
Received: 12 July 2023 Revised: 10 December 2023 Accepted: 25 February 2024

DOI: 10.1002/spe.3329

R E S E A R C H A R T I C L E

Full-mesh VPN performance evaluation for a secure
edge-cloud continuum

Vojdan Kjorveziroski1 Cristina Bernad2 Katja Gilly2 Sonja Filiposka1

1Faculty of Computer Science and
Engineering, Ss. Cyril and Methodius
University, Skopje, North Macedonia
2Department of Computer Engineering,
Miguel Hernández University (Elche),
Alicante, Spain

Correspondence
Cristina Bernad, Department of Computer
Engineering, Miguel Hernández
University (Elche), Avenida de la
Universidad, Alicante 03202, Spain.
Email: cbernad@umh.es

Funding information
Faculty of Computer Science and
Engineering, Ss. Cyril and Methodius
University

Abstract
The recent introduction of full-mesh virtual private network (VPN) solutions
which offer near native performance, coupled with modern encryption algo-
rithms and easy scalability as a result of a central control plane have a strong
potential to enable the implementation of a seamless edge-cloud continuum.
To test the performance of existing solutions in this domain, we present a
framework consisted of both essential and optional features that full-mesh VPN
solutions need to support before they can be used for interconnecting geo-
graphically dispersed compute nodes. We then apply this framework on existing
offerings and select three VPN solutions for further tests: Headscale, Netbird,
and ZeroTier. We evaluate their features in the context of establishing an under-
lay network on top of which a Kubernetes overlay network can be created. We
test pod-to-pod TCP and UDP throughput as well as Kubernetes application pro-
gramming interface (API) response times, in multiple scenarios, accounting for
adverse network conditions such as packet loss or packet delay. Based on the
obtained measurement results and through analysis of the underlying strengths
and weaknesses of the individual implementations, we draw conclusions on the
preferred VPN solution depending on the use-case at hand, striking a balance
between usability and performance.
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1 INTRODUCTION

As the Internet adoption levels have grown overtime, so have the requirements for secure communication between remote
nodes over public and untrusted networks. One popular way of satisfying this requirement is through the use of various
virtual private network (VPN) solutions, capable of establishing trusted tunnels over untrusted networks.1 While traffic
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encapsulation solutions providing tunneling capabilities have existed for decades, they do not inherently offer encryption,
a core feature of modern VPNs today, thus requiring upper layer protocols to design and incorporate strategies preventing
eavesdropping.

When choosing a new VPN solution, a number of things need to be taken into account, ranging from its security
features (supported encryption algorithms), ease of use, performance, the underlying transport protocol which has been
chosen (TCP or UDP), supported computing platforms, and supported connection topologies. The majority of VPN prod-
ucts today are cross platform, offering support for both desktop and mobile operating systems. When it comes to transport
protocols, usually UDP is the preferred choice when optimizing for performance, due to the drawbacks of tunneling reg-
ular TCP traffic from an application layer protocol such as HTTP over a TCP tunnel.2 An exception to this are networks
with restrictive policies, where traffic is severely filtered due to security reasons, and only a handful of common TCP ports
are open for outbound communication. An additional aspect which also plays a role in the overall performance of the
VPN is its software architecture, and whether it supports multi-threading or it is limited to a single thread.3,4 Some VPN
solutions have kernel modules available for the most popular operating systems,5 while others trade the performance
improvements of running in kernel space for a richer feature set running in user-space.6

The most popular VPN protocols today are OpenVPN7 and Wireguard,8 both being open-source software released
under a permissive license. As a result of this, many of the currently available commercial VPN solutions in fact incorpo-
rate either one of them or both. Both OpenVPN and Wireguard have native applications and are free to implement and
use on private infrastructure. As their manual configuration does not scale beyond dozens of devices, automated tool-
ing or additional supporting software is needed. In the case of OpenVPN, connection establishment can either be done
using shared keys or certificates, with the latter requiring a full Private Key Infrastructure (PKI) in place.9 Wireguard’s
initial configuration is somewhat simpler, with a process involving the generation of key-pairs and exchanging public
keys between endpoints, a procedure reminiscent of SSH public key authentication.10

Leveraging Wireguard’s simple key exchange along with its improved performance due to its multithreaded archi-
tecture, recently a number of as-a-service products have appeared, aiming to solve the scaling issues associated with
interconnecting many devices.11–14 These solutions usually transform the original decentralized key exchange with a cen-
tral coordination server which acts as a middleman in exchanging the public keys between peers in the same network.
This comes with a guarantee that no eavesdropping is possible, as the private key needed for decryption never leaves the
device where it was generated. In this setup any node can be connected with an arbitrary number of other nodes and the
addition of a new node does not require any manual effort in terms of key exchange or configuration. Thus, it becomes
feasible to replace the hub-and-spoke connection topology commonly associated with traditional VPN solutions, with a
better performing and redundant full-mesh topology. With all nodes being directly connected to each other and traffic
not traversing intermediary transit nodes capable of decrypting it, the full-mesh connectivity eliminates communication
bottlenecks and improves security.

The above-mentioned improvements can be utilized in various scenarios, ranging from establishing site-to-site con-
nectivity between remote locations to providing secure client access to corporate infrastructure for individual users.15

It also has incredible potential for use in edge computing and the establishment of an edge-cloud continuum, where
remote sites can be seamlessly interconnected both between each other and with the upstream cloud data centers. The
full-mesh topology guarantees minimal latency, being performance dependent only on the hardware characteristics of the
device and the efficiency of the VPN protocol. Modern network address translation (NAT) traversal techniques, including
relaying, can also ensure VPN connectivity between otherwise unreachable nodes located behind restrictive firewalls.

Inspired by the potential implications of recent edge-cloud developments and the introduction of multiple novel
open-source VPN products which can be completely self-hosted without relying on third-party commercial infrastruc-
ture, the goal of this paper is to evaluate the applicability and performance of full-mesh VPN solutions when used as an
underlay network for the Kubernetes container orchestrator. The underlay network is to be used by container network
interface (CNI) plugins which would set up an overlay network on top,16 transparently interconnecting multiple Kuber-
netes nodes regardless to physical network or geographical location. To this end, the main contributions of this paper are:

• Review popular full-mesh VPN solutions, providing a framework based on supported features;
• Define requirements which need to be satisfied by full-mesh VPN solutions so that they can be used as an underlay

network for orchestration systems, including Kubernetes;
• Benchmark three full-mesh VPN solutions with built-in NAT traversal capabilities (Headscale, Netbird, ZeroTier)

when used as an underlay network for the Calico CNI in a Kubernetes environment by comparing to a defined baseline;
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• Evaluate real-world connectivity issues and the robustness of the VPN solutions by simulating adverse network
conditions, inducing network delay and packet loss, reporting on the measured performance hits;

• Compare the Kubernetes application programming interface (API) response times with and without using a VPN as
the underlay network;

• Thorough analysis of the obtained results with guidelines on choosing the best performing VPN solution depending
on the use-case.

The rest of this article is organized as follows: in Section 2, we discuss related work to the topic at hand and report
on the results of other studies which have concerned themselves with benchmarking VPN performance in various envi-
ronments. We then proceed with Section 3 where we define the benchmarking methodology, the criteria for selecting
the VPN solutions, briefly explaining their specifics, and present the overall execution strategy for the various tests. We
discuss the obtained results in Section 4 and summarize our findings in Section 5, elaborating on the advantages as well
as drawbacks of each of the tested solutions, and their applicability in different scenarios. We conclude the article with
Section 6, drawing conclusions and outlining ideas for future research.

2 RELATED WORK

The study of tunneling protocols and secure connectivity options, including VPNs has been a popular research area
throughout the years. A number of papers have discussed performance aspects of various VPN technologies available at
the time of their writing. One such example is Reference 17 which compares the performance of OpenVPN versus IPSec,
concluding that IPSec achieves more favorable results in the majority of the tests. While OpenVPN is commonly included
in VPN performance studies, newer articles also focus on a more recent introduction to this space, Wireguard. Dekker
et al. in Reference 18 describe the performance differences between three VPN protocols: StrongSwan, OpenVPN and
Wireguard in a 1Gbit/s network environment. Their findings show that StrongSwan and OpenVPN have the best results
when it comes to tunneling UDP traffic, while Wireguard’s kernel implementation takes the lead when it comes to connec-
tion initialization speed. The user space implementation of Wireguard (Wireguard Go) shows the highest CPU utilization
among all tested solutions. The results presented in Reference 19 by Goethals et al. further validate the performance ben-
efits of Wireguard, where it is the most performant solution among those tested (OpenVPN, Wireguard, ZeroTier, Tinc,
SoftEther). The authors also include benchmarks focusing on the scalability aspects of the various solutions, testing them
with varying number of clients, as well as their robustness by measuring their failure rates.

Recognizing the potential performance advantages of Wireguard on one hand, but also the manual and often time
consuming configuration of peers in large topologies on the other, Paillisse et al. describe a centralized control plane for
Wireguard, which can facilitate automatic key exchange between participating nodes in a full-mesh network.20 This eases
the configuration process, while not compromising security, since the presented Wireguard control plane only has access
to the public keys of all the peers (and not the private ones), along with basic connectivity information, such as IP address
and port.

The possibility of configuring full-mesh topologies using Wireguard and thus avoiding the performance penalties
associated with alternative hub-and-spoke VPN solutions is well suited for the deployment of geographically distributed
computing infrastructures. The authors of Reference 21 evaluate Wireguard’s performance when used as a connectiv-
ity layer for a distributed Kubernetes cluster, measuring the response time of a web application hosted within it. While
the described scenario is successfully validated, no discussion is available on whether alternative VPN solutions have
been considered, or whether evaluation of other performance aspects despite application response times was performed
(such as throughput or Kubernetes API response times). Wang et al. also validate the idea of distributed Kubernetes
clusters on top of Wireguard. However, their main focus is not the VPN connectivity itself,22 but rather the design of
the overall architecture of the proposed solution. The author of Reference 23 also extends a Kubernetes cluster to the
edge by incorporating low powered devices through the use of Netmaker, a VPN solution based on Wireguard which
leverages the seamless on-boarding experience of new devices provided by a centralized control plane. Wireguard is also
utilized as the chosen connectivity option for allowing federation of various Kubernetes clusters described by Falcone
et al.24 through the use of virtual kubelets25 acting as an interface for interacting with the remote federated clusters. In
some cases, new VPN protocols are proposed as well, as is the example with the recent paper describing EdgeVPN.26

Notable is the NAT traversal support using the standard combination of STUN and TURN servers, but there is no
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mention whether connection relaying is only supported via UDP or TCP as well, an important factor when it comes to
restrictive networks where UDP traffic is partially or completely blocked. The authors have validated the applicability of
EdgeVPN by creating a distributed Kubernetes cluster using the Flannel CNI as an overlay network over the EdgeVPN
underlay.

Robust and performant full-mesh VPN solutions which offer seamless node lifecycle management (addition, update,
and removal of nodes) have a tremendous potential to impact the future development of a true cloud-edge continuum,
allowing data to be initially preprocessed at the edge, before sending it through a secure communication channel for
long term storage and more complex computation in the cloud.27 Support for various NAT traversal techniques28 along
with optional traffic relaying over TCP would also enable edge nodes to be placed in restrictive networks, allowing com-
munication with the cloud as well as other nearby edge nodes even in cases where direct connectivity would otherwise
not have been possible. Secure connectivity with all of the previously mentioned improvements can also have an impact
on facilitating stateful workloads to be dynamically migrated between the cloud and the edge, utilizing novel container
migration techniques29 together with a VPN backed underlay network.

In conclusion, a number of papers that compare VPN performance between various protocols already exist and initial
validations of the idea of using a VPN underlay network for establishing distributed compute infrastructures have been
presented. However, to the best of our knowledge, there is no single work which compares the more recent options for
establishing VPN full-mesh topologies in this space and evaluates their performance together with NAT traversal and
traffic relaying options from a Kubernetes perspective. With this paper, we aim to bridge this gap, evaluating not only the
throughput performance of recently introduced contenders, but also their robustness when faced with packet loss and
traffic delay. All of these aspects are evaluated both when a direct connection is available between the participating nodes,
as well as when traffic relaying alternatives need to be utilized.

3 METHODOLOGY

The development of new VPN protocols and solutions, together with the performance evaluation of existing ones has
always been a vibrant research area, driven by the continuous increase in compute performance, design of new encryp-
tion algorithms, and improvements to network capacity. Recently, interest in this research field has increased even
further as a result of the introduction of the Wireguard VPN protocol, allowing high performance without complex
configuration.

Taking into account the large number of VPN solutions which are currently available, a well-defined and structured
evaluation methodology is required to achieve the end-goal of determining the most well suited ones for interconnecting
distributed Kubernetes clusters. In this section we elaborate on the approach taken in our study of such VPN options,
starting with the selection criteria for the VPN software in Section 3.1. We outline the essential features that VPN solutions
should provide in such a context, as well as additional accompanying functionality which although not essential, would
be a welcome addition. We then proceed with the description of the testing environment in Section 3.2, where we provide
more information on the architecture of the evaluated VPN solutions, along with details on how the baseline has been
established. We conclude this section with Section 3.3, discussing the employed testing strategy both for the throughput
tests, as well as for measuring the Kubernetes API response times.

All of the output from this research, starting from the source code for the benchmarking tools, to the results, and
finally their analysis is open-sourced and published under a permissive license,* available for reuse by other researchers.

3.1 VPN software selection

The selection criteria for the VPN software to be evaluated is divided into two parts: essential features which are required
for the VPN solution to be used in the context of dispersed Kubernetes clusters; complementary features that improve
usability in versatile scenarios.

The essential features which we have defined, and which need to be supported by a given VPN solution before it is
included in the tests are:

*The data is available on https://github.com/korvoj/vpn-performance.
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• Must be completely open-sourced, without any proprietary modules, and provide the possibility for deployment on
private infrastructure. This aspect is required to ensure full control of both the traffic between the nodes, as well as the
control plane, avoiding any potential vendor lock-in in the process.

• Must be actively maintained, with a new release in the last 6 months, ensuring on-time security updates and bug fixes.
• Must support full-mesh topology, where each node would connect to all other nodes where possible, thus avoiding

bottlenecks and maintaining low communication latency.
• Must provide an option for unattended registration of new nodes and their addition to the mesh, thus enabling dynamic

scaling of the underlying infrastructure and extension with extra compute nodes when required.
• Must support access control lists (ACLs) for controlling what nodes can communicate between themselves. This feature

allows the same VPN solution together with a single control plane to be used for interconnecting multiple, independent,
globally distributed infrastructures. As a result, multiple isolated meshes between devices can be configured, with
devices being restricted with whom they can communicate and establish VPN connections based on the configured
ACLs.

• Must support multiple architectures, with clients for both x86 and ARM devices. This would allow the VPN solution
to be used both for interconnecting more powerful x86 servers, as well as power efficient ARM devices located at the
edge of the network.

• Must provide advanced connectivity options for interconnecting devices located behind restrictive firewalls. This
includes NAT traversal support, as well as full relaying (over both TCP and UDP) through an intermediary node which
is placed at a strategic location with low latency to the other nodes and accepting remote connections. The relay-
ing should be implemented in such a way so that the intermediary node does not see the transit traffic in clear text,
preserving the end-to-end encryption between the nodes.

The set of features which although not essential would offer additional possibilities are:

• Granular ACL support. It is desirable to not only define whether bidirectional communication between the nodes is
allowed or not, but also on what ports, as well as an option to explicitly specify the traffic direction.

• Support for subnet routers, where a node can be used as a gateway for accessing isolated notes from the local area
network (LAN) behind that particular node. This would allow access to devices which are not able to become part of
the mesh due to their constrained performance or exotic operating systems, with the drawback of the gateway node
being able to decrypt the transit traffic.

Taking into account the above requirements, Table 1 classifies the currently available VPN options. The list of VPNs
included in the table has been constructed based on web searches and GitHub repositories providing an overview of
currently available VPN options.30,31 Compliance with the outlined features was determined by browsing the official
documentation pages, reading the source code, as well as hands-on testing.

Out of the 11 considered options, 4 satisfy the essential requirements discussed above: Headscale, Netbird, ZeroTier,
and Netmaker. Internet and Nebula satisfy all but one requirement, that of providing relaying over TCP in cases where
direct connectivity is not possible between the nodes. Such obstacles can occur when devices are placed behind restrictive
firewalls which completely prevent either outgoing, incoming or both outgoing and incoming UDP traffic. While we do
recognize that TCP relaying is suboptimal, in certain cases it is better to have at least some form of connectivity, even
though with lower throughput and potentially increased latency, than having no connectivity whatsoever. Interestingly,
all considered options support both the x86 and ARM architectures. It should be pointed out that Headscale and Tailscale
share the same client applications, but Headscale is an open-source implementation of the otherwise closed source control
plane of Tailscale.

Looking at the optional features, the four selected options all support-designating devices as subnet routers for the
purpose of accessing other hosts part of the same local network, but not connected directly to the VPN mesh. Headscale
also supports granular ACLs with rules that are written using a JSON-like syntax, and synced via the control plane to the
local clients running on the nodes taking part in the mesh.32,33 Using such ACL rules it is possible to divide the nodes into
groups and explicitly define on what ports they are allowed to communicate. It should be noted that these traffic rules are
in addition to any host firewall rules that the user might have configured themselves on the nodes and are made possible
by the Tailscale client itself and the Wireguard implementation running in user-space.
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T A B L E 1 Comparison of VPN solutions and their classification according to the outlined criteria.

General information Criteria compliance

Name Commitsa Protocol Starsb OS
Recent
releasec Meshd UR ACL Arch ACO

Headscale34 2941 Wireguard (US) 13.6 k ✓ ✓ ✓ ✓ ✓ x86 & ARM ✓

Netbird35 903 Wireguard (US & KS) 4.6 k ✓ ✓ ✓ ✓ ✓ x86 & ARM ✓

ZeroTier36 6108 Custom 11.4 k ✓ ✓ ✓ ✓ ✓ x86 & ARM ✓

Netmaker37 5292 Wireguard (US & KS) 6.9 k ✓ ✓ ✓ ✓ ✓ x86 & ARM ✓

Tailscale38 5802 Wireguard (US) 12.4 k Xe ✓ ✓ ✓ ✓ x86 & ARM ✓

Firezone39 2212 Wireguard (US & KS) 4.3 k ✓ ✓ X X ✓ x86 & ARM X

WgEasy40 141 Wireguard (US & KS) 7.5 k ✓ ✓ X X X x86 & ARM X

Mistborn41 220 Wireguard (US & KS) 583 ✓ X X ✓ ✓ x86 & ARM X

Wesher42 186 Wireguard (KS) 802 ✓ X ✓ ✓ X x86 & ARM X

Innernet43 322 Wireguard (KS) 4.3 k ✓ ✓ ✓ ✓ ✓ x86 & ARM X

Nebula44 383 Custom 11.9 k ✓ ✓ ✓ ✓ ✓ x86 & ARM X

Abbreviations: ACO, advanced connectivity options, including traffic relaying over both TCP and UDP; Arch: architecture support; KS, kernel-space; OS,
open-source; UR, unattended registration; US, user-space.
aNumber of GitHub commits as of 2023-06-17.
bNumber of times the Git repository has been starred or added to favorites (depending on the Git service used) as of 2023-06-17. Used as a popularity metric.
cRelease in the last six months, counting from 2023-06-17.
dFull-mesh support.
eThe client side applications are open-sourced while the control plane is not. Headscale is an open-source implementation of the Tailscale’s proprietary control
plane.

T A B L E 2 Details about the testing environment.

Component Description

CPU Intel Xeon x5647, 2.93GHz, 4 cores

Storage 320GB mechanical hard drive

Memory 8GB DDR3

Operating system Ubuntu 22.04 LTS

Kubernetes version 1.22.17

K3s version v1.22.17+k3s1

Headscale version v0.21.0

Tailscale client version v1.42.0

Netbird version v0.20.0

ZeroTier version v1.10.6

Netmaker version v0.20.0

3.2 Testing environment setup

All of the benchmarks were conducted on a dedicated testbed comprised of six identical bare-metal nodes. The
characteristics for each of the nodes are given in Table 2. Each node had a distinct role, as follows:

• 1 node acting as a dedicated Kubernetes master node, hosting only the core Kubernetes and CNI components, and no
user provisioned workloads.
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• 2 nodes acting as Kubernetes worker nodes. In order to guarantee the accuracy of the results, no other workloads were
scheduled on these nodes apart from the required containers for the Calico CNI plugin and the containers in which
the benchmarks themselves were executed.

• 1 node for deploying the relaying component of the various VPN solutions.
• 1 node acting as a firewall and a router with PfSense45 installed, allowing full control over the communication between

the nodes, and simulations of different scenarios in terms of connectivity restrictions.
• 1 auxiliary node acting as a hypervisor, allowing the creation of VMs for hosting additional components which were

neither performance nor throughput sensitive, required for some of the tests.

All of the nodes were connected to the same 1 Gbit/s network switch and each placed in their own isolated VLAN,
with the PfSense firewall acting as the default gateway and routing traffic between them. Placing the Kubernetes nodes in
isolated layer 3 domains allowed us to simulate a distributed environment, where the different nodes are not part of the
same local network. The K3s Kubernetes distribution has been used for all Kubernetes deployments during the tests due
to its lightweight nature, high performance, and simplicity of operation.46 An additional bare-metal node was configured
as a hypervisor, allowing us to create virtual machines for hosting some of the control plane components of the various
tested solutions. It should be noted that such VMs were used only in cases where the deployed software was solely dealing
with control plane traffic, and was not actively taking part in traffic forwarding. Attention was paid all traffic forwarding
to be exclusively performed by bare-metal nodes directly connected to the hardware switch, ensuring the highest level of
performance, eliminating potential software overheads.

Calico CNI was used as the CNI plugin in all tests. The selected encapsulation method was VXLAN. Calico itself sup-
ports two traffic encapsulation methods, IP-IP and VXLAN,47 but we have opted for the latter since IP-IP does not support
IPv6 traffic, and going forward this will become more relevant as more and more networks adopt IPv6.48 While IP-IP has
slightly smaller overhead than VXLAN encapsulation, the obtained results are still relevant, since the exact configuration
was used across all test runs. When configuring the maximum transmission unit (MTU) for the CNI interfaces, care was
taken to follow best practices and to account for the additional VXLAN header. More details regarding MTU configuration
are available in Section 3.2.1.

Taking into account the vastly different architectures and deployment options available for each of the tested VPN
solutions, we discuss specifics in dedicated subsections for each software. We strove to keep the default configuration
where possible and refrain from manual source code changes, but unfortunately this was not always possible as some
cases required certain manual adjustments. Even though minor, such modifications are also discussed in details in the
dedicated subsections that follow since they might have an impact in real-world usage scenarios.

3.2.1 Establishing a baseline

In order to obtain a relevant reference point to which other results could be compared to, we have established a baseline
by conducting all of the defined tests without a VPN underlay network, and using MTU of 1450 bytes and an MTU of 1230
bytes. The 1450B MTU was chosen because that is the default Calico CNI MTU when it is deployed in its VXLAN mode
over Ethernet.49 We also chose to repeat the same non-VPN tests with an MTU of 1230B since this is the MTU used when
benchmarking the various VPN solutions. All of the tested software, with the exception of ZeroTier, have a default MTU
of 1280B on their Wireguard interfaces, and accounting for the VXLAN overhead, the recommended MTU on the Calico
interface itself, when there is such a VPN underlay is 1230B. In the case of ZeroTier, the default MTU is 2800B, but this
can easily be adjusted manually by the operator.

3.2.2 Headscale

Headscale is the name of the open-source control plane implementation compatible with the Tailscale Software as a
Service (SaaS) client applications. Although not affiliated with the Tailscale company, it provides the possibility to have a
fully self-hosted VPN solution, without relying on the otherwise cloud based control-plane managed by Tailscale. Since
the official Tailscale client applications are already open-source and can be used to connect with third-party control plane

 1097024x, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3329 by U

. M
iguel H

ernandez D
e E

lche, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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implementations, they can be reused in such self-hosted scenarios as well. In the rest of the text we will refer to this VPN
solution simply as Headscale.

Headscale uses the Wireguard user space implementation and supports the definition of granular ACL rules which
can be used in addition to an already configured network or host based firewall solution. These ACLs, in the case of the
self-hosted version, are defined in a JSON like file on the node where the Headscale control plane is deployed and are then
distributed to all the nodes to which they apply. Only devices which have an explicit rule allowing traffic between them
form a connection, leading to the possibility for multiple independent and mutually isolated mesh network to coexist
and be managed by the same control plane. The default MTU on the automatically configured Wireguard interface on
the client devices is 1280B. A web interface is also provided which can be integrated with third-party Identity Providers
(IdP), allowing easy device addition and removal.

To facilitate connections in networks that are difficult to access, Tailscale has defined designated encrypted relay for
packet (DERP) servers.50 These servers are capable of relaying the VPN traffic between nodes over TCP on port 443,
masquerading it as HTTPS traffic which is commonly allowed on even restrictive networks. In case a direct connection is
possible between the nodes, then, once full connectivity is established, such an intermediary relaying solution is no longer
used. Today there are around a dozen globally distributed DERP servers hosted by Tailscale available for free use, but there
is also a possibility to self-host a DERP server. In our case, since the aim is to have complete control over all aspects of the
VPN solution, we have opted to locally self-host such a DERP server on one of the bare-metal nodes, which is possible
by compiling the DERP server source code.51 Headscale can then be reconfigured to only advertise the self-hosted DERP
server, instead of the globally available alternatives managed by Tailscale.

The use of an intermediary DERP server for relaying is transparent to the user from the configuration perspective, since
the Tailscale client software is capable of automatically detecting whether direct connection is possible or not and miti-
gating the situation accordingly. Of course, when DERP relaying is in effect the latency will be higher and the throughput
lower, but this can be overcome to an extent by self-hosting a DERP server in a strategically chosen geographic loca-
tion with sufficient network capacity. Switching from a DERP relayed connection to a direct one or vice versa is near
instantaneous with no prolonged connectivity loss.

3.2.3 Netbird

Netbird is an open-source software which uses the Wireguard protocol for establishing full-mesh encrypted tunnels
between devices. It supports both the user space and kernel space implementations of Wireguard, depending on the oper-
ating system and hardware where it is installed. A web interface for the administration of the control plane is also available
for self-hosting, which similarly to Headscale, can be integrated with an IdP for easier device lifecycle management. The
default MTU on the Wireguard network interface is also 1280B. Despite the fact that it uses Wireguard under the hood, it
comes with a custom open-sourced client which needs to be installed on participating devices to facilitate communication
with the central control plane.

Netbird advertises relaying support in cases where no direct connection is possible between the participating devices
in the mesh. The traffic relaying uses the established and well-known TURN protocol.52 The recommended TURN server
is Coturn.53 During the software selection phase, we looked at the documentation page of Netbird and at the time there
was no explicit mention whether TURN relaying is supported over both UDP and TCP. Knowing that the Coturn software
supports both, and finding references to relaying protocol selection in the Netbird source code,54 we assumed that indeed
it is the case that both transport protocols are supported. During the testing phase, we have confirmed that TURN relaying
over UDP is working, but it seems that support for TCP relaying is not yet fully implemented, and as of the time of writing
it is not a supported use-case. Despite this, we chose to include Netbird and to compare its direct and relaying performance
with the other solutions, since it uses kernel space Wireguard which is a popular choice today, albeit not supported by
either Headscale or ZeroTier. We deemed it interesting to see how the user space implementation of Headscale would
compare to the Netbird kernel space.

Since in our testbed the transition between UDP TURN relaying and direct connection was not reliable, we chose to
manually apply a patch which has not yet been merged to the master branch at the time, in order to force connection
relaying and recompile the netclient software running on the end-devices.55 Another configuration change which needed
to be performed to ensure the reliable operation of the VPN once an overlay network was deployed over it using Calico
was to blacklist the Calico interfaces so that they are not used for VPN communication between the participating devices.
This solves the problem of circular dependency, where the Calico overlay network is deployed over the VPN, but the VPN
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KJORVEZIROSKI et al. 1551

software sees the newly available interface as another path to reach the other peers, and chooses that one over the default,
hardware based, network interface. In such cases, where the virtual interface is preferred, the VPN communication is
torn down, and the mesh network is no longer functional. As was the case with the DERP relay for Headscale, the Coturn
TURN server was hosted on a dedicated bare-metal node in the testbed.

As of now there is support for coarse ACLs, allowing or denying traffic between nodes without more granular control at
the port level, which is sufficient for using the same control plane for hosting multiple independent mesh device networks.

3.2.4 ZeroTier

ZeroTier is also a SaaS product, similarly to the case with Tailscale, which has also been open-sourced to an extent. It is
possible to run a self-hosted control plane, albeit without an official web interface. There is only an officially provided
REST API for managing networks and devices, although there are third-party projects which can be used to also deploy
a web interface, if needed.

ZeroTier does not use an existing VPN protocol, but implements a custom one instead.56 Its architecture, at first glance,
is somewhat more complicated than the rest of the options introduced so far. ZeroTier mesh networks are comprised of
end-devices, network controllers and roots. End-devices run the zerotier-one client software through which they can join
and leave existing ZeroTier networks. Network controllers are responsible for member addition, certificate management,
and configuration syncing between participating members in the mesh. Finally, roots are responsible for discovery and
connection establishment between participating nodes, and can also relay traffic when no direct peer-to-peer connection
is possible between mesh nodes. Both network controllers and roots are hosted by ZeroTier, with an option to also self-host
them on private infrastructure. While hosting a custom network controller is a well-documented and straightforward
process,57 hosting a custom root is not. The use of a custom root server requires the creation of a custom “world” file,
which requires manual source-code changes, as well as client configuration changes.58

Traffic relaying over TCP is also supported, and there is a network of globally distributed TCP relays managed by
ZeroTier and reachable via any cast. However, during our testing these relays were unreachable, and, as discussed pre-
viously, our end-goal was to self-host this functionality anyhow. To do so, a TCP proxy implementation is open-sourced,
which can be compiled manually using its source code.59 Once up and running, configuration changes need to be done to
all ZeroTier client nodes so that they are made aware of the TCP proxy to use. The TCP proxy was hosted on a dedicated
bare-metal node.

As in the case of Netbird, to guarantee reliable connectivity in scenarios when an overlay network is established over
the VPN interfaces, the Calico virtual interfaces have to be explicitly blacklisted in the client configuration files.

When it comes to device isolation and ACLs, ZeroTier is reminiscent of more traditional, physical, networks. A given
device can be part of multiple ZeroTier networks at the same time, and in cases multiple meshes need to be constructed
using the same control plane, this would translate to the definition of multiple ZeroTier networks, each containing unique
client devices.

3.2.5 Netmaker

Netmaker is also an open-source full-mesh VPN solution which is based on the Wireguard protocol. It is very similar
to Netbird since it also supports both the user space and kernel space implementations of Wireguard, depending on the
environment where it is installed. Netmaker has only recently introduced traffic relaying support for interconnecting
devices where no peer-to-peer connection is possible. The proposed solution is also based on the TURN protocol, same as
with Netbird. We have evaluated the first version (v0.20.0) of Netmaker that supports TURN relaying, and unfortunately
we have encountered issues which made it impossible to include it in the results. The process for selecting whether a
direct connection is possible or not was not reliable, and Netmaker was falling back to TURN relaying, even though full
direct connectivity over both TCP and UDP was possible between the client devices. Additionally, even when relaying was
in place, the connection was not stable and would frequently suffer downtimes in the range of 10 s of seconds, making
the benchmarking process impossible. TURN relaying, in its current form, is only possible via UDP.

Taking into account that TURN relaying support was only recently introduced to Netmaker, we are confident that
in the future the user experience will improve. Due to the problems that we have experienced during testing, we have
decided not to include Netmaker in the list of evaluated software. It should be noted though, that Netmaker’s architecture
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1552 KJORVEZIROSKI et al.

is very similar to that of Netbird, since they both support the same Wiregurd flavors, and relaying is done over TURN, so
it is reasonable to expect similar results.

3.3 Benchmarking strategy

We have developed the benchmarking strategy focusing on five different configurations, two of which were centered
around establishing a baseline without using a VPN underlay and utilizing 1450B and 1230B MTUs on the Calico VXLAN
interface. The remaining three were focused on evaluating the performance of the Headscale, Netbird, and ZeroTier VPN
solutions. As discussed previously, Netmaker was omitted from the tests due to the problems which were faced during its
evaluation. For all three VPN products, we also defined subscenarios, simulating restricted networks which aggressively
filter outbound traffic or impose difficult NATs. This was done with the end goal of testing their relaying features and
performance. For both Headscale and ZeroTier this was achieved by blocking all UDP traffic using the PfSense firewall
between the different VLANs where the bare-metal nodes were hosted, thus forcing the fallback to relaying over TCP. For
Netbird, once it was determined that TCP relaying over TURN is currently in fact not possible, we blocked all UDP traffic
between those VLANs hosting the Kubernetes nodes, while allowing UDP traffic only towards the dedicated bare-metal
node hosting the TURN server.

In total there were eight different benchmarking scenarios across the five different configurations, and in each a Calico
overlay was deployed:

• MTU 1450B without VLAN underlay.
• MTU 1230B without VLAN underlay.
• Headscale with direct connections between the nodes.
• Headscale with relaying via TCP using a DERP server placed in an isolated VLAN, but on the same hardware switch

as the rest of the nodes.
• Netbird with direct connections between the nodes.
• Netbird relaying via UDP over TURN, with a Coturn server placed in an isolated VLAN, but on the same hardware

switch as the rest of the nodes.
• ZeroTier with direct connections between the nodes.
• ZeroTier relaying via TCP using the official TCP proxy placed in an isolated VLAN, but on the same hardware switch

as the rest of the nodes.

For each of these eight different benchmarking scenarios, the following tests were performed:

• Kubernetes Pod-to-pod TCP and UDP throughput tests, respectively, with inter-pod communication over the Calico
overlay. Each test run was executed for 60 s and repeated 100 times.

• Kubernetes Pod-to-pod TCP and UDP throughput tests, with induced packet loss of 1%, 5%, and 10% respectively on
the Calico interface. Each test run was executed for 60 s and repeated 10 times.

• Kubernetes Pod-to-pod TCP and UDP throughput tests, with induced packet delay of 50, 250, and 350 ms, respectively
on the Calico interface. Each test run was executed for 60 s and repeated 10 times.

• Kubernetes API response time test, with 10 iterations per scenario, where each iteration consisted of 5000 requests
towards the Kubernetes API with a maximum of 10 requests per second.

During all throughput tests CPU usage was monitored as well, as to be able to evaluate the efficiency in terms of
required compute performance of each of the VPN solutions. The number of execution runs between the basic TCP and
UDP tests, and the ones with induced network issues differ, since the one performed under ideal conditions were used to
evaluate the core characteristics of each of the tested solutions. The remaining tests were performed solely to verify the
feasibility of using the VPN solution in nonideal conditions such as those with high packet loss or high packet delay. The
values for the induced packet delays were chosen as to model globally distributed clusters, and in the extreme case very
busy networks with inadequate Quality of Service (QoS) rules configured. Similarly, the packet losses of 1%, 5%, and 10%
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KJORVEZIROSKI et al. 1553

in the most extreme case were chosen to represent unreliable network links which can appear due to a number of reasons
in reality, such as malfunctioning equipment or high traffic levels which overwhelm the buffers of intermediary network
devices. The traffic control (tc) utility was used to simulate both the packet loss and the packet delays.60

We have utilized an adapted version of the Kubernetes network benchmark (KNB) suite61,62 for all pod-to-pod through-
put test. KNB uses the popular and well-known iperf3 utility for conducting the tests across two pods, where one of the
pod is acting as a server, and the other one as a client. Despite the fact that all of the bare-metal nodes used for the exper-
iments have the same exact hardware configuration, in all cases we fixed the placement of the server and client iperf3
pods on the same Kubernetes worker nodes, in essence dedicating one bare-metal node to the server and another one to
the client. This was done as to avoid any unforeseen inconsistencies in the results which might have occurred should the
client and server have been randomly distributed across the nodes between different executions.

Each iteration of the Kubernetes API response time benchmarks was done from a pod running in the cluster which
used the Hey benchmarking utility,63 acquiring the list of running pods from the Kubernetes API. Kubernetes API
response times are a very important metric, since all of the communication with the Kubernetes control plane is done
via the API. Potentially inconsistent performance or prolonged unavailability of the API might jeopardize the operation
of the complete Kubernetes cluster, since there would be no coordination mechanism between the participating nodes.

4 RESULTS

We discuss the obtained results from the previously introduced benchmarks in the subsections that follow. We begin by
focusing on the TCP throughput tests in Section 4.1, before moving to the scenario where UDP was used as the underlying
transport protocol during the benchmarks’ execution, in Section 4.2. We conclude this section with Section 4.3, where we
discuss the measured Kubernetes API response times when each of the tested VPN solutions is utilized as the underlay
network.

4.1 TCP throughput

For each of the evaluated seven scenarios, we tested the TCP pod-to-pod throughput performance. Figure 1 presents the
obtained results, as well as the CPU usage during each test case. Taking into account the limited space, the Appendix
with Table A1 presents the mean throughput values, while also comparing them to the two baselines.

Starting the discussion with the scenario where no adverse network conditions are present and there is no simulation
of either packet loss or packet delay, the best throughput, unsurprisingly, is achieved by the MTU 1450B test case, in which
no VPN network underlay was utilized. Both baselines, MTU 1450B and MTU 1230B show comparable CPU usage, with
MTU 1450B achieving better throughput, which can be attributed to the larger MTU size. Analyzing the results from
the VPN solutions, Netbird in its direct connection mode has a clear advantage over the rest when it comes to achieved
throughput, with a mean value of 707.45 Mbps, surprisingly similar to the mean value achieved by the MTU 1230B which
is 709.94 Mbps. This performance can be attributed to the efficient kernel space implementation of Wireguard which was
used by Netbird on the test infrastructure. The second place when it comes to overall throughput goes to ZeroTier, while
Headscale’s user-space Wireguard implementation is the slowest. Interestingly, looking at the CPU utilization, ZeroTier
is the most resource efficient, both when a direct connection is possible, as well as when relaying traffic over the TCP
proxy. The Netbird UDP relay has the highest CPU utilization, while offering worse performance than ZeroTier’s relay,
but better than Headscale’s TCP relay.

It should be mentioned that in all test cases, the expected level of performance of the VPNs should be noticeably
worse than direct connectivity without VPN, since there are multiple encapsulation layers involved; starting from the
VPN tunnels, which can also be relayed over either TCP or UDP when no direct connectivity is possible between the
nodes, and then the Calico overlay network which encapsulates pod traffic using VXLAN, and finally the application
layer traffic, which in this case is generated by iperf3 for the purposes of the throughput tests.

Looking at the results where additional delay is gradually introduced, we notice that the MTU 1450B baseline still
offers the best performance for 50, 250, and 350 ms delays. With the increase in the delay, Netbird’s relaying performance
starts to diminish, and achieves worst results in all three delay scenarios, which was not the case previously. On the
other hand, Headscale now achieves comparable results to the rest of the solutions, and has the best mean throughput
(156.3 Mbps) in the 50 ms delay test, followed by ZeroTier (155.6 Mbps). As the delay increases, all VPN solutions start
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1554 KJORVEZIROSKI et al.

F I G U R E 1 TCP throughput and CPU usage for each test scenario.

to show similar performance. In fact, not taking into account the relaying performance, in the case where 350 ms addi-
tional delay is added, all VPN solutions show an average throughput of 22 Mbps. ZeroTier offers less consistent results
characterized by large standard deviation across all three delay scenarios. When it comes to relaying, we conclude that
both Headscale and ZeroTier achieve better performance than Netbird’s UDP relay, due to their utilization of TCP as
the underlying transport protocol, offering reliable data transfer in the face of worsening network conditions. Analyzing
CPU usage, ZeroTier with its custom VPN protocol still consistently uses the least resources across all three delay sce-
narios, with Headscale being the most taxing implementation, a fact that can also again be attributed to its user-space
implementation of Wireguard.

Moving forward to the tests where packet loss has been gradually increased to simulate intermittent connectivity
issues, we notice a very interesting occurrence. The relaying options of both Headscale and ZeroTier offer consistently
and drastically better performance than all other counterparts, including the baselines of 1450B and 1230B MTUs, when
no VPN underlay is being utilized. One thing which both the Headscale and ZeroTier relay strategies have in common
is that they use TCP on the transport layer when relaying. TCP’s advanced congestion control mechanisms result in
almost two times better average throughput than all other alternatives. Analyzing the CPU usage, Headscale’s relaying
implementation shows higher CPU usage than ZeroTier’s.

Going back to the direct connection performance of Netbird when no adverse network conditions are introduced
and taking into account that the measured performance is very close to the 1230B MTU baseline, we performed the
nonparametric Mann-Whitney U-test with the aim of verifying the statistical significance of the results. The following
hypotheses were used together with an alpha value of 0.05:

• H0: the two populations are equal
• H1: the two populations are not equal
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KJORVEZIROSKI et al. 1555

The obtained p-value is 0.39, thus showing that there is not enough evidence to reject the null hypothesis and conclude
that there is a statistically significant difference in the obtained results. In all other cases the results were statistically
significant with a p-value smaller than alpha, thus leading to the rejection of the null hypothesis.

4.2 UDP throughput

Similarly to the previous case, Figure 2 shows the UDP throughput as well as the observed CPU usage during the test runs
for the seven evaluated scenarios. Table A2 in the Appendix presents the descriptive statistics, as well as how the mean
throughput compares to the two baselines when 1230B and 1450B MTUs are configured without a VPN underlay network.

Beginning the discussion with the case where no adverse network conditions have been simulated, it can unsur-
prisingly be seen that both baseline cases where no VPN is used show the best performance, which is exactly identical
to the TCP case. Netbird still offers the highest performance, which is also consistent to the TCP case, with ZeroTier
being in second place, and Headscale in third. Looking at the relaying performance, Netbird’s UDP has the highest mean
throughput with 289.51 Mbps, followed by Headscale’s and ZeroTier’s TCP implementations with 256.7 and 227.09 Mbps
average throughput, respectively. Headscale has highest CPU usage, upwards of 40%, while ZeroTier, similarly to previous
discussions, has the lowest.

Continuing the discussion with the case when delay is introduced, and looking at the 50 ms visualization, we can
notice a drastic increase in the standard deviation for all VPN solutions except for Headscale and Netbird’s UDP relay.
Headscale also achieves the best throughput with a mean value identical to that of the 1230B MTU baseline (187.5 Mbps).
Netbird’s relay and ZeroTier closely follow with mean values of 183.7 and 193.11 Mbps, respectively. ZeroTier’s relay mean
throughput of only 92.76 is the lowest, hindered by the inconsistent performance and high standard deviation. However,
as the delay increases, so does ZeroTier’s relay performance, achieving the best result in both the 250 and 350 ms test
cases, higher than even the 1230B baseline. While the rest of the results are comparable to each other, it is evident that
Netbird fares worse for UDP traffic when network delays are present, achieving worse results in all three delay test cases.

F I G U R E 2 UDP throughput and CPU usage for each test scenario.
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1556 KJORVEZIROSKI et al.

Nonetheless, Netbird’s outlook significantly improves in the packet loss scenarios, where it takes the lead for 1%, 5%, and
10% packet loss. Contrary to the TCP analysis, the TCP relay options of both Headscale and ZeroTier now offer the worst
performance, leading to the conclusion that TCP is not a good match for relaying UDP application layer traffic, as is the
case with the iperf3 generated data.

Focusing on CPU usage, we see greater overall CPU usage for the UDP results, compared to the TCP results. ZeroTier
and Netbird consistently show the lowest CPU usage of all tested solutions, excluding of course Native MTU 1230 and
Native MTU 1450. This is even the case in delay 250 and delay 350, where in addition to ZeroTier having low CPU usage, it
also achieves the best performance. Headscale, with its user-space implementation of Wireguard consistently shows the
highest CPU usage. In certain cases relaying is more efficient in terms of CPU usage than native, but this is corresponding
to cases where the relay throughput is lower than that of a direct connection.

Since the performance of Headscale between the direct connection scenario and relaying is comparable, we conducted
another batch of the nonparametric Mann-Whitney U-test, with the following two hypotheses and an alpha value of 0.05:

• H0: the two populations are equal
• H1: the two populations are not equal

Both in the case of Headscale direct and relay, as well as in all remaining ones, the p-value was smaller than alpha,
thus leading to the rejection of the null hypothesis, validating the statistical significance of the obtained results.

4.3 Kubernetes API response times

The final benchmark which was performed is the Kubernetes API response time benchmark, evaluating the overall
responsiveness of the Kubernetes API when different VPN solutions are used for the underlay network. Figure 3 visualized
the mean response times of the Kubernetes API with a limit of a maximum 10 requests per second.

Analyzing the results, the two baselines again show the best performance, as expected. Focusing on the VPN solutions,
in this case Netbird achieves the best performance, followed by ZeroTier, and then Headscale. This is exactly equivalent
to the achieved performance of both the TCP and UDP throughput tests without adverse conditions. When it comes to
relaying, the performance between ZeroTier and Headscale is very similar, while Netbird’s UDP relaying offers worse
results. To verify the statistical significance of the obtained results, we have again utilized the pair-wise nonparametric
Mann-Whitney U-test with an alpha value of 0.05 and the hypotheses:

• H0: the two populations are equal
• H1: the two populations are not equal

Testing the results obtained from all tested solutions between each other, we can conclude that there is not enough
evidence to reject the null hypothesis in only a single case, that of Native MTU 1450B and Native MTU 1230B, with a

F I G U R E 3 Kubernetes API mean response time for different VPN solutions.
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p-value of 0.22. In all other cases the p-value is smaller than alpha, leading to the rejection of the null hypothesis, proving
the statistical significance of the results.

5 DISCUSSION

Looking at the obtained results, it is evident that the final choice would depend on the advantages and disadvantages
that each tested solution showed, and how these relate to the given use-case at hand. In this context, attention should be
paid so that raw performance is not the only metric taken into account when evaluating which VPN software to use; the
on-boarding experience, the overall reliability of the established connection, the deployment complexity, are all aspects
which need to be considered as well.

To aid the discussion on the strengths and weakness of the tested solutions, Figures 4 and 5 present the mean TCP
and UDP throughput in Mbps achieved during the testing of the various VPN solutions.

Focusing initially on raw throughput, Netbird shows the best performance in cases where the network connection
between the nodes is reliable, and there is no significant packet loss or packet delay. The kernel based Wireguard imple-
mentation which Netbird offers adds minimal overhead compared to scenarios when no VPN is present. However, when it
comes to scenarios where the communication latency might be high between a set of nodes, both Headscale and ZeroTier
offer better performance. They are closely matched both for TCP and UDP traffic, so in such cases the final choice will
need to be made based on the other aspects inherent to each solution, such as the on-boarding experience, discussed in
more details below. Concluding the throughput analysis with the last set of results focused on unreliable network con-
nectivity between the nodes when packet loss regularly occurs, it can be seen from Figure 4 that ZeroTier offers the best
performance in all but one case, that of 10% packet loss, where Headscale takes the lead. Interestingly, another conclu-
sion can also be drawn from the same results. It is more preferable to leverage the TCP relaying functionality of either
Headscale or ZeroTier and forward traffic via a third party node in such cases, with the aim of achieving higher through-
put and potentially avoiding the network segment where packet loss occurs. These conclusions do not apply when the
upper layer protocols use UDP for transport, since in those cases under lossy conditions, Netbird takes the lead again and
achieves the best performance.

Moving on to the remaining aspects in addition to throughput, when it comes to the effort required for self-hosting all
of the necessary components, both Headscale and Netbird have a clear advantage over ZeroTier. ZeroTier discourages the
hosting of individual roots which play a role in the control plane, and doing so requires manual changes to the software.
While the process is documented, it is also time consuming and requires setting up a development environment to make
the necessary adjustments. The ZeroTier mobile applications also do not support the use of custom roots as of the time of
this writing,64 while the desktop ones do via the discussed manual changes in Section 3.2.4. ZeroTier also has an additional

F I G U R E 4 TCP mean throughput in Mbps.
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F I G U R E 5 UDP mean throughput in Mbps.

drawback, which is the very high convergence time when relaying needs to be put in place. During the tests we have
measured this time to be in the range of 3–4 min. Such issues were not present in either Headscale’s or Netbird’s case.

In the case of Netbird, as of now, only TURN relaying over UDP is supported, but we hope to see TCP support imple-
mented as well in the future. During the testing and with the latest available version of Netbird at the time, the fallback
mechanism to relaying was in certain cases unreliable, and we had to implement source code changes to always fall back
to TURN relaying in order to be able to test this scenario.

Headscale, as a self-hosted version of the Tailscale control plane, did not present any major issues during our testing.
Additionally, Headscale also supports granular ACLs which are enforced by the Tailscale client running on all of the
nodes. One drawback which is currently present is that updating the ACLs needs to be done in a JSON file on the server
where Headscale itself is hosted, but for the changes to take effect, the whole control plane needs to be restarted. No
gradual reload is supported as of the time of this writing, a feature which is available in the hosted version.

Finally, when it comes to user experience, only Netbird offers an officially sanctioned, built-in, web interface. As for
the rest, both Headscale and ZeroTier offer REST APIs in the self-hosted versions, but third-party projects are available
which can build a graphical user interface around them.

6 CONCLUSION

The introduction of the Wireguard VPN protocol has ushered a new era of VPN solutions, and has made it feasible to
construct full-mesh topologies between VPN clients as a result of its low resource usage. However, due to the inherent
scalability problems with manual configuration of a large number of nodes, automated solutions in the form of centralized
control planes were quickly developed. These control planes facilitate the process of node discovery and key exchange
for the machines taking part in the mesh network. Such dispersed full-mesh topologies made up of globally distributed
compute servers have an incredible potential to improve the coordination between the edge and the cloud, introducing a
cloud-edge continuum where even sensitive data can securely and reliably be moved between the environments.

In order to evaluate the current VPN software possibilities in this space, we have constructed a set of criteria that
prospective VPN solutions need to meet before they can be used as an underlay network on top of which other overlay net-
works can be deployed, for example as a part of a more complex deployment of orchestration solutions such as Kubernetes.
By applying the criteria which includes both essential and optional features, we have selected three self-hosted, full-mesh
VPN options for evaluation. Through a set of benchmarks consisting of pod-to-pod TCP throughput, pod-to-pod UDP
throughput and Kubernetes API server response time, we have evaluated the Headscale, Netbird, and ZeroTier solutions,
as well as their robustness when faced with intermittent connectivity issues, such as large packet delay or packet loss.

Analyzing the results shows that the final choice of the VPN solution depends on the overall requirements and network
conditions. Based on this, Netbird, with its Wireguard kernel implementation offers near native performance assuming
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the network environment is stable, without large packet loss or packet delay. Netbird is also the recommended solution
in scenarios where packet loss is expected, but only when the majority of the traffic being tunneled is using the UDP
transport protocol. This is not the case when tunneling TCP traffic though, since both Headscale and ZeroTier show
dramatically better performance in such circumstances. Finally, when it comes to packet delays, Headscale and ZeroTier
also offer better performance compared to Netbird.

Focusing on the usability aspects, Headscale offers a more optimal self-hosting user experience, requiring no manual
changes to the source code to achieve a fully self-hosted control plane that is robust enough to graciously fall back to
TCP relaying when direct connectivity is not possible between nodes. Headscale also supports granular ACLs which can
further increase the overall security of the network, in tandem with traditional host and network based firewalls. However,
its user space implementation of Wireguard offers noticeably lower performance than the other tested solutions, so it is
a compromise between ease-of-use and performance.

In conclusion, current VPN options are capable of establishing a full-mesh network which can be reliably used for
setting up distributed Kubernetes clusters on top of it. The relaying functionality present in all three solutions, guar-
antees that nodes can be placed even in networks with complex NAT setups or restricted connectivity which prevents
peer-to-peer communication between the nodes. We expect that the full-mesh VPN landscape will continue to improve,
both with brand new self-hosted solutions, as well as additional improvements to existing options.

Having verified the applicability of VPN solutions for constructing an underlay network which can be used to set up
an overlay using some of the various Kubernetes CNI plugins, our plans for the future are to develop a comprehensive
Kubernetes federation strategy, where multiple clusters, placed both in the cloud and in the edge, can be interconnected
with each other and can be centrally managed by a single Kubernetes control plane.

7 THREATS TO VALIDITY

The described and applied benchmarking strategy for evaluating the VPN solutions has been developed with the aim
to eliminate as many threats to the validity of the results as possible. All of the servers involved in the benchmarking
process have had identical hardware configuration, including the make and model of all components. Additionally, to
guard against any potential inconsistencies due to network factors not directly under our control, such as utilization of
intermediary network devices, we have decided to connect all equipment to a single 1Gbit/s network switch dedicated to
the benchmarking experiments. The firewall/router device whose task was to route between the isolated VLANs utilized
for the benchmarks was also dedicated solely to the experiments, and was not dealing with any other traffic or running
additional services not related to the testing at hand. However, it needs to be recognized that the obtained results are
relevant for the software versions which were available at the time of writing. It is expected that in the future, as new
improvements are added to the various VPN solutions, new benchmarks will need to be conducted. Accounting for this
scenario, we have open-sourced all of the supporting material, including the benchmarking scripts, with the hope of
easing such a process in the future.

AUTHOR CONTRIBUTIONS
Conceptualization: S.F., V.K., K.G., C.B. Investigation: V.K. and C.B. Methodology: S.F., V.K., K.G., C.B. Software: V.K. and
CB. Validation: S.F., V.K., K.G., C.B. Formal analysis: S.F., V.K., K.G., C.B. Visualizations: S.F., V.K., K.G., C.B. Writing
(original draft preparation): V.K. and C.B. Writing (review and editing): S.F., V.K., K.G., C.B. All authors have reviewed the
manuscript.

FUNDING INFORMATION
This study was funded by the Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje,
North Macedonia

CONFLICT OF INTEREST STATEMENT
The authors have no relevant financial or nonfinancial interests to disclose.

DATA AVAILABILITY STATEMENT
The generated raw data, software, and outputs from the data analysis is publicly available under a permissive license on
https://github.com/korvoj/vpn-performance.

 1097024x, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3329 by U

. M
iguel H

ernandez D
e E

lche, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/korvoj/vpn-performance


1560 KJORVEZIROSKI et al.

ORCID
Vojdan Kjorveziroski https://orcid.org/0000-0003-0419-4300
Cristina Bernad https://orcid.org/0000-0001-9537-415X
Katja Gilly https://orcid.org/0000-0002-8985-0639
Sonja Filiposka https://orcid.org/0000-0003-0034-2855

REFERENCES
1. Zhipeng Z, Chandel S, Jingyao S, Shilin Y, Yunnan Y, Jingji Z. VPN: A Boon or Trap?: A Comparative Study of MPLS, IPSec, and SSL Virtual

Private Networks. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). IEEE;2018:510-515.
doi:10.1109/ICCMC.2018.8487653

2. Harkanson R, Kim Y, Jo J-Y, Pham K. Effects of TCP transfer buffers and congestion avoidance algorithms on the end-to-end throughput
of TCP-over-TCP tunnels. 16th International Conference on Information Technology-New Generations (ITNG 2019). Vol 800, IEEE CCWC;
2019:401-408. doi:10.1007/978-3-030-14070-0_55

3. Mackey S, Mihov I, Nosenko A, Vega F, Cheng Y. A performance comparison of WireGuard and OpenVPN. Proceedings of the Tenth ACM
Conference on Data and Application Security and Privacy. ACM; 2020:162-164. doi:10.1145/3374664.3379532

4. Wei X, Miao W, Zeng Z, et al. Research on using dynamic thread pool to improve the performance of VPN gateway. 2022 7th International
Conference on Computer and Communication Systems (ICCCS). IEEE; 2022:566-570. doi:10.1109/ICCCS55155.2022.9846591

5. Donenfeld J. Wireguard kernel module–Linux kernel source tree. Accessed June 25, 2023. https://git.kernel.org/pub/scm/linux/kernel
/git/torvalds/linux.git/commit/?id=e7096c131e5161fa3b8e52a650d7719d2857adfd

6. Whited J, Tucker J. Userspace isn’t slow, some kernel interfaces are! 2022. Accessed June 25, 2023. https://tailscale.com/blog/throughput
-improvements/

7. Source code for OpenVPN community edition. Accessed June 25, 2023. https://openvpn.net/source-code/
8. Donenfeld JA. WireGuard: Next Generation Kernel Network Tunnel. Proceedings 2017 Network and Distributed System Security Sympo-

sium. Society; 2017. doi:10.14722/ndss.2017.23160
9. Setting up your own certificate authority (CA). Accessed June 25, 2023. https://openvpn.net/community-resources/setting-up-your-own

-certificate-authority-ca/
10. Donenfeld JA. Quick start–WireGuard. Accessed June 25, 2023. https://www.wireguard.com/quickstart/
11. Tailscale. Tailscale. Accessed June 25, 2023. https://tailscale.com/
12. ZeroTier. Global area networking. Accessed June 25, 2023. https://www.zerotier.com/
13. NetBird. Zero configuration VPN for fast-moving teams. Accessed June 25, 2023. https://netbird.io/
14. Netmaker SaaS. Sign up to be one of the first users of our virtual networking SaaS platform. Accessed June 25, 2023. https://www.netmaker

.io/beta
15. Tailscale: Site-to-Site networking. 2023. Accessed June 25, 2023. https://tailscale.com/kb/1214/site-to-site/
16. Kumar R, Trivedi MC. Networking analysis and performance comparison of kubernetes CNI plugins. Advances in Computer, Communica-

tion and Computational Sciences. Advances in Intelligent Systems and Computing. Springer; 2021:99-109. doi:10.1007/978-981-15-4409-5_9
17. Pohl F, Schotten HD. Secure and scalable remote access tunnels for the IIoT: an assessment of openVPN and IPsec perfor-

mance. Service-Oriented and Cloud Computing. Lecture Notes in Computer Science. Springer International Publishing; 2017:83-90.
doi:10.1007/978-3-319-67262-5_7

18. Dekker E, Spaans P. Performance comparison of VPN implementations WireGuard, strongSwan, and OpenVPN in a 1 Gbit/s environment.
https://rp.os3.nl/2019-2020/p71/report.pdf

19. Goethals T, Kerkhove D, Volckaert B, Turck FD. Scalability evaluation of VPN technologies for secure container networking. 2019 15th
International Conference on Network and Service Management (CNSM). IEEE; 2019:1-7. doi:10.23919/CNSM46954.2019.9012673

20. Paillisse J, Barcia A, Lopez A, Rodriguez-Natal A, Maino F, Cabellos A. A control plane for WireGuard. 2021 International Conference on
Computer Communications and Networks (ICCCN). IEEE;2021:1-8. doi:10.1109/ICCCN52240.2021.9522315

21. Gunda P, Voleti SD. Performance Evaluation of Wireguard in Kubernetes Cluster. 2021 http://urn.kb.se/resolve?urn=urn:nbn:se:bth
-21167

22. Wang Z, Goudarzi M, Aryal J, Buyya R. Container orchestration in edge and fog computing environments for real-time iot applications.
Computational Intelligence and Data Analytics. Lecture Notes on Data Engineering and Communications Technologies. Springer Nature;
2023:1-21. doi:10.1007/978-981-19-3391-2_1

23. Mlynka D. IoT device management using Kubernetes. 2022 https://is.muni.cz/th/x3jnk/fi-pdflatex.pdf
24. Falcone D. Designing a scalable network overlay for Kubernetes multi-cluster topologies. laurea, Politecnico di Torino. 2021 https:/

/webthesis.biblio.polito.it/20504/
25. Virtual Kubelet. Accessed June 25, 2023. https://virtual-kubelet.io/
26. Subratie K, Aditya S, Figueiredo RJ. EdgeVPN: Self-organizing layer-2 virtual edge networks. Futur Gener Comput Syst. 2023;140:104-116.

doi:10.1016/j.future.2022.10.007
27. Bittencourt L, Immich R, Sakellariou R, et al. The internet of things, fog and cloud continuum: integration and challenges. Internet Things.

2018;3–4:134-155. doi:10.1016/j.iot.2018.09.005
28. Keranen A, Holmberg C, Rosenberg J. Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT)

Traversal. Internet Engineering Task Force (IETF); RFC8445; 2018. doi:10.17487/RFC8445

 1097024x, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3329 by U

. M
iguel H

ernandez D
e E

lche, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-0419-4300
https://orcid.org/0000-0003-0419-4300
https://orcid.org/0000-0001-9537-415X
https://orcid.org/0000-0001-9537-415X
https://orcid.org/0000-0002-8985-0639
https://orcid.org/0000-0002-8985-0639
https://orcid.org/0000-0003-0034-2855
https://orcid.org/0000-0003-0034-2855
http://info:doi/10.1109/ICCMC.2018.8487653
http://info:doi/10.1007/978-3-030-14070-0_55
http://info:doi/10.1145/3374664.3379532
http://info:doi/10.1109/ICCCS55155.2022.9846591
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e7096c131e5161fa3b8e52a650d7719d2857adfd
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e7096c131e5161fa3b8e52a650d7719d2857adfd
https://tailscale.com/blog/throughput-improvements/
https://tailscale.com/blog/throughput-improvements/
https://openvpn.net/source-code/
http://info:doi/10.14722/ndss.2017.23160
https://openvpn.net/community-resources/setting-up-your-own-certificate-authority-ca/
https://openvpn.net/community-resources/setting-up-your-own-certificate-authority-ca/
https://www.wireguard.com/quickstart/
https://tailscale.com/
https://www.zerotier.com/
https://netbird.io/
https://www.netmaker.io/beta
https://www.netmaker.io/beta
https://tailscale.com/kb/1214/site-to-site/
http://info:doi/10.1007/978-981-15-4409-5_9
http://info:doi/10.1007/978-3-319-67262-5_7
https://rp.os3.nl/2019-2020/p71/report.pdf
http://info:doi/10.23919/CNSM46954.2019.9012673
http://info:doi/10.1109/ICCCN52240.2021.9522315
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21167
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21167
http://info:doi/10.1007/978-981-19-3391-2_1
https://is.muni.cz/th/x3jnk/fi-pdflatex.pdf
https://webthesis.biblio.polito.it/20504/
https://webthesis.biblio.polito.it/20504/
https://virtual-kubelet.io/
http://info:doi/10.1016/j.future.2022.10.007
http://info:doi/10.1016/j.iot.2018.09.005
http://info:doi/10.17487/RFC8445


KJORVEZIROSKI et al. 1561

29. Junior PS, Miorandi D, Pierre G. Good shepherds care for their cattle: seamless pod migration in geo-distributed kubernetes. 2022 IEEE
6th International Conference on Fog and Edge Computing (ICFEC). IEEE; 2022:26-33. doi:10.1109/ICFEC54809.2022.00011

30. Chee C. Awesome WireGuard. 2023. Accessed June 25, 2023. https://github.com/cedrickchee/awesome-wireguard
31. HarvsG: compare WireGuard mesh tools. 2023. Accessed June 25, 2023. https://github.com/HarvsG/WireGuardMeshes
32. Tailscale: network access controls (ACLs). 2023. Accessed June 25, 2023. https://tailscale.com/kb/1018/acls/
33. Font J. Headscale ACL support. 2023. Accessed June 25, 2023. https://github.com/juanfont/headscale
34. Juanfont/headscale: an open source, self-hosted implementation of the tailscale control server. Accessed June 25, 2023. https://github

.com/juanfont/headscale
35. Netbirdio/netbird: connect your devices into a single secure private WireGuard®-based mesh network with SSO/MFA and simple access

controls. Accessed June 25, 2023. https://github.com/netbirdio/netbird
36. Zerotier/ZeroTierOne: a smart ethernet switch for earth. Accessed June 25, 2023. https://github.com/zerotier/ZeroTierOne
37. Gravitl/netmaker: netmaker makes networks with WireGuard. Netmaker automates fast, secure, and distributed virtual networks.

Accessed June 25, 2023. https://github.com/gravitl/netmaker
38. Tailscale on GitHub. 2023. Accessed June 25, 2023. https://github.com/tailscale/tailscale
39. Firezone/Firezone: WireGuard®-based VPN server and firewall. Accessed June 25, 2023. https://github.com/firezone/firezone
40. WireGuard easy. 2023. Accessed June 25, 2023. https://github.com/wg-easy/wg-easy
41. Stormblest/Mistborn GitLab. 2022. Accessed June 25, 2023. https://gitlab.com/cyber5k/mistborn
42. Antunes L. Wesher–Wireguard overlay mesh network manager. 2023. Accessed June 25, 2023. https://github.com/costela/wesher
43. Innernet - A Private Network System That Uses WireGuard under the Hood. Tonari, Inc; 2023. Accessed June 25, 2023. https://github.com

/tonarino/innernet
44. Slackhq/Nebula. 2023. Accessed June 25, 2023. https://github.com/slackhq/nebula
45. pfSense® - World’s most trusted open source firewall. Accessed June 25, 2023. https://www.pfsense.org/
46. Kjorveziroski V, Filiposka S. Kubernetes distributions for the edge: serverless performance evaluation. J Supercomput.

2022;78(11):13728-13755. doi:10.1007/s11227-022-04430-6
47. Overlay networking—Calico documentation. Accessed June 25, 2023. https://docs.tigera.io/calico/latest/networking/configuring/vxlan

-ipip
48. Kjorveziroski V, Mishev A, Filiposka S. Evaluating IPv6 support in kubernetes. 2021 29th Telecommunications Forum (TELFOR). IEEE;

2021:1-4. doi:10.1109/TELFOR52709.2021.9653276
49. Configure MTU to maximize network performance—Calico documentation. Accessed June 25, 2023. https://docs.tigera.io/calico/latest

/networking/configuring/mtu
50. Tailscale: DERP servers. 2022. Accessed June 25, 2023. https://tailscale.com/kb/1232/derp-servers/
51. Tailscale: custom DERP servers. 2023. Accessed June 25, 2023. https://tailscale.com/kb/1118/custom-derp-servers/
52. Mahy R, Matthews P, Rosenberg J. Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT

(STUN). Internet Engineering Task Force (IETF); RFC5766; 2010. doi:10.17487/rfc5766
53. Coturn TURN Server. coturn. 2023. Accessed June 25, 2023. https://github.com/coturn/coturn
54. Netbird/Infrastructure_files/Management.Json.Tmpl at B524a9d49d001564b5818abe426be9689aa56ff3 ⋅ Netbirdio/Netbird. Accessed

June 25, 2023. https://github.com/netbirdio/netbird/blob/b524a9d49d001564b5818abe426be9689aa56ff3/infrastructure_files
/management.json.tmpl#L4

55. Add force relay conn env var for debug purpose by pappz⋅ Pull Request #904 ⋅ Netbirdio/Netbird. Accessed June 25, 2023. https://github
.com/netbirdio/netbird/pull/904

56. Protocol design whitepaper—ZeroTier documentation. Accessed June 25, 2023. https://docs.zerotier.com/zerotier/manual/
57. Network controllers—ZeroTier documentation. Accessed June 25, 2023. https://docs.zerotier.com/self-hosting/network-controllers
58. Private Root Servers—ZeroTier Documentation. Accessed June 25, 2023. https://docs.zerotier.com/zerotier/moons
59. ZeroTierOne/Tcp-Proxy at Dev ⋅ Zerotier/ZeroTierOne. Accessed June 25, 2023. https://github.com/zerotier/ZeroTierOne
60. Tc(8)–Linux manual page. Accessed June 25, 2023. https://man7.org/linux/man-pages/man8/tc.8.html
61. Lombardo F, Salsano S, Abdelsalam A, Bernier D, Filsfils C. Extending kubernetes networking to make use of segment routing over IPv6

(SRv6). http://arxiv.org/abs/2301.01178 2023.
62. K8s-Bench-Suite. infraBuilder. 2023. Accessed June 25, 2023. https://github.com/InfraBuilder/k8s-bench-suite
63. Dogan J. Rakyll/Hey. 2021. Accessed June 25, 2023. https://github.com/rakyll/hey
64. Introduction—ZeroTier documentation. Accessed June 25, 2023. https://docs.zerotier.com/self-hosting/introduction/

How to cite this article: Kjorveziroski V, Bernad C, Gilly K, Filiposka S. Full-mesh VPN performance
evaluation for a secure edge-cloud continuum. Softw: Pract Exper. 2024;54(8):1543-1564. doi: 10.1002/spe.3329

 1097024x, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3329 by U

. M
iguel H

ernandez D
e E

lche, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://info:doi/10.1109/ICFEC54809.2022.00011
https://github.com/cedrickchee/awesome-wireguard
https://github.com/HarvsG/WireGuardMeshes
https://tailscale.com/kb/1018/acls/
https://github.com/juanfont/headscale
https://github.com/juanfont/headscale
https://github.com/juanfont/headscale
https://github.com/netbirdio/netbird
https://github.com/zerotier/ZeroTierOne
https://github.com/gravitl/netmaker
https://github.com/tailscale/tailscale
https://github.com/firezone/firezone
https://github.com/wg-easy/wg-easy
https://gitlab.com/cyber5k/mistborn
https://github.com/costela/wesher
https://github.com/tonarino/innernet
https://github.com/tonarino/innernet
https://github.com/slackhq/nebula
https://www.pfsense.org/
http://info:doi/10.1007/s11227-022-04430-6
https://docs.tigera.io/calico/latest/networking/configuring/vxlan-ipip
https://docs.tigera.io/calico/latest/networking/configuring/vxlan-ipip
http://info:doi/10.1109/TELFOR52709.2021.9653276
https://docs.tigera.io/calico/latest/networking/configuring/mtu
https://docs.tigera.io/calico/latest/networking/configuring/mtu
https://tailscale.com/kb/1232/derp-servers/
https://tailscale.com/kb/1118/custom-derp-servers/
http://info:doi/10.17487/rfc5766
https://github.com/coturn/coturn
https://github.com/netbirdio/netbird/blob/b524a9d49d001564b5818abe426be9689aa56ff3/infrastructure_files/management.json.tmpl#L4
https://github.com/netbirdio/netbird/blob/b524a9d49d001564b5818abe426be9689aa56ff3/infrastructure_files/management.json.tmpl#L4
https://github.com/netbirdio/netbird/pull/904
https://github.com/netbirdio/netbird/pull/904
https://docs.zerotier.com/zerotier/manual/
https://docs.zerotier.com/self-hosting/network-controllers
https://docs.zerotier.com/zerotier/moons
https://github.com/zerotier/ZeroTierOne
https://man7.org/linux/man-pages/man8/tc.8.html
http://arxiv.org/abs/2301.01178
https://github.com/InfraBuilder/k8s-bench-suite
https://github.com/rakyll/hey
https://docs.zerotier.com/self-hosting/introduction/


1562 KJORVEZIROSKI et al.

APPENDIX A . DETAILED COMPARISON OF TCP AND UDP THROUGHPUT RESULTS

T A B L E A1 TCP throughput results.

Test Cond Mean Std. Dev. Coef. V. Cmp. 1450Ba Cmp. 1230Bb

Headscale
direct

Native 217.92 2.49 0.01 x3.53 x3.26

L: 1% 75.43 1.10 0.01 x2.80 x2.48

L: 5% 11.68 0.67 0.06 x3.36 x2.99

L: 10% 2.74 0.20 0.07 x1.71 x1.56

D: 50 ms 156.30 2.45 0.02 x1.15 x0.85

D: 250 ms 31.42 0.68 0.02 x1.21 x1.02

D: 350 ms 22.16 0.83 0.04 x1.20 x1.02

Headscale
relay

Native 169.02 0.7 0.00 x4.55 x4.20

L: 1% 163.30 0.67 0.00 x1.29 x1.15

L: 5% 61.88 5.07 0.08 x0.63 x0.56

L: 10% 8.84 1.22 0.14 x0.53 x0.48

D: 50 ms 98.07 6.62 0.07 x1.83 x1.35

D: 250 ms 30.44 2.64 0.09 x1.25 x1.05

D: 350 ms 22.09 2.27 0.1 x1.2 x1.03

Netbird
direct

Native 707.45 24.16 0.03 x1.09 x1.00

L: 1% 86.40 0.72 0.01 x2.44 x2.17

L: 5% 14.77 1.1 0.07 x2.66 x2.37

L: 10% 3.07 0.33 0.11 x1.52 x1.39

D: 50 ms 149.40 5.85 0.04 x1.20 x0.88

D: 250 ms 31.16 0.80 0.03 x1.22 x1.02

D: 350 ms 22.35 0.69 0.03 x1.19 x1.01

Netbird
relay

Native 215.26 4.31 0.02 x3.57 x3.30

L: 1% 42.02 0.66 0.02 x5.03 x4.46

L: 5% 9.04 0.57 0.06 x4.35 x3.87

L: 10% 2.49 0.20 0.08 x1.88 x1.71

D: 50 ms 61.99 6.01 0.10 x2.90 x2.13

D: 250 ms 24.38 2.17 0.09 x1.56 x1.31

D: 350 ms 18.21 1.60 0.09 x1.46 x1.25

ZeroTier
direct

Native 303.01 6.65 0.02 x2.54 x2.34

L: 1% 89.29 1.40 0.02 x2.37 x2.10

L: 5% 13.45 1.36 0.10 x2.92 x2.60

L: 10% 3.12 0.34 0.11 x1.50 x1.36

D: 50 ms 155.60 3.53 0.02 x1.15 x0.85

D: 250 ms 31.89 0.62 0.02 x1.19 x1.00

D: 350 ms 22.17 0.23 0.01 x1.20 x1.02
(Continues)
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T A B L E A1 (Continued)

Test Cond Mean Std. Dev. Coef. V. Cmp. 1450Ba Cmp. 1230Bb

ZeroTier
relay

Native 256.94 5.51 0.02 x2.99 x2.76

L: 1% 247.20 4.47 0.02 x0.85 x0.76

L: 5% 85.59 6.08 0.07 x0.46 x0.41

L: 10% 8.26 0.68 0.08 x0.57 x0.52

D: 50 ms 150 22.62 0.15 x1.20 x0.88

D: 250 ms 32.38 4.55 0.14 x1.17 x0.99

D: 350 ms 23.63 3.86 0.16 x1.12 x0.96

Abbreviations: Coef. V., coefficient of variation; Cond, conditions; D, packet delay; L, packet loss; Std. Dev, standard deviation.
aComparison to the baseline of MTU 1450B.
bComparison to the baseline of MTU 1280B.

T A B L E A2 UDP throughput results.

Test Cond Mean Std. Dev. Coef. V. Cmp. 1450Ba Cmp. 1230Bb

Headscale
direct

Native 285.08 22.22 0.08 x2.66 x2.27

L: 1% 283.90 23.72 0.08 x2.63 x2.25

L: 5% 289.20 24.20 0.08 x2.49 x2.11

L: 10% 284.30 22.81 0.08 x2.37 x2.00

D: 50 ms 187.50 0.53 0.00 x1.19 x1.00

D: 250 ms 37.12 0.26 0.01 x1.19 x1.00

D: 350 ms 26.57 0.05 0.00 x1.19 x1.00

Headscale
relay

Native 267.70 1.84 0.01 x2.83 x2.41

L: 1% 267.00 2.05 0.01 x2.79 x2.40

L: 5% 100.53 5.38 0.05 x7.15 x6.07

L: 10% 8.57 1.48 0.17 x78.68 x66.37

D: 50 ms 150.80 13.22 0.09 x1.48 x1.24

D: 250 ms 35.81 2.24 0.06 x1.23 x1.04

D: 350 ms 24.06 1.99 0.08 x1.31 x1.11

Netbird
direct

Native 508.26 25.98 0.05 x1.49 x1.27

L: 1% 491.30 27.86 0.06 x1.52 x1.30

L: 5% 470.20 28.35 0.06 x1.53 x1.30

L: 10% 457.50 14.58 0.03 x1.47 x1.24

D: 50 ms 97.26 20.19 0.21 x2.29 x1.93

D: 250 ms 12.67 3.43 0.27 x3.49 x2.94

D: 350 ms 7.35 1.84 0.25 x4.29 x3.62

Netbird
relay

Native 289.51 3.42 0.01 x2.62 x2.23

L: 1% 286.70 2.58 0.01 x2.60 x2.23

L: 5% 282.60 2.91 0.01 x2.54 x2.16

L: 10% 275.80 2.04 0.01 x2.45 x2.06

D: 50ms 183.70 1.06 0.01 x1.21 x1.02

D: 250ms 36.58 0.58 0.02 x1.21 x1.02

D: 350ms 26.05 0.77 0.03 x1.21 x1.02
(Continues)
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T A B L E A2 (Continued)

Test Cond Mean Std. Dev. Coef. V. Cmp. 1450Ba Cmp. 1230Bb

ZeroTier
direct

Native 347.41 14.96 0.04 x2.18 x1.86

L: 1% 347.80 10.55 0.03 x2.14 x1.84

L: 5% 333.30 35.82 0.11 x2.16 x1.83

L: 10% 337.56 15.13 0.04 x2.00 x1.69

D: 50 ms 183.11 8.21 0.04 x1.22 x1.02

D: 250 ms 36.43 0.57 0.02 x1.21 x1.02

D: 350 ms 25.59 0.39 0.02 x1.23 x1.04

ZeroTier
relay

Native 227.09 33.23 0.15 x3.34 x2.85

L: 1% 231.00 6.27 0.03 x3.23 x2.77

L: 5% 92.30 9.08 0.1 x7.79 x6.61

L: 10% 8.02 1.37 0.17 x84.08 x70.93

D: 50 ms 92.76 7.97 0.09 x2.40 x2.02

D: 250 ms 39.27 3.05 0.08 x1.12 x0.95

D: 350 ms 28.51 2.13 0.07 x1.11 x0.93

Abbreviations: Coef. V., coefficient of variation; Cond, conditions; D, packet delay; L, packet loss; Std. Dev, standard deviation.
aComparison to the baseline of MTU 1450B.
bComparison to the baseline of MTU 1280B.
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