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Abstract: The elaboration and definition of “metabolic fingerprints” can subsidize both the identifica-
tion and determination of plant varieties, as well as the increase in knowledge about the responses
and adaptations of plants to external and/or internal factors. The lemon tree (Citrus limon Burm.) is
one of the most important crops in the Spanish southeast and is often consumed around the world.
Although the study and characterization of its fruits are common due to its economic interest, its
leaves are limited to specific functionalized studies related to the objective of the work (extraction of
essential oils, stabilizing agent, aromatic extracts, etc.). So, this study aimed to identify the primary
and secondary metabolites of Citrus limon Burm. (‘Verna’ variety) leaf samples cultivated under
different conditions (three rootstocks and three culture media). In total, 19 metabolites were identified
for all samples, of which 9 were amino acids, 5 organic acids, 3 sugars and 2 intermediate metabolites.
The results pointed to a limited influence, both of the substrate and of the crop rootstock, on the
metabolomic differentiation of lemon leaves. Knowledge and foliar metabolomic differentiation can
offer important information that supports the application of crop foliar treatments but also helps in
the management of diseases and pests.

Keywords: Citrus limon Burm.; citrus rootstock; culture media; metabolomic differentiation; lemon leaves

1. Introduction

The advances and improvement of laboratory techniques, as well as the increase in
accumulated knowledge about plant metabolism, have allowed the scientific community
to achieve great advances in the identification of the metabolites present and/or absent,
as well as in the identification of their impact or role in the different metabolic pathways.
This knowledge has been applicable not only at the agronomic level for the control and
management of crops, but also at the pharmaceutical, food, medical and industrial level,
among others [1–3].

The metabolomic study, defined as the identification and quantification of all the
metabolites within an organism under a given set of conditions, has been providing a qual-
itative and quantitative, objective and complete description of the metabolites present in a
plant. The elaboration of specific metabolomic profiles allows researchers to elaborate and
define the “metabolic fingerprints” that can contribute to the identification and determination
of plant varieties, to the knowledge about the responses and adaptations of the plants to
the external and/or internal factors and to the potentiation of its functionalization [4,5].

On the other hand, although it is true that the lemon (Citrus limon Burm.) is one of the
most important crops in the Spanish southeast, and therefore its organoleptic characteristics
are well known and studied [6,7], the study and characterization of its leaves are limited to
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specific functionalized studies related to the objective of the work (extraction of essential
oils, stabilizing agent, aromatic extracts, etc.) [7–10].

In this context, this study aims to identify the primary and secondary metabolites of
foliar samples of Citrus limon Burm. (‘Verna’ variety) cultivated under different conditions.
The differences between the culture conditions are related to the substrate and the rootstock
used. The results of the study will allow for the correlation of the presence/absence
of the metabolites depending on the sources of variability (substrate and rootstock) on
the crop and its foliar development. NMR spectroscopy was used in conjunction with
multivariate data analysis to identify metabolites directly from leaf extracts, without any
chromatographic separation.

2. Materials and Methods
2.1. Plant Material and Sampling Preparation

For the foliar metabolomic study of lemon leaves (Citrus limon Burm. f. var. “Verna”),
two independent variables were considered in this work: (i) the culture substrate (n = 3),
and (ii) the rootstock used (n = 3). In relation to the culture medium, three substrates
composed of phytoremediated port sediment and commercial substrate (peat) mixed in
different proportions were tested. The phytoremediated port sediment comes from Livorno
port (Italy) and has already been previously studied and applied, by the same research
group, for other food crops, such as strawberries, pomegranates and lettuce [11–13]. Re-
lated to the rootstock, the most common rootstocks in citriculture were used, these being
Citrus macrophylla, Citrus aurantium and Sweet/Sour Orange.

For the present work, 9 treatments (3 rootstock × 3 substrates) were considered. For each
rootstock/substrate combination studied, a total of 10 trees were evaluated. The experimental
design adopted was random distribution by blocks (n = 5), with two repetitions of each combi-
nation per block. In total, 90 lemon trees (3 substrates × 3 rootstocks × 2 replicates × 5 blocks)
of 2 years of age, grown in polypropylene pots with a maximum capacity of 40 L, were
evaluated in an experimental plot of the Miguel Hernandez University (Orihuela, Spain).
Both the cultivation conditions and the management of the plantation were kept homo-
geneous throughout the trial, in order to minimize external influences on the parameters
evaluated. In all cases, leaf samples were collected at the beginning of September be-
fore the plant entered winter dormancy. For each combination studied, one leaf was
taken per cardinal point at two plant heights; in total, 16 leaves per sample were col-
lected (1 leaf × 4 orientations × 2 heights × 2 repetitions). All trees were in good health
and vegetative status at the time of the test.

In order to guarantee the non-degradation of the samples, immediately after collection,
the leaves were taken to the laboratory and their preparation began the same day. For all the
samples, manual cleaning of the surface of the leaves with distilled water was carried out,
in order to eliminate possible dust and dirt residues. Subsequently, they were submerged
in liquid nitrogen for 30 s, cut into smaller pieces and stored in sterile polypropylene con-
tainers with a 50 mL maximum capacity and a screw cap (Deltalab, Barcelona, Spain). The
samples were stored at −80 ◦C for 48 h until lyophilization (Christ Alpha 2-4, LSCplus, Mar-
tin Christ). Finally, the lyophilized samples were crushed (TSM6A013, Taurus, Spain) and
sieved (20 Mesh, stainless steel. Cymax Group Ltd., Burnaby, BC, Canada), guaranteeing
the homogeneity of the samples in a fine powder, and preserved in sterile polypropylene
tubes with a 12 mL maximum capacity (Deltalab, Barcelona, Spain) at −20 ◦C until used in
metabolomic analyses.

2.2. Leaves Metabolomic Profile by 1H-NMR

Prior to the metabolite determination by nuclear magnetic resonance (1H-NMR), the
lyophilized samples underwent an extraction process following the methodology described
by Van der Sar et al. [14] with some modifications; briefly: In Eppendorf tubes with a
2 mL maximum capacity, 0.5 mg of the lyophilized sample was mixed with 1200 µL of
a hydromethanolic mixture (1:1, MeOH: H2O). The Eppendorf tubes were sonicated for
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3 min at 1 min intervals and left at 4 ◦C for 30 min. Once this time had elapsed, the samples
were centrifuged at 11,000 rpm for 20 min at 4 ◦C. The recovered supernatant was subjected
to Speed-Vacuum, with a maximum temperature of 27 ◦C, until all the liquid phase had
evaporated (overnight). Subsequently, the soluble solid obtained was resuspended by
adding 800 µL of 100 mM potassium phosphate buffer (KH2PO4) at pH = 6.0 (dissolved in
100% D2O) + 0.58 mM of TPS (internal standard) and filtered with 0.45 µm nylon filters.
Finally, aliquots of 600 µL of the filtered volume were placed in 5 mm NMR tubes for
quantification by 1H-NMR.

2.3. Statistical Analysis

The spectra resulting from the 1H-NMR analysis of the foliar samples were processed
and compared with the MestReNova Software (Mestrelab Research, Spain). Spectral inten-
sities were pooled (δ 0.04) considering the region of δ 0.5–9.0. The regions corresponding
to the solvent D2O (δ 4.70–4.9) and water (δ 3.09–3.15) were not considered in the analy-
sis [15]. The subsequent statistical analysis was performed with the specific software for
metabolomic data processing, MetaboAnalyst 5.0 (Wishart Research Group, University
of Alberta, Canada), which allowed the identification and definition of spectral intensi-
ties, as well as principal component analysis (PCA) and partial least squares discriminant
analysis (PLS-DA). Loading plots, Variable Importance in Projection (VIP) scores, and
t-tests (p values < 0.05) were used to determine metabolites contributing to significant
between-group differences in PLS-DA score plots [16].

3. Results and Discussion
3.1. Metabolomic Fingerprint

The 1H-NMR spectra or general “metabolomic fingerprint” of Citrus limon (var. “Verna”)
leaves are shown in Figure 1. As a result of the NHR analysis of the 45 citrus foliar
samples (3 treatments × 3 rootstocks × 5 repetitions), 19 metabolites were identified for
all the samples, these being: 9 amino acids, 5 organic acids, 3 sugars and 2 intermediate
metabolites, a considerably lower amount if compared to the 35 metabolites identified
for the lemon fruit and/or its parts [3,17]. The 1H-NMR chemical shifts of the identified
metabolites are listed in Table 1.

All 1H-NMR spectra of the samples revealed by visual inspection a similar peak
distribution between δ 0.8 and 8.5 ppm. The main signals were detected in the high field or
aliphatic (δ 0.5–3.0 ppm) and midfield or sugars (δ 3.0–5.5 ppm) regions, but signals were
also identified in the low field or aromatic region (δ 5.5–9.0 ppm), as shown in Figure 2.

The correlated peaks for organic acids and amino acids were identified in the high
field or aliphatic region. In relation to the organic acids identified in this region, the signals
corresponded to malic acid, quinic acid and citric acid as the most abundant organic acids
and, to a lesser extent, formic acid and succinic acid. It should be noted that regardless
of the rootstock and/or treatment used, for all the foliar samples, quinic acid (C7H12O6)
was the dominant organic acid followed by malic > citric > formic = succinic acids. That
quinic acid is the majority in the leaves may be related to the influence of this organic acid
in the development and maintenance of leaf structures, mainly during the warm season,
and therefore during its maximum development [18].

Signals for valine, threonine and alanine amino acids were detected in the range
between δ 0.9 and 1.5 ppm, while arginine, proline and aspartate were observed as a doublet
between δ 1.5–2.8 ppm. GABA (γ-aminobutyrate) and glutamate were also identified in
the high field region (Figure 3A). Amino acids have several important functions in plants;
therefore, it is not surprising that they are the majority group (n = 9) of the metabolites
identified in lemon leaves. In addition to their use during protein biosynthesis, amino acids
also represent building blocks for other biosynthetic pathways such as plant growth and
development, control of intracellular pH, generation of metabolic energy or redox power,
and resistance to stress abiotic and/or biotic [19–23].
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Figure 1. Simplified comparison of the complete spectra of Citrus limon leaves cultivated with dif-
ferent culture media, where (A) 25% remediated port sediment +75% universal substrate; (B) 50% 
remediated port sediment +50% universal substrate; and (C) 75% remediated port sediment +25% 
universal substrate. 

Table 1. 1H-NMR chemical shifts (ppm) used to quantify and identify metabolites in citrus leaf sam-
ples. 

Compound Chemical Shift (ppm) 1 

Amino acids 
GABA 3.01 (t) 

Alanine 1.46 (d) 
Arginine 1.6 and 1.7 (m) 

Asparagine 2.94 (dd) 
Aspartate 2.81 (dd) 
Glutamate 2.3 (m) 

Proline 2.00 (m) 
Threonine 1.32 (d) 

Valine 1.02 (d) 
Organic acids 

Citrate 2.79 (d) 
Formate 8.43 (s) 
Malate 2.7 (dd) 

Quinate 1.86 (dd) 
Succinate 2.39 (s) 

Sugars 
Glucose (α and β forms) 5.22 (d) 

Maltose 5.42 (d) 
Sucrose 5.40 (d) 

Other metabolites 
Choline 3.19 (s) 

Trigonelline 9.11 (s) 
1 Where the letter represents the multiplicity: s, singlet; d, doublet; t, triplet; dd, double of doublets; 
and m, multiplet. 

Figure 1. Simplified comparison of the complete spectra of Citrus limon leaves cultivated with
different culture media, where (A) 25% remediated port sediment +75% universal substrate; (B) 50%
remediated port sediment +50% universal substrate; and (C) 75% remediated port sediment +25%
universal substrate.

Table 1. 1H-NMR chemical shifts (ppm) used to quantify and identify metabolites in citrus leaf samples.

Compound Chemical Shift (ppm) 1

Amino acids

GABA 3.01 (t)
Alanine 1.46 (d)
Arginine 1.6 and 1.7 (m)

Asparagine 2.94 (dd)
Aspartate 2.81 (dd)
Glutamate 2.3 (m)

Proline 2.00 (m)
Threonine 1.32 (d)

Valine 1.02 (d)

Organic acids

Citrate 2.79 (d)
Formate 8.43 (s)
Malate 2.7 (dd)

Quinate 1.86 (dd)
Succinate 2.39 (s)

Sugars

Glucose (α and β forms) 5.22 (d)
Maltose 5.42 (d)
Sucrose 5.40 (d)

Other metabolites

Choline 3.19 (s)
Trigonelline 9.11 (s)

1 Where the letter represents the multiplicity: s, singlet; d, doublet; t, triplet; dd, double of doublets; and m, multiplet.
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Figure 3. Representative 1H-NMR spectrum of lemon leaf extracts (Citrus limon var. ‘Verna’) grown
in 9 different treatments (3 rootstocks × 3 substrates) corresponding to: (A) the aliphatic region
(δ 0.5–3.0 ppm); (B) the region of sugars (δ 3.0–5.5 ppm) with emphasis on the identification of the
most representative compounds.
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In the midfield or sugar region (δ 3.0–5.5 ppm), corresponding peaks associated with
sucrose and glucose as dominant sugars were identified. Low-intensity signals visible
around δ 4.5 ppm indicated the presence of malatose. The identification of the sugars
would confirm the degree of maturity of the studied leaves, since it is the mature leaves
that are responsible for carrying out photosynthesis and providing energy and carbon
sources (mainly sugars such as glucose) to the other parts of the plant, such as roots, young
growing leaves, etc. [24,25]. The choline metabolite, a basic constituent of lecithin and an
important osmoregulator [26], was also identified in this region (Figure 3B).

Already in the low field or aromatic region (δ 5.5–8.5 ppm), normally associated
with aromatic groups of amino acids and phenolic compounds, were low-intensity signals
associated with formic acid (δ 8.56 ppm) and with trigonelline (as a doublet at δ 8.85 and
9.16 ppm). Although to the knowledge of the authors no specific bibliographical references
have been found on the metabolomic study of foliar samples of C. limon var. ‘Verna’, the
results obtained are consistent with the available literature on leaf samples [27,28].

3.2. Multivariate Analysis

In general, the analysis of variance (ANOVA) determined that, for the lemon tree foliar
samples, the metabolites that showed significant differences according to the Tukey test
(p < 0.05) were arginine, malate, quinate and sucrose, both as a function of the substrate
as rootstock; aspartate, formate, malate and choline only showed differences depending
on the substrate used, while alanine, aspargine, threonine, citrate and succinate only in
relation to the rootstock. The rest of the identified metabolites did not show significant
differences between the treatments studied.

With more detail, and because the spectra showed an obvious visual similarity, a
multivariate analysis of the PCA and PLS-DA results was performed to help identify the
spectral changes in the C. limon var. ‘Verna’ cultivated in three rootstocks (C. macrophylla,
C. aurantium and Sweet/Sour Orange) and on three substrates with different proportions
of marine sediment and universal substrate (25%, 50% and 75% port sediment content), i.e.,
to determine the impact of rootstock and substrate on the lemon’s foliar metabolic profile.

The 45 foliar samples analyzed (3 substrates × 3 rootstocks × 5 repetitions) were
included in the PCA and PLS-DA analysis, classifying them differently according to the
substrate and the rootstock, with the aim of identifying the intrinsic differences, avoiding
data duplication.

In this sense, the PCA results for the classification by substrates showed that the first
two principal components (PC) explained 97.6% of the total variation. PC1, related to 83.3%
of the total variance, was related to the variables alanine, arginine, aspargine, aspartate,
proline valine, citrate, formate, malate, quinate, succinate and choline, which corresponds,
for the most part, to the main amino acids. PC2, which accounted for 14.3% of the total
variance, correlated with GABA, glutamate, threonine, glucose, sucrose and trigonelline
content (Figure 4a). Regarding the type of rootstock, the PCA analysis concluded that 100%
of the total variance corresponded to the first two main components, with PC1 (61.89%)
related to asparagine, glutamate, citrate, formate, malate, quinate, succinate, glucose and
trigonelline, while PC2 (38.11%) correlated with GABA, alanine, arginine, aspartate, proline,
threonine, valine, sucrose and choline content (Figure 4b).

In the same way, a PLS-DA regression was carried out to investigate the correlations
between the treatments. In the PLS-DA model generated for the substrates, the first and
second PLS-DA components explained 73.3% and 24.3% of the total variance, respectively
(Figure 5a), while, for the rootstocks, the first and second PLS-DA components were related
to 78.7% and 18.9% of the total variance, respectively (Figure 5b). Additionally, the study of
the variable importance projection (VIP), derived from the PLS-DA analysis, confirmed the
identification of the quinate, arginine and malate metabolites as significant and differentiat-
ing between the substrates, and the arginine, quinate and sucrose metabolites between the
standards. Considering that quinate is a derivative of quinic acid and is therefore responsi-
ble for the development and maintenance of foliar structures, and that arginine participates
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in the physiological processes of the plant as an important nitrogen reserve [18,29], their
identification as significant metabolites in foliar samples is consistent. The differences be-
tween sucrose and malate could be related to the time the leaves were harvested since both
metabolites would be related to the mitochondrial respiratory metabolite of the plant [30].
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and VIP scores with the corresponding heat map where red and blue indicate the level of metabolites.
The results are analyzed according to (a) the substrate, and (b) the rootstock used.



Agronomy 2022, 12, 1060 8 of 11

3.3. Metabolomic Pathway

For the metabolic pathway analysis, the results were analyzed and processed with
the specific software for metabolomic data processing, Metaboanalyst, using the KEGG
HMDB database. As shown in Figure 6, the relevant metabolic nodes identified were
independent of both the substrate and the rootstock used. Thus, in both cases, the route
with the greatest impact is the one related to the metabolism of alanine, aspartate and
glutamate, followed by the nodes related to the citrate cycle (TCA cycle or Krebs cycle),
arginine biosynthesis and the metabolism of arginine and proline. This last metabolic route
presented significant differences between the variables studied; its impact is greater when
evaluating the rootstock than the substrate.
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Figure 6. Comparison of the results of the metabolic pathway for the lemon leaves obtained as a
function of the substrate (A) and the rootstock (B) where, in both cases, node (a) represents the
metabolism of alanine, aspartate and glutamate; (b) the pathway of the citrate cycle (TCA cycle or
Krebs cycle); (c) the biosynthesis of arginine; and (d) the metabolism of arginine and proline.

The presence of alanine and glutamate in plant leaves has been previously reported.
Ivanov et al. [31] identified alanine in pea leaves and catalogued it as a metabolite resulting
from biosynthetic reactions of oxalyl-CoA incorporated through glyoxylate. Aspartate
is already related to the carbon fixation process considered an important photosynthetic
metabolite [32].

The TCA cycle is an important aerobic pathway for the final steps of carbohydrate
and fatty acid oxidation, as well as supplying important precursor metabolites, including 2-
oxoglutarate. The variation or impact on the metabolic pathway may be associated with the
ripening state of the fruits, since other studies indicate that, during the ripening of lemons,
there may be a net disassimilation or synthesis of the stored tricarboxylic acid (TCA) cycle,
which directly impacts both the content and concentration of organic acids [32].

Finally, the results obtained were confirmed through the enrichment analysis calcu-
lated by the relationship between the compounds detected and those expected based on
the metabolic pathways/nodes identified regardless of the variable considered. The high
enrichment ratio (>3.5) for carbohydrates and organic acids confirms the suitability of the
routes evaluated (Figure 7).
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4. Conclusions

The present study focused on knowing and determining the metabolomic config-
uration of lemon leaves (C. limon var. ‘Verna’) cultivated in nine different treatments
(three substrates × three rootstocks) with the aim of identifying the differences and impacts
on the metabolic pathways not dependent on the cultivated variety. In total, 19 metabolites
were identified for all samples, of which 9 were amino acids, 5 organic acids, 3 sugars and
2 intermediate metabolites. The results pointed to a limited influence, both of the substrate
and of the crop rootstock, on the metabolomic differentiation of lemon leaves. More de-
tailed complementary studies must be carried out both at other times of the year, to identify
possible seasonal metabolomic variations, and in other varieties to determine their real
impact. Knowledge and foliar metabolomic differentiation can offer important information
that supports the application of foliar treatments but also helps in the management of
diseases and pests.
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