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Abstract

The banking structure of today is quite damaged. This happened because the
industry was not able to foresee the different risks that surrounded it. Of the
group of risks associated with the business of banking activity, the risk of credit in
many occasions accounts for 60%. The risk of credit arises when there exists the
possibility of suffering a loss due to the breach of the other party to assume the
payment or payments. The default originates a loss for the entity that climbs not
only to the none recovered amount, but also to the expenses incurred in the process.
The uncertain nature of the risk does mean that this risk is measured through the
unexpected loss, which coincides statistically with the standard deviation. This
is why statistical methods are needed to enable the prediction of bank credit
risk (default and non-payment) in home equity loans through estimates based
on statistical models (also called techniques of ‘credit scoring’), to improve the
currently available methods.
Keywords: credit scoring, credit risk, home equity loans, linear mixed models,
Monte Carlo.

1 Introduction

To assess credit risk, there are a variety of methodologies available, from the
personalized study of an experienced risk analyst to different statistical and
econometrics methods of credit scoring. Credit scoring is essentially a way to
identify different groups in a population. The first proposal to solve this problem
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was introduced in [1] using discriminant analysis as a multivariate statistical
technique. Durand [2] was the first in admitting that the same statistical techniques
can be used to optimize the differentiation between good and bad loans. When a
credit counselor assesses the risk they are assigning a score to the risk of a loan
application from their past experience, i.e. they are applying a score. Credit scoring
models or methods are algorithms and a evaluation of credit risk automatically
occurs. They have a single dimension.

From 1970 credit scoring models used were based on statistical techniques
(in particular, discriminant analysis), but this is then generalized from 1990.
The best statistical resources were developed with the use of technology and
there is a growing need on the part of financial institutions to make more
effective and efficient funding and a better risk assessment. Today, credit
scoring models are based on mathematics, econometric techniques and artificial
intelligence. During the late 20th century and early 21st, there was economic
growth. Consumer credit was increased spectacularly. Evaluation of credit risk
by statistical methods become outstanding [3]. This author make a study of
judgmental versus scoring methods in score-cards application. Historically, these
are discriminant analysis and linear regression logistic regression, probit analysis,
nonparametric smoothing methods, mathematical programming, Markov chain
models, recursive partitioning, expert systems, genetic algorithms, neural networks
and conditional independence models.

Empirical studies by various authors present alternative approaches for
comparing different techniques. The study by [4] compared various techniques
and found that decision trees outperform logistic regressions, as these yield
better results than discriminant analysis. The studies of [5], show the inferiority
of the parametric models against the non-parametric ones in analyzing their
predictive quality. The analysis of [6] concluded that neural networks development
is significantly better than the discriminant analysis, while [7] obtained reversed
results. Yatchew [8] carried out an in-depth study which analyzes the advantages
and disadvantages of the use of non-parametric regression techniques. Comparing
parametric and non-parametric methods the study points out the non-existence of
an optimal method for all portfolios. Studies of [9] also agree with the designated
authors. In the analysis of several types of default [10] include the hypothesis of
instability. Some references in which the statistical methodology of discriminant
analysis is also used in the credit scoring problem are [11] and [12].

Therefore, the scientific literature has still not solved the problem efficiently
using a method through estimates based on statistical models (also called credit
scoring techniques) in order to improve those currently available for home equity
loans. In this paper we propose procedures for fitting linear regression models. We
start with a fixed effects model. On the other hand, we consider a mixed (fixed
and random effects) model. To evaluate the appropriateness of these procedures,
Monte Carlo simulation experiments are preformed that allow the comparison of
certain properties between them. Searle et al. [13] provided a detailed description
of linear mixed models.

142  Data Management and Security

 
 www.witpress.com, ISSN 1743-35  (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 45, © 2013 WIT Press

17



Our main goal is to discern which kind of linear regression model (mixed or
fixed effects) is more appropriate to fit datasets from home equity loans. For this
reason, we purpose two models in section 2. In this section we develop maximum
likelihood (ML) and residual maximum likelihood (REML) estimation methods.
We descripe an exhaustive simulation study of the models in section 3. Finally, in
section 4 conclusions are offered.

2 The models

Let us consider the following linear mixed model with a random effect as the main
model. The random effect has I levels (i = 1, . . . , I), and each level i has ni units.
The model is

yij = xijβ + ui + w
−1/2
ij eij , i = 1, . . . , I, j = 1, . . . , ni, (1)

where yij is the value of the target variable in the population unit j at the level i,
xij is a row vector of fixed effects containing the values of p auxiliary and linearly
independent variables,wij is a known heteroscedasticity weight and β is a column
vector of regression parameters. Further, the random effects ui and the errors eij
are assumed to be mutually independent with distributions ui ∼ N(0, σ2

1) and
eij ∼ N(0, σ2

0), respectively. The model (1) can be written in matrix notation as

y = Xβ +Zu+W−1/2e, (2)

where u = u1,I×1 ∼ NI(0, σ
2
1II), e = en×1 ∼ Nn(0, σ

2
0In) are independent,

y = yn×1, X = col
1≤i≤I

(X i) with rank(X) = p, Xi = col
1≤j≤ni

(xij), β =

βp×1, Z = diag
1≤i≤I

(1ni), n =
∑I

i=1 ni, Ia is the identity matrix of order a,

1a is the column vector of dimension a whose elements are all equal to 1,
W = diag

1≤i≤I
(W i), W i = diag

1≤j≤ni

(wij) with wij > 0 known. Under model

(2), it holds that V = var(y) = Zvar(u)Zt + σ2
0W

−1 = diag
1≤i≤I

(V i), where

V i = σ2
11ni1

t
ni

+ σ2
0W

−1
i . Then it follows that y ∼ Nn(Xβ,V ).

If σ2
0 and σ2

1 are known, the Best Linear Unbiased Estimator (BLUE) of β is
β̂ = (XtV −1X)−1XtV −1y, but usually it isn’t the reality.

Further, let us consider the following simple linear unweighted model:

yij = xijβ + eij , i = 1, . . . , I, j = 1, . . . , ni, (3)

or in matrix notation as
y = Xβ + e, (4)

where the definitions of all the variables are the same as in the previous case. Note
that is a particular case of model (1) or (2) respectively, where random effects do
not exist and the error variances are equal (heterocedasticity).
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For the sake of brevity we skip developed formulas for model (3) or (4), because
it is very easy to find maximum likelihood estimators of this model in the literature.
We use the model in matrix form (2) to obtain the estimates of the parameters.

2.1 ML estimation in a mixed lineal regression model

ML estimates of θ = (βt,σt)t = (βt, σ2
0 , σ

2
1)

t can be obtained by maximizing
the log-likelihood function

�(θ) = −n
2
log 2π − 1

2
log |V | − 1

2
(y −Xβ)tV −1(y −Xβ),

with the Fisher-scoring algorithm

θ(k+1) = θ(k) + F (θ(k))−1S(θ(k)),

where S(θ) and F (θ) are the (p+2)×1 vector of scores and the (p+2)× (p+2)
Fisher information matrix, respectively. The block elements of S(θ) and F (θ) are

Sβ = X tV −1(y −Xβ) =

I∑
i=1

Xi
tV −1

i (yi −Xiβ),

Sσ2
1
= −1

2

I∑
i=1

tr
{
V −1

i 1ni1
t
ni

}

+
1

2

I∑
i=1

(yi −Xiβ)
t
V −1

i 1ni1
t
ni
V −1

i (yi −X iβ) ,

Sσ2
0
= −1

2

I∑
i=1

tr
{
V −1

i W−1
i

}

+
1

2

I∑
i=1

(yi −Xiβ)
t
V −1

i W−1
i V −1

i (yi −Xiβ) ,

Fββ =

I∑
i=1

Xt
iV

−1
i Xi, Fσ2

1σ
2
1
=

1

2

I∑
i=1

tr
{(

V −1
i 1ni1

t
ni

)2}
,

Fσ2
1σ

2
0
=

1

2

I∑
i=1

tr
{
V −1

i W−1
i V −1

i 1ni1
t
ni

}
,

Fσ2
0σ

2
0
=

1

2

I∑
i=1

tr
{(

V −1
i W−1

i

)2}
.
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2.2 REML estimation in a mixed lineal regression model

The REML estimation method reduces the bias of the variance components that
appear with the ML method. This method consists of estimating by one side
the variance components and by the other side the fixed effects [13–15]. REML
estimates of σ = (σ2

0 , σ
2
1)

t can be obtained by maximizing the log-likelihood
function

�(σ) = −1

2
(n− p) log 2π − 1

2
log |KtV K| − 1

2
ytPy,

where K = W − WX(XtWX)−1XtW and P = K(KtV K)−1Kt. The
updating equation of the Fisher-scoring algorithm is

σ(k+1) = σ(k) + F (σ(k))−1S(σ(k)).

In this case the block elements of S(σ) and F (σ) are

Sσ2
1
= −1

2
tr{P diag

1≤i≤I
(1ni1

t
ni
)}+ 1

2
ytP diag

1≤i≤I
(1ni1

t
ni
)Py ,

Sσ2
0
= −1

2
tr{P diag

1≤i≤I
(W−1

i )}+ 1

2
ytP diag

1≤i≤I
(W−1

i )Py ,

Fσ2
0σ

2
0
=

1

2
tr{P diag

1≤i≤I
(W−1

i )P diag
1≤i≤I

(W−1
i )}, ,

Fσ2
0σ

2
1
=

1

2
tr{P diag

1≤i≤I
(W−1

i )P diag
1≤i≤I

(1ni1
t
ni
)} ,

Fσ2
1σ

2
1
=

1

2
tr{P diag

1≤i≤I
(1ni1

t
ni
)P diag

1≤i≤I
(1ni1

t
ni
)} .

3 Simulation experiments

In this section we present three simulation experiments. The first simulation
experiment is designed to compare the impact of the presence or absence of
weights when the model (4) is fitted in two types of the target variables.

The second simulation experiment is designed to study the behavior of the
model (2) under the ML and REML fitting methods.

The third simulation experiment is designed to study the robustness of the
estimation methods (ML and REML) under the model (2); we repeat the second
simulation experiment by changing the error normal distributions.

Numerical results of the simulation study are available via the web from:
http://helmantica.umh.es/wessex/data2013/
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3.1 Experiment 1

The scope of this simulation experiment is to investigate the impact of the presence
or absence of weights when the model (4) is fitted on two types of simulated target
variables. One of them, (Y0), is simulated as a linear regression model with a fixed
effect, the other one, (Y1), is simulated as a mixed regression model (a fixed effect
and a random effect).

Each data set is generated as follows. For i = 1, . . . , I , j = 1, . . . , ni:
• Explanatory variable: xij = (bi − ai)Uij + ai with Uij =

j
ni+1 . ai = 1,

bi = 1 + 1
I (I + i).

• Weights: wij = 1/x�ij , � = 0, 1/2, 1, 2, (4 possibilities).
• Random effects and errors: ui ∼ N(0, σ2

1 = 1), eij ∼ N(0, σ2
0 = 1).

• Two target variables: calculate

yij = β0 + β1xij + w
−1/2
ij eij , with β0 = β1 = 1, (Y0)

yij = β0 + β1xij + ui + w
−1/2
ij eij , with β0 = β1 = 1. (Y1)

The simulation experiment follows the steps:
1. Repeat K = 106 times (k = 1, . . . ,K)

1.1. Generate a data set of size n =
∑I

i=1 ni.
1.2. Calculate τ(k) ∈ {β̂(k), σ̂

2
0,(k)} and fitted values by using the ML

method with the unweighted simple linear model (4).
2. Calculate, for every τ ∈ {β, σ2

0} and fitted values, the scaled EMSEs and
BIASes

EMSE(τ̂ ) =
106

K

K∑
k=1

(τ̂(k) − τ)2, BIAS(τ̂ ) =
106

K

K∑
k=1

(τ̂(k) − τ).

EMSE(μ̂) =
106

K

K∑
k=1

1

n

I∑
i=1

ni∑
j=1

(ŷij(k) − yij)
2,

BIAS(μ̂) =
106

K

K∑
k=1

1

n

I∑
i=1

ni∑
j=1

(ŷij(k) − yij).

The simulations are carried out for the seven combinations of sizes presented in
Table 1.

In the simulation experiment we focus our attention on two performance
measures: the empirical mean squared error (EMSE) and the empirical bias
(BIAS). Figures 1 and 2 plot the EMSE and BIAS results respectively. These
figures are divided into four parts, one for each parameter. Each part is again
divided into four sections, the left one for homocedasticity (� = 0) and the other
three for heterocedasticity (� = 1/2, 1, 2). To better interpret the figures, total
sample size n and total number of levels I are plotted (see the lower and upper
horizontal axes).
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g 1 2 3 4 5 6 7
I(g) 5 7 10 20 30 50 75

ni 100 100 100 100 100 100 100
n 500 700 1000 2000 3000 5000 7500

Table 1: Groups of datasets sizes.
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Figure 1: EMSE of β̂ (top), σ̂2
0 (bottom-left) and μ̂ (bottom-right), for � =

0, 1/2, 1, 2.

Regarding EMSE, Figure 1 shows two different conclusions. First of all is that
the model fitt is better when the target variable simulated only has fixed effects.
This is very logical, since if the model proposed is (4), when it fits a dataset
with a random factor, the EMSE must grow. The second conclusion is about the
heterocedasticity. The presence of heterocedasticity (� = 1/2, 1, 2) damages the
estimation of all the parameters in both target variables when an unweighted model
is used to fit. Regarding BIAS, Figure 2 shows some interesting patterns. If the
target is to estimate β, model (4) in Y0 variable (green line) presents lower biases
than in Y1 variable (blue line). The presence of heterocedasticity (� = 1/2, 1, 2)
causes bias in the estimation of σ20 . However, if we look at the goodness of fit, both
target variables are near unbiasedness. Of course, Y0 is better than in the other.
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Figure 2: BIAS of β̂ (top), σ̂2
0 (bottom-left) and μ̂ (bottom-right), for � =

0, 1/2, 1, 2.

3.2 Experiment 2

This simulation experiment is designed to study the behavior of the model (2)
under the ML and REML fitting methods. These methods are tested on two types
of simulated target variables. Target variables (Y0 and Y1), explanatory variables
and weights are generated in the same way as in the first simulation experiment.
The steps of the simulation experiment are also the same except for the step of the
model fit, which reads as follows:

1.2. Calculate τ(k) ∈ {β̂(k), σ̂
2
1,(k), σ̂

2
0,(k)} and fitted values by using the REML

and ML methods with the mixed linear model (2).
For more details see subsection 3.1. The simulations are carried out for the seven

combinations of sizes presented in Table 1.
In this simulation experiment we focus our attention on both estimation

methods. Figures 3 and 4 plot the EMSE and BIAS results respectively for the
REML methods. The figures have the same structure as in the previous subsection.
Figures like this for ML are ignored because the plot lines and the values are almost
identical. Figure 5 plots the EMSE and BIAS results for the difference between
REML and ML methods.

In order for the reader to see the values of the differences between the estimation
methods, this graph is plotted instead of the other two. Superindexes ML are
REML are simply used to denote that the EMSE or BIAS has been calculated
by using ML or REML estimates of the model parameters. Regarding REML,
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Figure 3: EMSE of β̂ (top-left), σ̂2
1 (top-right), σ̂2

0 (bottom-left) and μ̂ (bottom-
right), for � = 0, 1/2, 1, 2.
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Figure 4: BIAS of β̂ (top-left), σ̂2
1 (top-right), σ̂2

0 (bottom-left) and μ̂ (bottom-
right), for � = 0, 1/2, 1, 2.

Figures 3 and 4 shows two different conclusions. First of all is that the model
fitted is a bit better when the target variable simulated have mixed effects. The
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EMSE is only better for the random effect variance and reduces when the dataset
is larger. Moreover, the prediction is worse in the presence of heterocedasticity, but
prediction is better for (Y1) target as expected (numerical result can be seen on the
web).

The second conclusion is about the BIAS shown in Figure 4. Only for the
(Y1) target variable, is the REML method is unbiased. The presence or absence
of heterocedasticity does not affect the bias at all.

0
.0

0
0
0

0
.0

0
1
0

0
.0

0
2
0

EMSE(μ̂)ml − EMSE(μ̂)reml

n
500 2000 7500 2000 7500 2000 7500 2000 7500

0
.0

0
0
0

0
.0

0
1
0

0
.0

0
2
0

5 20 75 20 75 20 75 20 75
I

Y0
Y1

l=0 l=1/2 l=1 l=2

−
1
.5

e
−

0
5

−
5
.0

e
−

0
6

5
.0

e
−

0
6

BIAS(μ̂)ml − BIAS(μ̂)reml

n
500 2000 7500 2000 7500 2000 7500 2000 7500

−
1
.5

e
−

0
5

−
5
.0

e
−

0
6

5
.0

e
−

0
6

5 20 75 20 75 20 75 20 75
I

Y0
Y1

l=0 l=1/2 l=1 l=2

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

BIAS(σ̂1)ml − BIAS(σ̂1)reml

n
500 2000 7500 2000 7500 2000 7500 2000 7500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

5 20 75 20 75 20 75 20 75
I

Y0
Y1

l=0 l=1/2 l=1 l=2

0
.0

0
0
0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

BIAS(σ̂0)ml − BIAS(σ̂0)reml

n
500 2000 7500 2000 7500 2000 7500 2000 7500

0
.0

0
0
0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

5 20 75 20 75 20 75 20 75
I

Y0
Y1

l=0 l=1/2 l=1 l=2

Figure 5: EMSEml − EMSEreml for μ (top-left), BIASml − BIASreml for μ (top-
right), BIASml − BIASreml for σ2

1 (bottom-left) and BIASml − BIASreml

for σ2
0 (bottom-right), for � = 0, 1/2, 1, 2.

Figure 5 always shows positive numbers, so then ML estimators are worse than
REML ones. This is especially relevant underthe (Y1) target variable, as can be
seen in the EMSE of the predictions.

3.3 Experiment 3

This simulation experiment is designed to study the robustness of the model
(2) under the ML and REML fitting methods. We repeat the second simulation
experiment by changing the error normal distributions to Gamma and Weibull
distributions. This give us information about the adequation of this model and
these methods with respect to deviations from the assumption of normality of the
errors. Gamma a Weibull distributions are conveniently parametrized to have the
same means and variances as in the normal case (Ga(1, 1), We(1, 1)). Note that
Gamma and Weibull distributions have positives supports. This is very important
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when the variable is a currency. The Weibull distribution is sometimes used to
model claims in reinsurances.
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Figure 6: EMSE(μ̂)ml and EMSE(μ̂)reml (top) and BIAS(μ̂)ml and BIAS(μ̂)reml

(bottom), � = 0, 1/2, 1, 2 for Normal, Gamma, and Weibull cases.

The obtained results for the predictions are presented in Figure 6. The first
fact that we observe is that the results are practically identical for all the cases
between ML (left) and REML (right). Then the following comments are applicable
to both methods. In the presence of heterocedasticity, EMSE grows while the
BIAS decreases to 0. Only under homocedasticity or near it, is the normal case
is unbiased. Concerning heterocedasticity, the BIAS seems to be unaffected by
deviations from normality.

4 Conclusions

In this paper, two models are introduced and simulation studies carried out to
investigate when it is worthwhile to predict bank credit risk.

The first simulation experiment is designed to prove a linear regression model.
The second simulation is designed to study the behavior of the linear mixed model
under two estimation methods. The third simulation experiment is designed to
study the robustness of the estimation methods by changing the error normal
distributions.

From the obtained results we conclude recommending the use of REML
estimates in a mixed model and being careful with the heterocedasticity in the
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linear fixed model. We remark that deviations from the assumption of normality in
the random errors do not change the predictions at all.

It is important to realize that when the number of levels of the random factor
increases, the number of parameters for the estimate is the same. Only one variance
parameter is estimated. A fixed effects model is estimated with as many parameters
as the number of levels of the factor minus one. In datasets of home equity loans,
it is very common to find factors with a larger number of levels, and then it is
necessary to approach a mixed linear model.
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