We generate B “ 2000 bootstrap resamples, taking into account Remark
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3.2.1. The RRMSE of pSind.t is obtained by dividing the RMSE by the DSI estimates, i.e.

RRMSEppSind.tq “

b

mse˚ppSind.tq

pSind.t
, d “ 1, . . . , D, t “ 1, . . . , T. (3.19)

Figure 3.5 (center) shows the bootstrap estimates of the RRMSE for the DSI predictions,
which enables us to visually quantify the precision of our results. It can be concluded that
most provinces are accompanied by RRMSEs below 25%, which is quite acceptable in the
SAE setup. Most RRMSEs are lower than 20% and even 10% in several domains.

Taking advantage of the available temporal information, Figure 3.5 (right) maps the DSI
differences between the last quarter of 2020 and the last quarter of 2021, i.e. pSind.5 ´

pSind.1,
d “ 1, . . . , D. We have observed that segregation shows appreciable changes over the obser-
vation period, with a maximum decrease close to 7 percentage units and a maximum increase
bordering on 10 percentage. However, several provinces in the center of Spain do not seem
to be affected by any change. In absolute terms, the situation has worsened in 17 provinces,
improved in 7 and remained stable in 26 (between ´0.01 and 0.01). In Madrid and Barcelona,
which are the most populated regions, no significant changes have been predicted.

Even so, the changes observed over 2021 do not refer to a sufficiently long period of time
to capture the results of potentially applicable policy decisions, and therefore they are not
statistically significant (Bugallo et al., 2024d). But in spite of this, our model-based method-
ology provides relevant advances in the study of the temporal evolution of sex segregation in
SAE situations. Consequently, the proposed approach could be applied in other studies with
data from longer time periods, such as years or decades.

3.5 R codes

As for the R codes, the GitHub repository https://github.com/small-area-estimation/
FH3DUNCAN (accessed on: November 4, 2024) contains our dataset and computer code,
as well as a detailed description of its contents. It includes a README file that provides
basic instructions for the correct execution of the available software.

https://github.com/small-area-estimation/FH3DUNCAN
https://github.com/small-area-estimation/FH3DUNCAN




Chapter 4

Unit-level multinomial mixed models and
prediction of labour indicators

This chapter is self-contained and follows Bugallo et al. (2024a) as a reference point. It de-
scribes a new statistical methodology for the small area prediction of labour indicators under
unit-level multinomial logit mixed models. Namely, the proportion of employed, unemployed
and inactive people, and of unemployment rates. The novel empirical best and plug-in pre-
dictors are based on a multinomial mixed model for a trivariate response vector, and fitted to
unit-level data. Model parameters are estimated by ML and MSEs by parametric bootstrap,
following Hall and Maiti (2006) and González-Manteiga et al. (2008, 2010).

The first point is to motivate the applicability that guides this research. It stands to reason
that unemployment is a cause of social instability that affects a country’s economy and social
welfare. The effects of unemployment can be economic, such as a decline in real productivity,
a fall in demand or an increase in the public deficit. But it can also have social consequences,
as psychological or discriminatory. The same applies to inactivity proportions, covering all
citizens over the age of 16 who are neither employed nor unemployed. On this basis, accurate
information is sought to monitor these problems so as to be able to take decisions aimed at
reducing them. As a matter of fact, governments are interested in mapping labour indicators
at a sufficient level of detail. This could be of great help in assessing the level of development
and progress of a country and can be applied sequentially over time.

Our research deals with vector data that has a one-in-one component and zeros in the
rest. That is, a one in the k-th component of the vector specifies that the respondent belongs
to the k-th category of the employment status variable. Given that the employment status
has three categories in the population residing in Spain, aged 16 and over, the response vector
has the components k “ 1 for employed and k “ 2 for unemployed. Inactive category (k “ 3)
is complementary. The compositional models by Esteban et al. (2023) are not applicable to
this type of data due to the amount of zeros. An alternative is the unit-level multinomial
logit mixed model with a size parameter equal to one, in what follows called multi-BE model.
It should be stressed that the estimation, inference and prediction in these models presents
specific difficulties that are mitigated in the case of multinomial logit models with large size
parameters. In multi-BE models, the approximation to the normal distribution cannot be
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used. PQL estimators (Breslow and Clayton, 1993) might not be consistent, so it is high time
to calculate ML estimators. Accordingly, we develop two specific algorithms to maximise
the model log-likelihood, calculate ML estimators of the model parameters and predict the
random effects.

The chapter is structured as follows. Section 4.1 presents the data and the SAE problem.
Section 4.2 introduces the unit-level multinomial mixed model and the fitting algorithms.
Section 4.2.1 describes the H-cubature algorithm and Section 4.2.2 describes the Laplace al-
gorithm. Section 4.3 presents several model-based and population-based predictors. Section
4.4 develops bootstrap estimators of their MSEs. Section 4.5 contains simulation experiments
to investigate the behavior of the two fitting algorithms, the predictors and the MSE estima-
tors. Section 4.6 deals with the application to real data and the mapping of labour indicators.
Data are from the first Spanish Labour Force Survey (SLFS) of 2021 to map labour indicators
by province, sex and age group.

Supplementary Material, available online at Journal of the Royal Statistical Society: Series
A1, contains additional content, structured into 5 sections. Section A develops the theory of
the more general unit-level multinomial logit mixed model for a target vector with q ě 3
components. Section B sets out the mathematical background of the proposed predictors in
a more general context, without imposing restrictions on the unit-level auxiliary information.
Section C presents algorithms to calculate the bootstrap MSE estimators. Section D describes
the steps of the simulations and contains further results. Section E plots additional maps for
the application to real data.

4.1 Labour indicators and 2021.1 SLFS data

The application to real data aims at estimating labour indicators by Spanish province,
sex (sex 1: men, sex2: women) and age group (age1: between 16 and 45 years; age2: between
46 and 55 years; age3: between 56 and 64 years; age4: 65 years or older). Data are from
the Spanish Labour Force Survey (SLFS) of the first quarter of 2021 (SLFS2021.1), which
covers about 58,000 dwellings, corresponding to 140,000 people. The population of interest,
U , is made up of people aged 16 and over (ageě16), with permanent residence in Spain.
Respondents under the age of 16 are not taken into account, as they are below the minimum
working-age in Spain. This reduces the size of the survey file to approximately 122,000
working-age respondents.

There are D “ 52 ¨ 2 “ 104 domains, Ud Ă U , defined by the crosses of province and sex,
and S “ 52 ¨ 2 ¨ 4 “ 416 subdomains, Ud,t Ă Ud, defined by the crosses of province, sex and
age group, respectively. The population U of size N is hierarchically partitioned in domains
U “

ŤD
d“1 Ud and subdomains Ud “

Ť4
t“1 Ud,t, d “ 1, . . . , D. The total number of people in a

domain Ud and a subdomain Ud,t are Nd and Nd,t respectively, which only contain individuals
aged 16 and over. The sizes Nd and Nd,t are taken from the population projections published
by the Spanish National Statistical Office (INE), and are the official sizes of the domains
and subdomains. For n “ 122,000 working-age respondents, it is expected an average of

1http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnae033; accessed on: November 4,
2024.

http://academic.oup.com/jrsssa/article-lookup/doi/10.1093/jrsssa/qnae033
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n{D “ 1173 and n{S “ 293 respondents per domain and subdomain, respectively.

Going deeper into the issue of the sizes nd and nd,t of the samples sd and sd,t, the estimated
sampling fractions are

fd “ 100
nd
pNd

, fd,t “ 100
nd,t
pNd,t

, pNd “
ÿ

jPsd

wdj , pNd,t “
ÿ

jPsd,t

wdj , (4.1)

where pNd and pNd,t are the estimated domain and subdomain sizes and wdj is the elevation
factor of the j-th individual of sd or sd,t, d “ 1, . . . , D, t “ 1, . . . , 4.

Table 4.1 presents the deciles of the sample sizes (SS) and the estimated sampling fractions
(SF) for subdomains (top) and domains (bottom). At the domain level, the sample sizes are
all greater than 179, which appears to be large enough to obtain sufficiently accurate direct
estimates. However, we observe that 20% (40%) of the subdomain sample sizes are lower than
106 (178) and the average sample size 293 is between q0.6 “ 266 and q0.7 “ 314, which suggests
that the sample size distribution is positively skewed. Added to that, sampling fractions allow
us to know the percentage of individuals from domains or subdomains that actually belong to
the sample. As they are all lower than 1.804 (in %), the representativeness of the samples is
low. Since sample sizes and sampling fractions are small in many subdomains, mapping labour
indicators using direct estimators is not sufficiently accurate. This motivates the incorporation
of model-based predictors using SAE methods.

q0 q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 q1

Subdomain SS 11 74 106 138 178 222 266 314 454 576 1821

SF 0.112 0.220 0.273 0.331 0.398 0.449 0.512 0.625 0.725 0.923 1.804

Domain SS 179 555 611 660 959 1046 1169 1248 1451 2227 3916

SF 0.126 0.219 0.277 0.311 0.370 0.434 0.494 0.577 0.679 0.860 1.501

Table 4.1: Deciles of the sample sizes (SS) and the estimated sampling fractions (SF), in %,
for subdomains (top) and domains (bottom) in the SLFS2021.4.

The binary target variables, ydj1, ydj2 and ydj3, are equal to 1 if individual j of domain d
is employed, unemployed, and inactive, respectively, and are equal to 0 otherwise. Table 4.2
provides an overview of the distribution of the respondents according to their employment
status, sex and age group. We observe that active population is mostly concentrated in the
first two age groups, with inactivity proportions increasing from the age of 56 onwards, with
a very notable jump at the age of 65 (retirement age). The latter justifies why the total
number of employed and unemployed respondents decreases with age group. In addition,
unemployment and inactivity are more common among female respondents, regardless of the
age group they belong to.

The domain and subdomain labour indicators of interest are the proportions of employed,
unemployed and inactive people and the corresponding unemployment rates, i.e.

Y dk “
1

Nd

ÿ

jPUd

ydjk, Y dk,t “
1

Nd,t

ÿ

jPUd,t

ydjk, k “ 1, 2, 3; d “ 1, . . . , D, t “ 1, . . . , 4, (4.2)
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age4 men women men women men women men women

1 27038 27555 17399 15699 3058 3690 6581 8166

2 11352 12232 8724 7540 1003 1285 1625 3407

3 5095 5597 2447 2155 339 276 2309 3166

4 14655 18560 495 360 16 23 14144 18177

respondents employed unemployed inactive

Table 4.2: From left to right, number of respondents by employment status, sex (columns)
and age group (rows) in the SLFS2021.1.

and

Rd “
Y d2

Y d1 ` Y d2

, Rd,t “
Y d2,t

Y d1,t ` Y d2,t

, d “ 1, . . . , D, t “ 1, . . . , 4. (4.3)

The quantities (4.2) and (4.3) can be estimated using direct estimators, that is, relying
only on data from sample units in the domain and subdomain of interest, respectively. The
Hájek estimators of Y dk and Y dk,t are

pY
dir

dk “

ř

jPsd
wdjydjk

ř

jPsd
wdj

, pY
dir

dk,t “

ř

jPsd,t
wdjydjk

ř

jPsd,t
wdj

, k “ 1, 2, 3; d “ 1, . . . , D, t “ 1, . . . , 4, (4.4)

and the Hájek estimators of Rd and Rd,t are

pRdird “

pY
dir

d2

pY
dir

d1 `
pY
dir

d2

, pRdird,t “
pY
dir

d2,t

pY
in

d1,t `
pY
dir

d2,t

, d “ 1, . . . , D, t “ 1, . . . , 4. (4.5)

4.2 Unit-level multinomial logit mixed model

Let ydjk be the indicator variable of the labour status k for individual j of domain d.
That is, ydjk “ 1 if individual j of domain d is in labour status k, ydjk “ 0 otherwise, and

ydj1` ydj2` ydj3 “ 1, d “ 1, . . . , D, j “ 1, . . . , nd. Let n “
řD
d“1 nd be the global sample size.

For k “ 1, 2, let xdjk “ pxdjk1, . . . , xdjkpkq be a row vector containing pk auxiliary variables
and let βk “ pβk1, . . . , βkpkq

1 be a column vector of size pk containing the model parameters,
with p “ p1 ` p2. For d “ 1, . . . , D, k “ 1, 2, let us consider independent random effects
udk „ Np0, 1q. The domain random effects are ud “ pud1, ud2q

1 „ Np0, I2q, d “ 1, . . . , D,
where Im denotes the mˆm identity matrix, and u “ col

1ďdďD
pudq „ Np0, I2Dq.

The probability density function (p.d.f.) of u is

fpuq “
D
ź

d“1

fpudq “
D
ź

d“1

2
ź

k“1

fpudkq “ p2πq
´D exp

"

´
1

2
u1u

*

.

The unit-level multinomial logit mixed model, with independent domain-category random
effects, assumes that the distribution of the target vector ydj “ pydj1, ydj2q

1, conditioned to
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the random vector ud, is multinomial with size parameter equal to one, i.e.,

ydj |ud „Mp1; pdj1, pdj2q, d “ 1, . . . , D, j “ 1, . . . , nd, (4.6)

with the logit link for the natural parameter, i.e.

ηdjk “ log
pdjk
pdj3

“ xdjkβk ` φkudk, d “ 1, . . . , D, j “ 1, . . . , nd, k “ 1, 2, (4.7)

where pdj1 ` pdj2 ` pdj3 “ 1, pdjk ą 0, φk ą 0, d “ 1, . . . , D, j “ 1, . . . , nd, k “ 1, 2, 3.
Here the multinomial distribution is denoted by the letter M. Finally, the model assumes
that the vectors ydj ’s are independent conditioned to u. The vector of model parameters is
θ “ pβ1, φ1q1, where β “ pβ11, β

1
2q
1 and φ “ pφ1, φ2q

1. The model formula (4.7) has random
intercepts vdk “ φkudk „ Np0, φ2

kq, d “ 1, . . . , D, k “ 1, 2.

For d “ 1, . . . , D, j “ 1, . . . , nd, the conditioned probability of ydj , given u, is

Pθpydj |uq “ Pθpydj |udq “ p
ydj1
dj1 p

ydj2
dj2 p

ydj3
dj3 ,

where

pdj3 “
1

1` exptηdj1u ` exptηdj2u
, pdjk “

exptηdjku

1` exptηdj1u ` exptηdj2u
, k “ 1, 2.

The vectors of dimensions 2nd ˆ 1 and 2nˆ 1 that contain the values of the target variables
are yd “ col

1ďjďnd
pydjq and y “ col

1ďdďD
pydq, respectively. The model likelihood is

Pθpyq “

ż

R2D

Pθpy|uqfpuq du, Pθpy|uq “
D
ź

d“1

nd
ź

j“1

P pydj |uq. (4.8)

The ML parameter estimator pθ maximizes the log-likelihood function `pθ; yq “ logPθpyq.
Since the objective function is a multidimensional integral, we present two maximization
approaches that combine approximation and optimization algorithms. In doing so, the aim is
to provide computationally efficient estimates with high accuracy (Bugallo et al., 2024a). The
first algorithm (algorithm HC) contains a sub-algorithm to approximate multiple integrals and
a derivative-free optimization algorithm (algorithm NB) to maximize the approximated log-
likelihood. Similarly, the Laplace algorithm contains a sub-algorithm to approximate multiple
integrals (algorithm NR) and algorithm NB to maximize the approximated log-likelihood. The
following two subsections describe the H-cubature and Laplace algorithms.

4.2.1 H-cubature algorithm

Algorithm HC uses the H-cubature approach to calculate a quadrature approximation of
the integral in (4.8) at each step of a given optimization algorithm. For this sake, we apply
the hcubature function of the R cubature package. The algorithm and its properties are
described by Genz and Malik (1980) and Berntsen et al. (1991). The hcubature function
performs adaptive multidimensional integration of vector-valued integrands over hypercubes,
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that recursively subdivide the integration domain into smaller subdomains, using the same
rule (weighted sum of integrand values in evaluation points), until convergence is achieved.
In each subdomain, the use of this rule gives a vector of integration results, a vector of error
estimates and a coordinate for a subsequent subdivision of that subdomain.

Concerning the optimization of the log-likelihood function, we use the nloptr function of
the R package nloptr, with the global optimization method NEWUOA (Powell, 2004) adapted
to bound constraints. Hence, we implement the derivative-free algorithm NB (NEWUOA-
BOUND), which is a variant of the method NEWUOA that supports constraint problems
and iteratively constructs quadratic approximations for the objective function.

Nesting the hcubature function to approximate the log-likelihood of the multinomial
mixed model in the optimization function nloptr allows any type of integral function to be
maximized. It is a simple solution by chaining two R functions, but it is a global algorithm.
Besides, it is not an algorithm adapted to the log-likelihood that must be maximized.

4.2.2 Laplace algorithm

Let h : Rm ÞÑ R be a continuously twice differentiable function with a global maximum at
x0. This is to say, let us assume that the vector of first partial derivatives is 9hpx0q “

Bh
Bx

ˇ

ˇ

x“x0
“

0 and the matrix of second partial derivatives, :hpx0q “
B2h
Bx2

ˇ

ˇ

x“x0
, is negative definite. A Taylor

series expansion of hpxq around x0 yields to

hpxq “ hpx0q ` 9h1px0qpx´ x0q `
1

2
px´ x0q

1:hpx0qpx´ x0q ` o
`

}x´ x0}
2
˘

« hpx0q `
1

2
px´ x0q

1:hpx0qpx´ x0q.

The multivariate Laplace approximation is

ż

Rm
ehpxq dx «

ż

Rm
ehpx0q exp

!

´
1

2
px´ x0q

1
`

´ :hpx0q
˘

px´ x0q

)

dx

“ p2πqm{2
ˇ

ˇ´ :hpx0q
ˇ

ˇ

´1{2
ehpx0q. (4.9)

Let us now approximate the likelihood (4.8) of the unit-level multinomial logit mixed model.
As the target vectors y1, . . . , yD are unconditionally independent and the random vectors
ud „ Np0, I2q are independent, the marginal distribution of yd is

Pθpydq “

ż

R2

Pθpyd|udqfpudq dud “

ż

R2

˜

nd
ź

j“1

p
ydj1
dj1 p

ydj2
dj2 p

ydj3
dj3

¸

fpudq dud (4.10)

“
1

2π

ż

R2

exp

"

´

nd
ÿ

j“1

log
´

1`
2
ÿ

k“1

exptxdjkβk ` φkudku
¯

`

2
ÿ

k“1

nd
ÿ

j“1

ydjkpxdjkβk ` φkudkq ´
1

2
u1dud

*

dud “
1

2π

ż

R2

expthdpudqu dud,
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where

hdpudq “ hdpud; yd, θq “ ´
nd
ÿ

j“1

log
´

1`
2
ÿ

k“1

exptxdjkβk ` φkudku
¯

`

2
ÿ

k“1

nd
ÿ

j“1

ydjkpxdjkβk ` φkudkq ´
1

2
u1dud. (4.11)

So as to apply the Laplace algorithm to the integral in (4.10), we maximize hdpud; yd, θq in
ud, given yd and θ. We could carry out the maximization by applying an R function of opti-
mization. Alternatively, we implement a Newton-Raphson (NR) algorithm after calculating
the first and second partial derivatives of h with respect to ud, d “ 1, . . . , D, given y and θ.

The first derivatives of hd with respect to udk, k “ 1, 2, are

Bhdpudq

Budk
“

nd
ÿ

j“1

 

´ φkpdjk ` φkydjk
(

´ udk.

The second derivatives of hd with respect to udk, k “ 1, 2, are

B2hdpudq

Bu2
dk

“ ´1´ φ2
k

nd
ÿ

j“1

pdjkp1´ pdjkq,
B2hdpudq

Budk1Budk2
“ φk1φk2

nd
ÿ

j“1

pdjk1pdjk2 , k1 ‰ k2,

since
Bpdjk
Budk

“ φkpdjkp1´ pdjkq and
Bpdjk1
Budk2

“ ´φk2pdjk1pdjk2 , k1 ‰ k2.

The score vector and the Jacobian matrix are

Sdpud, θq “
´

Bhdpudq

Bud1
,
Bhdpudq

Bud2

¯1

, Hdpud, θq “

¨

˝

B2hdpudq
Bu2d1

B2hdpudq
Bud1Bud2

B2hdpudq
Bud2Bud1

B2hdpudq
Bu2d2

˛

‚.

For θ “ pβ1, φ1q1 fixed, the function hdpudq, defined in (4.11), is maximized by using the
Newton-Raphson algorithm. The updating equation is

u
pr`1q
d “ u

prq
d ´H´1

d pu
prq
d , θqSdpu

prq
d , θq, d “ 1, . . . , D. (4.12)

Let us denote by u0d the argument of maxima of the function hdpudq. It holds that 9hpu0dq “ 0
and :hpu0dq “ Hdpu0d, θq is negative definite. The model log-likelihood is

` “ `pθ; yq “
D
ÿ

d“1

logPθpydq “
D
ÿ

d“1

`d.

By applying (4.9) at ud “ u0d to (4.10), we obtain the Laplace approximation `0d of the term
`d, where

`0d “ `0dpθ; y, u0dq “ hdpu0dq ´
1

2
log | ´Hdpu0d, θq| (4.13)

“ ´

nd
ÿ

j“1

log
´

1`
2
ÿ

k“1

exptxdjkβk ` φku0dku

¯

`

2
ÿ

k“1

nd
ÿ

j“1

ydjkpxdjkβk ` φku0dkq

´
1

2
u10du0d ´

1

2
log | ´Hdpu0d, θq|.
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The following step is to maximize `0pθq
∆
“

řD
d“1 `0dpθ; y, u0dq in θ P Θ by applying the

algorithm NB. The final Laplace algorithm combines the approximation NR algorithm (4.12)
and the optimization algorithm NB. It is described by the following steps:

1. Set the initial values r “ 0, θp0q, θp´1q “ θp0q` 1p`2, u
p0q
d “ 02, u

p´1q
d “ 12, d “ 1, . . . , D.

2. Until }θprq ´ θpr´1q}2 ă ε1, }u
prq
d ´ u

pr´1q
d }2 ă ε2, d “ 1, . . . , D, do

(a) Apply algorithm (4.12) with seeds u
prq
d , d “ 1, . . . , D, convergence tolerance ε2 and

θ “ θprq fixed. Output: u
pr`1q
d , d “ 1, . . . , D.

(b) Apply algorithm NB with seed θprq, convergence tolerance ε1 and ud “ u
pr`1q
d fixed,

d “ 1, . . . , D. Output: θpr`1q.

(c) r Ð r ` 1.

3. Output: pθ “ θprq, pud “ u
prq
d , d “ 1, . . . , D.

Let us note that the Laplace algorithm gives at convergence not only ML parameter estimators
of the model parameters, but also modal predictors of the random effects.

4.3 Small area prediction of labour indicators

This section derives predictors of unit-level probabilities and domain-level and subdomain-
level population-dependent labour indicators. Once the unit-level multinomial logit mixed
model (4.6)-(4.7) has been fitted to the sample data, the construction of small area predic-
tors of the quantities of interest is based on model elements, target vector values in sample
units and, in some cases, auxiliary variable values in population units. First, we predict the
probability pdjk that individual j of domain d belongs to labour status k. Second, we predict
ydjk and the domain totals and means. In the second case, we further derive predictors of
unemployment rates. To differentiate sample vectors of size nd and non-sample vectors of size
Nd ´ nd, from population vectors of size Nd, we introduce the notation

ys “ col
1ďdďD

pydsq, yr “ col
1ďdďD

pydrq; yds “ col
jPsd
pydjq, ydr “ col

jPrd
pydjq; ydj “ col

1ďkď2
pydjkq,

where sd Ă Ud and rd “ Ud ´ sd are the sample and non-sample subsets of Ud, respectively.

Section 4.3 and Section 4.4 are fully adapted to the application to real data in Section
4.6. In particular, the covariate age4 defined in Section 4.1, which delimits the subdomains
Ud,t, takes T “ 4 values. For this reason, we assume that the covariates have the same size

p1 “ p2
∆
“ p0 and contain categorical variables, such that

xdjk P tzt P Rp0 : t “ 1, . . . , T u, d “ 1, . . . , D, j “ 1, . . . , Nd, k “ 1, 2. (4.14)

We also suppose that all the components of the target variable ydj are explained with the
same set of auxiliary variables, i.e. xdjk “ xdj , d “ 1, . . . , D, j “ 1, . . . , Nd, k “ 1, 2. Under
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this categorical setup, it holds that pdjk “ pdk,t, j P Ud,t “ tj P Ud : xdj “ ztu, where

Nd
ÿ

j“1

pdjk “
T
ÿ

t“1

Nd,tpdk,t, pdk,t “ pdk,tpθ, udq “
exptztβk ` φkudku

1`
ř2
`“1 exptztβ` ` φ`ud`u

. (4.15)

The sample and non-sample subsets of Ud,t are sd,t “ tj P sd : xdj “ ztu and rd,t “ tj P rd :
xdj “ ztu, and the corresponding target vectors are yd,ts “ col

jPsd,t
pydjq and yd,tr “ col

jPrd,t
pydjq.

The size of rd,t is denoted by Nd,tr.

Remark 4.3.1. In the simulation study presented in Section 4.5, we assume a more general
setup, where the auxiliary variables xdj1 and xdj2 do not have to be equal. The corresponding
formulas for the predictors under this more general case, and for any arbitrary values of q
and T , are presented in Supplementary Material, available online at Journal of the Royal
Statistical Society: Series A. For the sake of completeness, the mentioned Section B develops
the contents of Section 4.3 and Section 4.4 also without assuming the categorical setup (4.14),
i.e. for a situation that may include continuous auxiliary variables.

Predictors of pdk,t

First we look for a predictor ppdk,t of pdk,t “ pdk,tpθ, udq with minimum MSE, Eθ
“

pppdk,t ´
pdk,tq

2
‰

, in the class of unbiased predictors, Eθ
“

ppdk,t ´ pdk,t
‰

“ 0, for θ known. The predictor

fulfilling these properties is the BP, given by ppbpdk,tpθq “ Eθrpdk,t|yss. It follows that

Eθrpdk,t|yss “ Eθrpdk,t|ydss “

ş

R2
exptztβk`φkudku

1`
ř2
`“1 exptztβ``φ`ud`u

P pyds|udqfpudq dud
ş

R2 P pyds|udqfpudq dud
“
Adk,t
Dd

,

where Adk,t “ Adk,tpyd., θq and Dd “ Ddpyd., θq are

Adk,t “

ż

R2

exptztβk ` φkudku

1`
ř2
`“1 exptztβ` ` φ`ud`u

(4.16)

¨ exp

" 2
ÿ

k“1

φkyd.kudk ´
nd
ÿ

j“1

log
”

1`
2
ÿ

`“1

exptxdj`β` ` φ`ud`u
ı

*

fpudq dud,

Dd “

ż

R2

exp

" 2
ÿ

k“1

φkyd.kudk ´
nd
ÿ

j“1

log
”

1`
2
ÿ

`“1

exptxdj`β` ` φ`ud`u
ı

*

fpudq dud,

and we have denoted yd. “ pyd.1, yd.2q
1 and yd.k “

řnd
j“1 ydjk, k “ 1, 2.

The EBP of pdk,t is obtained by substituting θ by its estimate pθ, i.e. ppebpdk,t “ ppbpdk,tp
pθq. In

practice, it is approximated by a Monte Carlo method as follows.

1. Calculate the ML parameter estimator pθ “ ppβ1, pφq1.

2. For s “ 1, . . . , S, generate u
psq
d i.i.d. Np0, I2q and set u

pS`sq
d “ ´u

psq
d .
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3. Calculate ppebpdk,t “
pAdk,t{ pDd, where

pAdk,t “
1

2S

2S
ÿ

s“1

exptztpβk ` pφku
psq
dk u

1`
ř2
`“1 exptztpβ` ` pφ`u

psq
d` u

(4.17)

¨ exp

" 2
ÿ

k“1

pφkyd.ku
psq
dk ´

nd
ÿ

j“1

log
“

1`
2
ÿ

`“1

exptxdj`pβ` ` pφ`u
psq
d` u

‰

*

,

pDd “
1

2S

2S
ÿ

s“1

exp

" 2
ÿ

k“1

pφkyd.ku
psq
dk ´

nd
ÿ

j“1

log
”

1`
2
ÿ

`“1

exp
 

xdj`pβ` ` pφ`u
psq
d`

(

ı

*

.

The interesting feature here is that the BP has the minimum MSE in the class of unbiased
predictors. Unfortunately, this is not the case for the EBPs, which are obtained by replacing
the true model parameters with their estimates, and are therefore not unbiased. Under the
assumption that the estimates of the model parameters are consistent, the EBPs are asymp-
totically unbiased, but the domain sample sizes in SAE problems are typically small. Even in
the case of θ known, we have to approximate the integrals of the numerator and denominator,
either by Monte Carlo or by another numerical methods. Integral approximations have a high
computational cost and introduce a second source of error that increases the variance of the
final predictors. As a matter of fact, ppebpdk,t should be called empirical approximated BP. Due
to these drawbacks, we consider less computationally-demanding plug-in predictors.

The plug-in predictor of pdk,t is

ppindk,t “
exptztpβk ` pφkpudku

1`
ř2
`“1 exptztpβ` ` pφ`pud`u

, (4.18)

where pudk is the modal predictor of udk, d “ 1, . . . , D, k “ 1, 2, which is obtained at the
output of the Laplace algorithm, given in Section 4.2.2.

Predictors of ydjk

The BP of ydjk is pybpdjk “ Eθrydjk|yss. If j P sd,t, then Eθrydjk|yss “ ydjk. If j P rd,t, then
Eθrydjk|yss “ Eθrydjk|ydss and

pybpdjkpθq “ Eθrydjk|ydss “

ş

R2

 
ř1
ydjk“0 ydjkP pydjk|udq

(

P pyds|udqfpudq dud
ş

R2 P pyds|udqfpudq dud

“

ş

R2 pdk,tP pyds|udqfpudq dud
ş

R2 P pyds|udqfpudq dud
“
Adk,tpyd., θq

Ddpyd., θq
“ Eθrpdk,t|ydss “ ppbpdk,tpθq,

where Adk,t “ Adk,tpyd., θq and Dd “ Ddpyd., θq are defined in (4.16).

The EBP of ydjk is pyebpdjk “ pybpdjkp
pθq. It holds that pyebpdjk “ ydjk if j P sd,t and pyebpdjk “ ppebpdk,t if

j P rd,t, where ppebpdk,t is the EBP of pdk,t, which is approximated in (4.17).

The plug-in predictor of ydjk is pyindjk “ ydjk if j P sd,t and pyindjk “ ppindk,t if j P rd,t, where ppindk,t
is the plug-in predictor of pdk,t, which is given in (4.18).
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Predictors of proportions

Under unit-level non-linear models, the construction of small area predictors requires the
availability of census files. As this is not the case of the application to real data, we have
assumed the categorical setup (4.14). The EBP and the plug-in predictor of Y dk are

pY
ebp

dk “
pY dkp

pθq “
1

Nd

!

ÿ

jPsd

ydjk`
T
ÿ

t“1

Nd,trpp
ebp
dk,t

)

, pY
in

dk “
1

Nd

!

ÿ

jPsd

ydjk`
T
ÿ

t“1

Nd,trpp
in
dk,t

)

, (4.19)

and the EBP and the plug-in predictor of Y dk,t are

pY
ebp

dk,t “
pY dk,tp

pθq “
1

Nd,t

!

ÿ

jPsd,t

ydjk`Nd,trpp
ebp
dk,t

)

, pY
in

dk,t “
1

Nd,t

!

ÿ

jPsd,t

ydjk`Nd,trpp
in
dk,t

)

. (4.20)

Predictors of non-linear quantities

Finally, we derive predictors of non-linear quantities Gd “ gdpydq, where gd : R2Nd ÞÑ R
is a continuous function. Similarly, we obtain the corresponding predictors for subdomains.
For brevity, we focus on unemployment rates, defined by

gdpydq “ Rdpydq “
Y d2

Y d1 ` Y d2

.

First, the BP of Gd “ gdpydq is pGbpd pθq “ Eθ
“

gdpydq|yds
‰

.

The conditional probability of ydr, given yds, is

P pydr|ydsq “
P pyds, ydrq

P pydsq
“

ş

R2 P pydr|udqP pyds|udqfpudq dud
ş

R2 P pyds|udqfpudq dud
, ydr P Ydr,

where Ydr “ ∆Nd´nd and ∆ “ tp1, 0q, p0, 1q, p0, 0qu Ă R2. It holds that

pGbpd pθq “ Eθrgdpydq|ydss “
ÿ

ydrPYdr

gdpyds, ydrqP pydr|ydsq

“

ş

R2

ř

ydrPYdr gdpyds, ydrqP pydr|udqP pyds|udqfpudq dud
ş

R2 P pyds|udqfpudq dud
.

The EBP of Gd “ gdpydq is pGebpd “ pGbpd p
pθq and the EBP of Rd “ Rdpydq is pRebpd “ pRbpd p

pθq.

They are approximated by the Monte Carlo method as follows.

1. Calculate the ML parameter estimator pθ “ ppβ1, pφq1.

2. For s1 “ 1, . . . , S1, generate u
ps1q
d i.i.d. Np0, I2q and set u

pS1`s1q
d “ ´u

ps1q
d .



86 CHAPTER 4. MULTINOMIAL MIXED MODELS

3. For d “ 1, . . . , D, k “ 1, 2, t “ 1, . . . , T , s1 “ 1, . . . , 2S1, calculate

p
ps1q
dk,t “

exptztpβk ` pφku
ps1q
dk u

1`
ř2
`“1 exptztpβ` ` pφ`u

ps1q
d` u

.

4. For s2 “ 1, . . . , S2, generate y
ps1s2q
dj „ M

`

1; p
ps1q
d1,t , p

ps1q
d2,t

˘

, j P rd,t, and construct y
ps1s2q
d,tr “

col
jPrd,t

`

y
ps1s2q
dj

˘

, y
ps1s2q
d,t “ py1d,ts, y

ps1s2q1
d,tr q1, y

ps1s2q
d “ col

1ďtďT

`

y
ps1s2q
d,t

˘

.

5. Calculate

Y
ps1s2q
dk “

1

Nd

T
ÿ

t“1

"

ÿ

jPsd,t

ydkj `
ÿ

rd,t

y
ps1s2q
dkj

*

, k “ 1, 2.

6. Calculate

pGebpd “
1

2S1S2

2S1
ÿ

s1“1

S2
ÿ

s2“1

gd
`

y
ps1s2q
d

˘

, pRebpd “
1

2S1S2

2S1
ÿ

s1“1

S2
ÿ

s2“1

Y
ps1s2q
d2

Y
ps1s2q
d1 ` Y

ps1s2q
d2

.

The plug-in predictor of Gd is pGind “ gdppy
in
d q. To calculate pyind , we recall that pyindjk “ ydjk

if j P sd,t and pyindjk “ ppindk,t if j P rd,t. Therefore, we take ppindk,t from (4.18) and construct the

vectors pyind “ ppy
in1
ds , py

in1
dr q

1, with pyinds “ yds and pyindr “ col
1ďkď2

`

col
1ďtďT

`

col
jPrd,t

pppindk,tq
˘˘

.

The in.ebp predictor of Gd is pGin.ebpd “ gdppy
ebp
d q. The components of pyebpd are pyebpdjk “ ydjk if

j P sd,t and pyebpdjk “ ppebpdk,t if j P rd,t. We take ppebpdk,t from (4.17) and construct pyebpd “ ppyebp1ds , pyebp1dr q
1,

with pyebpds “ yds and pyebpdr “ col
1ďkď2

`

col
1ďtďT

`

col
jPrd,t

pppebpdk,tq
˘˘

.

For unemployment rates, the plug-in and in.ebp domain predictors are

pRind “
pY
in

d2

pY
in

d1 `
pY
in

d2

, pRin.ebpd “

pY
ebp

d2

pY
ebp

d1 `
pY
ebp

d2

, (4.21)

where pY
in

dk and pY
ebp

dk are given in (4.19). The corresponding subdomain predictors are

pRind,t “
pY
in

d2,t

pY
in

d1,t `
pY
in

d2,t

, pRin.ebpd,t “

pY
ebp

d2,t

pY
ebp

d1,t `
pY
ebp

d2,t

, (4.22)

where pY
in

dk,t and pY
ebp

dk,t are given in (4.20).

Due to the size of the population, the EBP and in.ebp predictors were problematic when
applied to the SLFS2021.1 data in Section 4.6, providing misleading approximations of divi-
sions of extremely large quantities, although they performed well in our simulation studies
in Section 4.5. The cause of the problem is the size of the census, which corresponds to the
Spanish population over the age of 16 in 2021. Consequently, the quantities defined in (4.17)
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are excessively large, leading their division to problems of numerical instability. This under-
mines the prediction of the proportions in (4.19) and (4.20), and the problem is inherited
to predictors (4.21) and (4.22). In fact, these problems prevent us from providing bootstrap
estimates of the MSE for such predictors. For the plug-in predictor, the calculation of (4.18)
does not cause any trouble. It can therefore be stated that it is not advisable to use the EBP
(or in.ebp) to predict Rd in practice. Although they have proven to be promising predictors
according to our simulation experiments in Section 4.5, only the plug-in predictor is finally
used in the application to real data in Section 4.6.

4.4 Bootstrap inference

This section provides parametric bootstrap algorithms to estimate the MSE of the plug-in
predictors under the categorical setup (4.14). Analogous algorithms can be obtained for the
EBP and the in.ebp predictors in a straightforward manner.

Bootstrap estimation of the MSE of pY
in

dk

The algorithm to estimate the MSE of the plug-in predictor pY
in

dk is as follows:

1. Fit the model and calculate the ML parameter estimator pθ “ ppβ1, pφ1q1.

2. Repeat B times (b “ 1, . . . , B):

(a) Bootstrap sample: Generate tu
˚pbq
d : d “ 1, . . . , Du i.i.d. Np0, I2q. The bootstrap

sample has the same units as the real sample, i.e. s
˚pbq
d “ sd. For d “ 1, . . . , D,

j P sd, generate the elements of the bootstrap sample

y
˚pbq
dj „ Mp1; p

˚pbq
dj1 , p

˚pbq
dj2 q, p

˚pbq
djk “

exptxdj pβk ` pφku
˚pbq
dk u

1`
ř2
`“1 exptxdj pβ` ` pφku

˚pbq
d` u

, k “ 1, 2.

(b) Bootstrap population quantities: For d “ 1, . . . , D, k “ 1, 2, calculate

Y
˚pbq
dk “

1

Nd

´

ÿ

jPsd

y
˚pbq
djk `

T
ÿ

t“1

Y
˚pbq
dk,tr

¯

,

where Y
˚pbq
d,tr “

`

Y
˚pbq
d1,tr, Y

˚pbq
d2,tr

˘

„ MpNd,tr; p
˚pbq
d1,t , p

˚pbq
d2,t q and p

˚pbq
dk,t “

exptzt pβk`pφku
˚pbq
dk

u

1`
ř2
`“1 exptzt pβ``pφ`u

˚pbq
d` u

.

(c) Bootstrap model: Fit a unit-level multinomial logit mixed model to the bootstrap

sample py
˚pbq
dj , xdjq, d “ 1, . . . , D, j “ 1, . . . , nd. Calculate the ML parameter

estimator pθ˚pbq “ ppβ˚pbq1, pφ˚pbq1q1 and the random effects modal predictors pu
˚pbq
d ,

d “ 1, . . . , D. Calculate the plug-in predictor of Y
˚pbq
dk , i.e.

pY
in˚pbq

dk “
1

Nd

!

ÿ

jPsd

y
˚pbq
djk `

T
ÿ

t“1

Nd,trpp
in˚pbq
dk,t

)

, pp
in˚pbq
dk,t “

exptztpβ
˚pbq
k ` pφ

˚pbq
k pu

˚pbq
dk u

1`
ř2
`“1 exptztpβ

˚pbq
` ` pφ

˚pbq
` pu

˚pbq
d` u

.
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3. Output: mse˚ppY
in

dkq “
1
B

řB
b“1

`

pY
in˚pbq

dk ´ Y
˚pbq
dk

˘2
.

Bootstrap estimation of the MSE of pGin
d

The algorithm to estimate the MSE of the plug-in predictor pGind is as follows:

1. Fit the model and calculate the ML parameter estimator pθ “ ppβ1, pφ1q1.

2. Repeat B times (b “ 1, . . . , B):

(a) Bootstrap population: Generate tu
˚pbq
d : d “ 1, . . . , Du i.i.d. Np0, I2q. The boot-

strap sample has the same units as the real sample, i.e. s
˚pbq
d “ sd.

i. For d “ 1, . . . , D, j P sd, generate the elements of the bootstrap sample

y
˚pbq
dj „ Mp1; p

˚pbq
dj1 , p

˚pbq
dj2 q, p

˚pbq
djk “

exptxdj pβk ` pφku
˚pbq
dk u

1`
ř2
`“1 exptxdj pβ` ` pφku

˚pbq
d` u

, k “ 1, 2.

ii. For d “ 1, . . . , D, t “ 1, . . . , T , j P rd,t, k “ 1, 2, generate the elements of the
bootstrap non-sample subset, i.e.

y
˚pbq
dj,t „ Mp1; p

˚pbq
d1,t , p

˚pbq
d2,t q, p

˚pbq
dk,t “

exptztpβk ` pφku
˚pbq
dk u

1`
ř2
`“1 exptztpβ` ` pφ`u

˚pbq
d` u

.

iii. For d “ 1, . . . , D, construct the bootstrap population vectors

y
˚pbq
d “ py

˚pbq1
ds , y

˚pbq1
dr q1, y

˚pbq
ds “ col

jPsd
py
˚pbq
dj q, y

˚pbq
dr “ col

1ďtďT

`

col
jPrd,t

py
˚pbq
dj,t q

˘

.

iv. Calculate the bootstrap population quantities G
˚pbq
d “ gdpy

˚pbq
d q, d “ 1, . . . , D.

(b) Bootstrap model: Fit a unit-level multinomial logit mixed model to the boot-

strap sample py
˚pbq
dj , xdjq, d “ 1, . . . , D, j “ 1, . . . , nd. Calculate the ML parameter

estimator pθ˚pbq “ ppβ˚pbq1, pφ˚pbq1q1 and the random effects modal predictors pu
˚pbq
d ,

d “ 1, . . . , D. Calculate the plug-in predictor of G
˚pbq
d , i.e. pG

in˚pbq
d , d “ 1, . . . , D.

3. Output: mse˚p pGind q “
1
B

řB
b“1

`

pG
in˚pbq
d ´G

˚pbq
d

˘2
, d “ 1, . . . , D.

4.5 Model-based simulations

This section presents the results of the model-based simulations. Simulation 1 compares
the implemented fitting algorithms, i.e. the Laplace and the H-cubature algorithms from
Section 4.2.1 and Section 4.2.2, respectively. Simulations 2.A and 2.B examine the behaviour
of the EBP, in.ebp, and plug-in predictors from Section 4.3 and compare their performance
with the predictors from Dawber et al. (2022), based on MQ and expectile regression for
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multi-category outcomes. Simulation 3 tests the parametric bootstrap methods described in
Section 4.4 and provides a recommendation on the number of bootstrap replicates to use in
practice.

We generate unit-level data for model-based simulations to investigate the properties of
the proposed statistical methodology. We may be interested in: (1) studying the effect of
increasing the sample size or the number of domains (among other elements), or (2) analysing
the behaviour of estimators and predictors in scenarios close to that of the application to
real data. The first approach gives freedom in data generation and allows a larger number
of questions to be investigated. The second approach is more restrictive, but allows to learn
more about the application to real data. The size of the population (Spanish census) makes
the second option practically unfeasible, due to the scale of some intermediate calculations
(overflows), and the high computational time needed to construct the predictors and bootstrap
resampling to estimate the MSE. For this reason, we chose the first approach, inspired by the
model-based simulations performed by Hobza and Morales (2016) and Hobza et al. (2018) for
the SAE methodology based on unit-level binomial mixed models.

Simulations 1, 2.A and 3 generate the vectors of auxiliary variables xdj1 “ pxdj11, xdj12q and
xdj2 “ pxdj21, xdj22q, xdj11 “ xdj21 “ 1, xdj12 „ BIp1, 1{2q, xdj22 „ BIp1, 1{2q, d “ 1, . . . , D,
j “ 1, . . . , Nd. In order to consider the predictors of Dawber et al. (2022), Simulation 2.B
generates xdj12 “ xdj22, d “ 1, . . . , D, j “ 1, . . . , Nd. These variables remain fixed during the
simulations. For the multinomial logit mixed model, we take q “ 3, p1 “ p2 “ 2, p “ 4,
β1 “ pβ11, β12q

1 “ p0.5,´1q1, β2 “ pβ21, β22q
1 “ p´0.5, 0.5q1, φ1 “ 0.4, φ2 “ 0.5. At each step

i, we generate u
piq
dk „ Np0, 1q, d “ 1, . . . , D, k “ 1, 2, and y

piq
dj „Mp1; p

piq
dj1, p

piq
dj2q, where

p
piq
djk “

exptη
piq
djku

1` exptη
piq
dj1u ` exptη

piq
dj2u

, η
piq
djk “ xdjkβk ` φku

piq
dk , j “ 1, . . . , nd.

4.5.1 Simulation 1

The target of Simulation 1 is to investigate the behaviour of the Laplace (LA) algorithm
and the H-cubature (HC) algorithm from Section 4.2.1 and Section 4.2.2, respectively. To do
so, we compare the empirical bias (BIAS) and root-MSE (RMSE) and consider two cases: (1)
nd “ 10, D “ 25, 50, 75, 100; (2) D “ 25, nd “ 10, 25, 50, 75, 100.

An analysis of Tables 4.3 and 4.4 shows that, for both fitting algorithms, the error measures
of the ML estimators decrease as D or nd increases. In terms of execution times, the following
average results are obtained. For D “ 25 and nd “ 10, algorithms NB and LA need 2.16
and 0.07 minutes to converge, respectively. For D “ 50 and nd “ 10, algorithms NB and
LA need 4.27 and 0.06 minutes to converge, respectively. As a result, the computational cost
of the Laplace algorithm is much lower. In fact, as the size of the data and the number of
domains increases, the computation could become burdensome with unit-level data. For this
reason, we use the Laplace algorithm in the remaining simulations and in the application to
the SLFS2021.1 data.
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Alg. D 25 50 75 100 25 50 75 100

LA β11 -0.008 0.009 0.011 -0.006 0.228 0.164 0.127 0.112

β12 0.014 -0.009 -0.012 0.007 0.290 0.201 0.159 0.134

β21 -0.028 0.000 0.004 -0.019 0.284 0.186 0.147 0.125

β22 0.029 -0.003 -0.002 0.003 0.302 0.210 0.169 0.146

φ1 -0.092 -0.062 -0.034 -0.048 0.251 0.203 0.168 0.151

φ2 -0.122 -0.074 -0.067 -0.036 0.297 0.221 0.166 0.137

HC β11 -0.006 0.009 0.012 -0.007 0.226 0.164 0.126 0.111

β12 0.013 -0.010 -0.014 0.005 0.290 0.202 0.159 0.134

β21 -0.014 0.011 0.012 -0.009 0.273 0.182 0.143 0.120

β22 0.029 -0.002 -0.001 0.004 0.303 0.210 0.169 0.146

φ1 -0.080 -0.046 -0.016 -0.029 0.253 0.204 0.170 0.149

φ2 -0.115 -0.060 -0.052 -0.020 0.299 0.220 0.163 0.136

Table 4.3: Comparison of the Laplace (LA) and H-cubature (HC) fitting algorithms. BIAS
(left) and RMSE (right) for Case (1): nd “ 10, D “ 25, 50, 75, 100.

Alg. nd 10 25 50 75 100 10 25 50 75 100

LA β11 -0.008 -0.002 -0.007 0.005 0.003 0.228 0.147 0.117 0.109 0.105

β12 0.014 0.003 0.011 0.000 0.001 0.290 0.179 0.126 0.107 0.085

β21 -0.028 0.006 -0.033 -0.011 -0.017 0.284 0.181 0.150 0.142 0.135

β22 0.029 -0.010 0.009 -0.002 0.002 0.302 0.194 0.133 0.106 0.095

φ1 -0.092 -0.042 -0.026 -0.025 -0.014 0.251 0.167 0.116 0.098 0.092

φ2 -0.122 -0.045 -0.008 -0.013 -0.004 0.297 0.173 0.119 0.112 0.100

HC β11 -0.006 -0.001 -0.010 0.001 -0.002 0.226 0.145 0.115 0.106 0.102

β12 0.013 0.003 0.011 0.000 0.000 0.290 0.179 0.126 0.106 0.085

β21 -0.014 0.023 -0.013 0.007 0.001 0.273 0.176 0.142 0.136 0.128

β22 0.029 -0.010 0.009 -0.002 0.002 0.303 0.194 0.133 0.106 0.095

φ1 -0.079 -0.039 -0.028 -0.028 -0.018 0.253 0.165 0.114 0.096 0.088

φ2 -0.117 -0.044 -0.014 -0.022 -0.015 0.299 0.169 0.113 0.105 0.094

Table 4.4: Comparison of the Laplace (LA) and H-cubature (HC) fitting algorithms. BIAS
(left) and RMSE (right) for Case (2): D “ 25, nd “ 10, 25, 50, 75, 100.

4.5.2 Simulation 2

The target of Simulation 2.A is to test the behaviour of the predictors of Y dk, k “ 1, 2, and
Rd. It implements the EBP (ebp) and the plug-in predictor (in) of Y dk, and the EBP (ebp),
plug-in EBP (in.ebp) and plug-in predictor (in) of Rd. Simulation 2.B compares the EBP and
plug-in predictor with the robust MQ and expectile regression predictors for multi-category
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data proposed by Dawber et al. (2022). Simulation 2.A generates the data in the same way
as Simulation 1, allowing xdj12 to be different from xdj22, d “ 1, . . . , D, j “ 1, . . . , Nd, and
only computes the predictors based on the multinomial logit mixed model. Simulation 2.B
imposes xdj12 “ xdj22, d “ 1, . . . , D, j “ 1, . . . , Nd. We take Nd “ 200, d “ 1, . . . , D. Each
domain Ud “ tudj : j “ 1, . . . , Ndu is partitioned in two subsets, Uds “ tudj : j “ 1, . . . , ndu
and Udr “ tudj : j “ nd ` 1, . . . , Ndu. Simulations 2.A and 2.B apply the Laplace algorithm
to calculate the ML estimators of the multinomial logit mixed model.

Simulation 2.A

Table 4.5 shows the simulation results for D “ 25 and nd “ 10, 25, 50, 75, 100. The
performance measures are the average across domains of the absolute biases (AB) and root-

MSEs (RE). Table 4.5 points out that both predictors pY
ebp

k and pY
in

k behave similarly, k “ 1, 2.
For unemployment rates, pRin.ebp or pRin perform slightly better than pRebp and have a lower
computational cost. However, due to the computational intensity of the bootstrap resampling,
we use the plug-in predictor in Simulation 3.

nd 10 25 50 75 100 10 25 50 75 100

pY
ebp

1 0.012 0.012 0.013 0.011 0.009 0.105 0.095 0.083 0.068 0.057

pY
in

1 0.007 0.008 0.006 0.005 0.004 0.098 0.086 0.074 0.060 0.050

pY
ebp

2 0.014 0.011 0.007 0.007 0.005 0.097 0.080 0.060 0.050 0.040

pY
in

2 0.009 0.008 0.008 0.005 0.005 0.099 0.085 0.070 0.058 0.047

pRebp 0.013 0.013 0.008 0.008 0.007 0.142 0.133 0.118 0.102 0.088
pRin.ebp 0.011 0.010 0.008 0.006 0.006 0.134 0.117 0.098 0.081 0.067
pRin 0.011 0.011 0.009 0.006 0.006 0.135 0.120 0.100 0.082 0.068

Table 4.5: Comparison of the predictors based on the multinomial logit mixed model. AB
(left) and RE (right) for D “ 25 and nd “ 10, 25, 50, 75, 100.

Simulation 2.B

First and foremost, MQ regression can be summarised as a quantile-type generalisation
of regression based on influence functions. The most common influence function is the Huber
function, which depends on a parameter c to be specified. By setting the value of c, it is
possible to trade robustness for efficiency in MQ regression models. The modelling of binary
outcomes in small areas using MQ regression has been proposed by Chambers et al. (2016).
More recently, Dawber et al. (2022) extend this methodology to multi-category outcomes,
but propose models with the same set of auxiliary variables in each category of the response
variable. In contrast, we do not impose this restriction. Following Section 5 and Section S.2
of Appendix S1 of Dawber et al. (2022), Simulation 2.B fits a multi-category MQ model with
c “ 1.345, and a multi-category expectile (EXP) model with c “ 100.
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Table 4.6 shows the domain averages of the absolute biases (AB), root-MSEs (RE), rel-
ative absolute biases (RAB) and relative root-MSEs (RRE) for D “ 25 and nd “ 10. As
expected, the predictors based on the data-generating model, EBP and plug-in, show better
performance. However, it should be noted that our model-based predictors are not robust.
Therefore, the results of Simulation 2.B could be extrapolated to the real world if the selected
multinomial logit mixed model fits the data properly and has a good diagnostic performance.

pY
ebp

1
pY
in

1
pY
mq

1
pY
exp

1
pY
ebp

2
pY
in

2
pY
mq

2
pY
exp

2

AB 0.016 0.017 0.035 0.049 0.020 0.019 0.057 0.041

RE 0.051 0.054 0.099 1.000 0.053 0.055 0.085 0.086

RAB 4.812 5.081 10.601 14.818 6.102 5.818 11.292 12.492

RRE 15.334 16.242 30.065 30.175 16.092 16.781 17.050 25.943

(a) Performance of the predictors of employed and unemployed proportions.

pRebp
pRin.ebp

pRin
pRmq
2

pRexp
2

AB 0.023 0.029 0.029 0.058 0.052

RE 0.073 0.054 0.061 0.120 0.107

RAB 6.841 5.843 5.819 11.5128 10.305

RRE 22.201 10.742 12.163 24.021 21.435

(b) Performance of the predictors of unemployment rates.

Table 4.6: Comparison of the predictors based on the multinomial logit mixed model and those
proposed by Dawber et al. (2022). Absolute (top rows AB and RE) and relative (bottom rows
RAB and RRE) performance measures for nd “ 10 and D “ 25.

4.5.3 Simulation 3

Simulation 3 calculates empirical biases (Bdk) and root-MSEs (REdk) for the parametric

bootstrap estimator of the MSE of pY
in

dk, k “ 1, 2 and pRind (k “ 0). It takes the empirical
MSEs, obtained from the output of Simulation 2.A, as true MSEs.

Figures 4.1 and 4.2 present boxplots of Bdk’s and REdk’s for D “ 25, nd “ 10 and
B “ 50, 100, 200, 400. For k “ 1, 2, biases take values between 0.0006 and 0.0018 and root-
MSEs between 0.0030 and 0.0055. For k “ 0, biases take values between 0.0025 and 0.0040 and
root-MSEs between 0.008 and 0.012. In both cases, the main contribution to the root-MSE
comes from the variance. Concerning the number of bootstrap replicates, both figures show
that both biases and root-MSEs decreases as B increases. As a trade-off between computation
time and precision, we recommend running the bootstrap algorithm with B “ 400 replicates.
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Figure 4.1: Study of the parametric bootstrap estimator of the MSE of pY
in

d1 (left), pY
in

d2 (center)
and pRind (right). Boxplots of Bdk for k “ 0, 1, 2, D “ 25, nd “ 10, B “ 50, 100, 200, 300, 400.
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(b) Unemployed proportions.
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Figure 4.2: Study of the parametric bootstrap estimator of the MSE of pY
in

d1 (left), pY
in

d2 (center)
and pRind (right). Boxplots of REdk for k “ 0, 1, 2, D “ 25, nd “ 10, B “ 50, 100, 200, 300, 400.

4.6 Application to the 2021.1 SLFS data

4.6.1 Model fitting and validation

This section applies the developed methodology to the SLFS2021.1 data. We first fit the
model (4.6)-(4.7) to the target data, with age4 as the auxiliary variable and age4-1 as the
reference category. Table 4.7 shows the ML parameter estimators of the model parameters
β1, β2, φ1 and φ2 of the multinomial mixed model (MMM), the p-values to test H0 : βkt “ 0,
k “ 1, 2, t “ 1, 2, 3, 4, and H0 : φk “ 0, k “ 1, 2, and the asymptotic and bootstrap CI
at the 95% confidence level. It includes the lower (LB) and upper (UB) bounds. The table
also includes the ML parameter estimators of the model parameters of the corresponding
multinomial fixed effects model (MFM). In addition, a relative gap (Rgap) in % is included,
and it is defined as the absolute difference between the MMM and the MFM estimates, divided
by the MMM estimates and multiplied by 100. The purpose is to quantify the absolute
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relative differences between the ML parameter estimators of the model parameters for the
two multinomial models.

β11 β12 β13 β14 β21 β22 β23 β24 φ1 φ2

MFM 0.808 0.365 -0.982 -4.441 -0.782 -0.006 -1.405 -5.938 – –

MMM 0.850 0.383 -0.995 -4.485 -0.824 0.002 -1.387 -5.910 0.347 0.224

Rgap 4.913 4.715 1.288 0.993 5.138 442.583 1.298 0.472 – –

p-value 0.000 0.000 0.000 0.000 0.000 0.950 0.000 0.00 0.000 0.000

Asymp LB 95% 0.830 0.345 -1.039 -4.556 -0.854 -0.056 -1.475 -6.225 0.332 0.196

UB 95% 0.870 0.420 -0.951 -4.415 -0.795 0.059 -1.298 -5.595 0.367 0.252

Boot LB 95% 0.822 0.348 -1.043 -4.558 -0.891 -0.058 -1.487 -6.231 0.298 0.179

UB 95% 0.961 0.421 -0.952 -4.417 -0.786 0.059 -1.296 -5.626 0.402 0.263

Table 4.7: Model parameters of the unit-level multinomial logit mixed model for the
SLFS2021.1 data.

An analysis of Table 4.7 shows that the Rgap is less than 6% except for β22. If we
exclude age4-2 from the prediction of the disaggregated proportion of unemployed people, all
p values for all coefficients are less than 0.05. Nonetheless, we treat age4 as a factor, i.e. as
a single categorical variable that can take a finite and fixed number of values. Therefore, the
variable age4 would be significant if any of its categories were, which supports its inclusion
for both components of the target vector. The randomness of the two intercepts is also
relevant. The standard deviation parameter estimates are pφ1 “ 0.347 and pφ2 “ 0.224. Neither
the asymptotic nor the bootstrap CIs contain the zero, confirming the need to model the
proportions with the random effects model. Consequently, we adopt the model presented in
Table 4.7 and proceed with its validation.

As the fitted model is multi-BE, we perform the diagnosis at the subdomain level, i.e. at
the intersections between domains and age groups. We are also interested in the reconciliation
of the model-based and design-based approaches to SAE.

Under the categorical setup (4.14), we define the aggregated raw residuals (ARR) as

pedk,t “ ydk,t ´ ppindk,t, ydk,t “
1

nd,t

ÿ

jPsd,t

ydjk, d “ 1, . . . , 104, t “ 1, . . . , 4, k “ 1, 2.

The aggregated standardized residuals (ASR) are defined by dividing the ARRs by its standard

deviation, given by νk “

ˆ

1
DT

řD
d“1

řT
t“1

´

pedk,t ´ pe.k,.

¯2
˙

1
2

, pe.k,. “
1
DT

řD
d“1

řT
t“1 pedk,t, k “

1, 2. Accordingly, the ASRs are defined as pedk,tνk
´1, d “ 1, . . . , 104, t “ 1, . . . , 4, k “ 1, 2.

Figure 4.3 plots the ASRs for employed (left) and unemployed (right) proportions, sorted
by subdomain sample size. Unsurprisingly, their magnitude decreases progressively as the
sample size increases, resulting in a conical structure in the line charts. All values oscillate
symmetrically around y “ 0 in a reasonable range for an outlier analysis. Out of a total of
416 subdomains, there are only 11 (2.64%) outside the interval p´3, 3q, both for the employed
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and the unemployed categories. In conclusion, the proposed model performs satisfactorily in
terms of the significance level of the model parameters and the validation via the ASRs.
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Figure 4.3: ASRs for employed (left) and unemployed (right) proportions by subdomain
sample size for the SLFS2021.1 data.

4.6.2 Prediction, error measures and maps

This section presents Hájek estimates and plug-in predictions of unemployment rates by
province, sex and age group. A completely parallel template could be followed to provide plug-
in predictions and Hájek estimates of the proportions of employed, unemployed and inactive
people. However, we focus on unemployment rates because they are more challenging to
predict and more sought after by governments and private institutions.

In Figure 4.4 (left), the freedom of the non-parametric Nadaraya-Watson regression con-
firms the linear relationship between direct and model-based estimates. This highlights a
key advantage of our approach: the theoretical properties of the Hájek estimator, such as
asymptotic design-based unbiasedness, are, to some extent, inherited by the plug-in predic-
tor. Figure 4.4 (right) plots Hájek estimates and plug-in predictions of unemployment rates
against the subdomain index. The 416 subdomains are first sorted by age group, secondly
by sex and thirdly by province. In this plot, we can see some smoothing effect of the plug-in
predictor compared to the Hájek estimates. Especially in the fourth age group, which consists
of people aged 65 and over. The latter is due to the imprecision of the Hájek estimates in
these subdomains, where the number of respondents is quite small. It should be remembered
that we are estimating a non-linear quantity (Rd,4, d “ 1, . . . , D) that depends directly on
the total number of employed and unemployed people. It is therefore essential to provide
measures of accuracy.

As error measures, we calculate the parametric bootstrap estimator of the MSE of pRind,t,
d “ 1, . . . , D, t “ 1, . . . , 4. Section 4.4 describes the estimation procedure, applied with
B “ 500 bootstrap resamples. In terms of application, the MSE assesses the quality of a
predictor, but it is scale-dependent, in the same way as the RMSE. However, the RRMSE is
used to compare different predictors by expressing the error in relative or percentage terms.
This is why we use RRMSEs and CVs to compare the performance of model-based predic-
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Figure 4.4: On the left, Hájek vs plug-in predicted subdomain unemployment rates. Men are
dots and women crosses. On the right, line chart sorted by age group and domain.

tors and direct estimators. Table 4.8 shows the deciles of the model-based estimates of the
RRMSEs (in %) for the plug-in predictor. They are calculated from the 416 subdomain-level
estimates of the RRMSEs. This table also includes the design-based CVs (in %) of the Hájek
estimator, assuming unbiasedness (see Morales et al. (2021), Chapter 3). For both the plug-in
predictor and the Hájek estimator, the denominators of the estimated RRMSEs and CVs are
the corresponding plug-in predictions and direct estimates, respectively.

Table 4.8 shows that the plug-in predictor is superior to the Hájek estimator. In fact,
it follows that there is a significant reduction in all the estimated RRMSEs when using the
proposed model and, in particular, the plug-in predictor. For the sake of completeness, the
results are broken down by group in Table 4.9. This is done by calculating the quartiles for
each age group by sorting the 104 crosses between province and sex.

q0 q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 q1

pRind,t 3.568 6.150 7.668 9.048 10.467 12.286 14.236 16.451 20.097 25.573 49.891
pRdird,t 6.222 11.529 14.579 18.101 21.828 26.631 32.699 39.152 52.865 71.979 113.012

Table 4.8: Deciles of subdomain-level RRMSEs and CVs (in %) of unemployment rates for
the SLFS2021.1 data.

q0 q0.25 q0.5 q0.75 q1 q0 q0.25 q0.5 q0.75 q1

3.568 7.138 9.098 13.256 22.474 6.222 10.082 14.130 18.151 30.133

3.753 7.641 10.018 14.662 25.201 10.800 18.188 23.193 35.036 70.105

4.360 8.112 10.805 15.313 25.232 19.984 32.664 44.353 58.567 99.170

8.250 17.558 23.136 30.047 49.891 41.421 73.160 93.172 96.183 113.012

(a) Plug-in predictor: pRind,k (b) Hájek estimator: pRdird,k

Table 4.9: Quartiles of subdomain-level RRMSEs and CVs (in %) of unemployment rates by
age group for the SLFS2021.1 data.

Last but not least, RRMSE values below 30% are expected in SAE, as is the case of the
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plug-in predictor derived from our model for age4-1, age4-2 and age4-3. In the fourth age
group, the over-65s, predicting unemployment rates is quite difficult because there is almost
no labour force data. The values skyrocket for the direct estimator.

The model offers the opportunity to analytically read the appreciable differences by Span-
ish provinces. Figures 4.5-4.6 present maps for unemployment rates (in %), showing how
they differ by province and age group and, in particular, the differences between men (Figure
4.5) and women (Figure 4.6). The fourth age group is not included for either sex because
unemployment rates are below 10% in all provinces except in the domain of women living in
Cádiz, with an unemployment rate close to 12%. In spite of the variety of measures that have
been put in place to reduce gender inequality, the gap is still wide in terms of unemployment.
Among the most notable results, there is a significant difference between sexes, with a clearly
higher proportion of unemployed women for all age groups.

Young men: age4-1 < 10 %
10-15 %
15-20 %
20-25 %
25-30 %

Middle age men: age4-2 < 10 %
10-15 %
15-20 %
20-25 %

Adult men: age4-3 < 10 %
10-15 %
15-20 %

Figure 4.5: Unemployment rates for men in SLFS2021.1.

Young women: age4-1 10-15 %
15-20 %
20-25 %
25-30 %
30-40 %

Middle age women age4-2 < 10 %
10-15 %
15-20 %
20-25 %
25-30 %

Adult women age4-3 < 10 %
10-15 %
15-20 %
20-25 %
25-30 %

Figure 4.6: Unemployment rates for women in SLFS2021.1.

The highest unemployment rates are found in the center and southwest of the country,
with lower percentages in the north and in the eastern Mediterranean Coast. What is more,
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the south-west part of Spain suffers the worst unemployment situation, and it is even worse
for women. Moreover, the distribution between neighbouring provinces, and among those
with similar demographic and socio-economic conditions, is generally homogeneous. Santa
Cruz de Tenerife and Cádiz are the provinces most affected by unemployment, followed by
the other provinces of Andalućıa and Extremadura.

Figures 4.7-4.8 map the RRMSE estimates of the plug-in predictions of the unemployment
rates for men (Figure 4.7) and women (Figure 4.8), respectively, by age group, from left to
right. According to Section 4.6.2, B “ 500 bootstrap resamples are used. It can be observed
that RRMSEs are lower in the center and south of the Iberian Peninsula, and more so for
women. The same applies to the Canary and Balearic Islands. The highest estimated relative
errors are reached in the north-east, although not exceeding 30% for men and 22% for women.
The results are more than acceptable considering that we are predicting a non-linear indicator,
such as the unemployment rate, in small and unplanned areas in the survey.

RRMSE Young men: age4-1 < 8%
8-15 %
15-22 %

RRMSE Mid adult men: age4-2 < 8%
8-15 %
15-22 %
22-30 %

RRMSE Adult men: age4-3 < 8%
8-15 %
15-22 %
22-30 %

Figure 4.7: RRMSEs of unemployment rates for men in SLFS2021.1.

RRMSE Young women: age4-1 < 8%
8-15 %
15-22 %

RRMSE Mid adult women: age4-2 < 8%
8-15 %
15-22 %

RRMSE Adult women: age4-3 < 8%
8-15 %
15-22 %

Figure 4.8: RRMSEs of unemployment rates for women in SLFS2021.1.
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4.7 R codes

As for the R codes, the GitHub repository https://github.com/small-area-estimation/
Small-area-estimation-of-labour-force-indicators-under-unit-level-multinomial-mixed-models
(accessed on: November 4, 2024) contains our dataset and computer code, as well as a detailed
description of its contents. It includes a README file that provides basic instructions for
the correct execution of the available software.

https://github.com/small-area-estimation/Small-area-estimation-of-labour-force-indicators-under-unit-level-multinomial-mixed-models
https://github.com/small-area-estimation/Small-area-estimation-of-labour-force-indicators-under-unit-level-multinomial-mixed-models




Chapter 5

M-quantile regression

Adapted from Koenker (2005)[page 294], “Much of the early history of social statis-
tics can be viewed as a search for the average man, that improbable man without
qualities who could be confortable with his feet in the ice chest and his hands in
the oven (...). Yet for all the mathematical elegance of the Gaussian law of errors,
it should be tempered by a skeptical empiricism: a willingness to peer occasionally
outside the cathedral of mathematics and see the world in all its diversity”.

Models for the conditional mean, with i.i.d. normal errors, are welcome approximations in
many applications to real data. However, they can also be risky strategies. The strengths and
weaknesses of these models depend on the fulfillment of their strong parametric assumptions.
This is compounded by the oversimplification of area-level models to explain population pat-
terns (Rao and Molina, 2015). Fortunately, unit-level models pose many advantages relative
to area-level models, especially after the breakthrough of the MQ modelling approach to SAE
(Chambers and Tzavidis, 2006). Indeed, MQ regression is considered a valuable alternative
in SAE to relax some of the conventional assumptions of LMMs and obtain estimators that
are robust against outliers. Another advantage of the MQ models is the computational speed
of their fitting, thanks to the IRLS algorithm (Bianchi and Salvati, 2015).

This chapter contains two novel contributions: the extension of MQ models to the semi-
parametric modelling of temporal dependencies and the pioneering proposal of data-driven
criteria for the selection of robustness parameters. First and foremost, it is a smart strategy to
rely on data measured over time. In this respect, LMMs are unable to properly capture time
dependencies when the number of lags is somewhat large. Since there are no published studies
dealing with robust prediction in small areas based on time-dependent data, it is sought to
extend the MQ regression to this field of research, adding flexibility to the widely imposed
assumption of unit-level independence. In light of the above, the final objective of this thesis
is to propose temporal MQ models and then, derive robust bias-corrected predictors of small
area linear indicators. As for the estimation of the MSE, we have obtained, under general
conditions, a first-order approximation and proposed several analytical estimators.

Apart from all the above, we have defined an optimal criterion for an accurate selection of
the robustness parameters for bias correction in MQ models (see Section 5.4.4). The idea is to

101
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reduce the bias of the robust, model-based predictors but not unbalance the MSE. It can be
applied to MQ models in general, not only to the predictors derived from the TWMQ linear
models. Additionally, its potential role in outlier detection has been extensively studied, both
in simulation experiments and in the application to real data.

This chapter is structured as follows. Section 5.1 introduces the MQ functions. Sections
5.2 and 5.3 review the theory of two-fold MQ (MQ2) linear models (Chambers and Tzavidis,
2006) and three-fold MQ (MQ3) linear models (Marchetti et al., 2018) for SAE, focusing
on the most relevant aspects to our research. Section 5.4 describes the TWMQ statistical
methodology. Sections 5.5 presents the results of the model-based simulations. In Sections
5.6 and 5.7, the new methods are illustrated with an application to socio-economic data,
modelling the average level of income in 23 provinces of Empty Spain. A section for R codes
is not included because they are not yet available in any online repository. This is a project
in progress, involving both debugging and documentation of the code itself. This chapter is
accompanied by two appendices. Appendix C describes an adaptation of the IRLS algorithm
used to estimate the model parameters of the TWMQ linear models. Appendix D provides
technical specifications and step-by-step proofs of Theorems 1 and 2 in Section 5.4.

5.1 M-quantile functions

An excellent account given by Koenker (2005) is a must in the literature on robust statis-
tics. We present here only a brief review of the basic concepts necessary to introduce the
contributions derived from our research on temporal MQ models for SAE.

Let Y be a random variable with cumulative distribution function (c.d.f.) FY pyq “ P pY ď
yq, y P R, and standard deviation σY ą 0.
For 0 ă q ă 1, let us define the pq, σq, ψq-check function

ρqpu, σqq “ 2σq
ˇ

ˇq ´ Ip´8,0qpuq
ˇ

ˇρpσ´1
q uq, u P R, σq ą 0, (5.1)

where ρpuq is a continuously differentiable loss function and ψpuq “ Bρpuq
Bu .

For 0 ă q ă 1, the partial derivative of ρqpu, σqq, with respect to u, is

ψqpu, σqq “
Bρqpu, σqq

Bu
“ 2

!

qIp0,8qpuq ` p1´ qqIp´8,0spuq
)

ψpσ´1
q uq. (5.2)

The quantile function of order q, scale parameter σq and influence function ψ, of Y is

QqpY ;σq, ψq “ argmin
ξqPR

E
“

ρqpY ´ ξq, σqq
‰

“ argmin
ξqPR

ż

R
ρqpy ´ ξq, σqq dFY pyq, 0 ă q ă 1,

and it is called MQ function of order q of Y .

For 0 ă q ă 1, u “ y ´ ξq P R, it holds that

ρqpy ´ ξq, σqq “ σqq ρ
`

pσ´1
q py ´ ξqq

˘

Ip0,8qpy ´ ξqq ` σqp1´ qq ρ
`

pσ´1
q py ´ ξqq

˘

Ip´8,0qpy ´ ξqq,
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and

Bρqpy ´ ξq, σqq

Bξq
“ ´qψ

`

pσ´1
q py ´ ξqq

˘

Ip0,8qpy ´ ξqq ´ p1´ qqψ
`

pσ´1
q py ´ ξqq

˘

Ip´8,0qpy ´ ξqq

“ ´
 

qIp0,8qpy ´ ξqq ` p1´ qqIp´8,0qpy ´ ξqq
(

ψ
`

pσ´1
q py ´ ξqq

˘

“ ´ψqpy ´ ξq, σqq.

Therefore, the MQ function of order q of Y is calculated as

QqpY ;σq, ψq “ solution
ξqPR

"
ż

R
ψqpy ´ ξq, σqq dFY pyq “ 0

*

, 0 ă q ă 1.

Finally, in order to complete the definition of ψqpu, σqq in (5.2), we take σq “ σY for 0 ă q ă 1,
and we use the Huber function

ψpuq “ uIp´cψ ,cψqpuq ` cψ sgnpuqIp´8,´cψs
Ť

rcψ ,8qpuq, u P R; cψ ą 0. (5.3)

MQ regression uses bounded influence functions that reduce the influence of outlier ob-
servations (Huber, 1981). A widely accepted choice for the influence function ψ is the Huber
function, defined in (5.3), although other options are also possible. Note that its choice is
of little importance for the calculation of small area estimates and does not merit special
attention (Chambers and Tzavidis, 2006). In any case, it is assumed that ψ depends on a
predetermined tuning constant cψ ě 0. It is customary to set cψ “ 1.345 because it guarantees
95% efficiency when the errors are normal, and still offers protection against outliers (Holland
and Welsch, 1977). Huber functions are presumably used here.

To extend the MQ functions to regression models, the argument inside the pq, σq, ψq-check
function is replaced by standardized residuals, as we will explained below.

5.2 Two-fold M-quantile linear regression for SAE

GLMMs and LMMs are the simpler and most commonly used statistical models for SAE.
However, in the presence of atypical data or violation of the strong parametric assumptions
of the previous models (normality of errors and random effects, among others), they can lead
to incorrect modelling. Fortunately, the semi-parametric approach of Chambers and Tzavidis
(2006) to SAE considerably reduces the necessary assumptions and allows to capture the
variability between areas, modelled with random effects in GLMMs and LMMs, by fitting a
different MQ regression surface for each area. It is also a robust option against atypical unit-
level and area-level data. For ease of exposition, we will explain their approach step-by-step
and finally generalise it to temporal data.

Let U be a finite population of size N hierarchically partitioned in domains Ud of sizes
Nd, d “ 1, . . . , D. Let s and sd be the corresponding sampled subsets of sizes n and nd,
respectively. For 0 ă q ă 1, the two-level M-quantile linear regression (MQ2) models are

ydj “ x
1
djβψpqq ` eψ,djpqq, d “ 1, . . . , D, j “ 1, . . . , Nd, (5.4)
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where x1dj “ pxdj1, . . . , xdjpq, βψpqq “ pβψ1pqq, . . . , βψppqqq
1, p ě 1, and eψ,djpqq are indepen-

dent model errors with unknown c.d.f. Fqpuq “ P peψ,djpqq ď u|xdjq, u P R. In addition
they satisfy, by definition, that Qqpeψ,djpqq;σq, ψ|xdjq “ 0 and, although no explicit para-
metric assumptions are being made, the homoscedasticity assumption σq “ var1{2peψ,djpqqq “
σψpβψpqqq is imposed. One of the advantages of models (5.4) over LMMs is that we have not
specified a formal structure for the model errors, let alone required them to follow a normal
distribution. Without going into further detail, the MQ2 linear models are generalised to
three levels of hierarchy in Section 5.3.

In practice, pβψpqq and pσq are estimated using the IRLS algorithm, which ensures conver-
gence to a unique solution (Bianchi and Salvati, 2015). This algorithm is explained step-by-
step in Appendix C for estimating the regression parameters of the TWMQ linear models,
and its adaptation to the MQ2 linear models is straightforward.

5.2.1 Two-fold M-quantile approach for inter-area variability

The MQ2 linear models have been used to model inter-area variability. The idea is to
non-parametrically capture the variability of the population, beyond what is explained by the
auxiliary variables, using the so-called MQ coefficients (Breckling and Chambers, 1988). This
approach avoids distributional assumptions, as well as problems associated with the specifi-
cation of the random effects in LMMs, allowing differences between areas to be characterised
by the variation in area-specific MQ coefficients. It is therefore more robust to atypical data
than the inclusion of random effects, as quantiles and MQs are more robust than the mean of
a random variable (Koenker, 2005).

For j “ 1, . . . , Nd, the unit-level MQ coefficients of models (5.4) are

qdj “ solution
0ăqă1

"

Qqpydj ;σq, ψ|xdjq “ ydj

*

, Qqpydj ;σq, ψ|xdjq “ x
1
djβψpqq.

For each target variable ydj , j “ 1, . . . , Nd, we calculate the quantile qdj for which the model
error edjpqdjq would be equal to zero if the β-coefficients were known.

By definition, it holds that

ydj “ Qqdj pydj ;σqdj , ψ|xdjq “ x
1
djβψpqdjq, σqdj “ σψpβψpqdjqq.

The unit-level MQ coefficient qdj is the “most likely” quantile of unit j of area d. That is, of
all the MQ2 linear models that vary by 0 ă q ă 1, the model with q “ qdj would predict ydtj
without error if βψpqq was known. Since the target variables ydj , j “ 1, . . . , nd, are observed
for all units in the sampled subsets sd, the unit-level MQ coefficients can be estimated in these
units. More specifically, an estimator of qdj , j “ 1, . . . , nd, is

pqdj “ solution
0ăqă1

"

pQqpydj ; pσq, ψ|xdjq “ ydtj

*

, pQqpydj ; pσq, ψ|xdjq “ x
1
dj
pβψpqq.

The idea is to use the unit-level MQ coefficients of each individual to then estimate the average
in each area and fit the MQ2 linear models to that q-value. In LMMs we include random
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effects to capture the variability between areas and with the MQ approach to SAE we capture
this variability by fitting different MQ2 linear regression surfaces for each area.

The domain population and sample means of unit-level MQ coefficients are

θd
∆
“ q̄d. “

1

Nd

Nd
ÿ

j“1

qdj , pθd
∆
“ pq̄d. “

1

nd

nd
ÿ

j“1

pqdj , d “ 1, . . . , D,

respectively. By definition, pθd is the area-level average of the estimated unit-level MQ co-
efficients of the units in the sample. Therefore, we expect that the MQ2 linear model with
q “ pθd will be the one that provides the best predictions in the domain d. Overall, if we are
predicting linear domain parameters, such as population means. That is to say, in order to
predict ydj in the unobserved part of domain d, we will choose the MQ2 linear model with

q “ pθd. Thus, prediction in MQ2 linear models for SAE involves fitting D models, each one
with the most appropriate quantile q “ pθd for the domain d it represents.

5.2.2 Robust predictors for two-fold M-quantile models

The MQ2 linear models are used to predict domain quantities including, but not only, pop-
ulation means. Specifically, we calculate predictors of addictive quantitiesGd “ gdpyd1, . . . , ydNdq,
where gd : RNd Ñ R is a continuous function. Therefore, its applicability overlaps with the
EBP methodology based on NER models of Rao and Molina (2010). For example, we can
predict poverty rates and poverty gaps, but this research focuses on predicting linear domain-
dependent population values and, in particular, population means:

Y d “
1

Nd

Nd
ÿ

j“1

ydj , d “ 1, . . . , D.

As the first option, a plug-in type predictor is calculated for the population means. Under
regularity assumptions, a Taylor series expansion of βψpθdq around pθd yields to

βψpθdq « βψ
`

pθd
˘

`
Bβψpqq

Bq

ˇ

ˇ

ˇ

q“pθd
pθd ´ pθdq, d “ 1, . . . , D.

Let rd “ Ud ´ sd be the non sampled subset of Ud, d “ 1, . . . , D. If we assume that the sum
of the residuals eψ,djpθdq in rd is close to zero, then it holds that

Y d “
1

Nd

Nd
ÿ

j“1

ydj “
1

Nd

"

ÿ

jPsd

ydj `
ÿ

jPrd

x1djβψpθdq `
ÿ

jPrd

eψ,djpθdq

*

«
1

Nd

"

ÿ

jPsd

ydj `
ÿ

jPrd

x1dtβψ
`

pθd
˘

*

`
1

Nd

ÿ

jPrd

x1dj
Bβψpqq

Bq

ˇ

ˇ

ˇ

q“pθd
pθd ´ pθdq.

Typically, the second summand of the last expression is much smaller than the first one.
Therefore, we define the MQ predictor of Y d as

pY
mq

d “
1

Nd

"

ÿ

jPsd

ydj `
ÿ

jPrd

x1dj
pβψ

`

pθd
˘

*

. (5.5)
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Given that Qθdpeψ,djpθdq;σθd , ψ|xdjq “ 0, it follows that

ÿ

jPrd

eψ,djpθdq « 0 if θd P p1{2´ ε, 1{2` εq,

for some small ε ą 0, but not otherwise. It is therefore desirable to know the sign of the bias
of (5.5) and reduce its magnitude, as the MQ predictor is expected to be a biased predictor
of the population mean. If θd ă 1{2´ ε, the event

ř

jPrd
eψ,djpθdq ą 0 will occur with greater

probability than the opposite event and the MQ predictor will tend to have negative bias. If
θd ą 1{2´ ε, however, the MQ predictor will tend to have positive bias.

We define the residuals and standardized residuals of the MQ2 linear models as

peψ,djppθdq “ ydj ´ x
1
dj
pβψp

pθdq, puψ,djppθdq “ pσ´1
pθd
peψ,dj , j “ 1, . . . , nd.

The previous calculations involve the estimation of both the pβψ-coefficients and the area-level

M-quantile coefficients pθd. Provided

1

nd

ÿ

jPsd

x1dj
pβψp

pθdq «
1

Nd

ÿ

jPUd

x1dj
pβψp

pθdq,

the bias of (5.5) is estimated as

pB
`

pY
mq

d

˘

“ pE
“

pY
mq

d ´ Y d

‰

“ ´
1

nd

´

1´
nd
Nd

¯

ÿ

jPsd

peψ,djppθdq.

Based on a robustification of peψ,djppθdq, the robust bias-corrected (BMQ) predictor of (5.5) is

pY
bmq

d “
pY
mq

d `
1

nd

´

1´
nd
Nd

¯

ÿ

jPsd

pσ
pθd
φ
`

puψ,djppθdq
˘

, (5.6)

where φ is an influence function with robustness parameter cφ ě 0. The last summand on the
right-hand side of (5.6) has the role of controlling the potential bias. The characterization of φ
is worthy of comment. By setting the value of cφ, it is possible to trade robustness for efficiency
in MQ2 linear models. If cφ “ 0, the BMQ predictor reduces to the MQ predictor. As cφ
increases, more weight is given to larger residuals, biased by the MQ predictor. Consequently,
larger values of cφ lead to less bias, but also less robustness and more variability. It is safe to
say that it is crucial to propose optimality criteria for a proper selection of cφ. For brevity,
this is presented in Section 5.4.4 for predictors derived from the TWMQ linear models but an
analogous argument is applied to the BMQ predictor derived from the MQ2 linear models.

5.3 Three-fold M-quantile linear regression for SAE

A review of the three-level MQ linear (MQ3) models (Marchetti et al., 2018) is necessary
to present the TWMQ linear models. Let U be a finite population of size N hierarchically
partitioned in domains Ud and subdomains Udt of sizes Nd and Ndt, respectively, d “ 1, . . . , D,
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t “ 1, . . . , T . Let s, sd and sdt be the corresponding sampled subsets of sizes n, nd and ndt,
respectively. Throughout the theoretical part, we assume that a vector of p ě 1 unit-level
auxiliary variables x1dtj “ pxdtj1, . . . , xdtjpq is known for all individuals in Udt and the variable
of interest, ydtj , is observed for all individuals in sdt.

For 0 ă q ă 1, the MQ3 linear model is

ydtj “ x
1
dtjβψpqq ` eψ,dtjpqq, d “ 1, . . . , D, t “ 1, . . . , T, j “ 1, . . . , Ndt, (5.7)

where βψpqq “ pβψ1pqq, . . . , βψppqqq
1 is the vector of model parameters and eψ,dtjpqq are inde-

pendent model errors with unknown c.d.f. Fqpuq “ P peψ,dtjpqq ď u|xdtjq, u P R.

It is worth noting that βψpqq only varies with the order of the quantile, 0 ă q ă 1.
Indeed, models (5.7) can be expressed with two subscripts, d and i, where i runs through all
combinations of values of the indexes t and j. However, the adopted notation is necessary
from Section 5.3.3 onwards, where the time component will be crucial.

For the MQ function, we assume that Qqpeψ,dtjpqq;σq, ψ|xdtjq “ 0, 0 ă q ă 1, and,
although no explicit parametric assumptions are being made, the homoscedasticity assumption
σq “ var1{2peψ,dtjpqqq “ σψpβψpqqq is imposed. One of the advantages of models (5.7) over
LMMs is that we have not specified a formal structure for the model errors, let alone required
them to follow a normal distribution.

In practice, pβψpqq and pσq are estimated using the IRLS algorithm, which ensures conver-
gence to a unique solution (Bianchi and Salvati, 2015). This algorithm is explained step-by-
step in Appendix C for estimating the regression parameters of the TWMQ linear models,
and its adaptation to the MQ3 linear models is straightforward.

5.3.1 Three-fold M-quantile approach for inter-area variability

The MQ3 linear models have recently been used to model inter-area variability (Marchetti
et al., 2018). The script is parallel to the one in Section 5.2.1. To start with, we have to
introduce the new notation adapted to the structure of the subdomains.

For j “ 1, . . . , Ndt, the unit-level MQ coefficients of models (5.7) are

qdtj “ solution
0ăqă1

"

Qqpydtj ;σq, ψ|xdtjq “ ydtj

*

, Qqpydtj ;σq, ψ|xdtjq “ x
1
dtjβψpqq.

For each target variable ydtj , j “ 1, . . . , Ndt, we calculate the quantile qdtj for which the model
error edtjpqdtjq would be equal to zero if the β-coefficients were known.

By definition, it holds that

ydtj “ Qqdtj pydtj ;σqdj , ψ|xdtjq “ x
1
dtjβψpqdtjq, σqdtj “ σψpβψpqdtjqq.

The unit-level MQ coefficient qdtj is the “most likely” quantile of unit j of area t and time
period t. That is, of all the MQ3 linear models that vary by 0 ă q ă 1, the model with
q “ qdtj would predict ydtj without error if βψpqq was known. Since the target variables
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ydtj , j “ 1, . . . , ndt, are observed for all units in the sampled subsets sdt, the unit-level MQ
coefficients can be estimated in these units.

More specifically, an estimator of qdtj , j “ 1, . . . , ndt, is

pqdtj “ solution
0ăqă1

"

pQqpydtj ; pσq, ψ|xdtjq “ ydtj

*

, pQqpydtj ; pσq, ψ|xdtjq “ x
1
dtj

pβψpqq.

The idea is to use the unit-level MQ coefficients of each individual to then estimate the average
in each area and fit the MQ3 linear models to that q-value.

The domain population and sample means of unit-level MQ coefficients are

θd
∆
“ q̄d.. “

1

Nd

T
ÿ

t“1

Ndt
ÿ

j“1

qdtj , pθd
∆
“ pq̄d.. “

1

nd

T
ÿ

t“1

ndt
ÿ

j“1

pqdtj , d “ 1, . . . , D, (5.8)

respectively. By definition, pθd is the area-level average of the estimated unit-level MQ co-
efficients of the units in the sample. Therefore, we expect that the MQ3 linear model with
q “ pθd will be the one that provides the best predictions in the domain d. Overall if we predict
linear domain parameters, such as population means. That is to say, in order to predict ydtj
in the unobserved part of domain d we will choose the MQ3 linear model with q “ pθd. Thus,
prediction in MQ3 linear models for SAE involves fitting D models, each one with the most
appropriate quantile q “ pθd for the domain d it represents.

5.3.2 Robust predictors for three-fold M-quantile models

The MQ3 linear models are used to predict subdomain quantities including, but not
only, population means. Specifically, we calculate predictors of addictive quantities Gdt “
gdtpydt1, . . . , ydtNdtq, where gdt : RNdt Ñ R is a continuous function. Therefore, its applica-
bility overlaps with the EBP methodology based on NER models of Rao and Molina (2010).
For example, we can predict poverty rates and poverty gaps, but this research focuses on
predicting linear domain-dependent population values and, in particular, population means:

Y dt “
1

Ndt

Ndt
ÿ

j“1

ydtj , d “ 1, . . . , D, t “ 1, . . . , T.

As the first option, a plug-in type predictor is calculated for the population means. The
idea here comes from generalizing the developments described in Section 5.2.2. Let rdt “
Udt ´ sdt be the non sampled subset of Udt, d “ 1, . . . , D, t “ 1, . . . , T . If the sum of the
residuals eψ,dtjpθdq in rdt is close to zero, then

Y dt “
1

Ndt

Ndt
ÿ

j“1

ydtj “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψpθdq `
ÿ

jPrdt

eψ,dtjpθdq

*

(5.9)

«
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψ
`

pθd
˘

*

`
1

Ndt

ÿ

jPrdt

x1dtj
Bβψpqq

Bq

ˇ

ˇ

ˇ

q“pθd
pθd ´ pθdq.
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We define the residuals and standardized residuals of the MQ3 linear models as

peψ,dtjppθdq “ ydtj ´ x
1
dtj

pβψp
pθdq, puψ,dtjppθdq “ pσ´1

pθd
peψ,dtj , j “ 1, . . . , ndt.

The previous calculations involve the estimation of both the pβψ-coefficients and the area-level

M-quantile coefficients pθd.

We define the MQ predictor of Y dt as

pY
mq

dt “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψ

`

pθd
˘

*

(5.10)

and the robust BMQ predictor of (5.10) as

pY
bmq

dt “
pY
mq

dt `
1

ndt

´

1´
ndt
Ndt

¯

ÿ

jPsdt

pσ
pθd
φ
`

puψ,dtjppθdq
˘

, (5.11)

where φ is an influence function with robustness parameter cφ ě 0. For the sake of brevity,
the optimality criterion for the data-driven selection of cφ is only given in Section 5.4.4 for
predictors derived from the TWMQ linear models. Applying the developments to this case,
however, is straightforward.

5.3.3 Residual analysis and inter-period weights

In this section we introduce the necessary notation to define the TWMQ linear models.
The idea will be to capture underlying temporal dependencies in the MQ3 linear models,
incorporating this dependency structure into the new models proposed in Section 5.4.

Let us define the subdomain-level residuals as

rψ,dt “
1

ndt

ÿ

jPsdt

peψ,dtjppθdq, d “ 1, . . . , D, t “ 1, . . . , T,

and assume that there exists some unknown subdomain-level temporal dependency between
the target variables ydt1j1 and ydt2j2 , t1, t2 “ 1, . . . , T , j1 “ 1, . . . , Ndt1 , j2 “ 1, . . . , Ndt2 .
In such case, the subdomain-level temporal dependency will remain in the subdomain-level
residuals rψ,dt1 and rψ,dt2 , t1, t2 “ 1, . . . , T .

As already pointed out, the MQ3 linear models are able to non-parametrically capture
area-level variability by fitting different regression surfaces

pQ
pθd
pydtj ; pσq, ψ|xdtjq “ x

1
dtjβψp

pθdq, d “ 1, . . . , D, t “ 1, . . . , T, j “ 1 . . . , Ndt,

but they are not able to model temporal dependencies. Intuition motivates us to fit a sea-
sonal autoregressive ARpP qD model with period D and order 0 ď P ď T to trψ,dt : d “
1, . . . , D, t “ 1, . . . , T u. Here the domains play the role of seasons and P measures how
the auto-correlation decays over time (Bugallo et al., 2024e). The extreme cases are P “ 0,
where there is no autoregressive dependence structure, and P “ T which includes all possible
lags. Our idea is to define inter-period weights wt1t2 that measure the dependency between
rψ,dt1 and rψ,dt2 , t1, t2 “ 1, . . . , T , based on the estimated coefficients of the fitted seasonal
autoregressive ARpP qD model. It is necessary to differentiate between two cases:
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(1) If 1 ď t ď P , there is past information from the first period up to time t, so the weights
will be distributed over t1, . . . , tu. Accordingly, if t “ 1 there is no past information,
i.e., only data from the first period is available.

(2) If P ă t ď T , there is past information from the first period up to time t, but we only
assign positive weights to the last P delays, i.e. tt´ P, . . . , tu.

Some information is included below. First, the equation of an ARpP qD process tziuiPZ is

zi “ φ0 ` φ1zi´D ` φ2zi´2D ` ¨ ¨ ¨ ` φP zi´PD ` ai,

where taiuiPZ is a collection of i.i.d. normal variables, of zero mean and finite variance σ2
a,

and φ0, φ1, . . . , φP P R fulfil that φP ‰ 0 and 1´φ1u´φ2u
2´¨ ¨ ¨´φPu

P ‰ 0, @u P C, |u| ď 1

(stationarity condition). Let be St “
t
ř

p“1
|φp|, 1 ď t ď P , the sum of the first t autoregressive

coefficients. The set of past time periods that produce a dependency in the distributions of
the target variables at time period t are

Tt “ trt, . . . , tu, rt “ rtpt, P q “

#

1 if 1 ď t ď P,

t´ P if t ą P,

so the vector of inter-period weights is wt “ pwt1, . . . , wtT q, where

wti “
|φt`1´i|

St
if rt ď i ď t, and wti “ 0 if i ą t or i ă rt, t “ 1, . . . , T. (5.12)

For each t “ 1, . . . , T , the population and samples sizes are N.t “
řD
d“1Ndt and n.t “

řD
d“1 ndt, respectively, and the relevant subsets at time period t and corresponding sizes, are

sdptq “
ď

iPTt

sdi, Udptq “
ď

iPTt

Udi; ndptq “
ÿ

iPTt

ndi, Ndptq “
ÿ

iPTt

Ndi,

sptq “

D
ď

d“1

sdptq, Uptq “
D
ď

d“1

Udptq; nptq “
D
ÿ

d“1

ndptq, Nptq “
D
ÿ

d“1

Ndptq. (5.13)

The heuristic of inter-period weights attribution given by equation (5.12) and the notation
just included in (5.13) will be quite relevant in Section 5.4. Indeed, the subsets sptq determine,
at time period t, the set of time-dependent observations that will be assigned positive weights,
according to (5.12), in the fitting algorithm of the new TWMQ linear models.

5.4 Time-Weighted M-quantile statistical methodology

LMMs with time-dependent structures rely on strong distributional assumptions, and it is
also necessary to formally specify the dependence structure of the random effects. Therefore,
there is a need for time-dependent SAE models that are robust against atypical data and have
fewer parametric assumptions. To cover this gap, this section provides a detailed description of
the proposed Time-Weighted M-quantile (TWMQ) statistical methodology. It follows Bugallo
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et al. (2024e) as a reference point. First, the model formulation is presented. Section 5.4.1
derives two robust plug-in type predictors of small area means and time periods. Sections
5.4.2 and 5.4.3 focus on the estimation of the MSE and, directly related, Section 5.4.4 on that
of the robustness parameter for bias correction. Appendix C outlines the steps of the fitting
algorithm, an adaptation of the IRLS algorithm. Appendix D contains the mathematical
proofs of Theorems 1 and 2.

For 0 ă q ă 1, t “ 1, . . . , T , the time-weighted MQ linear regression (TWMQ) models are

ydij “ x
1
dijβψpq,wtq ` eψ,dijpq,wtq, d “ 1, . . . , D, i “ 1, . . . , T, j “ 1, . . . , Ndi, (5.14)

where βψpq,wtq “ pβψ1pq,wtq, . . . , βψppq,wtqq
1 is the vector of time-varying model parame-

ters, wt “ pwt1, . . . , wtT q
1 is the vector of known non-negative inter-period weights measuring

the time dependency between observation of times t and i, and eψ,dijpq,wtq are indepen-
dent model errors with unknown c.d.f. Fqtpuq “ P peψ,dijpq,wtq ď u|xdijq, u P R. The new
models feature time-varying parameters βψpq,wtq, 0 ă q ă 1, t “ 1, . . . , T , and allow for
non-parametric modelling of time dependence structures for each probability q.

It is satisfied by definition that

Qqpeψ,dijpq,wtq;σqt, ψ|xdijq “ 0, 0 ă q ă 1,

and, although no explicit parametric assumptions are being made, the homoscedasticity as-
sumption σqt “ var1{2peψ,dijpq,wtqq “ σψpβψpq,wtqq is imposed.

Our choice is to set the vector of weights wt, t “ 1, . . . , T , according to (5.12), so the time-
dependent subsets are defined in (5.13). As in the case of the MQ2 and MQ3 linear models,
we do not need to specify the distribution of the model errors. As an inherited property of MQ
models, our proposal avoids distributional assumptions and allows characterizing differences
between areas, as well as time dependencies, through data-driven estimation of the model
parameters. Therefore, not only do the new models have time-varying parameters, but they
are also distribution-free for both areas and time.

Here it is important to note the clear differences of the TWMQ linear models (5.14)
compared to the MQ Geographically Weighted Regression (Salvati et al., 2012), where the
weights are symmetric, i.e. where something like wti “ wit, i, t “ 1, . . . , T , should be imposed.
For spatial dependencies, adding new locations does not necessarily imply that those already
considered lose relevance. In contrast, in the case of temporal dependencies, the first lags lose
relevance as more recent information becomes available. One of the great advantages of the
TWMQ linear models is that recent data can be easily incorporated into the fitting process.
In fact, it manages to attribute only positive weights to the closest temporal data through
the sets Tt, t “ 1, . . . , T . As a result, the computational cost of fitting the TWMQ linear
models is not scalable if we include more recent observations. That is, the model parameters
βψpq,wtq, 0 ă q ă 1, t “ 1, . . . , T , vary over time, using only the nearest data to estimate
them. The relationship between the response variable and the covariates is characterized by
local rather than global parameters, where local is defined as time specific.

In light of the above, the TWMQ linear models allows us to define the fitted regression
surfaces

pQqpydtj ;σqt, ψ|xdtjq “ x
1
dtj

pβψpq,wtq, d “ 1, . . . , D, t “ 1, . . . , T, j “ 1, . . . , Ndt,
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that uses information across quantiles 0 ă q ă 1 and over time.

5.4.1 Robust predictors for Time-Weighted M-quantile models

The TWMQ linear models are used to predict subdomain quantities including, but not
only, population means. In fact, they can be used to predict the same type of predictors
as the MQ3 linear models in Section 5.3.2, but with this new methodology we can capture
underlying time dependencies. For the purpose of using the TWMQ linear models in SAE, we
use βψpθd,wtq, where the estimation of θd, d “ 1, . . . , D, comes from the MQ3 linear models

(5.7). Indeed, it has been given in (5.8) so we finally estimate βψp
pθd,wtq. We follow a robust-

projective approach based on plug-in robust prediction, i.e. the optimal, but outlier-sensitive,
parameter estimates are replaced by outlier-robust versions.

In the following, we include some mathematical notation and developments to derive the
small area predictors. For the quantile q “ θd, we write

σθdt “ σψpβψpθd,wtqq, d “ 1, . . . , D, t “ 1, . . . , T,

and introduce a simplified notation for model errors and standardized errors, i.e.

eψ,dtj “ ydtj ´ x
1
dtjβψpθd,wtq, uψ,dtj “ σ´1

θdt
eψ,dtjpθd,wtq, j “ 1, . . . , Ndt. (5.15)

For j “ 1, . . . , ndi, i “ 1, . . . , T , the model residuals are

peψ,dijpq,wtq “ ydij ´ x
1
dij

pβψpq,wtq, 0 ă q ă 1.

For j “ 1, . . . , Ndt, 0 ă q ă 1, we define the pseudo-residuals and standardized pseudo-
residuals

reψ,dtjpqq “ x1dtj
`

βψpq,wtq ´ pβψpθd,wtq
˘

, ruψ,dtjpqq “ σ´1
θdt

reψ,dtjpqq,

peψ,dtjpqq “ x1dtj
`

βψpq,wtq ´ pβψp
pθd,wtq

˘

, puψ,dtjpqq “ σ´1
θdt

peψ,dtjpqq,

qeψ,dtjpqq “ x1dtj
`

βψpq,wtq ´ βψp
pθd,wtq

˘

, quψ,dtjpqq “ σ´1
θdt

qeψ,dtjpqq. (5.16)

For j “ 1, . . . , Ndt, the unit-level MQ coefficients of models (5.14) are

qdtj “ solution
0ăqă1

"

Qqpydtj ;σqt, ψ|xdtjq “ ydtj

*

, Qqpydtj ;σqt, ψ|xdtjq “ x
1
dtjβψpq,wtq, (5.17)

so it holds that
ydtj “ x

1
dtjβψpqdtj ,wtq, σqdtj “ σψpβψpqdtj ,wtqq.

The interpretation of the unit-level MQ coefficients of models (5.14) is the same as for the
MQ2 and MQ3 linear models, but in this case the estimation of βψpq,wtq and βψpqdtj ,wtq

allow for past time dependencies to be taken into account.

For the quantile q “ qdtj , the pseudo-residuals and standardized pseudo-residuals are

reψ,dtj
∆
“ reψ,dtjpqdtjq “ ydtj ´ x

1
dtj

pβψpθd,wtq, ruψ,dtj “ σ´1
θdt

reψ,dtjpqdtjq,

peψ,dtj
∆
“ peψ,dtjpqdtjq “ ydtj ´ x

1
dtj

pβψp
pθd,wtq, puψ,dtj “ σ´1

θdt
peψ,dtjpqdtjq,

qeψ,dtj
∆
“ qeψ,dtjpqdtjq “ ydtj ´ x

1
dtjβψp

pθd,wtq, quψ,dtj “ σ´1
θdt

qeψ,dtjpqdtjq. (5.18)
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In future developments, such as the proof of Theorem 1, the previous notation will be useful.

As the first option, a plug-in type predictor is calculated for the population means. Under
regularity assumptions, a Taylor series expansion of βψpθd,wtq around pθd yields to

βψpθd,wtq « βψ
`

pθd,wt

˘

`
Bβψpq,wtq

Bq

ˇ

ˇ

ˇ

q“pθd
pθd ´ pθdq, d “ 1, . . . , D.

If we assume that the sum of model errors eψ,dtj is close to zero, we have

Y dt “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψpθd,wtq `
ÿ

jPrdt

eψ,dtj

*

«
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψ
`

pθd,wt

˘

*

`
1

Ndt

ÿ

jPrdt

x1dtj
Bβψ

`

pθd,wt

˘

Bpθd
pθd ´ pθdq.

Typically, the second summand of the last expression is much smaller than the first one.
Therefore, we define the TMQ predictor of Y dt as

pY
tmq

dt “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψ

`

pθd,wt

˘

*

. (5.19)

Given that Qθdpeψ,dtj ;σθdt, ψ|xdtjq “ 0, it follows that
ř

jPrdt
eψ,dtj « 0 if θd P p1{2´ε, 1{2`εq

for some small ε ą 0, but not otherwise. It is therefore desirable to know the sign of the bias
of (5.19) and reduce its magnitude, as the TMQ predictor is expected to be a biased predictor
of the population mean. If θd ă 1{2 ´ ε, the event

ř

jPrdt
eψ,dtj ą 0 will occur with greater

probability than the opposite event and the TMQ predictor will tend to have negative bias.
If θd ą 1{2´ ε, however, the TMQ predictor will tend to have positive bias. If

1

ndt

ÿ

jPsdt

x1dtj
pβψ

`

pθd,wt

˘

«
1

Ndt

ÿ

jPUdt

x1dtj
pβψ

`

pθd,wt

˘

,

the bias of (5.19) is estimated as

B
`

pY
tmq

dt

˘

“ E
“

pY
tmq

dt ´ Y dt

‰

“ ´
1

ndt

´

1´
ndt
Ndt

¯

ÿ

jPsdt

peψ,dtj .

Based on a robustification of peψ,dtj , the robust bias-corrected (BTMQ) predictor of (5.19) is

pY
btmq

dt “
pY
tmq

dt `
1

ndt

´

1´
ndt
Ndt

¯

pBbtmq
dt , pBbtmq

dt “
ÿ

jPsdt

σθdtφ
`

puψ,dtj
˘

(5.20)

where φ is an influence function with robustness parameter cφ ě 0. For the first time in the
literature, in Section 5.4.4 we propose an optimality criterion for a proper selection of cφ.

5.4.2 Mean squared error estimation for temporal M-quantile predictors

In this section we address the analytical estimation of the MSE of the TMQ predictor.
Let d “ 1, . . . , D, t “ 1, . . . , T . Let us assume that q “ pθd is known. We define the nptq ˆ 1
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vector indicating the units of sptq that belongs to domain d and time period t, i.e.

εdt “ col
1ďgďD

`

δgd col
iPTt
pδit col

1ďjďngi
p1qq

˘

“ col
1ďgďD

`

col
iPTt
p col
1ďjďngi

pεdt,gijqq
˘

, δab “

#

1 if a “ b,

0 otherwise.

Then we write the TMQ predictor in the linear form

pY
tmq

dt “
1

Ndt

"

ε1dtysptq `

ˆ

ÿ

jPrdt

x1dtj

˙

`

X 1sptqWsptqp
pθd,wtqXsptq

˘´1
X 1sptqWsptqp

pθd,wtqysptq

*

“
1

Ndt
a1dtysptq “

1

Ndt

D
ÿ

g“1

ÿ

iPTt

ngi
ÿ

j“1

adt,gijygij ,

where a1dt “ ε
1
dt ` z

1
dt “ col

1ďgďD

`

col
iPTt
p col
1ďjďngi

padt,gijqq
˘

, adt,gij “ εdt,gij ` zdt,gij and

z1dt “ col
1ďgďD

`

col
iPTt
p col
1ďjďngi

pzdt,gijqq
˘

“

ˆ

ÿ

jPrdt

x1dtj

˙

`

X 1sptqWsptqp
pθd,wtqXsptq

˘´1
X 1sptqWsptqp

pθd,wtq.

We have written in TMQ predictor as a sum of the target variables multiplied by certain
weights, stored in the vector adt. Let us define the Nptq ˆ 1 vector indicating the units of
Uptq that belongs to domain d and time period t and the vectors 1dt “ col

1ďjďNdt
p1q, ydt “

col
1ďjďNdt

pydtjq, 1rdt “ col
jPrdt

p1q, yrdt “ col
jPrdt

pydtjq.

The prediction error and MSE of pY
tmq

dt are, respectively,

pY
tmq

dt ´ Y dt “
1

Ndt

`

a1dtysptq ´ 11dtydt
˘

“
1

Ndt

`

z1dtysptq ´ 11rdtyrdt
˘

and

MSEppY
tmq

dt q “ E
”

`

pY
tmq

dt ´ Y dt

˘2
ı

“ var
`

pY
tmq

dt ´ Y dt

˘

`B2
`

pY
tmq

dt

˘

,

where

var
`

pY
tmq

dt ´ Y dt

˘

“
1

N2
dt

var
`

z1dtysptq ´ 11rdtyrdt
˘

, B
`

pY
tmq

dt

˘

“
1

Ndt
E
“

z1dtysptq ´ 11rdtyrdt
‰

.

Following Chambers and Tzavidis (2006), we first derive a first-order approximation of

MSEppY
tmq

dt q and then propose several estimators. In general, the procedure described below
could be applied when the quantity to be predicted can be expressed as a linear combination
of the values taken by the target variable in all units of the sample (Chambers et al., 2011).
These pseudo-linear MSE estimators assume that the weights adt are fixed quantities, and
thus ignore their contribution to the MSE, derived from the estimation of the θd coefficients
using the MQ3 linear models. In practice, the latter should not be a major problem, as this
variability is expected to be rather small (Schirripa Spagnolo et al., 2021).
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Firstly, the variance is approximated as

var
`

pY
tmq

dt ´ Y dt

˘

«
1

N2
dt

ˆ D
ÿ

g“1

ÿ

iPTt

ngi
ÿ

j“1

z2
dt,gijvarpygijq `

ÿ

jPrdt

varpydtjq

˙

(5.21)

“
1

N2
dt

ˆ D
ÿ

g“1

ÿ

iPTt

ngi
ÿ

j“1

z2
dt,gijvarpygijq `

D
ÿ

g“1

ÿ

iPTt

Ngi
ÿ

j“1

εrdt,gijvarpygijq

˙

,

where εrdt “ col
1ďgďD

`

δgd col
iPTt
pδitcolp col

jPsgi
p0q, col

jPrgi
p1qqq

˘

“ col
1ďgďD

`

col
iPTt
p col
1ďjďNgi

pεrdt,gijqq
˘

.

To estimate varpygijq and varpydtjq, we consider two approaches.

(1) Median approach: the variance estimators are based on the median model, and not on
the area quantile coefficient models. Accordingly, we use the median estimator xvarpygijq “

pygij ´ x
1
gij

pβψp0.5,wtqq
2 “ pe2

ψ,gijp0.5,wtq for the variance of the sample observations in sptq
and estimate the second summand in (5.21) using

ÿ

jPrdt

xvarpydtjq “
D
ÿ

g“1

ÿ

iPTt

ngi
ÿ

j“1

εdt,gij
Ndt ´ ndt
ndptq ´ 1

pe2
ψ,gijp0.5,wtq.

Therefore, the median estimator of var
`

pY
tmq

dt ´ Y dt

˘

is

pV tmq
11,dt “

1

N2
dt

D
ÿ

g“1

ÿ

iPTt

ngi
ÿ

j“1

λdt,gij pe
2
ψ,gijp0.5,wtq, λdt,gij “ z2

dt,gij `
Ndt ´ ndt
ndptq ´ 1

εdt,gij .

(2) Area quantile coefficient approach: the variance is estimated according to the representa-
tive quantile of the area g from which the observation is drawn. Consequently, we use the
area quantile coefficient estimator xvarpygijq “ pygij ´ x

1
gij

pβψp
pθg,wtqq

2 “ pe2
ψ,gijp

pθg,wtq for the
variance of the sample observations in sptq and estimate the second summand in (5.21) using

ÿ

jPrdt

xvarpydtjq “
D
ÿ

g“1

ÿ

iPTt

ngi
ÿ

j“1

εdt,gij
Ndt ´ ndt
ndptq ´ 1

pe2
ψ,gijp

pθg,wtq.

Therefore, the area quantile coefficient estimator of var
`

pY
tmq

dt ´ Y dt

˘

is

pV tmq
12,dt “

1

N2
dt

D
ÿ

g“1

ÿ

iPTt

ngi
ÿ

j“1

λdt,gij pe
2
ψ,gijp

pθg,wtq.

The selection of robustness parameters from a minimum MSE is expected to give better
results (Bugallo et al., 2024e), so we also look for a variance estimate that allows us to
separate the terms derived from the bias correction from the terms common to the TMQ and

BTMQ predictors. By using a different formula for the prediction error of pY
tmq

dt , we give two
alternative estimators of the variance. For this sake, we define the scalars and vectors

ȳsdt “
1

ndt

ÿ

jPsdt

ydtj , ȳrdt “
1

Ndt ´ ndt

ÿ

jPrdt

ydtj , x̄
1
rdt “

1

Ndt ´ ndt

ÿ

jPrdt

x1dtj .



116 CHAPTER 5. M-QUANTILE REGRESSION

From equation (5.19), we write the TMQ predictor as

pY
tmq

dt “
1

Ndt

!

ndtȳsdt ` pNdt ´ ndtqx̄
1
rdt

pβψ
`

pθd,wt

˘

)

and the population mean as

Y dt “
1

Ndt

!

ndtȳsdt ` pNdt ´ ndtqȳrdt

)

so the prediction error is

pY
tmq

dt ´ Y dt “

´

1´
ndt
Ndt

¯!

x̄1rdt
pβψ

`

pθd,wt

˘

´ ȳrdt

)

.

An estimator of the prediction error variance is

xvar
`

pY
tmq

dt ´ Y dt

˘

“

´

1´
ndt
Ndt

¯2
x̄1rdt

pVβx̄rdt `
´

1´
ndt
Ndt

¯2
xvarpȳrdtq, (5.22)

where pVβ “ xvarppβψp
pθd,wtqq. Based on the sandwich approach (Street et al., 1988) to estimate

the asymptotic variance of the vector of model parameters in MQ linear models (Bianchi and
Salvati, 2015), we derive an estimator of Vβ to be plugged into (5.22). Under assumptions
(A1)-(A8) in Appendix D.1, an estimator of Vβ is

pVβ “
n2
ptqσ

2
θdt

nptq ´ p

D
ř

g“1

ř

iPTt

ř

jPsgi

ψ2
pθdt

`

peψ,gijppθd,wtq, σθdt
˘

˜

D
ř

g“1

ř

iPTt

ř

jPsgi

9ψ
pθdt

`

peψ,gijppθd,wtq, σθdt
˘

¸2

¨

˝

D
ÿ

g“1

ÿ

iPTt

ÿ

jPsgi

x1gijxgij

˛

‚

´1

, (5.23)

where 9ψ
pθd,t

is the partial derivative of ψ
pθd,t

with respect to the first argument.

In order to estimate var
`

ȳrdt
˘

in (5.22), we use

xvar1

`

ȳrdt
˘

“

ř

jPsdt
pe2
ψ,dtj

pNdt ´ ndtqpndptq ´ 1q
or xvar2

`

ȳrdt
˘

“

řD
g“1

ř

jPsgt
pe2
ψ,gtj

pNdt ´ ndtqpn´Dq
. (5.24)

By substituting pVβ and xvar1

`

ȳrdt
˘

or xvar2

`

ȳrdt
˘

in (5.22), we obtain the estimators pV tmq
21,dt and

pV tmq
22,dt, respectively. Secondly, the bias B

`

pY
tmq

dt

˘

is estimated by

pBdt “
1

Ndt

ˆ D
ÿ

g“1

ÿ

iPTt

ÿ

jPsgi

adt,gijx
1
gij

pβψp
pθg,wtq ´

ÿ

jPUdt

x1dtj
pβψp

pθd,wtq

˙

, (5.25)

where the terms adt,gij ’s are the components of adt appearing in the definition of the prediction

error of pY
tmq

dt . All in all, we have four estimators of MSEppY
tmq

dt q. They are msetmq11,dt “

pV tmq
11,dt`

pB2
dt, mse

tmq
12,dt “

pV tmq
12,dt`

pB2
dt, mse

tmq
21,dt “

pV tmq
21,dt`

pB2
dt and msetmq22,dt “

pV tmq
22,dt`

pB2
dt. By

taking squared roots of the above estimators, we define rmsetmq11,dt, rmse
tmq
12,dt, rmse

tmq
21,dt and

rmsetmq22,dt, respectively. They are estimators of RMSEppY
tmq

dt q “
`

MSEppY
tmq

dt q
˘1{2

.
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5.4.3 Mean squared error estimation for bias-corrected temporal M-quantile
predictors

In this section we address the analytical estimation of the MSE of the BTMQ predictor.
We focus on the prediction of the population means Y dt, which have been defined in (5.9).
To start with, the BTMQ predictor of Y dt can be written as

pY
btmq

dt “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψ

`

pθd,wt

˘

*

`
1

ndt

´

1´
ndt
Ndt

¯

pBbtmq
dt ,

where pBbtmq
dt has been defined in (5.20).

We derive a first-order approximation of the MSE of the BTMQ predictor based on a
decomposition of it to account for the variability arising from the estimation of qdtj , j “
1, . . . , ndt, and βψ

`

θd,wt

˘

. To do so, we first define the following auxiliary notation in relation
to the BTMQ predictor:

Y
btmq
dt “

1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψpθd,wtq

*

`
1

ndt

´

1´
ndt
Ndt

¯

Bbtmq
dt ,

rY
btmq

dt “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψpθd,wtq

*

`
1

ndt

´

1´
ndt
Ndt

¯

rBbtmq
dt ,

Bbtmq
dt “

ÿ

jPsdt

σθdtφpuψ,dtjq,
rBbtmq
dt “

ÿ

jPsdt

σθdtφpruψ,dtjq,

where uψ,dtj and ruψ,dtj , j “ 1, . . . , ndt, have been defined in (5.15) and (5.18), respectively.

It holds that

MSE
`

pY
btmq

dt

˘

“ E
“`

pY
btmq

dt ´ Y dt

˘2‰
“ var

`

pY
btmq

dt ´ Y dt

˘

` pE
“

pY
btmq

dt ´ Y dt

‰

q2.

Under the assumptions listed in Appendix D.1.1, the prediction error of pY
btmq

dt is:

pY
btmq

dt ´Y dt “
`

pY
btmq

dt ´
rY
btmq

dt

˘

`
`

rY
btmq

dt ´Y
btmq
dt

˘

`
`

Y
btmq
dt ´Y dt

˘

“ Y
p3q
dt `Y

p2q
dt `Y

p1q
dt . (5.26)

To simplify the notation, we define the variance and the expected prediction difference of

Y
pkq
dt , for k “ 1, 2, 3, as V

pkq
dt , and E

pkq
dt , respectively.

Based on the decomposition in equation (5.26), we write:

var
`

pY
btmq

dt ´ Y dt

˘

“ V
p1q
dt ` V

p2q
dt ` V

p3q
dt ` 2cov

`

Y
p3q
dt , Y

p2q
dt

˘

` 2cov
`

Y
p3q
dt , Y

p1q
dt

˘

` 2cov
`

Y
p2q
dt , Y

p1q
dt

˘

,

E
“

pY
btmq

dt ´ Y dt

‰

“ E
p1q
dt ` E

p2q
dt ` E

p3q
dt “ E

p1q
dt ` op1q.

The covariances are cov
`

Y
p3q
dt , Y

p2q
dt

˘

“ E
“

Y
p3q
dt Y

p2q
dt

‰

`op1q, cov
`

Y
p3q
dt , Y

p1q
dt

˘

“ E
“

Y
p3q
dt Y

p1q
dt s`op1q

and cov
`

Y
p2q
dt , Y

p1q
dt

˘

“ E
“

Y
p2q
dt Y

p1q
dt s ` op1q. Under regularity assumptions, the expectations of

the previous cross-products should be op1q. We define the set Gdt “
!

j P sdt :
ˇ

ˇuψ,dtj
ˇ

ˇ ă cφ

)

.

The following theorem summarizes the final approximation of MSE
`

pY
btmq

dt

˘

.
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Theorem 1. Under assumptions (Φ1), (N1)-(N2), (Q1), (A1)-(A9), (B1)-(B4), (C1)-(C2),

(D1)-(D2), (E1)-(E3) in Appendix D.1.1, a first-order approximation of MSEppY
btmq

dt q is

MSE
`

pY
btmq

dt

˘

“ V
p1q
dt ` V

p2q
dt ` V

p3q
dt ` E

p1q2
dt ` op1q “

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

IGdtpjq `
1

N2
dt

Irdtpjq
¯´

x1dtjκψpθd,wtq

¯2
ξ2
dt

`
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

I
rHdt
pjq `

1

N2
dt

Irdtpjq
¯

x1dtjvar
`

pβψpθd,wtq
˘

xdtj

`
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

I
pHdt
pjq `

1

N2
dt

Irdtpjq
¯

x1dtjvar
`

pβψp
pθd,wtq

˘

xdtj

`

´

1´
ndt
Ndt

¯2
ˆ

cφ
ndt

ÿ

jPsdt´Gdt

E
“

sgnpeψ,dtjq
‰

`
σθdt
ndt

ÿ

jPGdt

ErRdtjs

˙2

` op1q.

Proof. The proof, by Bugallo et al. (2024e), is reported in Appendix D.1.

The estimator of MSE
`

pY
btmq

dt

˘

is given by

msebtmq3,dt “

´

1´
ndt
Ndt

¯2 pξ2
dt

n2
dt

´ 1

cardppGdtq

ÿ

jP pGdt

ppqdtj ´ pθdq
2
¯´1 ÿ

jP pGdt

pe2
ψ,dtj `

`
Ndt ´ ndt

ndt

pξ2
dt

N2
dt

´ 1

ndt

ÿ

jPsdt

ppqdtj ´ pθdq
2
¯´1 ÿ

jPsdt

pe2
ψ,dtj

` 2
´

1´
ndt
Ndt

¯2 1

n2
dt

ÿ

jP pGdt

x1dtj
pVβxdtj `

1

N2
dt

ÿ

jPrdt

x1dtj
pVβxdtj

`

´

1´
ndt
Ndt

¯2 1

n2
dt

ˆ

cφ
ÿ

jPsdt´ pGdt

sgnppeψ,dtjq `
1

2σθdt

ÿ

jP pGdt

pe2
ψ,dtj

˙2

, (5.27)

where pVβ is given in (5.23), pGdt “
!

j P sdt :
ˇ

ˇ

puψ,dtj
ˇ

ˇ ă cφ

)

, expression cardpBq denotes the

cardinal of a set B and pξ2
dt estimates varpqdtjq, e.g. by

pξ2
dt “ xvarpqdtjq “

1

ndt ´ 1

ÿ

jPsdt

ppqdtj ´ pq̄dt.q
2, pq̄dt. “

1

ndt

ÿ

jPsdt

pqdtj .

Finally, an estimator of RMSE
`

pY
btmq

dt

˘

“
`

MSE
`

pY
btmq

dt

˘˘1{2
is rmsebtmq3,dt “

`

msebtmq3,dt

˘1{2
.

Two alternative estimators of MSE
`

pY
btmq

dt

˘

could be also derived. It should be noted that,

from equation (5.16), we have puψ,dtj´ quψ,dtj “ σ´1
θdt
x1dtjpβψp

pθd,wtq´ pβψp
pθd,wtqq “ puψ,dtjppθdq.

A Taylor series expansion of φppuψ,dtjq around φpquψ,dtjq yields to

φppuψ,dtjq « φpquψ,dtjq ` 9φpquψ,dtjq
x1dtjpβψp

pθd,wtq ´ pβψp
pθd,wtqq

σθdt
, j “ 1 . . . , ndt.
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Let us define:

x̄1
qGdt
“

1

cardpqGdtq

ÿ

jP qGdt

x1dtj , x̄1sdt “
1

ndt

ÿ

jPsdt

x1dtj , ērdt “ ȳrdt ´ x̄
1
rdtβψp

pθd,wtq.

If φ is the Huber function, 9φpquψ,dtjq “ 1 if j P qGdt “
!

j P sdt :
ˇ

ˇ

quψ,dtj
ˇ

ˇ ă cφ

)

and 9φpquψ,dtjq “ 0,

otherwise. In a similar vein to the proposal by Chambers et al. (2014a), it holds that

σθdt
ndt

ÿ

jPsdt

φppuψ,dtjq «
σθdt
ndt

ÿ

jPsdt

φpquψ,dtjq `
σθdt
ndt

ÿ

jP qGdt

x1dtjpβψp
pθd,wtq ´ pβψp

pθd,wtqq

σθdt

“
σθdt
ndt

ÿ

jPsdt

φpquψ,dtjq `
cardpqGdtq

ndt
x̄1

qGdt
pβψp

pθd,wtq ´ pβψp
pθd,wtqq

«
σθdt
ndt

ÿ

jPsdt

φpquψ,dtjq ` x̄
1
sdtpβψp

pθd,wtq ´ pβψp
pθd,wtqq.

The prediction error of pY
btmq

dt is approximated as

pY
btmq

dt ´ Y dt “
1

Ndt

ˆ

ÿ

jPrdt

x1dtj
pβψp

pθd,wtq ´
ÿ

jPrdt

ydtj

˙

`
1

ndt

´

1´
ndt
Ndt

¯

pBbtmq
dt

«

´

1´
ndt
Ndt

¯

ˆ

σθdt
ndt

ÿ

jPsdt

φ
`

quψ,dtj
˘

` x̄1sdtβψp
pθd,wtq ` px̄rdt ´ x̄sdtq

1
pβψp

pθd,wtq ´ ȳrdt

˙

“

´

1´
ndt
Ndt

¯

ˆ

σθdt
ndt

ÿ

jPsdt

φ
`

quψ,dtj
˘

` px̄rdt ´ x̄sdtq
1ppβψp

pθd,wtq ´ βψp
pθd,wtqq ´ ērdt

˙

.

An estimator of the variance V btmq
dt “ var

`

pY
btmq

dt ´ Y dt

˘

is

pV btmq
dt “

´

1´
ndt
Ndt

¯2
„

´σθdt
ndt

¯2 ÿ

jPsdt

φ2
`

puψ,dtj
˘

` px̄rdt ´ x̄sdtq
1
pVβpx̄rdt ´ x̄sdtq ` xvarpērdtq



,

where the estimation of the variance matrix pVβ is given in (5.23) and varpērdtq is estimated
using xvar1

`

ȳrdt
˘

or xvar2

`

ȳrdt
˘

, given in (5.24). Depending on which formula we choose, we

obtain the estimators pV btmq
21,dt and pV btmq

22,dt of the variance V btmq
dt , respectively.

Against this background, note that the bias correction in (5.20) is controlled by cφ, which
can be either very large or close to zero. Consequently, it is not advisable to ignore the
presence of a potential bias, as it may (and perhaps should) still persist. Using the bias

estimator pBdt “ pB
`

pY
tmq

dt

˘

, given in (5.25), two estimators of MSEppY
btmq

dt q are

msebtmq1,dt “
pV btmq

21,dt `

´

pBdt `
1

ndt

´

1´
ndt
Ndt

¯

pBbtmq
dt

¯2

and

msebtmq2,dt “
pV btmq

22,dt `

´

pBdt `
1

ndt

´

1´
ndt
Ndt

¯

pBbtmq
dt

¯2
.
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By taking squared roots of the above estimators, we have rmsebtmq1,dt and rmsebtmq2,dt , respec-

tively. They are estimators of RMSEppY
btmq

dt q “
`

MSEppY
btmq

dt q
˘1{2

.

5.4.4 Selection of the robustness parameter

The robustness parameter is critical in determining the improvements of the BTMQ pre-
dictor over the TMQ predictor. However, the selection of an optimal robustness parameter
remains an open question for bias-corrected predictors (Chambers et al., 2014a; Dongmo-
Jiongo et al., 2013). In the context of MQ predictors, a common practice is to set cφ “ 3
(Salvati et al., 2012; Tzavidis et al., 2010). While this choice has yielded promising results, it
is ultimately subjective. An alternative to determine an appropriate value for the robustness
parameter could be to minimize an estimator of the MSE (Beaumont et al., 2013).

Thus, to strike a balance between bias and variance, we are looking for the values of cφ ě 0

that minimize MSEppY
btmq

dt q. In practice, this means solving the minimization problems

pcφ,dt “ argmin
cφě0

,msebtmqdt pcφq, d “ 1, . . . , D, t “ 1, . . . , T, (5.28)

where msebtmqdt is an estimation of MSEppY
btmq

dt q. Considering that the solutions are adaptive
robustness parameters for each area and time period, calculable e.g. by using grid search
methods, we call them area-time specific robustness parameters.

The following theorem states the existence and uniqueness of solutions of the minimization
problems (5.28) for msebtmqdt P tmsebtmq1,dt ,mse

btmq
2,dt u (Bugallo et al., 2024e).

Theorem 2. Let φ be the Huber function, defined in (5.3). Let d “ 1, . . . , D, t “ 1, . . . , T . For

msebtmqdt P tmsebtmq1,dt ,mse
btmq
2,dt u, it exists an unique solution pcφ,dt of the minimization problem

(5.28) belonging to the interval
“

0,max
jPsdt

|puψ,dtj |
‰

and its explicit expression is calculable.

Proof. The proof is reported in Appendix D.2.

5.5 Model-based simulations

The experimental design is inspired by Chambers et al. (2014a) and Bugallo et al. (2024e),
but here we have also included a time reference to all observations. The outline of the
simulations is described below, including the scenarios for the incorporation of unit-level
and area-level outliers, the cases for the time dependency random effects and the number of
iterations, S “ 500. Population data are generated for D “ 40 areas and T “ 10 time periods.
From each population, the sample data have been selected by simple random sampling without
replacement within each intersection between areas and time periods. Population and sample
sizes are fixed at Ndt “ 100 and ndt “ 5, respectively. Both the MQ3 and TWMQ linear
models are fitted using the IRLS algorithm. In addition, the projective influence function ψ
is the Huber function with tuning constant cψ “ 1.345, the same as the function φ of the
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robust bias-corrected MQ predictors BMQ and BTMQ, but their tuning constant has been

selected area-time specific. So as to calculate pc
psq
φ,dt, s “ 1, . . . , S, we use a fine grid from

0 to 10, with evenly spaced breaks of 0.001 width. For the fitting of the MQ models, the
prediction of small area linear indicators, the estimation of the MSE and the selection of the
robustness parameters, we have used a code developed by the authors. Finally, the LMMs
are fitted using REML. The R library nlme (Pinheiro and Bates, 2023, 2000) has been used
for this purpose and, in particular, the lme function.

Simulations 1 and 2 have the following steps:

1. Define β1 “ 100 and β2 “ 5. Vary q on a fine grid G Ă r0, 1s.

Ñ Choose Scenario [0,0], [e,0] or [e,u], where

[0,0] – absence of outliers, u1,d v Np0, 3q and edtj v Np0, 6q;

[e,0] – only individual level outliers, u1,d v Np0, 3q and edtj v δNp0, 6q`p1´δqNp20, 150q,
where δ is an independently generated BE random variable with P pδ “ 1q “ 0.97;

[e,u] – outliers affect both area and individual effects, u1,d v Np0, 3q for areas 1 ď d ď 36,
u1,d v Np9, 20q for areas 37 ď d ď 40, and edtj v δNp0, 6q ` p1´ δqNp20, 150q.

Ñ Choose Case 1.1, 1.2 or 2, where

Case 1. u2 “ col
1ďtďT

pu2,tq v NT p0,Σuq, Σu “ σ2
uΩT pρq, and the correlation matrix is

ΩT pρq “
1

1´ ρ2

¨

˚

˚

˚

˝

1 ρ ¨ ¨ ¨ ρT´1

ρ 1
. . . ρT´2

...
. . .

. . .
...

ρT´1 ρT´2 ρ 1

˛

‹

‹

‹

‚

PMTˆT , ρ P p´1, 1q. (5.29)

Case 1.1: σu “ 1, ρ “ 0.2; and Case 1.2: σu “ 1, ρ “ 0.8.

Case 2. Each u2,t is independently generated according to a stationary ARp3q model
with coefficients φ1 “ 0.4, φ2 “ 0.3, φ3 “ 0.25 and white noise variance σ “ 1.

2. Repeat S “ 500 times ps “ 1, . . . , Sq:

(a) For d “ 1 . . . , D, t “ 1 . . . , T , j P Udt, generate x
psq
dtj v LogNp1, 0.5q, u

psq
1,d and e

psq
dtj

depending on the chosen scenario, and u
psq
2,t depending on the chosen case; and

y
psq
dtj “ β1 ` x

psq
dtjβ2 ` u

psq
1,d ` u

psq
2,t ` e

psq
dtj , Y

psq
dt “

1

Ndt

Ndt
ÿ

j“1

y
psq
dtj .

(b) Fit the MQ3 linear models using the population data. Calculate q
psq
dtj and then θ

psq
d ,

d “ 1 . . . , D, t “ 1 . . . , T , j P Udt. Use the IRLS algorithm.

(c) Randomly generating ndt different positions between 1 and Ndt, draw a sample s
psq
dt

of size ndt, d “ 1 . . . , D, t “ 1 . . . , T . In what follows, only sample data are used.
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(d) Calculate the Hájek estimator with equal weights, i.e. the arithmetic mean:

pY
hajek

dt “
1

ndt

ndt
ÿ

j“1

ydtj .

(e) Using REML, fit the area-level LMM1 model

ydtj “ β1 ` xdtjβ2 ` u1,d ` edtj , u1,d v Np0, σ2
u1q, edtj v Np0, σ2

eq, σ2
u1 , σ

2
e ą 0,

and the area-level and time-level LMM2 model

ydtj “ β1 ` xdtjβ2 ` u1,d ` u2,t ` edtj , u1,d v Np0, σ2
u1q, u2,t v Np0, σ2

u2q,

edtj v Np0, σ2
eq, σ

2
u1 , σ

2
u2 , σ

2
e ą 0,

where β1 and β2 are the corresponding model parameters; u1,d are the area-level
random intercepts of LMM1; u1,d and u2,t are the area-level and time-level random
intercepts of LMM2, respectively; and edtj are the corresponding model errors.

(f) Calculate the predictors pY
eblup1

dt and pY
eblup2

dt , d “ 1, . . . , D, t “ 1, . . . , T , given by

pY
eblup1

dt “
1

Ndt

!

ÿ

jPs
psq
dt

ydtj `
ÿ

jPr
psq
dt

ppβ1 ` xdtj pβ2 ` pu1,dq

)

,

pY
eblup2

dt “
1

Ndt

!

ÿ

jPs
psq
dt

ydtj `
ÿ

jPr
psq
dt

ppβ1 ` xdtj pβ2 ` pu2,d ` pu2,tq

)

,

where r
psq
dt “ Udt ´ s

psq
dt is the non sampled subset of Udt; pu1,d is the EBLUP of the

random intercept u1,d for LMM1; and pu1,d and pu2,t are the EBLUPs of the random
intercepts u1,d and u2,t for LMM2, respectively.

(g) Fit the MQ3 linear model, i.e. estimate pβ
psq

ψ pqq and pσ
psq
q “ pσψppβ

psq

ψ pqqq, with q P G.

(h) For d “ 1 . . . , D, t “ 1 . . . , T , j P s
psq
dt , estimate pq

psq
dtj and then pθ

psq
d .

(i) Calculate the predictors pY
mq

dt and pY
bmq

dt , d “ 1, . . . , D, t “ 1, . . . , T .

(j) Calculate the inter-period weights w
psq
t “ pw

psq
t1 , . . . , w

psq
tT q, t “ 1, . . . , T .

(k) For t “ 1, . . . , T , d “ 1, . . . , D, fit the TWMQ linear models with q “ pθ
psq
d .

(l) Calculate the predictors pY
tmq

dt and pY
btmq

dt , d “ 1, . . . , D, t “ 1, . . . , T .

(m) For the TMQ predictor, calculate

rmsetmqdt P trmsetmq11,dt, rmse
tmq
12,dt, rmse

tmq
21,dt, rmse

tmq
22,dtu

and for the BTMQ predictor, calculate

rmsebtmqdt P trmsebtmq1,dt , rmse
btmq
2,dt , rmse

btmq
3,dt u,

d “ 1, . . . , D, t “ 1, . . . , T .
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3. For pY dt P
 

pY
hajek

dt , pY
eblup1

dt , pY
eblup2

dt , pY
mq

dt ,
pY
bmq

dt , pY
tmq

dt , pY
btmq

dt

(

, calculate

BIAS1,dt “
1

S

S
ÿ

s“1

`

pY
psq

dt ´ Y
psq
dt

˘

, RMSE1,dt “

´ 1

S

S
ÿ

s“1

`

pY
psq

dt ´ Y
psq
dt

˘2
¯1{2

. (5.30)

For rmsedt P trmse
tmq
dt , rmsebtmqdt u, d “ 1, . . . , D, t “ 1, . . . , T , calculate

BIAS2,dt “
1

S

S
ÿ

s“1

prmse
psq
dt ´ RMSE1,dtq, RMSE2,dt “

´ 1

S

S
ÿ

s“1

`

rmse
psq
dt ´ RMSE1,dt

˘2
¯1{2

,

where RMSE1,dt is taken from (5.30) for pY dt P
 

pY
tmq

dt , pY
btmq

dt

(

.

Consistent with the later notation, write

RMSE1,dt P
 

RMSEtmqdt ,RMSEbtmqdt

(

,

d “ 1, . . . , D, t “ 1, . . . , T , and

RMSE1 “
1

DT

D
ÿ

d“1

T
ÿ

t“1

RMSE1,dt P
 

RMSEtmq,RMSEbtmq
(

.

4. For d “ 1, . . . , D, t “ 1, . . . , T , calculate the relative performance measures

RBIAS1,dt “
100 ¨ BIAS1,dt

Y
˚

dt

, RRMSE1,dt “
100 ¨ RMSE1,dt

Y
˚

dt

, Y
˚

dt “
1

S

S
ÿ

s“1

Y
psq
dt ,

RBIAS2,dt “
100 ¨ BIAS2,dt

RMSE1,dt
, RRMSE2,dt “

100 ¨ RMSE2,dt

RMSE1,dt
,

and the average relative performance measures

ARBIASl “
1

DT

D
ÿ

d“1

T
ÿ

t“1

|RBIASl,dt|, RRMSEl “
1

DT

D
ÿ

d“1

T
ÿ

t“1

RRMSEl,dt, l “ 1, 2.

Finally, to measure overestimates (underestimates) of the several methods of MSE esti-
mation, we define the proportion of subdomains in which the proposed estimates are higher
(lower) than the empirical values. In line with the above, let be

P` “
1

DT

D
ÿ

d“1

ÿ

t“1

IpBIAS2,dt ě 0q, P´ “
1

DT

D
ÿ

d“1

ÿ

t“1

IpBIAS2,dt ă 0q “ DT ´ P`.

5.5.1 Simulation 1

In this section we assess the performance of the TMQ and BTMQ predictors from the
TWMQ linear models in estimating the domain means and compare them with others taken
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from the literature. We also show how the selection of area-time-specific robustness param-
eters could be employed as a diagnostic tool for outlier detection. Table 5.1 presents the
performance measures for Case 1.1, Case 1.2 and Case 2, and the simulation scenarios and
predictors mentioned above. Top performers are highlighted in bold.

[0,0] 1–40 [e,0] 1–40 [e,u] 1–40
ARBIAS RRMSE ARBIAS RRMSE ARBIAS RRMSE

Case 1.1 u2 v NT p0,Σuq: Σu “ σ2
uΩT pρq, σu “ 1, ρ “ 0.2

pY
hajek

dt 0.117 3.223 0.133 3.549 0.132 3.523
pY
eblup1

dt 0.039 0.833 0.047 0.992 0.067 0.999
pY
mq

dt 0.041 0.956 0.416 1.105 0.400 1.093
pY
bmq

dt 0.036 0.794 0.410 0.964 0.406 0.973
pY
eblup2

dt 0.027 0.655 0.042 0.940 0.064 0.947
pY
tmq

dt 0.023 0.701 0.415 0.864 0.398 0.884
pY
btmq

dt 0.019 0.553 0.409 0.752 0.396 0.795
Case 1.2 u2 v NT p0,Σuq: Σu “ σ2

uΩT pρq, σu “ 1, ρ “ 0.8

pY
hajek

dt 0.117 3.223 0.132 3.548 0.132 3.523
pY
eblup1

dt 0.039 0.954 0.046 1.096 0.066 1.101
pY
mq

dt 0.041 1.066 0.414 1.200 0.399 1.191
pY
bmq

dt 0.035 0.897 0.407 1.051 0.403 1.053
pY
eblup2

dt 0.027 0.682 0.042 0.995 0.063 1.001
pY
tmq

dt 0.025 0.693 0.413 0.878 0.397 0.897
pY
btmq

dt 0.020 0.539 0.407 0.760 0.396 0.800
Case 2 u2,t v ARp3q: φ1 “ 0.4, φ2 “ 0.3, φ3 “ 0.25, σ “ 1

pY
hajek

dt 0.115 3.238 0.122 3.571 0.121 3.545
pY
eblup1

dt 0.021 0.838 0.031 1.001 0.064 1.007
pY
mq

dt 0.027 0.962 0.414 1.114 0.396 1.101
pY
bmq

dt 0.022 0.800 0.408 0.971 0.402 0.979
pY
eblup2

dt 0.018 0.652 0.030 0.945 0.062 0.951
pY
tmq

dt 0.022 0.698 0.416 0.874 0.394 0.892
pY
btmq

dt 0.017 0.548 0.409 0.758 0.394 0.800

Table 5.1: Assessment of the absolute performance of the predictors of small area population
means by calculating average measures. ARBIAS and RRMSE values (in %).

First, if time effects are normal, as defined in Case 1, the improvement of the TWMQ
linear models is, as expected, subject to the definition of the covariance matrix. These models
do not aim to capture random effects over time, but rather well-founded relationships of time
dependency. Provided that the normality assumptions are met and there are no outliers, the
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values of ρ and σ2 are crucial. If the variance is large enough, the LMM2 provides acceptable
ARBIAS and RRMSE values. If the correlation is higher and/or the variance is lower, the
latter is not achieved, and the best options are the TWMQ linear models. The same is true
for the presence of outliers. It should be mentioned, however, that the LMM2 is not the model
that generates the target variables as it does not take into account the correlation structure of
the time-level random intercepts. As far as we are aware, the available correlation structures
in R refer to the model errors edtj , and not to the random effects u2,t. In addition, if the time
effects follow an autoregressive model, as defined in Case 2, the TWMQ linear models are
better in terms of RRMSE, although not in terms of ARBIAS if there are area-level outliers.
In fact, they are expected to be robust in the presence of atypical data, inheriting the well-
known robustness properties of the MQ regression. In that case, the ARBIAS of the EBLUP2

is smaller and the main source of contribution to its RRMSE comes from the variance.

Regarding the TMQ and BTMQ predictors, a proper selection of cφ ensures that the latter
is much better than the former, correcting for bias but also mitigating variability. The same
applies to the comparison of predictors MQ and BMQ. However, the flexibility of the TWMQ
linear models leads to less bias correction without severely affecting the variance. Rather than
merely accepting a default value as adequate, area-time specific values of cφ are far preferable
and very promising, being able to outperform the EBLUP2 based on the LMM2. Moreover,
an unexpected advantage is that the set

 

pcφ,dt : d “ 1, . . . , D, t “ 1, . . . , T
(

can be used
as a diagnostic tool for outlier detection (see below) and, not least important, computational
effort and execution times are not affected either if we use optimum values of cφ. The BTMQ
predictor is, indeed, a plug-in type predictor, so it is easy to program and fast to calculate.

Moving on to our second contribution, we will illustrate how the area-time-specific robust-
ness parameters for bias correction is used for outlier detection. The discussion focuses on
Case 1.1, although the conclusions are similar for the remaining two cases. Let us define the

average value, across simulations, of pcφ,dt, given by pcφ,dt “
1
S

S
ř

s“1
pc
psq
φ,dt.

First of all, some basic descriptive measures are calculated. For Scenario [0,0], pcφ,dt ranges
from 0.380 to 0.624, with a median value of 0.491. Something similar happens for Scenario
[e,0], where pcφ,dt ranges from 0.365 to 0.594, and the median is 0.474. For Scenario [e,u] and
the non-atypical areas 1 ď d ď 36, pcφ,dt ranges from 0.338 to 0.492, and the median is 0.433,
but ranges from 1.736 to 2.075, with a median of 1.887, for the atypical areas 37 ď d ď 40.
Bearing all of the above in mind, pcφ,dt is unaffected by the presence of unit-level outliers but
a very different picture emerges with the presence of area-level outliers. The latter can be
observed in Figure 5.1, where the peaks corresponding to areas 37 ď d ď 40 are quite revealing.
Compared to Scenario [0,0], the presence of individual-level outliers stops the improvement
in bias earlier, to avoid overfitting. If outliers are also at the area level, as in Scenario [e,u],
it is possible to give more strength to the bias correction without an increase of the variance.

After reviewing the literature, the results are supported by statistical tests adapted to
our problem. First, Friedman’s test (Friedman, 1937) is used for one-way repeated measures
analysis of variance under different experimental conditions. The repeated measures are the
values of pcφ,dt selected for an area d, d “ 1, . . . , D, over all time periods, t “ 1, . . . , T (which
are the experimental conditions). It is assumed that each pcφ,dt is equally distributed except
at most in terms of location, which may vary according to the experimental condition and
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Figure 5.1: Assessment of the area-time specific robustness parameters for the detection of
atypical domains. Scartterplot of pcφ,dt sorted by area and time period for Case 1.1.

area. We write

pcφ,dt “ c` δ1,t ` δ2,d ` edt,

where c is the global mean, independent of both area and time; δ1,t is the average effect of
time period t, t “ 1, . . . , T ; δ2,d measures the average effect of the d-th area, d “ 1, . . . , D;
and each edt i.i.d. follows an unknown zero-mean distribution F . The objective is to test

H0 : δ2,1 “ ¨ ¨ ¨ “ δ2,D vs H1 : D d1, d2 P t1, . . . , Du, d1 ‰ d2, δ2,d1 ,‰ δ2,d2 .

In a second step, we apply an Honestly Significant Difference test, or Tukey’s multiple range
test (Tukey, 1949), to detect which groups of areas shift in scale. If appropriate, both tests
can be applied to time periods, which leads us to write

H0 : δ1,1 “ ¨ ¨ ¨ “ δ1,t vs H1 : D t1, t1 P t1, . . . , T u, t1 ‰ t2, δ1,t1 ‰ δ1,t2 ,

where the repeated measures are the values of pcφ,dt selected for a time period t, t “ 1, . . . , T ,
over all areas, d “ 1, . . . , D (which are the experimental conditions).

Our approach for outlier detection reports the following promising results. In Scenario
[e,u], the mean of pcφ,dt differs between areas (p-value » 0) but not between time periods (p-
value 0.356). As expected, the area-level outliers detected by Tukey’s test are exactly those
with index 37 ď d ď 40. The same test applied to time periods detects only a single group,
formed by all of them. Having said that, note that we have used the averaged values of
pcφ,dt to assess the performance of the proposed approach in future applications to real data.
As S “ 500, this is done to avoid randomness in the data generation process. For the sake

of completeness, we have also applied Friedman’s test to each set of selections
 

pc
psq
φ,dt : d “

1, . . . , D, t “ 1, . . . , T
(

, s “ 1, . . . , S. With a significance level of 1%, the equality of provincial
means is correctly rejected in 100% of the samples; and the equality of temporal means is
incorrectly rejected (i) at 1% significance in 0.8% of the samples, (ii) at 5% significance in 6%
of the samples. The sensitivity and power of the results are more than acceptable.
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From the perspective of LMMs, the detection of atypical data using the methodology
described in Zewotir and Galpin (2007) does not report conclusive results because it is per-
formed at unit-level. In particular, unit-level outliers have been found to have more impact
than area-level outliers on the results of the test proposed by these authors. In our research,
the generation of unit-level outliers has been random, i.e. as additional noise, making the
above-mentioned test useless. In addition, it can be seen in Table 5.1 how LMMs overfit the
atypical data, reducing the bias but excessively increasing the variance, so it is not accurate at
all in analyzing the predicted random effects. In this sense, outliers severely affect non-robust
models in the context of SAE. Indeed, it is straightforward that an atypical value that desta-
bilizes a population estimate based on a large sample survey will greatly affect the results
obtained from a small collection of data (Chambers and Tzavidis, 2006; Koenker, 2005).

5.5.2 Simulation 2

In this section we investigate the performance of several methods of MSE estimation for
the TMQ and BTMQ predictors. First and foremost, Table 5.2 presents the performance
measures for Case 1.1, Case 1.2 and Case 2, and the different scenarios for the generation of
atypical data. We have included a third column with the proportion of subdomains in which
the bias is positive and, therefore, the RMSE is overestimated.

As a first general comment, estimating RMSEs is much more difficult than estimating
small area linear indicators, such as population means. Therefore, the magnitude of the
results in Table 5.2 should be assessed with caution. Although it is suggested that the RMSE
estimators for the TMQ predictors offer the most balanced performance in terms of ARBIAS
and RRMSE, the empirical RMSEs of the BTMQ predictors are smaller. As for the sign of the
RBIAS of the RMSE estimators, there are overestimates in Scenario [0,0] and underestimates
in the other two scenarios, being plotting a more intuitive tool. In addition, the difference
between cases for the generation of time effects is of little importance. Having said that, Figure
5.2 shows boxplots of RBIAS and RRMSE, both %, for the RMSE estimators performance
in Case 1.1 and the three scenarios already considered. First, the RBIAS of the RMSE
estimators of the TMQ predictors is more positive (or less negative, as appropriate) than the
corresponding one for the BTMQ predictors. It can be seen how the values of column P` in
Table 5.2 are in line with the boxplots for the bias in Figure 5.2. In terms of RRMSE, the
presence of area-level outliers greatly worsens the results in these subdomains, and thus the
average values in Table 5.2.

In general terms, although rmsebtmq3,dt is calculated from a first-order unbiased approxi-
mation, we feel that the numerical instability problems involved in the estimation stage are
responsible for its “slightly worse” performance. As discussed in Section D.1.6, the theoretical
advantage of this estimator is largely overshadowed by the highly unstable estimation of one
of its variance terms. Taking into account the latter, in the application to real data in Section
5.7 we will use rmsebtmq2,dt to present error measures about the BTMQ predictor. It should be

noted that the results for rmsebtmq1,dt are almost the same but slightly worse. Finally, as far as

the TMQ predictor is concerned, we propose using rmsetmq2,dt .
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[0,0] 1–40 [e,0] 1–40 [e,u] 1–40

ARBIAS RRMSE P` ARBIAS RRMSE P` ARBIAS RRMSE P`

Case 1.1 u2 v NT p0,Σuq: Σu “ σ2
uΩT pρq, σu “ 1, ρ “ 0.2

RMSEtmq 0.811 1.002 1.040

rmsetmq11,dt 6.624 57.506 0.97 8.448 47.668 0.00 18.129 64.743 0.21

rmsetmq12,dt 5.281 57.301 0.89 9.714 47.928 0.00 19.499 64.362 0.13

rmsetmq21,dt 6.977 55.923 0.98 8.036 46.331 0.00 18.064 64.639 0.25

rmsetmq22,dt 7.006 55.881 0.98 7.745 45.820 0.00 17.870 64.224 0.27

RMSEbtmq 0.638 0.871 0.933

rmsebtmq1,dt 4.119 54.558 0.70 18.203 44.658 0.00 35.200 68.035 0.10

rmsebtmq2,dt 4.145 54.462 0.72 17.465 43.312 0.00 34.504 66.770 0.10

rmsebtmq3,dt 6.467 59.178 0.14 15.335 61.613 0.00 22.095 91.702 0.10

Case 1.2 u2 v NT p0,Σuq: Σu “ σ2
uΩT pρq, σu “ 1, ρ “ 0.8

RMSEtmq 0.800 1.017 1.056

rmsetmq11,dt 6.007 57.181 0.97 10.660 46.763 0.00 19.548 63.270 0.12

rmsetmq12,dt 4.648 57.016 0.92 11.825 47.067 0.00 20.994 63.044 0.11

rmsetmq21,dt 6.406 55.626 0.98 10.254 45.521 0.00 19.383 63.263 0.14

rmsetmq22,dt 6.438 55.579 0.98 9.950 44.980 0.00 19.128 62.821 0.14

RMSEbtmq 0.620 0.880 0.940

rmsebtmq1,dt 3.862 54.707 0.72 19.912 44.300 0.00 36.336 67.695 0.10

rmsebtmq2,dt 3.892 54.599 0.73 19.161 42.918 0.00 35.631 66.408 0.10

rmsebtmq3,dt 5.620 68.705 0.17 16.238 60.570 0.00 24.483 91.384 0.10

Case 2 u2,t v ARp3q: φ1 “ 0.4, φ2 “ 0.3, φ3 “ 0.25, σ “ 1

RMSEtmq 0.802 1.012 1.049

rmsetmq11,dt 7.335 58.195 0.97 9.572 46.851 0.00 19.109 64.197 0.18

rmsetmq12,dt 5.982 57.982 0.94 10.782 47.142 0.00 20.474 63.888 0.11

rmsetmq21,dt 7.696 56.635 0.97 9.170 45.454 0.00 18.993 63.946 0.21

rmsetmq22,dt 7.726 56.592 0.97 8.867 44.918 0.00 18.786 63.510 0.22

RMSEbtmq 0.630 0.878 0.938

rmsebtmq1,dt 4.668 55.316 0.80 18.947 44.205 0.00 35.512 67.396 0.10

rmsebtmq2,dt 4.715 55.216 0.81 18.185 42.809 0.00 34.795 66.093 0.10

rmsebtmq3,dt 6.213 69.447 0.15 15.769 58.991 0.00 22.402 72.775 0.10

Table 5.2: Performance evaluation of several methods of RMSE estimation for the TMQ and
BTMQ predictors. Empirical RMSE and ARBIAS and RRMSE (in %).
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(a) Scenario [0,0].
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(b) Scenario [e,0].
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Figure 5.2: Boxplots of RBIAS and RRMSE in (%) for the several RMSE estimators for the
TMQ and BTMQ predictors in Case 1.1.

5.6 Description of the 2013-2022 SLCS data

The proposed methodology is applied to assess changes in the average level of income
in 23 provinces of Empty Spain (Pazos-Vidal, 2022; Pinilla and Saez, 2017), which refers
to those provinces that have lost inhabitants between 1950 and 2019 and that also have a
population density below the national average. The target population is made up of people
with permanent residence in Spain and whose province, in the year of the interview, is classified
as Empty Spain (see Table 5.3). In total there are D “ 23 areas, covering 296,718 square
kilometres –58% of the national territory– but they only represent the 17.2% of the Spanish
population. From a socio-economic point of view, we have decided to focus on these areas
because Spain has experienced a socio-economic revolution in recent decades, linked to large-
scale migration movements from rural areas to large cities (Gobierno de España, 2019a,b).
This leads to increasing differences between metropolis and urban and rural areas over time
(Hepburn, 2016), so it could be interesting to estimate how the level of income in depopulated
regions has been changing over the last few years.

Survey data are from the 2013-2022 Spanish Living Conditions Survey (T “ 10 years) while
the auxiliary variables come from the census files provided by the Spanish National Statistical
Office (INE). The SLCS is designed to obtain reliable direct estimators in NUTS 2 regions,
but sample sizes are quite small in NUTS 3 territories. Indeed, they range from 36 (Soria
in 2014) to 1762 (Zaragoza in 2022), with a median value of 293. Unit-level data, measured
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NUTS3 code 2 5 6 9 10 13 14 16

Province Albacete Ávila Badajoz Burgos Cáceres Ciudad Real Córdoba Cuenca

NUTS3 code 19 22 23 24 26 27 32 34

Province Guadalajara Huesca Jaén León La Rioja Lugo Orense Palencia

NUTS3 code 37 40 42 44 47 49 50

Province Salamanca Segovia Soria Teruel Valladolid Zamora Zaragoza

Table 5.3: List and codification in the NUTS system of the provinces of Empty Spain.

in consecutive time periods, are hierarchically structured in provinces. Each individual (level
1: population level) is indexed according to their province (level 2: province level) and the
year of the survey (time reference). The target population U is hierarchically structured in
domains Ud, d “ 1, . . . , D, and subdomains or periods of time Udt, t “ 1, . . . , T . The response
variable is the equivalized disposable income, per person and unit of consumption, measured
in thousands of euros. It is obtained by dividing the household’s net income by the number of
equivalent consumption units, according to the modified OECD scale (Hagenaars et al., 1994)
to account for economies of scale in household consumption. For each individual j P Udt, the
equivalized disposable income is denoted by ydtj , d “ 1, . . . , D, t “ 1, . . . , T .

Auxiliary data is key to increase the effectiveness of the small area predictions. As we are
dealing with unit-level data, only the following auxiliary variables are available: sex (sex1:
men, sex2: women) and age group (age1: less than 25 years; age2: between 26 and 45 years;
age3: between 46 and 64 years; age4: 65 years or older).

5.7 Application to the 2013-2022 SLCS data

5.7.1 Model fitting and validation

This section applies the developed methodology to the 2013-2022 SLCS data. We first
fit the TWMQ linear models (5.14) to the target data, with sex and the four age groups
(defined in Section 5.6) as auxiliary variables and sex1:age4-1 as the reference category. The
projective influence function ψ is the Huber function with tuning constant cψ “ 1.345. The
model parameters vary over time and province, which amounts to a total of 5 ¨ 23 ¨ 10 “ 1150
model parameters.

In terms of model specification, Figure 5.3 shows that the assumption of identical regres-
sion coefficients over time is not reasonable. The Student’s t-test confirms that the mean of
tpθ1, . . . , pθDu is different from 0.5 at 5% (p-value 0.034), where the normality hypothesis is
verified according to the Shapiro-Wilk test (p-value 0.212). It is therefore essential to model
the provincial heterogeneity through the use of pθd, d “ 1, . . . , D. To have more confidence
about the fitted model as a true generating model, its validation is addressed below.

As the reader may be aware, residual analysis is widely used to assess the adequacy of a
model by examining the differences between observed and predicted values. Let d “ 1 . . . , D,
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Figure 5.3: Boxplot of the model parameters of the TWMQ linear models by year for the
2013-2022 SLCS data.

t “ 1, . . . , T . For j “ 1, . . . , ndt and q “ pθd, the model residuals are

peψ,dtj
∆
“ ydtj ´ x

1
dtj

pβψp
pθd, wtq.

We define the subdomain sample means of model residuals as peψ,dt. “
1
ndt

řndt
j“1 peψ,dtj , the

aggregated raw residuals (ARR) as peψ,dt. ´ peψ,.., where peψ,.. “
1
DT

řD
d“1

řT
t“1 peψ,dt., and the

aggregated standardized residuals (ASR) by dividing by the standard deviation, i.e.

ppeψ,dt. ´ peψ,..qν
´1, where ν “

´ 1

DT

D
ÿ

d“1

T
ÿ

t“1

ppeψ,dt. ´ peψ,..q
2
¯1{2

.

Figure 5.4 includes boxplots of the ASRs by province (left) and year (right). As a re-
sult, most of them oscillate around y “ 0 and lie in the interval p´3, 3q. Not surprisingly,
the provincial variability is greater than the annual one, but neither province seems to be
particularly poorly modelled. Outlier detection, based on the selection of area-time specific
robustness parameters, is presented in Section 5.7.3.
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Figure 5.4: Boxplot of the ASRs of the TWMQ linear models by province (left) and year
(center); and boxplots of model-based predictions and direct estimates by year (right). Data
from the 2013-2022 SLCS.
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5.7.2 Prediction, error measures and maps

In the following, the prediction is performed and the error measurements are calculated.
As pointed out in Section 5.4.1, the TMQ predictor may introduce nonnegligible prediction
biases, but the BTMQ predictor can unbalance the bias-variance trade-off of the MSE. To set
the value of the robustness parameter cφ, we use the selection criterion proposed in Section
5.4.4. To provide more information about the robustness parameters tpcφ,dt : d “ 1, . . . , D, t “
1, . . . , T u, some relevant quantiles are calculated: pcφ,0 “ pcφ,0.01 “ pcφ,0.05 “ 0, pcφ,0.25 “ 0.290,
pcφ,0.5 “ 0.644, pcφ,0.75 “ 1.016, pcφ,0.95 “ 1.772, pcφ,0.99 “ 2.853 and pcφ,1 “ 3.345. In addition,
in 33 subdomains (14%) pcφ,dt “ 0, i.e. no bias correction is needed. An important spin-off is
that the variability of these subdomains is not unnecessarily increased because of an improper
bias correction. Figure 5.4 (right) plots Hájek estimates and model-based predictions for the
TMQ and BTMQ predictors. The BTMQ estimator seems to smoothen the estimates better,
as expected, employing a bias correction term.

Regarding the variability of the estimates, we focus on the MSE of the BTMQ predictor.
Table 5.4 contains the deciles of the sample sizes ndt, of the standard deviations of the Hájek
estimator (see Morales et al. (2021), Chap. 3) and of the BTMQ predictor. Looking at the
results in Table 5.4, the reduction in variability is evident, especially when the sample sizes
are small, which supports the benefits of our proposal.

q0 q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 q1

ndt 36 118 146 182 239 294 346 450 568 900 1762

Hájek 0.245 0.361 0.407 0.455 0.511 0.561 0.648 0.727 0.859 1.118 2.393

BTMQ 0.032 0.040 0.088 0.126 0.160 0.184 0.213 0.251 0.307 0.397 1.023

Table 5.4: Sample sizes and standard deviations of Hájek estimator and BTMQ predictor.

Lastly, and quite incidentally, the proposed estimation procedure offers the opportunity
to analytically read the evolution and differences between the provinces of Empty Spain
over time. Consequently, it provides valuable information for decision-making, the study of
socio-economic trends and the implementation of measures related to the equitable and fair
distribution of wealth. Figure 5.5 maps the equivalized disposable income for 2013 (left), 2018
(centre) and 2022 (right) obtained with the BTMQ predictor. We report these maps for the
BTMQ predictor because its preference over the TMQ predictor is justified both in simulation
studies and in the application to real data.

Figure 5.5 points out that there are clear differences between the northern provinces, his-
torically richer and more developed, and those in the centre-south, where agriculture and
construction predominate and the industrial sector is less promoted. The richest provinces
in north-central Spain correspond to four of the atypical areas mentioned in Section 5.7.3.
Finally, it is worth noting the increasing, or at least non-decreasing, trend during the study
period. Figure 5.6 shows maps of the RRMSE estimates using the rmsebtmq2,dt estimator pro-
posed in Section 5.4.3. It follows that the relative margins of error are accurate enough for a
SAE problem, with RRMSE estimates lower than 9% in most domains, only exceeding it in
2 of the 23 provinces for the 3 years mapped.
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Figure 5.5: Equivalized disposable income for Empty Spain in 2013 (left), 2018 (center) and
2022 (right). The provinces in grey are those that do not belong to Empty Spain. Results for
the BTMQ predictor and the 2013-2022 SLCS data.
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Figure 5.6: RRMSE of the equivalized disposable income for Empty Spain in 2013 (left), 2018
(center) and 2022 (right). The provinces in grey are those that do not belong to Empty Spain.
Results for the BTMQ predictor and the 2013-2022 SLCS data.

5.7.3 Detection of outliers

Last but not least, in this section we use the robustness parameters to detect the outlying
subdomains (cf. Section 5.5). As a starting point, outlier detection methods based on LMMs,
such as that of Zewotir and Galpin (2007), cannot be used in the application to real data
because they involve inverting matrices of order n ˆ n, where n “ 89971 for the provinces
of Empty Spain in the SLCS2013-2022. Moreover, if we fit a LMM with random effects
in provinces and years, Cook’s distances do not detect deviations. This is probably due to
the strong time dependencies –and also the presence of unit-level outliers– which cloud the
provincial variability of the random effects. Against this background, we propose using the
set of values

 

pcφ,dt : d “ 1, . . . , D, t “ 1, . . . , T
(

.

For a preliminary idea, Table 5.5 shows the average value of pcφ,dt by province, pcφ,d. “
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1
T

řT
t“1 pcφ,dt, and year, pcφ,.t “

1
D

řD
d“1 pcφ,dt, and the global mean, pcφ,.. “

1
DT

řD
d“1

řT
t“1 pcφ,dt.

It could be noted that the provincial distribution is highly variable and the annual one more
uniform, which suggests potential differences between provinces.

d 1 2 3 4 5 6 7 8 9 10 11 12

pcφ,d. 0.195 0.132 0.894 1.751 0.765 0.707 0.810 0.413 0.994 1.182 0.731 1.069

d 13 14 15 16 17 18 19 20 21 22 23 pcφ,..

pcφ,d. 1.340 0.207 0.123 0.446 0.674 0.475 1.077 0.171 1.077 0.207 1.408 0.732

t 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 pcφ,..

pcφ,.t 0.727 0.816 0.637 0.746 0.637 0.803 0.782 0.593 0.892 0.693 0.732

Table 5.5: Average value of the robustness parameters pcφ,dt by province (top) and year (bot-
tom), compared to pcφ,... Results for the 2013-2022 SLCS data.

To test whether there are domains that show persistent atypical behaviour over time we
employ the Friedman’s test (Friedman, 1937) (as in Section 5.5). Significant evidence is found
for the selection of pcφ,dt between provinces (p-value » 0), but not between years (p-value
0.358). To detect which groups of provinces shift in scale, we apply a Tukey (1949) multiple
range test. It is found that Burgos (d “ 4), Huesca (d “ 10q, La Rioja (d “ 13), Guadalajara
(d “ 19) and Zaragoza (d “ 23) are atypicals over time, with higher values than the average.
For the rest of Empty Spain’s provinces, no significant differences are detected. In socio-
economic terms, our findings are reasonable. Burgos, Huesca, La Rioja and Zaragoza –all
four in the centre-north of Spain– are traditionally prosperous provinces and Guadalajara is
very close to Madrid, serving as a “commuter province” for many workers from the capital.
In short, all these regions deviate from the patterns that characterise Empty Spain.



Chapter 6

Conclusions

The aim of this chapter is to outline and assess the achievements and improvements made
by the contributions described in this thesis, as well as to present the lines of future research.

6.1 Summary and discussion

It is widely acknowledged that conquering poverty and reducing social inequalities are
challenges for the near future. We need to think globally and act locally. Estimates of finite
population parameters for subgroups, such as geographic areas or socio-economic groups, are
increasingly required for better planning and evaluation of government programs. In addition,
global warming and land use are changing fire dynamics worldwide, increasing fire activity
and its impact on ecosystems, livelihoods and urban settlements. The first step is to have
accurate information on which to act, and thus to promote statistical research. Indeed, the
lack of attention to sample sizes, and often their smallness, could lead to inaccurate results.
SAE techniques help to meet the growing demand for reliable disaggregated statistics by
fitting statistical models to unit-level or area-level data. In this respect, their increasing
importance cannot be denied. Until recently, the contributions have been many, but the
ongoing globalisation and climate change pose many challenges in this field as well. To leave
no one behind, accurate information must be available to identify small communities in need
and to address their problems accurately and effectively.

In the context of SAE, the contributions proposed in this thesis include the study of
area-level zero-inflated mixed models in Chapter 2, the derivation of plug-in and EBP-type
predictors and the estimation of MSEs. To start with, the applicability of the area-level zero-
inflated mixed models has been demonstrated both for the estimation of socio-demographic
indicators, such as the proportion of single-person households in small areas, and for tackling
the problem of predicting the number and size of forest fires in Spain. It stands to reason
that there is a need for research into tools to raise awareness of extreme fire events. In this
sense, the use of zero-inflated structures has been found to be successful in modelling these
data, due to the natural cause of the excess of zeros that can occur in forest fire research.

Still in the area-level modelling research, and knowing that there are no published studies
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dealing with the estimation of segregation indexes in small areas, Chapter 3 contributes to this
field. In particular, it fits an three-fold Fay-Herriot (FH3) model, then derives model-based
predictors of Duncan Segregation Indexes (DSI) and estimates MSEs, and finally analyses
the poor performance of direct estimators. Moreover, our simulation studies have shown
that it is not necessary to fit measurement error models when the explanatory variables are
estimated using considerably more data than those used to calculate direct estimates of the
target variables. It is our belief (and hope) that the latter is a valuable starting point for the
promotion of SAE in sociological studies of current interest.

Under a unit-level model-based approach, Chapter 4 studies the small area prediction of
the proportions of employed, unemployed and inactive people, and of unemployment rates.
In the population units (people residing in Spain aged 16 and over), the target variables are
dichotomous and indicate whether they belong to the three employment status categories or
not. Since these dummy variables sum up to one, they are modelled vectorially using a unit-
level multinomial logit mixed model. Thus, it is assumed that the above model generates the
values of the vector of target variables in all units of the population. That is, we have accepted
the paradigm that the only source of randomness comes from the superpopulation model and
the sample is a fixed subset. The extension of the theory to a more general probabilistic
setting, where the model and sampling distributions are considered together, has not been
addressed. This problem is complex and deserves further specific research.

In a general view, SAE unit-level models are powerful tools for describing target variables if
the model fits the data properly. When a supporting census file is available, model-based plug-
in and EBP-type predictors are expected to have a high predictive capability. Unfortunately,
this is not usually the case, and the methodology loses strength when it is restricted to
ANOVA-type models. The latter weakness can be partially addressed by using contextual
models, i.e. fitting unit-level models with area-level auxiliary variables. Having said that, it
is appealing to have statistical methods that do not have to rely on less informative aggregated
data. In this sense, it is not intended to replace procedures based on area-level models, to
which great contributions have been made. It is therefore up to the statistical teams to choose
the methodology to be used in each case, as there is no universally better one.

The suitability of unit-level models, but also the need to avoid some strong distributional
assumptions that the use of mixed models entails, brings the discussion to the next topic: the
contributions to MQ regression made in Chapter 5. First and foremost, the effective use of past
information and the modeling of temporal dependencies is an appealing method for borrowing
strength in SAE. At this regard, MQ models that capture time-dependent relationships are
proposed to avoid the strong distributional assumptions of unit-level independence and the
formal specification of the hierarchical structure of the random effects. To achieved this,
the MQ models have been adapted to temporal data by including weights in the fitting
process and defining semiparametric temporal distance criteria. As an inherent property of
MQ models, our approach avoids distributional assumptions and allows for characterizing
differences between areas, as well as time dependencies, through data-driven estimation of
the regression coefficients. Consequently, the new models feature time-varying parameters
and remain distribution-free for both areas and time.

As final remarks, the model-based simulations illustrate the adequacy and, where appli-
cable, the superiority of the new techniques. In addition, indirect estimators are often biased,
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and even more so when derived from robust models, but their variance is lower than that of
direct (design-based unbiased) estimators. As for the latter, and according to our simulation
results, we have been able to correct for bias without increasing the variability in plug-in
type predictors derived from general MQ models. Comparing the Time-Weighted M-quantile
(TWMQ) models with area-time linear mixed models, the latter are successful as long as their
hypotheses are correct. Namely, the strong distributional assumptions imposed on the tem-
poral structure and the absence of outliers. Our research shows that, in a more general setup,
no other predictor improve the performance measures achieved with the robust bias-corrected
temporal MQ (BTMQ) predictor, with area-time-specific robustness parameters.

6.2 Further research

With all that has been investigated so far, there are many opportunities for future re-
search. First and foremost, the inclusion of new auxiliary variables to improve the predictive
performance of our models would be beneficial for future investigations of forest fire data.
This could include the availability of information on the arrival of fire-fighting resources at
forest fires, land use and socio-economic variables describing the demographic trends of the
inhabitants of each region. Based on the statistical results presented here, the aim could be
to refine the prediction of extreme, highly damaging and dangerous events. We expect to
present results for the region of Galicia (northwest Spain) in the near future with improved
models using this information.

Regarding the prediction of non-linear indicators that has been done in this thesis, it
remains to be investigated the estimation of Duncan Segregation Indexes (DSI) derived from
bivariate FH models. In that case, one component would represent the men group and the
other component, the women group. As far as the multinomial logit mixed model is concerned,
we are working on the inclusion of correlated random effects. The computational cost of this
more complex model needs to be assessed in order to decide whether it is worthwhile to
account for such correlations in academia or in the production of public statistics. Again, the
methodology would be useful for estimating labour indicators, such as unemployment rates.
The above two investigations will allow us to compare the methods used and, if appropriate,
to improve the results reported in this thesis.

In addition, a typical modelling approach for target variables with zero inflation is based
on parametric models, mixing degenerate distributions at zero and appropriate parametric
distributions to model the remaining part of the distribution of the target variable (see Chap-
ter 2 for further details). However, although classical quantile regression has recently been
adapted to zero-inflated data (Ling et al., 2022), not only has it never been applied to SAE,
but also zero-inflated MQ models have never been investigated. As of today, we are working
on the extension of the MQ regression, which has numerous advantages over quantile re-
gression, to zero-inflated data and the modelling of hierarchical dependency structures. The
future contribution will include the proposal of zero-inflated MQs and MQ models, the study
of asymptotic properties, the derivation of robust predictors, their optimal bias correction
and the analytical calculation of MSEs. The methodology will be evaluated by means of
model-based simulations, investigating the potential gain that the new proposal could bring
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in the presence of only a few atypical data.

Another alternative to enrich the literature could be to extend the TWMQ statistical
methodology to spatio-temporal data. Indeed, the derivation of small area estimators that
account for both temporal and spatial correlations may yield better results. This will be
treated elsewhere. We also believe that there is room for improvement in the selection of
robustness parameters for bias correction and their implications for the calculation of robust
predictors. Added to this, the reader should be aware that the prediction of non-linear
quantities, and even more so the estimation of the MSE, requires further research and could
be investigated elsewhere. Finally, the current approach is valid only for continuous outcome
variables. Future work will extend the generalized MQ regression models to time-dependent
data to derive small area predictors for discrete response variables.

To conclude, it would be interesting to work on open source development in the near
future. As the reader may be aware, the focus here was not on the code, although the later
would be quite useful for the success of this work.

6.3 Conclusions in Spanish

Las contribuciones de esta tesis incluyen el estudio de modelos mixtos inflados en el cero
a nivel de área en el Caṕıtulo 2, el cálculo de predictores plug-in y EBP y la estimación de
errores cuadráticos medios. En la práctica su aplicabilidad ha sido demostrada tanto para la
estimación de indicadores sociodemográficos, como la proporción de hogares unipersonales en
áreas pequeñas, como para abordar el problema de la predicción de incendios forestales en
España. Continuando con el enfoque de área, el Caṕıtulo 3 consiste en un estudio pionero
sobre la estimación de ı́ndices de segregación en áreas pequeñas. En particular, se ajusta un
modelo Fay-Herriot de tres niveles (FH3) para predecir Índices de Segregación de Duncan
(DSI) y se llevan a cabo estudios de simulación. Según nuestros resultados, no es necesario
ajustar modelos de error de medida cuando las variables explicativas se estiman empleando
muchos más datos que los utilizados para calcular las estimaciones directas de las variables
objetivo. Creemos (y esperamos) que esto último promueva la estimación en áreas pequeñas
(SAE) en estudios sociológicos de interés actual.

Bajo un enfoque basado en modelos a nivel de unidad, el Caṕıtulo 4 estudia la predicción
en áreas pequeñas de las proporciones de ocupados, parados e inactivos, y de las tasas de
paro. En las unidades de la población, las variables objetivo son dicotómicas e indican si
pertenecen o no a las tres categoŕıas de situación laboral. Dado que estas variables ficticias
suman uno, se modelizan vectorialmente mediante un modelo mixto logit multinomial. Aśı,
se supone que el modelo anterior genera los valores del vector de variables objetivo en todas
las unidades de la población. Es decir, hemos aceptado el paradigma de que la única fuente
de aleatoriedad procede del modelo de superpoblación y la muestra es un subconjunto fijo.
No se ha abordado la extensión de la teoŕıa a un entorno probabiĺıstico más general, en el
que el modelo y las distribuciones muestrales se consideran conjuntamente. Este problema es
complejo y merece una investigación más espećıfica.

En general, los modelos a nivel de unidad son herramientas potentes para describir vari-



6.3. CONCLUSIONS IN SPANISH 139

ables objetivo si se ajustan bien a los datos. Cuando se dispone de un archivo censal de
apoyo, se espera que los predictores plug-in y EBP tengan una gran capacidad predictiva.
Por desgracia, esto último no es habitual y la metodoloǵıa pierde fuerza al limitarse a mode-
los ANOVA. Dicho esto, resulta atractivo disponer de métodos estad́ısticos que no tengan que
basarse en datos agregados menos informativos. En este sentido, no se pretende sustituir a
los procedimientos basados en modelos a nivel de área, sobre los que se han realizado grandes
aportaciones. Por lo tanto, corresponde a los equipos estad́ısticos elegir la metodoloǵıa que
se utilizará en cada caso, ya que no existe una que sea universalmente mejor.

La idoneidad de los modelos a nivel de unidad, pero también la necesidad de evitar ciertas
restricciones paramétricas vinculadas al uso de modelos mixtos, lleva la discusión a la última
aportación: las contribuciones a la regresión M-cuantil (MQ) del Caṕıtulo 5. En primer lugar,
se proponen modelos MQ que capturan dependencias temporales para relajar la hipótesis de
independencia de los errores y la especificación formal de los efectos aleatorios. Para lograrlo,
los modelos MQ se han adaptado a datos temporales mediante la inclusión de ponderaciones en
el proceso de ajuste y la definición de criterios semiparamétricos de distancia temporal. Nues-
tras simulaciones ilustran la idoneidad y, en su caso, la superioridad de las nuevas técnicas.
Por otra parte, hemos conseguido corregir el sesgo sin aumentar la variabilidad de los pre-
dictores plug-in derivados de modelos MQ. Nuestra investigación muestra que, en escenarios
generales, ningún otro predictor puede mejorar las medidas de rendimiento conseguidas con el
predictor robusto MQ temporal con corrección de sesgo (BTMQ), con parámetros de robustez
espećıficos del área y del tiempo.





Appendix A

The maximum likelihood Laplace
algorithm for fitting the zero-inflated
GLMMs in Chapter 2

This appendix describes the Laplace algorithm for the model log-likelihood. For more
details on the ML-Laplace algorithm, see e.g., Demidenko (2013) and Kristensen et al. (2016).
In this thesis, the ML-Laplace algorithm is used to calculate ML estimators of the model
parameters and modal predictors of the random effects of the area-level zero-inflated mixed
models1 detailed in Chapter 2. Note that in all cases the proposed methodology is based on
a mixture model with a BE distribution and a PO, NB or GA distribution, as appropiate.
Although for a mixture-type model it seems to be more natural to apply an expectation-
maximization algorithm, it is not recommended in our research. The reason for this is that
an expectation-maximization algorithm does not provide modal predictions of the random
effects (Wu, 1983), which are key to calculate plug-in type predictors of area-level small area
quantities. The function glmmTMB of the R (R Development Core Team, 2024) package glmmTMB
(Brooks et al., 2017) implements the ML-Laplace algorithm.

Let us start with the Laplace approximation of a multiple integral of a general function
expphpxqq, where h : Rm ÞÑ R is a twice continuously differentiable function with a global

maximum at the column vector x0. This is to say, let us assume that 9hpx0q “
dh

dx

ˇ

ˇ

ˇ

ˇ

x“x0

“ 0

and :hpx0q “
d2h

dx2

ˇ

ˇ

ˇ

ˇ

x“x0

is negative definite. A Taylor series expansion of hpxq around x0

yields to

hpxq “ hpx0q ` 9h1px0qpx´ x0q `
1

2
px´ x0q

1:hpx0qpx´ x0q ` o
`

}x´ x0}
2
˘

« hpx0q `
1

2
px´ x0q

1:hpx0qpx´ x0q.

1The ML-Laplace algorithm has also been described in Chapter 4 to maximize the log-likelihood of a unit-
level multinomial logit mixed model. Nevertheless, this is a self-contained chapter and the log-likelihood of a
multinomial logit mixed model differs greatly from that of the zero-inflated models discussed here.
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Using this expansion, the multivariate Laplace approximation of the integral of exp phpxqq is
ż

Rm
ehpxq dx «

ż

Rm
ehpx0q exp

!

´
1

2
px´ x0q

1
`

´ :hpx0q
˘

px´ x0q

)

dx

“ p2πqm{2
ˇ

ˇ´ :hpx0q
ˇ

ˇ

´1{2
ehpx0q,

where we use that the integral of the multivariate normal p.d.f. fpxq is one.

Below are the explicit expressions of the likelihood and log-likelihood functions of the zero-
inflated mixed models proposed in this thesis: the area-level zero-inflated PO (aZIP13), the
area-level zero-inflated NB (aZINB11) and the area-level zero-inflated GA (aZIG22) mixed
models in Chapter 2. An analytical approximation of the corresponding log-likelihood func-
tions is also included for its use in future steps.

1. The likelihood of the aZIP13 mixed model is

P py;θq “

ż

RKp1`IJq
P py|u;θqfupuq du “

ż

RKp1`IJq
exp

 

hpu;y,θq
(

du, (A.1)

where

hpu;y,θq “

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

logP pyijk|uijk;θq ´
Kp1` IJq

2
log 2π ´

1

2

K
ÿ

k“1

´

u2
1,k `

I
ÿ

i“1

J
ÿ

j“1

u2
2,ijk

¯

.

The log-likelihood of the aZIP13 mixed model is approximated by

logP py;θ, q « IJ log 2π ` hpu˝q ´
1

2
log | ´ :hpu˝q|

∆
“ gpθ;y,u˝q.

2. The likelihood of the aZINB11 mixed model is

P py;θq “

ż

R4JK

P py|u;θqfupuq du “

ż

R4JK

exp
 

hpu;y,θq
(

du, (A.2)

where

hpu;y,θq “
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2
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2
2,j ` u

2
2,kq.

The log-likelihood of the aZINB11 mixed model is approximated by

logP py;θ, q « 2JK log 2π ` hpu˝q ´
1

2
log | ´ :hpu˝q|

∆
“ gpθ;y,u˝q.

3. The likelihood of the aZIG22 mixed model is

P py;θq “

ż

R2JK

P py|u;θqfupuq du “

ż

R2JK

exp
 

hpu;y,θq
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du, (A.3)

where
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The log-likelihood of the aZIG22 mixed model is approximated by

logP py;θ, q « 2JK log 2π ` hpu˝q ´
1

2
log | ´ :hpu˝q|

∆
“ gpθ;y,u˝q.
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To apply the Laplace algorithm to the integrals in (A.1), (A.2) or (A.3), we have to
maximize hpu;y,θq in u, given y and θ. For simplicity, we write hpuq. We can carry out
the maximization by applying a R function of optimization. Alternatively, we implement a
Newton-Raphson algorithm after calculating the first and second partial derivatives of h with
respect to the vector of random effects u, given y and θ. Let 9h and :h denote the vector and
the matrix of first and second order partial derivatives of hpuq with respect to u, respectively.

The Newton-Raphson updating equation is

upr`1q “ uprq ´ :h´1puprqq 9hpuprqq. (A.4)

Let us denote by u˝ the argument of maxima of the function hpuq. It holds 9hpu˝q “ 0 and
the matrix :hpu˝q is negative definite. The following step is to maximize gpθ;y,u˝q in θ P Θ.
For simplicity, we write gpθq. We can carry out the maximization by applying a R function of
optimization. Alternatively, a successful option is to apply again a Newton-Raphson algorithm
after calculating the first and second partial derivatives of g with respect to the components of
θ, given y and u˝. Let us define the size of the parameter space as M “ dimpΘq “ q1`q2`2.
Let 9g and :g denote the M ˆ 1 vector and the M ˆM matrix of first and second order partial
derivatives of gpθq, respectively.

The Newton-Raphson updating equation is

θpr`1q “ θprq ´ :g´1pθprqq 9gpθprqq. (A.5)

The final ML-Laplace algorithm, used for both estimating θ and predicting u, combines
the two Newton-Raphson algorithms and is summarised by the following steps:

1. Set the initial values r “ 0, ε1 ą 0, ε2 ą 0, ε3 ą 0, ε4 ą 0, θp0q, θp´1q “ θp0q ` 1,
up0q “ 0, up´1q “ 1, where 0 and 1 are column vectors of zeros and ones, respectively.

2. Until }θprq ´ θpr´1q}2 ă ε1, }uprq ´ upr´1q}2 ă ε2, do

(a) Apply the Newton-Raphson updating equation (A.4) with seeds uprq, convergence
tolerance ε3 and θ “ θprq fixed. Output: upr`1q.

(b) Apply the Newton-Raphson updating equation (A.5) with seeds θprq, convergence
tolerance ε4 and u “ upr`1q fixed. Output: θpr`1q.

(c) r Ð r ` 1.

3. Output: pθ “ θprq and pu “ uprq.

As output from the ML-Laplace algorithm, and apart from the ML estimators of the model
parameters, we obtain modal predictors, pu, of random effects and the maximized marginal
log-likelihood. Given that ML estimators are consistent and asymptotically normal when the
number of domains tends to infinity (see e.g. Section 3.7.2 in Jiang (2007)), the algorithm
can also be used to approximate the asymptotic covariance matrix (inverse of the Fisher’s
information matrix) which allows the calculation of Wald statistics to test hypotheses about
the model parameters. In practice, we use the sign-shifted Hessian matrix (second derivatives
of the log-likelihood function changed in sign) as an approximation of the Fisher’s information
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matrix. In other words, the asymptotic variance matrix of pθ, Qpθq, is approximated by
Qpθq « ´:g´1ppθq. Further, the asymptotic distribution of pθ is NM pθ,Qpθqq. Therefore, an
asymptotic CI at the level 1´ α for a component θ` of θ is

pθ` ˘ z1´α{2 q
1{2
`` , ` “ 1, . . . ,M,

where pθ “ θκ, Qpθκq “ pqabqa,b“1,...,M , κ is the last iteration of the ML-Laplace algorithm
and zα is the α-quantile of the Np0, 1q distribution. For each βa`, a “ 1, 2, ` “ 1, . . . , qa, we
calculate asymptotic p-values to test significance. If pβ1` “ β0, the p-value to test H0 : β1` “ 0
vs H1 : β1` ‰ 0 is

p-value “ 2PH0p
pβ1` ą |β0|q “ 2P pNp0, 1q ą |β0|{

?
q`` q, ` “ 1, . . . , q1.

To test H0 : β2` “ 0 vs H1 : β2` ‰ 0, we use qq1`` q1`` instead of q``.
The Akaike Information Criterion, commonly used to compare nested models according to
the size M and its goodness-of-fit, is calculated as

2M ´ 2gppθ;y, puq

where pθ and pu are taken from the output of the ML-Laplace algorithm.



Appendix B

K-means algorithm

This appendix describes the K-means algorithm (Hartigan and Wong, 1979), the cluster-
ing method used in Section 2.4. First, a brief explanation of clustering methods is provided.
Pattern Recognition deals with the construction of mechanisms capable of extracting relevant
information and key patterns from sample observations. That is, the identification of regu-
larities in the data, in order to impose a set of identity (classification, clustering, association,
etc.) or dependence (regression) relationships. Cluster analysis, or simply clustering, is the
task of grouping a set of observations in such a way that observations in the same group
(cluster) are more similar (in some sense) to each other than to those in other groups. The
aim of these techniques is to form groups in order to detect patterns or structures within the
population. Clustering itself is not a specific algorithm, but the general problem to be solved.

The K-means algorithm finds k P Zě1 clusters (fixed value), around a given set of centres

tm
p1q
1 , ...,m

p1q
k u which define the initial clusters S

p1q
1 , ..., S

p1q
k , by iterating the following steps:

1. Assign each observation X p to a single cluster, being the one with the closest mean:

S
prq
` “

!

X p : ‖ X p ´m
prq
` ‖2

2 ď ‖ X p ´m
prq
h ‖2

2, h “ 1, ..., k
)

, ` “ 1, ..., k.

It is required that X p is assigned to exactly one cluster S
prq
` , although it could be in

two or more.

2. For each cluster, calculate the means that will be used as centres of the new clusters:

m
pr`1q
` “

1

|S
prq
` |

ÿ

XhPS
prq
`

X h, ` “ 1, ..., k.

3. Update r Ð r ` 1.

The algorithm converges when the assignments no longer change. However, the iterative
refinement process ends when the maximum number of iterations allowed is reached.
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Appendix C

The Iterative Re-weighted Least Squares
algorithm for fitting the Time-Weighted
M-quantile models in Chapter 5

This appendix describes an adaptation of the iterative re-weighted least squares (IRLS)
algorithm used to fit the TWMQ linear models (Bugallo et al., 2024e) in Section 5.4. The
reason we chose to use MQ regression models –rather than other alternative robust methods–
has much to do with the advantages of the fitting process. On the one hand, standard quantile
regression fitting algorithms are based on linear programming methods and do not necessarily
guarantee convergence to a unique solution (Koenker and Machado, 1999). In such cases, it is
typical to use the simplex method (primal, dual or primal-dual). In contrast, the simple IRLS
algorithm used to fit a MQ regression model (Holland and Welsch, 1977; Street et al., 1988)
guarantees convergence to a unique solution for a continuous monotone influence function
(Bianchi and Salvati, 2015). The IRLS is used to fit all MQ models formulated in Chapter 5
(MQ2 linear models, MQ3 linear models and TWMQ linear models), but here we will focus
on the particular case of the models proposed in this thesis: the TWMQ linear models. Even
so, the template is common to all of them.

As far as the model fitting for the simulations (see Section 5.5) and the application to real
data (see Section 5.7) are concerned, we have used a code developed by the authors in the
programming language R. Nevertheless, a section for R codes is not included because they are
not yet available in any online repository.

Let us start by recalling that the TWMQ linear models are defined around equation (5.14).
For 0 ă q ă 1, t “ 1, . . . , T , the model parameters βψpq,wtq are estimated as

pβψpq,wtq “ argmin
βψpq,wtqPRp

D
ÿ

d“1

ÿ

iPTt

wti

ndi
ÿ

j“1

ρq
`

ydij ´ x
1
dijβψpq,wtq, pσqt

˘

,

or as the solution of the system of p estimating equations

D
ÿ

d“1

ÿ

iPTt

wti

ndi
ÿ

j“1

ψq
`

ydij ´ x
1
dijβψpq,wtq, pσqt

˘

xdijk “ 0, k “ 1, . . . , p, (C.1)
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where ρq and ψq are defined in (5.1) and (5.2), respectively, ψ is the Huber function (5.3) and

pσqt “ xvar1{2
peψ,dijpq,wtqq “ pσψpβψpq,wtqq “ madψ,npq,wtq{0.6745

is a robust estimator of σqt, for βψpq,wtq known, and madψ,npq,wtq is the median absolute
deviation (MAD) of eψ,dijpq,wtq “ ydij ´ x

1
dijβψpq,wtq, i.e.

madψ,npq,wtq “ median
 

|eψ,dijpq,wtq ´medψ,npq,wtq| : d “ 1, . . . , D, i “ 1, . . . , T, j “ 1, . . . , ndi
(

,

medψ,npq,wtq “ median
 

eψ,dijpq,wtq : d “ 1, . . . , D, i “ 1, . . . , T, j “ 1, . . . , ndiu.

As βψpq,wtq is unknown, eψ,dijpq,wtq cannot be calculated and therefore, neither pσqt, 0 ă
q ă 1, t “ 1, . . . , T . Consequently, we have implemented an iterative procedure to solve the
system (C.1) of p non-linear equations.

We define the weights wψdijpq,wtq “ ψqpeψ,dijpq,wtq, pσqtq{eψ,dijpq,wtq, and the t-relevant
vectors ysptq “ col

1ďdďD

`

col
iPTt
p col
1ďjďndi

pydijqq
˘

and matrices Xsptq “ col
1ďdďD

`

col
iPTt
p col
1ďjďndi

px1dijqq
˘

and

Wsptqpq,wtq “ diag
1ďdďD

`

diag
iPTt

p diag
1ďjďndi

pwtiwψdijpq,wtqqq
˘

. We write equations (C.1) as

D
ÿ

d“1

ÿ

iPTt

wti

ndi
ÿ

j“1

wψdijpq,wtq
`

ydij ´ x
1
dijβψpq,wtq

˘

xdijk “ 0, k “ 1, . . . , p, (C.2)

or in the matrix form X 1sptqWsptqpq,wtqysptq ´X
1
sptqWsptqpq,wtqXsptqβψpq,wtq “ 0.

If X 1sptqWsptqpq,wtqXsptq is invertible, we write (C.2) in explicit form, i.e.

βψpq,wtq “
`

X 1sptqWsptqpq,wtqXsptq

˘´1
X 1sptqWsptqpq,wtqysptq

“

ˆ D
ÿ

d“1

ÿ

iPTt

ndi
ÿ

j“1

wtiwψdijpq,wtqxdijx
1
dij

˙´1 D
ÿ

d“1

ÿ

iPTt

ndi
ÿ

j“1

wtiwψdijpq,wtqxdijydij .

This yields to the following IRLS algorithm to calculate pβψpq,wtq.

1. Set the initial values pβ
p0q

ψ pq,wtq using e.g. the weighted least squares estimator

pβ
p0q

ψ pq,wtq “

ˆ D
ÿ

d“1

ÿ

iPTt

wti

ndi
ÿ

j“1

xdijx
1
dij

˙´1 D
ÿ

d“1

ÿ

iPTt

wti

ndi
ÿ

j“1

xdijydij . (C.3)

2. For each iteration l “ 1, 2, . . ., do

2.1. Calculate pe
pl´1q
ψ,dij pq,wtq “ ydij ´ x

1
dij

pβ
pl´1q

ψ pq,wtq, pσ
pl´1q
qt “ pσψppβ

pl´1q

ψ pq,wtqq and

w
pl´1q
ψdij pq,wtq “ ψq

`

pe
pl´1q
ψ,dij pq,wtq, pσ

pl´1q
qt

˘

{pe
pl´1q
ψ,dij pq,wtq,

W
pl´1q
sptq

`

q,wtq “ diag
1ďdďD

`

diag
iPTt

p diag
1ďjďndi

pwtiw
pl´1q
ψdij pq,wtqqq

˘

.

2.2. Update the estimator of βψpq,wtq. i.e.

pβ
plq

ψ pq,wtq “

ˆ D
ÿ

d“1

ÿ

iPTt

ndi
ÿ

j“1

wtiw
pl´1q
ψdij pq,wtqxdijx

1
dij

˙´1 D
ÿ

d“1

ÿ

iPTt

ndi
ÿ

j“1

wtiw
pl´1q
ψdij pq,wtqxdijydij .

3. Repeat Step 2 until convergence.



Appendix D

Proof of Theorems 1 and 2 in Section 5.4

This appendix provides technical specifications and step-by-step proofs of Theorems 1
and 2 in Section 5.4. In Section D.1, Theorem 1 derives a first-order approximation of the
MSE of the robust bias-corrected temporal MQ (BTMQ) predictor (5.20) derived from the
TWMQ linear models (5.14) and proposes an analytical estimator. In Section D.2, Theorem 2
presents an optimal criterion for the selection of the robustness parameter for bias correction
and proves the existence and uniqueness of the solution.

D.1 First-order approximation of the mean squared error of
the bias-corrected temporal M-quantile predictor

Let d “ 1, . . . , D an area and t “ 1, . . . , T a time period. Section 5.4 focuses on the
prediction of the population means Y dt, which have been defined in (5.9). To start with, the
BTMQ predictor of Y dt can be written as

pY
btmq

dt “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψ

`

pθd,wt

˘

*

`
1

ndt

´

1´
ndt
Ndt

¯

pBbtmq
dt ,

pBbtmq
dt “

ÿ

jPsdt

σθdtφ
`

puψ,dtj
˘

.

The idea of the proof is to decompose the predictor pY
btmq

dt to take into account the vari-
ability derived from the estimation of qdtj , j “ 1, . . . , ndt, and βψ

`

θd,wt

˘

. To do so, we first
define the following auxiliary notation in relation to the BTMQ predictor:

Y
btmq
dt “

1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψpθd,wtq

*

`
1

ndt

´

1´
ndt
Ndt

¯

Bbtmq
dt ,

rY
btmq

dt “
1

Ndt

"

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψpθd,wtq

*

`
1

ndt

´

1´
ndt
Ndt

¯

rBbtmq
dt ,

Bbtmq
dt “

ÿ

jPsdt

σθdtφpuψ,dtjq,
rBbtmq
dt “

ÿ

jPsdt

σθdtφpruψ,dtjq,

149
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where uψ,dtj and ruψ,dtj , j “ 1, . . . , ndt, have been defined in (5.15) and (5.18), respectively.

The approximation of MSEppY
btmq

dt q that we propose below accounts for the randomness
of the unit-level MQ coefficients qdtj , j “ 1, . . . , Ndt, coming from the TWMQ linear models,

but assumes that θd and pθd are known. In fact, these values and their estimates are derived
from the MQ3 linear models (5.7). Not least, the standard deviations σθdt are assumed to be
known. The randomness arising from the estimation of θd and σθdt is of minor importance
(Chambers and Tzavidis, 2006) and omitting it is a common practice when estimating the
MSE of predictors derived from MQ models (Chambers et al., 2011).

Appendix D.1.1 introduces the probabilistic framework and necessary assumptions to ob-
tain a first-order asymptotic approximation of the MSE of the BTMQ predictor. Generally,
all assumptions are reasonable and can be found in the literature.

D.1.1 Assumptions

This section presents a set of assumptions necessary to obtain a first-order approximation

of MSEppY
btmq

dt q. These are all reasonable practical requirements and are met under general
conditions. Many have been previously proposed in the literature (Bianchi and Salvati, 2015)
or are direct adaptations of assumptions required for mixed models to MQ regression.

For the influence function φpuq, we assume that

(Φ1) φ is differentiable at u “ 0, with φp0q “ 0 and 9φp0q “ 1. If |u| ě cφ, φpuq “ cφ sgnpuq,

where sgnpuq “ 1 if u ą 0; sgnpuq “ ´1 if u ă 0 and sgnpuq “ 0 if u “ 0.
This assumption is quite common for influence functions in the field of robust statistics (Huber,
1981). From assumption( Φ1), the non-atypical data subsets are Gdt “

 

j P sdt :
ˇ

ˇuψ,dtj
ˇ

ˇ ă cφ
(

,

rGdt “
!

j P sdt :
ˇ

ˇ

ruψ,dtj
ˇ

ˇ ă cφ

)

and pGdt “
!

j P sdt :
ˇ

ˇ

puψ,dtj
ˇ

ˇ ă cφ

)

, and the intersection subsets

are rHdt “ Gdt X rGdt, pHdt “ rGdt X pGdt and Gdt X rGdt X pGdt “ rHdt X pHdt. These subsets will be
useful in the calculation of expected values and variances.

From assumption (Φ1), we simplify the notation and write

Bbtmq
dt “

ÿ

jPGdt

σθdtφpuψ,dijq ` cφ
ÿ

jPsdt´Gdt

sgnpeψ,dtjq,

rBbtmq
dt “

ÿ

jP rGdt

σθdtφpruψ,dtjq ` cφ
ÿ

jPsdt´ rGdt

sgn
`

reψ,dtj
˘

,

pBbtmq
dt “

ÿ

jP pGdt

σθdtφppuψ,dtjq ` cφ
ÿ

jPsdt´ pGdt

sgn
`

peψ,dtj
˘

.

Below we include additional notation for model errors and pseudo-residuals that will
be necessary for the calculation of expected values and variances. Related to the variables
sgnpeψ,dtjq, we define the probabilities

πdtj “ P
`

sgnpeψ,dtjq “ ´1
˘

, 1´ πdtj “ P
`

sgnpeψ,dtjq “ 1
˘

, j “ 1, . . . , Ndt,
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so that
Ersgnpeψ,dtjqs “ 1´ 2πdtj , varpsgnpeψ,dtjqq “ 4πdtj ´ 4π2

dtj .

Related to the variables sgnpreψ,dtjq ´ sgnpeψ,dtjq, we define the probabilities

rπa,dtj “ P
`

sgnpreψ,dtjq ´ sgnpeψ,dtjq “ a
˘

, a “ ´2, 0, 2, j “ 1, . . . , Ndt,

so that Ersgnpreψ,dtjq ´ sgnpeψ,dtjqs “ 2prπ2,dtj ´ rπ´2,dtjq and

varpsgnpreψ,dtjq ´ sgnpeψ,dtjqq “ 4prπ2,dtj ` rπ´2,dtjq ´ 4prπ2,dtj ´ rπ´2,dtjq
2.

Related to the variables sgnppeψ,dtjq ´ sgnpreψ,dtjq, we define the probabilities

pπa,dtj “ P
`

sgnppeψ,dtjq ´ sgnpreψ,dtjq “ a
˘

, a “ ´2, 0, 2, j “ 1, . . . , Ndt,

so that Ersgnppeψ,dtjq ´ sgnpreψ,dtjqs “ 2ppπ2,dtj ´ pπ´2,dtjq and

varpsgnppeψ,dtjq ´ sgnpreψ,dtjqq “ 4ppπ2,dtj ` pπ´2,dtjq ´ 4ppπ2,dtj ´ pπ´2,dtjq
2.

The asymptotic theory will be developed under the following assumptions.
For the sample sizes, we assume

(N1) There exist 0 ă πdt ă 1 such that
řD
d“1

řT
t“1 πdt “ 1 and ndt

n Ñ πdt as nÑ8.

(N2) There exist 0 ă fdt ă 1 such that ndt
Ndt

Ñ fdt as nÑ8.

The asymptotic assumption (N1) avoid the possibility of domains with zero sample size.
Assumption (N2) states that sample sizes and population sizes converge to the sampling
fractions reasonably far from the extremes values 0 and 1.

For the unit-level MQ coefficients, we assume

(Q1) For i P Tt, j P sdi, qdij are independent variables with common variance ξ2
dt “ varpqdijq.

The unit-level MQ coefficients qdij , defined in (5.17), play a similar role to that of random
intercepts in LMMs. In such models, it is common to assume that the random effects have
constant variance. Because of the parallelism that can be established between methodologies
based on MQ models and mixed models, we include assumption (Q1). Thus, it is just a bridge
between the MQ methodology and mixed models.

For the estimator of the vector of regression parameters pβψpq,wtq, 0 ă q ă 1, we adapt
the conditions proposed in Bianchi and Salvati (2015) and write

(A1) βψpq,wtq P Θ Ă Rp is a twice-differentiable continuous function in its first component,
q, where Θ is a compact subset of Rp.

(A2) ψ is continuous, bounded and with bounded derivative, except at a finite number of
points.

(A3) For i P Tt, j P sdi, Er|xdij |4s ă 8 and Er|edij |
4s ă 8.
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(A4) For i P Tt, j P sdi, Erxdijx1dij 9ψpeψ,dijpq,wtq, σqtqs is uniformly non singular, where 9ψqt
is the partial derivative of ψqt with respect to the first argument.

(A5) The preliminary estimator pβ
p0q

ψ pq,wtq of βψpq,wtq, defined in (C.3), is such that

?
nppβ

p0q

ψ pq,wtq ´ βψpq,wtqq “ Opp1q.

(A6) Dδ1 ą 0{@e P p´δ1, δ1q D 9Fqtpmedψ,npq,wtq ` eq and is continuous and positive at e “ 0.
9Fqt is the first order derivative of Fqt, which is the c.d.f. of eψ,dijpq,wtq, i P Tt, j P sdi.

(A7) Dδ2 ą 0{@e P p´δ2, δ2q D 9Fqtpmedψ,npq,wtq ˘ 0.6745σqt ` eq and is continuous at e “ 0.

(A8) Dδ3 ą 0{@e P pσqt ´ δ3, σqt ` δ3q D 9Fqtpmedψ,npq,wtq ` eq ` 9Fqtpmedψ,npq,wtq ´ eq ą 0.

Assumption (A1) is necessary to calculate Taylor polynomials. Assumption (A2) holds for
the Huber function. Assumption (A3) is a technical moment condition required for the appli-
cation of the Uniform Law of Large Numbers and the asymptotic representation. Assumption
(A4) is an identifiability condition. Assumptions (A5)-(A8) are needed for the Bahadur repre-
sentation of the median absolute deviation (MAD) estimator (see Welsh (1986)). In the case
of the Huber influence function (5.3), assumptions (A1) and (A2) are satisfied. To guarantee
assumption (A4), one may require that for any βψpq,wtq P Θ and c ą 0,

P pσ´1
qt |ydij ´ x

1
dijβψpq,wtq| ď c|xdijq ą ε ą 0, i P Tt, j P sdi.

In practice, this is verified if most of the residuals belong to the strictly convex region of ψ.
Under assumptions (A1)-(A8), it holds that pβψpθd,wtq ´βψpθd,wtq “ Oppn

´1{2q. Finally, to
complete the assumptions associated with the vector of regression parameters, we include

(A9) Dδ4 ą 0{@θ P pθd ´ δ4, θd ` δ4q, pβψpθ,wtq ´ βψpθd,wtq “ Oppn
´1{2q.

Assumption (A9) is needed to maintain the asymptotic plausibility of assumption (A8) in a
neighborhood of θd, as in practice θd is substituted by pθd.

For the MSE of the BTMQ predictor, we assume three groups of assumptions. The first
group of assumptions concerns the model errors (5.15) of the TWMQ linear models (5.14):

(B1) 1
Ndt

ř

jPUdt
E
“

e2
ψ,dtj

‰

“ Op1q.

(B2) 1
Ndt

ř

jPUdt
πdtj “ Op1q and 1

Ndt

ř

jPUdt
π2
dtj “ Op1q.

(B3) 1
ndt

ř

jPsdt
E
“

eψ,dtj
‰

“ 1
Ndt´ndt

ř

jPrdt
E
“

eψ,dtj
‰

` op1q.

(B4) Dδ5 ą 0: @θ P pθd ´ δ5, θd ` δ5q,
1
Ndt

ř

jPUdt

´

x1dtj
B2βψpq,wtq

Bq2

ˇ

ˇ

ˇ

q“θ

¯2
“ Op1q.

Assumption (B1) states that the second order moment of the model errors is bounded in
average. Assumption (B2) is fulfilled as πdtj ’s are the probabilities that the model errors
are negative. Assumption (B3) states that the sample average of the expected model errors
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behaves similarly in the sample and the non-sample subsets. Assumption (B4) is a tech-
nical condition required for the application of the Uniform Law of Large Numbers and the
asymptotic representation.

The second group of assumptions concerns the pseudo-residuals (5.18) of the TWMQ
linear models (5.14). The assumptions are

(C1) 1
Ndt

ř

jPUdt
E
“

preψ,dtj ´ eψ,dtjq
4
‰

“ op1q.

(C2) 1
Ndt

ř

jPUdt
rπa,dtj “ op1q and 1

Ndt

ř

jPUdt
rπ2
a,dtj “ op1q, a “ ´2, 2.

(D1) 1
Ndt

ř

jPUdt
E
“

ppeψ,dtj ´ reψ,dtjq
4
‰

“ op1q.

(D2) 1
Ndt

ř

jPUdt
pπba,dtj “ op1q and 1

Ndt

ř

jPUdt
pπ2
a,dtj “ op1q, a “ ´2, 2.

Assumptions (C1) and (D1) state that the fourth order moment of the differences between
pseudo-residuals and model errors is bounded in average. Assumptions (C2) and (D2) are
fulfilled as rπa,dtj ’s and pπa,dtj ’s are the probabilities that the pseudo-residuals are negative.
The third group of assumptions concerns the independence of the model errors and pseudo-
residuals of the TWMQ linear models (5.14). The assumptions are

(E1) For j P Udt, eψ,dtj are independent random variables.

(E2) For j P Udt, reψ,dtj are independent random variables.

(E3) For j P Udt, peψ,dtj are independent random variables.

It is common in mixed models and MQ models to include independence assumptions such as
(E1), (E2) and (E3) for the model errors and the residuals and pseudo-residuals.

D.1.2 Part I: Dealing with the differences Y
btmq

dt ´ Y dt

In this section, we calculate the expected value and variance of the prediction differences

Y
btmq
dt ´ Y dt, d “ 1, . . . , D, t “ 1, . . . , T.

The reasoning is based on the calculation of first-order Taylor approximations and the subse-
quent computation of expected values and variances.

First, a Taylor series expansion of βψpqdtj ,wtq around θd yields to

βψpqdtj ,wtq “ βψpθd,wtq `
Bβψpq,wtq

Bq

ˇ

ˇ

ˇ

q“θd
pqdtj ´ θdq ` rψ,dtjpθdq, j “ 1, . . . , Ndt, (D.1)

where rψ,dtjpθdq
∆
“ rdtj “ prdtj1, . . . , rdtjpq

1 and rdtjk “ Op
`

pqdtj ´ θdq
2
˘

, k “ 1, . . . , p, with

}rdtj}2 “
1

2
pqdtj´θdq

2
›

›

›

B2βψpq,wtq

Bq2

ˇ

ˇ

ˇ

q“θ˚dtj

›

›

›

2
ď

›

›

›

B2βψpq,wtq

Bq2

ˇ

ˇ

ˇ

q“θ˚dtj

›

›

›

2
, |θ˚dtj´θd| ă |qdtj´θd|.

We introduce the notation

κψpθd,wtq “
`

κψ1pθd,wtq, . . . , κψppθd,wtq
˘1

; κψkpθd,wtq “
Bβψkpq,wtq

Bq

ˇ

ˇ

ˇ

q“θd
, k “ 1, . . . , p.
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From the Taylor series expansion (D.1), the model errors defined in (5.15) is written as

eψ,dtj “ ydtj ´ x
1
dtjβψpθd,wtq “ x

1
dtjpβψpqdtj ,wtq ´ βψpθd,wtqq

“ x1dtjκψpθd,wtqpqdtj ´ θdq ` x
1
dtjrdtj , j “ 1, . . . , Ndt.

From assumption (Q1), varpqdtj ´ θdq “ varpqdtjq “ ξ2
dt, j “ 1, . . . , Ndt, and

varpeψ,dtjq “
`

x1dtjκψpθd,wtq
˘2
ξ2
dt`x

1
dtjvarprdtjqxdtj`

`

x1dtjκψpθd,wtq
˘2

cov
`

qdtj , q
2
dtj

˘

. (D.2)

Assumption (B4) implies that

1

ndt

ÿ

jPsdt

x1dtjvarprdtjqxdtj “
1

4ndt

ÿ

jPsdt

!

x1dtjκψpθ
˚
dtj ,wtqκ

1
ψpθ

˚
dtj ,wtqxdtj

)

varpq2
dtjq

ď
1

4ndt

ÿ

jPsdt

`

x1dtjκψpθ
˚
dtj ,wtq

˘2
“ Op1q,

ˇ

ˇ

ˇ

1

ndt

ÿ

jPsdt

`

x1dtjκψpθ
˚
dtj ,wtq

˘2
Erq3

dtjs

ˇ

ˇ

ˇ
ď

1

ndt

ÿ

jPsdt

`

x1dtjκψpθ
˚
dtj ,wtq

˘2ˇ
ˇErqdtjs

ˇ

ˇ

3
“ Op1q,

ˇ

ˇ

ˇ

1

ndt

ÿ

jPsdt

`

x1dtjκψpθ
˚
dtj ,wtq

˘2
Erqdtjs

ˇ

ˇ

ˇ
ď

1

ndt

ÿ

jPsdt

`

x1dtjκψpθ
˚
dtj ,wtq

˘2ˇ
ˇErqdtjs

ˇ

ˇ “ Op1q.

Collecting these results, we obtain that

1

ndt

ÿ

jPsdt

varpeψ,dtjq “
1

ndt

ÿ

jPsdt

`

x1dtjκψpθd,wtq
˘2
ξ2
dt `Op1q. (D.3)

The corresponding standardized model errors, defined in (5.15), can be written as

uψ,dtj “ σ´1
θdt
x1dtjκψpθd,wtqpqdtj ´ θdq ` σ

´1
θdt
x1dtjrdtj , j “ 1, . . . , Ndt.

As φp0q “ 0 and 9φp0q “ 1, a Taylor series expansion of φpuψ,dtjq around u “ 0 yields to

φpuψ,dtjq “ φp0q ` 9φp0quψ,dtj `Rdtj “ uψ,dtj `Rdtj , j “ 1, . . . , Ndt, (D.4)

where Rdtj “
1
2 u

˚2
ψ,dtj , 0 ă |u˚ψ,dtj | ă |uψ,dtj | and varpRdtjq ď varpuψ,dtjq.

From assumption (B1), we have

1

ndt

ÿ

jPGdt

ErRdtjs “ Op1q,
1

ndt

ÿ

jPGdt

varpRdtjq “ Op1q. (D.5)

From the Taylor series expansion (D.4), we have

Bbtmq
dt “

ÿ

jPGdt

σθdtφpuψ,dtjq ` cφ
ÿ

jPsdt´Gdt

sgn
`

eψ,dtj
˘

“
ÿ

jPGdt

eψ,dtj ` σθdt
ÿ

jPGdt

Rdtj ` cφ
ÿ

jPsdt´Gdt

sgn
`

eψ,dtj
˘

.
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The prediction difference Y
p1q
dt “ Y

btmq
dt ´ Y dt is

Y
p1q
dt “

1

Ndt

ˆ

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψpθd,wtq

˙

`

´

1´
ndt
Ndt

¯ 1

ndt
Bbtmq
dt ´

1

Ndt

ÿ

jPUdt

x1dtjβψpqdtj ,wtq

“

´

1´
ndt
Ndt

¯ 1

ndt
Bbtmq
dt `

1

Ndt

ˆ

ÿ

jPrdt

x1dtjpβψpθd,wtq ´ βψpqdtj ,wtqq

˙

“
ÿ

jPUdt

ˆ

´

1´
ndt
Ndt

¯ 1

ndt
IGdtpjq ´

1

Ndt
Irdtpjq

˙

eψ,dtj

`

´

1´
ndt
Ndt

¯ cφ
ndt

ÿ

jPsdt´Gdt

sgnpeψ,dtjq `
´

1´
ndt
Ndt

¯σθdt
ndt

ÿ

jPGdt

Rdtj . (D.6)

From assumptions (E1) and (B2), we obtain that

1

ndt

ÿ

jPsdt´Gdt

Ersgnpeψ,dtjqs “
1

ndt

´

cardpsdt ´ Gdtq ´ 2
ÿ

jPsdt´Gdt

πdtj

¯

“ Op1q,

1

ndt

ÿ

jPsdt´Gdt

varpsgnpeψ,dtjqq “
4

ndt

ÿ

jPsdt´Gdt

πdtjp1´ πdtjq “ Op1q. (D.7)

From (D.3), (D.6), (D.5), (D.7) and assumptions (B4) and (E1), the variance of Y
p1q
dt is

V
p1q
dt “ var

`

Y
p1q
dt

˘

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
IGdtpjq ´

1

Ndt
Irdtpjq

¯2
varpeψ,dtjq

`

´

1´
ndt
Ndt

¯2 c2
φ

n2
dt

ÿ

jPsdt´Gdt

varpsgnpeψ,dtjqq `
´

1´
ndt
Ndt

¯2σ2
θdt

n2
dt

ÿ

jPGdt

varpRdtjq

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

IGdtpjq `
1

N2
dt

Irdtpjq
¯

`

x1dtjκψpθd,wtq
˘2
ξ2
dt ` opn

´1q.

From (D.6), (D.5), (D.7) and assumptions (B2) and (B3), we have that

E
p1q
dt “ E

“

Y
p1q
dt

‰

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
IGdtpjq ´

1

Ndt
Irdtpjq

¯

E
“

eψ,dtj
‰

`

´

1´
ndt
Ndt

¯ cφ
ndt

ÿ

jPsdt´Gdt

E
“

sgnpeψ,dtjq
‰

`

´

1´
ndt
Ndt

¯σθdt
ndt

ÿ

jPGdt

ErRdtjs “

“

´

1´
ndt
Ndt

¯ cφ
ndt

ÿ

jPsdt´Gdt

E
“

sgnpeψ,dtjq
‰

`

´

1´
ndt
Ndt

¯σθdt
ndt

ÿ

jPGdt

ErRdtjs ` op1q.

From (D.5) and (D.7), it holds that E
p1q
dt “ Op1q.

D.1.3 Part II: Dealing with the differences rY
btmq

dt ´ Y
btmq

dt

In this section, we calculate the expected value and variance of the prediction differences

rY
btmq

dt ´ Y
btmq
dt , d “ 1, . . . , D, t “ 1, . . . , T.
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The reasoning is based on the calculation of first-order Taylor approximations and the subse-
quent computation of expected values and variances.

As φp0q “ 0 and 9φp0q “ 1, a Taylor series expansion of φpruψ,dtjq around u “ 0 yields to

φpruψ,dtjq “ φp0q ` 9φp0qruψ,dtj ` rRdtj “ ruψ,dtj ` rRdtj , j “ 1, . . . , Ndt, (D.8)

where rRdtj “
1
2 ru

˚2
ψ,dtj , 0 ă |ru˚ψ,dtj | ă |ruψ,dtj | and varp rRdtjq ď varpruψ,dtjq.

From assumption (C1), we have

1

ndt

ÿ

jP rGdt

Er rRdtj ´Rdtjs “ op1q,
1

ndt

ÿ

jP rGdt

var
`

p rRdtj ´Rdtjq
2
˘

“ op1q. (D.9)

From the Taylor series expansion (D.8), we have

rBbtmq
dt “

ÿ

jP rGdt

σθdtφ
`

ruψ,dtj
˘

` cφ
ÿ

jPsdt´ rGdt

sgn
`

reψ,dtj
˘

,

“
ÿ

jP rGdt

reψ,dtj ` σθdt
ÿ

jP rGdt

rRdtj ` cφ
ÿ

jPsdt´ rGdt

sgnpreψ,dtjq.

As reψ,dtj ´ eψ,dtj “ x
1
dtj

`

βψpθd,wtq ´ pβψpθd,wtq
˘

“ reψ,dtjpθdq, then B
p2q
dt “

rBbtmq
dt ´Bbtmq

dt is

B
p2q
dt “

ÿ

jP rGdt

reψ,dtj ` σθdt
ÿ

jP rGdt

rRdtj ` cφ
ÿ

jPsdt´ rGdt

sgnpreψ,dtjq

´
ÿ

jPGdt

eψ,dtj ´ σθdt
ÿ

jPGdt

Rdtj ´ cφ
ÿ

jPsdt´Gdt

sgnpeψ,dtjq

“
ÿ

jP rHdt

reψ,dtjpθdq `
ÿ

jP rGdt´ rHdt

reψ,dtj ´
ÿ

jPGdt´ rHdt

eψ,dtj

` σθdt

´

ÿ

jP rHdt

p rRdtj ´Rdtjq `
ÿ

jP rGdt´ rHdt

rRdtj ´
ÿ

jPGdt´ rHdt

Rdtj

¯

` cφ

´

ÿ

jPsdt´ rHdt

psgnpreψ,dtjq ´ sgnpeψ,dtjqq

`
ÿ

jPsdt´p rGdt´ rHdtq

sgnpreψ,dtjq ´
ÿ

jPsdt´pGdt´ rHdtq

sgnpeψ,dtjq
¯

.

The prediction difference Y
p2q
dt “

rY
btmq

dt ´ Y
btmq
dt is

Y
p2q
dt “

1

Ndt

ˆ

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψpθd,wtq

˙

`

´

1´
ndt
Ndt

¯ 1

ndt
rBbtmq
dt

´
1

Ndt

ˆ

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtjβψpθd,wtq

˙

´

´

1´
ndt
Ndt

¯ 1

ndt
Bbtmq
dt

“

´

1´
ndt
Ndt

¯ 1

ndt
B
p2q
dt ´

1

Ndt

ÿ

jPrdt

reψ,dtjpθdq.
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By substituting B
p2q
dt , we obtain

Y
p2q
dt “

´

1´
ndt
Ndt

¯ 1

ndt

#

ÿ

jP rHdt

reψ,dtjpθdq `
ÿ

jP rGdt´ rHdt

reψ,dtj ´
ÿ

jPGdt´ rHdt

eψ,dtj

` σθdt

´

ÿ

jP rHdt

p rRdtj ´Rdtjq `
ÿ

jP rGdt´ rHdt

rRdtj ´
ÿ

jPGdt´ rHdt

Rdtj

¯

` cφ

´

ÿ

jPsdt´ rHdt

psgnpreψ,dtjq ´ sgnpeψ,dtjqq `
ÿ

jPsdt´p rGdt´ rHdtq

sgnpreψ,dtjq

´
ÿ

jPsdt´pGdt´ rHdtq

sgnpeψ,dtjq
¯)

´
1

Ndt

ÿ

jPrdt

reψ,dtjpθdq.

We write Y
p2q
dt in the form

Y
p2q
dt “

ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
I
rHdt
pjq ´

1

Ndt
Irdtpjq

¯

reψ,dtjpθdq

`

´

1´
ndt
Ndt

¯ 1

ndt

"

σθdt
ÿ

jP rHdt

 

rRdtj ´Rdtj
(

` cφ
ÿ

jPsdt´ rHdt

`

sgnpreψ,dtjq ´ sgnpeψ,dtjq
˘

*

`

´

1´
ndt
Ndt

¯ 1

ndt

"

ÿ

jP rGdt´ rHdt

reψ,dtj ´
ÿ

jPGdt´ rHdt

eψ,dtj `
ÿ

jP rGdt´ rHdt

rRdtj ´
ÿ

jPGdt´ rHdt

Rdtj

*

`

´

1´
ndt
Ndt

¯ cφ
ndt

"

ÿ

jPsdt´p rGdt´ rHdtq

sgnpreψ,dtjq ´
ÿ

jPsdt´pGdt´ rHdtq

sgnpeψ,dtjq

*

.

Assumption (E2) implies that

ÿ

jPsdt´pGdt´ rHdtq

Ersgnpreψ,dtjqs “ 2
ÿ

jPsdt´Gdt

ppπ2,dtj ´ pπ´2,dtjq,

ÿ

jPsdt´pGdt´ rHdtq

varpsgnpreψ,dtjqq “ 4
ÿ

jPsdt´Gdt

ppπ2,dtj ` pπ´2,dtjq ´ 4
ÿ

jPsdt´Gdt

ppπ2,dtj ´ pπ´2,dtjq
2.

From assumption (C2), we obtain that

1

ndt

ÿ

jPsdt´pGdt´ rHdtq

Ersgnpreψ,dtjqs “ op1q,
1

ndt

ÿ

jPsdt´pGdt´ rHdtq

varpsgnpreψ,dtjqq “ op1q. (D.10)
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From (D.9), (D.10) and assumption (E2), the variance of Y
p2q
dt is

V
p2q
dt “ var

`

Y
p2q
dt

˘

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
I
rHdt
pjq ´

1

Ndt
Irdtpjq

¯2
var

`

reψ,dtjpθdq
˘

`

´

1´
ndt
Ndt

¯2σ2
θdt

n2
dt

ÿ

jP rHdt

var
`

rRdtj ´Rdtj
˘

`

´

1´
ndt
Ndt

¯2 c2
φ

n2
dt

ÿ

jPsdt´ rHdt

var
`

sgnpreψ,dtjq ´ sgnpeψ,dtjq
˘

` opn´1q

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

I
rHdt
pjq `

1

N2
dt

Irdtpjq
¯

var
`

reψ,dtjpθdq
˘

` opn´1q,

where var
`

reψ,dtjpθdq
˘

“ x1dtjvar
`

pβψpθd,wtq
˘

xdtj , j “ 1, . . . , Ndt.

From assumption (A9), it holds that

1

Ndt

ÿ

jPUdt

E
“

reψ,dtjpθdq
‰

“ x1dtE
“

βψpθd,wtq ´ pβψpθd,wtq
‰

“ Opn´1{2q, (D.11)

where we have defined the population mean of the vector of explanatory variables as

x̄1dt “
1

Ndt

ÿ

jPUdt

x1dtj .

From (D.11), (D.9) and (D.10), the expected prediction difference is

E
p2q
dt “ E

“

Y
p2q
dt

‰

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
Isdtpjq ´

1

Ndt
Irdtpjq

¯

E
“

reψ,dtjpθdq
‰

`

´

1´
ndt
Ndt

¯ 1

ndt

"

σθdt
ÿ

jP rHdt

E
“

rRdtj ´Rdtj
‰

` cφ
ÿ

jPsdt´ rHdt

E
“

sgnpreψ,dtjq ´ sgnpeψ,dtjq
‰

*

“ op1q.

D.1.4 Part III: Dealing with the differences pY
btmq

dt ´
rY

btmq

dt

In this section, we calculate the expected value and variance of the prediction differences

pY
btmq

dt ´
rY
btmq

dt , d “ 1, . . . , D, t “ 1, . . . , T.

The reasoning is based on the calculation of first-order Taylor approximations and the subse-
quent computation of expected values and variances.

As φp0q “ 0 and 9φp0q “ 1, a Taylor series expansion of φppuψ,dtjq around u “ 0 yields to

φppuψ,dtjq “ φp0q ` 9φp0qpuψ,dtj ` pRψ,dtj “ puψ,dtj ` pRψ,dtj , j “ 1, . . . , Ndt, (D.12)

where pRdtj “
1
2 pu

˚2
ψ,dtj , 0 ă |pu˚ψ,dtj | ă |puψ,dtj | and varp pRdtjq ď varppuψ,dtjq.
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From assumption (D1), we have

1

ndt

ÿ

jP pGdt

Er pRdtj ´ rRdtjs “ op1q,
1

ndt

ÿ

jP pGdt

var
`

p pRdtj ´ rRdtjq
2
˘

“ op1q. (D.13)

From the Taylor series expansion (D.12), we have

pBbtmq
dt “

ÿ

jP pGdt

σθdtφ
`

puψ,dtj
˘

` cφ
ÿ

jPsdt´ pGdt

sgn
`

peψ,dtj
˘

,

“
ÿ

jP pGdt

peψ,dtj ` σθdt
ÿ

jP pGdt

pRdtj ` cφ
ÿ

jPsdt´ pGdt

sgnppeψ,dtjq.

As peψ,dtj ´ reψ,dtj “ x
1
dtj

`

βψp
pθd,wtq ´ pβψp

pθd,wtq
˘

“ peψ,dtjpθdq, then B
p3q
dt “

pBbtmq
dt ´ rBbtmq

dt is

B
p3q
dt “

ÿ

jP pGdt

peψ,dtj ` σθdt
ÿ

jP pGdt

pRdtj ` cφ
ÿ

jPsdt´ pGdt

sgnppeψ,dtjq

´
ÿ

jP rGdt

reψ,dtj ` σθdt
ÿ

jP rGdt

rRdtj ` cφ
ÿ

jPsdt´ rGdt

sgnpreψ,dtjq

“
ÿ

jP pHdt

peψ,dtjpθdq `
ÿ

jP pGdt´ pHdt

peψ,dtj ´
ÿ

jP rGdt´ rHdt

reψ,dtj

` σθdt

´

ÿ

jP pHdt

p pRdtj ´ rRdtjq `
ÿ

jP pGdt´ pHdt

pRdtj ´
ÿ

jP rGdt´ pHdt

rRdtj

¯

` cφ

´

ÿ

jPsdt´ pHdt

psgnppeψ,dtjq ´ sgnpreψ,dtjqq

`
ÿ

jPsdt´p pGdt´ pHdtq

sgnppeψ,dtjq ´
ÿ

jPsdt´p rGdt´ pHdtq

sgnpreψ,dtjq
¯

.

The prediction difference Y
p3q
dt “

pY
btmq

dt ´
rY
btmq

dt is

Y
p3q
dt “

1

Ndt

ˆ

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψp

pθd,wtq

˙

`

´

1´
ndt
Ndt

¯ 1

ndt
pBbtmq
dt

´
1

Ndt

ˆ

ÿ

jPsdt

ydtj `
ÿ

jPrdt

x1dtj
pβψpθd,wtq

˙

`

´

1´
ndt
Ndt

¯ 1

ndt
rBbtmq
dt

“

´

1´
ndt
Ndt

¯ 1

ndt
B
p3q
dt ´

1

Ndt

ÿ

jPrdt

peψ,dtjpθdq.
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By substituting B
p3q
dt , we obtain

Y
p3q
dt “

´

1´
ndt
Ndt

¯ 1

ndt

#

ÿ

jP rHdt

peψ,dtjpθdq `
ÿ

jP pGdt´ pHdt

peψ,dtj ´
ÿ

jP rGdt´ pHdt

reψ,dtj

` σθdt

´

ÿ

jP pHdt

p pRdtj ´ rRdtjq `
ÿ

jP pGdt´ pHdt

pRdtj ´
ÿ

jP rGdt´ pHdt

rRdtj

¯

` cφ

´

ÿ

jPsdt´ pHdt

psgnppeψ,dtjq ´ sgnpreψ,dtjqq `
ÿ

jPsdt´p pGdt´ pHdtq

sgnppeψ,dtjq

´
ÿ

jPsdt´p rGdt´ pHdtq

sgnpreψ,dtjq
¯)

´
1

Ndt

ÿ

jPrdt

peψ,dtjpθdq.

We write Y
p3q
dt in the form

Y
p3q
dt “

ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
I
pHdt
pjq ´

1

Ndt
Irdtpjq

¯

peψ,dtjpθdq

`

´

1´
ndt
Ndt

¯ 1

ndt

"

σθdt
ÿ

jP pHdt

 

pRdtj ´ rRdtj
(

` cφ
ÿ

jPsdt´ pHdt

`

sgnppeψ,dtjq ´ sgnpreψ,dtjq
˘

*

`

´

1´
ndt
Ndt

¯ 1

ndt

"

ÿ

jP pGdt´ pHdt

peψ,dtj ´
ÿ

jP rGdt´ pHdt

reψ,dtj `
ÿ

jP pGdt´ pHdt

pRdtj ´
ÿ

jPGdt´ pHdt

Rdtj

*

`

´

1´
ndt
Ndt

¯ 1

ndt

"

cφ
ÿ

jPsdt´p pGdt´ pHdtq

sgnppeψ,dtjq ´ cφ
ÿ

jPsdt´p rGdt´ pHdtq

sgnpreψ,dtjq

*

.

Assumption (E3) implies that

ÿ

jPsdt´pGdt´ pHdtq

Ersgnppeψ,dtjqs “ 2
ÿ

jPsdt´Gdt

ppπ2,dtj ´ pπ´2,dtjq,

ÿ

jPsdt´pGdt´ pHdtq

varpsgnppeψ,dtjqq “ 4
ÿ

jPsdt´Gdt

ppπ2,dtj ` pπ´2,dtjq ´ 4
ÿ

jPsdt´Gdt

ppπ2,dtj ´ pπ´2,dtjq
2.

From assumption (D2), we obtain that

1

ndt

ÿ

jPsdt´pGdt´ pHdtq

Ersgnppeψ,dtjqs “ op1q,
1

ndt

ÿ

jPsdt´pGdt´ pHdtq

varpsgnppeψ,dtjqq “ op1q. (D.14)
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From (D.13), (D.14) and assumption (E3), the variance of Y
p3q
dt is

V
p3q
dt “ var

`

Y
p3q
dt

˘

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
I
pHdt
pjq ´

1

Ndt
Irdtpjq

¯2
var

`

peψ,dtjpθdq
˘

`

´

1´
ndt
Ndt

¯2 1

n2
dt

σ2
θdt

ÿ

jP pHdt

var
`

pRdtj ´ rRdtj
˘

`

´

1´
ndt
Ndt

¯2 1

n2
dt

c2
φ

ÿ

jPsdt´ pHdt

var
`

sgnppeψ,dtjq ´ sgnpreψ,dtjq
˘

` opn´1q

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

I
pHdt
pjq `

1

N2
dt

Irdtpjq
¯

var
`

peψ,dtjpθdq
˘

` opn´1q,

where var
`

peψ,dtjpθdq
˘

“ x1dtjvar
`

pβψp
pθd,wtq

˘

xdtj , j “ 1, . . . , Ndt.

From assumption (A9), it holds that

1

Ndt

ÿ

jPUdt

E
“

peψ,dtjpθdq
‰

“ x1dtE
“

βψpθd,wtq ´ pβψp
pθd,wtq

‰

“ Opn´1{2q. (D.15)

From (D.15), (D.13) and (D.14), the expected prediction difference is

E
p3q
dt “ E

“

Y
p3q
dt

‰

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯ 1

ndt
Isdtpjq ´

1

Ndt
Irdtpjq

¯

E
“

peψ,dtjpθdq
‰

`

´

1´
ndt
Ndt

¯ 1

ndt

"

σθdt
ÿ

jP pHdt

E
“

pRdtj ´ rRdtj
‰

` cφ
ÿ

jPsdt´ pHdt

E
“

sgnppeψ,dtjq ´ sgnpreψ,dtjq
‰

*

“ op1q.

D.1.5 Final expression of the mean squared error

Under the necessary assumptions set out in Section D.1.1, this section collects the analyt-
ical results from Sections D.1.2, D.1.3 and D.1.4 to finally derive a first-order approximation

of the MSE of the BTMQ predictor pY
btmq

dt .

First of all, it holds that

MSE
`

pY
btmq

dt

˘

“ E
“`

pY
btmq

dt ´ Y dt

˘2‰
“ var

`

pY
btmq

dt ´ Y dt

˘

` pE
“

pY
btmq

dt ´ Y dt

‰

q2.

Based on the decomposition

pY
btmq

dt ´ Y dt “
`

pY
btmq

dt ´
rY
btmq

dt

˘

`
`

rY
btmq

dt ´ Y
btmq
dt

˘

`
`

Y
btmq
dt ´ Y dt

˘

“ Y
p3q
dt ` Y

p2q
dt ` Y

p1q
dt ,

we write

var
`

pY
btmq

dt ´ Y dt

˘

“ V
p1q
dt ` V

p2q
dt ` V

p3q
dt ` 2cov

`

Y
p3q
dt , Y

p2q
dt

˘

` 2cov
`

Y
p3q
dt , Y

p1q
dt

˘

` 2cov
`

Y
p2q
dt , Y

p1q
dt

˘

,

E
“

pY
btmq

dt ´ Y dt

‰

“ E
p1q
dt ` E

p2q
dt ` E

p3q
dt “ E

p1q
dt ` op1q.
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The covariances are cov
`

Y
p3q
dt , Y

p2q
dt

˘

“ E
“

Y
p3q
dt Y

p2q
dt

‰

`op1q, cov
`

Y
p3q
dt , Y

p1q
dt

˘

“ E
“

Y
p3q
dt Y

p1q
dt s`op1q

and cov
`

Y
p2q
dt , Y

p1q
dt

˘

“ E
“

Y
p2q
dt Y

p1q
dt s ` op1q. Under regularity assumptions, the expectations of

the previous cross-products should be op1q.

Therefore, an approximation of MSE
`

pY
btmq

dt

˘

is

MSE
`

pY
btmq

dt

˘

“ V
p1q
dt ` V

p2q
dt ` V

p3q
dt ` E

p1q2
dt ` op1q.

The following theorem (Bugallo et al., 2024e) summarizes the final MSE approximation.

Theorem 1. Under assumptions (Φ1), (N1)-(N2), (Q1), (A1)-(A9), (B1)-(B4), (C1)-(C2),

(D1)-(D2), (E1)-(E3) in Appendix D.1.1, a first-order approximation of MSEppY
btmq

dt q is

MSE
`

pY
btmq

dt

˘

“
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

IGdtpjq `
1

N2
dt

Irdtpjq
¯´

x1dtjκψpθd,wtq

¯2
ξ2
dt

`
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

I
rHdt
pjq `

1

N2
dt

Irdtpjq
¯

x1dtjvar
`

pβψpθd,wtq
˘

xdtj

`
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

I
pHdt
pjq `

1

N2
dt

Irdtpjq
¯

x1dtjvar
`

pβψp
pθd,wtq

˘

xdtj

`

´

1´
ndt
Ndt

¯2
ˆ

cφ
ndt

ÿ

jPsdt´Gdt

E
“

sgnpeψ,dtjq
‰

`
σθdt
ndt

ÿ

jPGdt

ErRdtjs

˙2

` op1q.

D.1.6 Estimation of the final expression of the mean squared error

In this section we propose an estimator of the MSE of the BTMQ predictor pY
btmq

dt for the
first-order approximation formulated in Theorem 1. We use the simplified notation

MSE
`

pY
btmq

dt

˘

“ S1 ` S2 ` S3 ` S4 ` op1q.

The first summand of MSE
`

pY
btmq

dt

˘

is

S1 “ S11 ` S12 “
ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

IGdtpjq `
1

N2
dt

Irdtpjq
¯´

x1dtjκψpθd,wtq

¯2
ξ2
dt

“

´

1´
ndt
Ndt

¯2 1

n2
dt

ÿ

jPGdt

´

x1dtjκψpθd,wtq

¯2
ξ2
dt `

1

N2
dt

ÿ

jPrdt

´

x1dtjκψpθd,wtq

¯2
ξ2
dt.

Provided qdtj ´ θd ‰ 0, j “ 1, . . . , Ndt, we obtain from the definition of the TWMQ linear
models (5.14) and the Taylor series expansion (D.1) that

κψpθd,wtq “ pqdtj ´ θdq
´1pβψpqdtj ,wtq ´ βψpθd,wtq ´ rdtjq,

x1dtjκψpθd,wtq “ pqdtj ´ θdq
´1pydtj ´ x

1
dtjβψpθd,wtq ´ x

1
dtjrdtjq

“ pqdtj ´ θdq
´1peψ,dtj ´ x

1
dtjrdtjq.
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If x1dtjrdtj « 0, the first term of S1 is estimated by

pS11,0 “

´

1´
ndt
Ndt

¯2 pξ2
dt

n2
dt

ÿ

jP pGdt

1

ppqdtj ´ pθdq2
pe2
ψ,dtj ,

where pξ2
dt is an estimator of varpqdtjq, i.e.

pξ2
dt “ xvarpqdtjq “

1

ndt ´ 1

ÿ

jPsdt

ppqdtj ´ pq̄dt.q
2, pq̄dt. “

1

ndt

ÿ

jPsdt

pqdtj .

The second term of S1 is estimated as

pS12,0 “
Ndt ´ ndt

ndt

pξ2
dt

N2
dt

ÿ

jPsdt

1

ppqdtj ´ pθdq2
pe2
ψ,dtj .

Therefore, we estimate V
p1q
dt by pS1,0 “ pS11,0 ` pS12,0. Nevertheless, the differences pqdtj ´ pθd

are expected to be close to zero, leading to instability problems due to multiplication by
ppqdtj ´ pθdq

´2, j “ 1, . . . , ndt, both in the estimation of S11,0 and S12,0. For this reason, we do
not recommend using them. Potential solutions include proposing the following estimators

pS11 “

´

1´
ndt
Ndt

¯2 pξ2
dt

n2
dt

´ 1

cardppGdtq

ÿ

jP pGdt

ppqdtj ´ pθdq
2
¯´1 ÿ

jP pGdt

pe2
ψ,dtj ,

pS12 “
Ndt ´ ndt

ndt

pξ2
dt

N2
dt

´ 1

ndt

ÿ

jPsdt

ppqdtj ´ pθdq
2
¯´1 ÿ

jPsdt

pe2
ψ,dtj ,

such that we finally write pS1 “ pS11 ` pS12. Clearly, this new estimation of S1 largely avoids
the problems of numerical instability, but it may also bias the final estimation. All things
considered, we strongly recommend this second approach, which provides more stable results.

On the other hand, we use estimators of S2 and S3 to estimate the variance terms V
p2q
dt

and V
p3q
dt , respectively. An estimator for both S2 and S3 is obtained as follows

pV
p2q
dt “ pV

p3q
dt “

ÿ

jPUdt

´´

1´
ndt
Ndt

¯2 1

n2
dt

I
pGdtpjq `

1

N2
dt

Irdtpjq
¯

x1dtj
pVβxdtj

“

´

1´
ndt
Ndt

¯2 1

n2
dt

ÿ

jP pGdt

x1dtj
pVβxdtj `

1

N2
dt

ÿ

jPrdt

x1dtj
pVβxdtj ,

where pVβ is an estimator of Vβ “ var
`

pβψp
pθd,wtqq, as the one given in (5.23).

The last element S4 of MSE
`

pY
btmq

dt

˘

corresponds to the bias term E
p1q2
dt . First, we propose

ÿ

jPsdt´Gdt

pE
“

sgnpeψ,dtjq
‰

“
ÿ

jPsdt´ pGdt

sgnppeψ,dtjq.
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From the Taylor expansion (D.4), Rdtj “
1
2 u

˚2
ψ,dtj , 0 ă |u˚ψ,dtj | ă |uψ,dtj |, j “ 1, . . . , Ndt, so

ÿ

jPGdt

pErRdtjs “
1

2σ2
θdt

ÿ

jP pGdt

pe2
ψ,dtj .

We derive the following estimator of MSE
`

pY
btmq

dt

˘

:

msebtmq3,dt “

´

1´
ndt
Ndt

¯2 pξ2
dt

n2
dt

´ 1

cardppGdtq

ÿ

jP pGdt

ppqdtj ´ pθdq
2
¯´1 ÿ

jP pGdt

pe2
ψ,dtj `

`
Ndt ´ ndt

ndt

pξ2
dt

N2
dt

´ 1

ndt

ÿ

jPsdt

ppqdtj ´ pθdq
2
¯´1 ÿ

jPsdt

pe2
ψ,dtj

` 2
´

1´
ndt
Ndt

¯2 1

n2
dt

ÿ

jP pGdt

x1dtj
pVβxdtj `

1

N2
dt

ÿ

jPrdt

x1dtj
pVβxdtj

`

´

1´
ndt
Ndt

¯2 1

n2
dt

ˆ

cφ
ÿ

jPsdt´ pGdt

sgnppeψ,dtjq `
1

2σθdt

ÿ

jP pGdt

pe2
ψ,dtj

˙2

. (D.16)

Finally, an estimator of RMSE
`

pY
btmq

dt

˘

“
`

MSE
`

pY
btmq

dt

˘˘1{2
is rmsebtmq3,dt “

`

msebtmq3,dt

˘1{2
.

The first-order approximation of the MSE given in Theorem 1 leads to an MSE estimator
in (D.16), but the study of its theoretical properties, such as the first-order bias, is left for
future research. To the best of our knowledge, the latter has never been done for a predictor
derived from an MQ model. We believe that this is an issue that should be addressed for the
simplest models, i.e. those proposed by Chambers and Tzavidis (2006).

D.2 Selection of area-time specific robustness parameters

In this section we provide the proof of Theorem 2, which was formulated in Section 5.4.

Theorem 2. Let φ be the Huber function, defined in (5.3). Formsebtmqdt P tmsebtmq1,dt ,mse
btmq
2,dt u,

it exists an unique solution pcφ,dt of the minimization problem

pcφ,dt “ argmin
cφě0

,msebtmqdt pcφq, d “ 1, . . . , D, t “ 1, . . . , T,

belonging to the interval
“

0,max
jPsdt

|puψ,dtj |
‰

and its explicit expression is calculable.

Theorem 2 provides a local, area-time specific approach, that calculates the robustness
parameter that best bounds the outlier observations in each subdomain to reduce the pre-
dictive bias, without detriment to the MSE. Therefore, it allows us to intuit the relationship
between the sign of the bias and the number of large positive and negative residuals. Finally,
and quite incidentally, selecting the value of pcφ,dt not only avoids subjective choices, but also
reveals the atypical condition of a subdomain (Bugallo et al., 2024e).
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Proof. First, we calculate the cφ-dependent part of msebtmqdt P tmsebtmq1,dt ,mse
btmq
2,dt u. To do so,

we define Adtpcφq and write it as a function of cφ, i.e.

Adtpcφq “
´

1´
ndt
Ndt

¯2´σθdt
ndt

¯2 ÿ

jPsdt

φ2
`

puψ,dtj
˘

`

´

pBdt `
´

1´
ndt
Ndt

¯σθdt
ndt

ÿ

jPsdt

φ
`

puψ,dtj
˘

¯2
.

Technical definitions required for the proof are given below. Let U “ t|puψ,dtj |p1q, . . . , |puψ,dtj |pndtqu
be the ordered version of the set U “ t|puψ,dt1|, . . . , |puψ,dtndt |u, so that |puψ,dtj |p1q “ min

jPsdt
|puψ,dtj |

and |puψ,dtj |pndtq “ max
jPsdt

|puψ,dtj |. We define |puψ,dtj |p0q “ 0 and

Λdt,` “
 

j P t1, . . . , ndtu : |puψ,dtj | ď |puψ,dtj |p``1q

(

,

where cardpΛdt,`q “ ndt ´ ndt,`, ndt,` “ n`dt,` ` n
´
dt,` P N, ` “ 0, . . . , ndt ´ 1, and

n`dt,` “ card
 

|puψ,dtj | P U : |puψ,dtj | ą |puψ,dtj |p``1q, puψ,dtj ą 0
(

P N,

n´dt,` “ card
 

|puψ,dtj | P U : |puψ,dtj | ą |puψ,dtj |p``1q, puψ,dtj ă 0
(

P N.

The cφ-dependent terms of Adtpcφq are continuous in cφ P r0,8q, piecewise quadratic
in cφ P I` “ r|puψ,dtj |p`q, |puψ,dtj |p``1qq, ` “ 0, . . . , ndt ´ 1, and constant in cφ P Indt “
r|puψ,dtj |pndtq,8q. Therefore, we have

Adtpcφq “

´

pBdt `
´

1´
ndt
Ndt

¯σθdt
ndt

´

cφpn
`
dt,` ´ n

´
dt,`q `

ÿ

jPΛdt,`

puψ,dtj

¯¯2

`

´

1´
ndt
Ndt

¯2σ2
θdt

n2
dt

´

c2
φndt,` `

ÿ

jPΛdt,`

pu2
ψ,dtj

¯

, cφ P I`, ` “ 0, . . . , ndt ´ 1,

Adtpcφq “

´

pBdt `
´

1´
ndt
Ndt

¯σθdt
ndt

ÿ

jPsdt

puψ,dtj

¯2
`

´

1´
ndt
Ndt

¯2σ2
θdt

n2
dt

ÿ

jPsdt

pu2
ψ,dtj , cφ ě |puψ,dtj |pndtq.

Let us now prove the existence and uniqueness of solution and calculate its explicit expression.

Existence. Since Adtpcφq is a constant function in Indt , the search for extreme values is
reduced to the compact (closed and bounded) interval

“

0, |puψ,dtj |pndtq
‰

. Further, Adtpcφq is a
piecewise function in

“

0, |puψ,dtj |pndtq
‰

but, as an inherited property of function φpuq, Adtpcφq
is continuous in r0,8q. By virtue of the Weierstrass Theorem, Adtpcφq reaches its absolute
maximum and minimum values in

“

0, |puψ,dtj |pndtq
‰

. If the minimum is reached at cφ “ 0, no
bias correction is needed. If the minimum is reached at cφ “ |puψ,dtj |pndtq, is also reached in
r|puψ,dtj |pndtq,8q, and the bias correction is maximal.

Uniqueness. By definition, Adtpcφq is an infinitely differentiable function in cφ P r0,8q´U .
The elements of the set U are the avoidable discontinuities of Adtpcφq. The first and second
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order derivatives of Adtpcφq in cφ P I` ´ t|puψ,dtj |p`qu, ` “ 0, . . . , ndt ´ 1, are

BAdtpcφq

Bcφ
“ 2

ˆ

pBdt `
´

1´
ndt
Ndt

¯σθdt
ndt

´

cφpn
`
dt,` ´ n

´
dt,`q `

ÿ

jPΛdt,`

puψ,dtj

¯

˙

¨

´

1´
ndt
Ndt

¯σθdt
ndt

pn`dt,` ´ n
´
dt,`q ` 2cφ

´

1´
ndt
Ndt

¯2´σθdt
ndt

¯2
ndt,`,

B2Adtpcφq

B2cφ
“ 2

´

1´
ndt
Ndt

¯2´σθdt
ndt

¯2
pn`dt,` ´ n

´
dt,`q

2 ` 2
´

1´
ndt
Ndt

¯2´σθdt
ndt

¯2
ndt,`

“ 2
´

1´
ndt
Ndt

¯2´σθdt
ndt

¯2´

pn`dt,` ´ n
´
dt,`q

2 ` ndt,`

¯

.

For cφ P I` ´ t|puψ,dtj |p`qu, ` “ 0, . . . , ndt ´ 1, it follows that
B2Adtpcφq

B2cφ
ą 0 if and only if

ndt,` ą 0, so Adtpcφq is strictly convex in
ndt
Ť

l“0

pI` ´ t|puψ,dtj |p`quq “ r0, |puψ,dtj |pndtqs ´ U . Given

that a strictly convex continuous function in an open set is strictly convex at its closure,
Adtpcφq is strictly convex in the compact interval r0, |puψ,dtj |pndtqs. Therefore, the uniqueness
of the global minimum of Adtpcφq in r0, |puψ,dtj |pndtqs is guaranteed.

Explicit expression of pcφ,dt. We have already proved the existence and uniqueness of
solutions, so it is now appropriate to have an explicit expression. We distinguish two cases.
Case 1 is the extreme solution pcφ,dt “ |puψ,dtj |pndtq. Case 2 is a solution pcφ,dt P I` for some

` P t0, . . . , ndt ´ 1u, so either pcφ,dt “ |puψ,dtj |p`q, or pcφ,dt fulfills that
BAdtpcφq
Bcφ

ˇ

ˇ

ˇ

cφ“pcφ,dt
“ 0, i.e.

ˆ

pBdt `
´

1´
ndt
Ndt

¯σθdt
ndt

´

pcφ,dtpn
`
dt,` ´ n

´
dt,`q `

ÿ

jPΛdt,`

puψ,dtj

¯

˙

pn`dt,` ´ n
´
dt,`q

` pcφ,dt

´

1´
ndt
Ndt

¯´σθdt
ndt

¯

ndt,` “ 0 ðñ

¨

˝
pBdt `

ˆ

1´
ndt
Ndt

˙

σθdt
ndt

ÿ

jPΛdt,`

puψ,dtj

˛

‚pn`dt,` ´ n
´
dt,`q

`

ˆ

1´
ndt
Ndt

˙

σθdt
ndt

´

pn`dt,` ´ n
´
dt,`q

2 ` ndt,`

¯

pcφ,dt “ 0.

Solving for pcφ,dt from this equation, we obtain

pcφ,dt “

ˆ

pBdt `
`

1´ ndt
Ndt

˘σθdt
ndt

ř

jPΛdt,`

puψ,dtj

˙

pn´dt,` ´ n
`
dt,`q

´

1´ ndt
Ndt

¯

σθdt
ndt

´

pn`dt,` ´ n
´
dt,`q

2 ` ndt,`

¯ . (D.17)

Since pcφ,dt P p|puψ,dtj |p`q, |puψ,dtj |p``1qq, pcφ,dt ą 0 and the numerator of (D.17) is strictly positive.

Further, there are two possibilities: (i) n`dt,` ă n´dt,` and pBdt `
´

1´ ndt
Ndt

¯

σθdt
ndt

ř

jPΛdt,`

puψ,dtj ą 0;

(ii) n`dt,` ą n´dt,` and pBdt`
´

1´ ndt
Ndt

¯

σθdt
ndt

ř

jPΛdt,`

puψ,dtj ă 0. Therefore, if the number of negative

outliers, n´dt,`, is greater than the number of positive outliers, n`dt,`, then the bias is positive.
If not, the other way round.
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using zero-inflated negative binomial mixed models: Application to Spain. Journal of
Environmental Management, 328:116788.

Bugallo, M., Esteban, M. D., Morales, D., and Marey-Pérez, M. (2024c). Pattern recogni-
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ing the occurrence and burnt area of wildfires using zero-one-inflated structured additive
beta regression. Environmental Modelling and Software, 110:107–118.
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